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ABSTRACT
We describe how to define an extremely large discrete realization of a Gaussian white noise
field that has a hierarchical structure and the property that the value of any part of the field can
be computed quickly. Tiny subregions of such a field can be used to set the phase information
for Gaussian initial conditions for individual cosmological simulations of structure formation.
This approach has several attractive features: (i) the hierarchical structure based on an octree
is particularly well suited for generating follow-up resimulation or zoom initial conditions;
(ii) the phases are defined for all relevant physical scales in advance so that resimulation
initial conditions are, by construction, consistent both with their parent simulation and with
each other; (iii) the field can easily be made public by releasing a code to compute it – once
public, phase information can be shared or published by specifying a spatial location within
the realization. In this paper, we describe the principles behind creating such realizations.
We define an example called Panphasia and in a companion paper by Jenkins and Booth
(2013) make public a code to compute it. With 50 octree levels Panphasia spans a factor of
more than 1015 in linear scale – a range that significantly exceeds the ratio of the current
Hubble radius to the putative cold dark matter free-streaming scale. We show how to modify
a code used for making cosmological and resimulation initial conditions so that it can take
the phase information from Panphasia and, using this code, we demonstrate that it is possible
to make good quality resimulation initial conditions. We define a convention for publishing
phase information from Panphasia and publish the initial phases for several of the Virgo
Consortium’s most recent cosmological simulations including the 303 billion particle MXXL
simulation. Finally, for reference, we give the locations and properties of several dark matter
haloes that can be resimulated within these volumes.
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1 IN T RO D U C T I O N

Computer simulations are the main tool for exploring the predic-
tions of models of cosmological structure formation in the strongly
non-linear regime. According to the currently favoured model, �

cold dark matter (�CDM), the structure we see today in the Uni-
verse is seeded from small adiabatic Gaussian fluctuations believed
to have originated in a very early inflationary phase in the Universe’s
history. Non-linear structure formation is simulated in �CDM by
making initial conditions at an epoch before there is significant
non-linearity, followed by integrating the equations of motion for-
ward in time using for example an N-body code. The creation of
the initial conditions requires a method to produce realizations of
Gaussian random fields. The techniques to make such realizations
have advanced in tandem with simulation methods over the last
three decades.

� E-mail: a.r.jenkins@durham.ac.uk

Simulation work exploring CDM in the 1980s focused on N-
body modelling of representative volumes of the Universe to study
the large-scale structure in model universes made of collisionless
dark matter. The Gaussian initial conditions for these simulations
were made by using Fourier methods applied to a single cubic mesh
(Efstathiou et al. 1985). These simulations modelled periodic cubic
domains of space sampled with uniform mass particles throughout
the volume.

The continuing success of the CDM model led in the mid-1990s
to the need to set up more complex simulations to explore the model
deeper into the non-linear regime including the study of the internal
structure of dark matter haloes. Because haloes could not be ade-
quately resolved at reasonable computational cost in cosmological
simulations, new techniques had to be developed to ‘resimulate’
haloes more cheaply. The initial conditions for the resimulations
needed both to faithfully reproduce the target haloes, selected from
a representative cosmological volume, and to include extra small-
scale power that could not be resolved in the parent simulation. The
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computational cost was minimized by coarse sampling the majority
of the simulation volume with massive particles whose function was
to provide the correct tidal environment for the halo being formed.
New codes were developed to make these resimulation initial con-
ditions: to build multimass particle loads and to make multiscale
realizations of Gaussian fields.

These first codes, such as the one described in Navarro, Frenk
& White (1995), used Fourier methods to generate the multiscale
Gaussian realizations. In this example, the field is built in a two-step
process. First, the Fourier modes present in the original cosmolog-
ical simulation are regenerated – guaranteeing that the target halo
is reproduced. Secondly, extra small-scale power is generated. The
total displacement field for the particles is the sum of the con-
tributions from both fields. The reason for needing two steps is
that it is usually impractical to use a larger Fourier transform for
making the resimulation initial conditions than was used to gen-
erate the initial conditions of the parent simulation. To get round
this practical limitation, the grid for the small-scale power is made
physically smaller and placed around just the region that forms
into the halo and its immediate surroundings. Typically, this second
grid is an order of magnitude smaller than the original grid. Over
the next decade, this method was extended to allow the placing of
further nested grids. This made it possible to reach very high nu-
merical resolution in cosmological simulations. Using seven con-
centric grids, Gao et al. (2005) achieved sub-solar particle mass
resolution for a small patch within 479 h−1 Mpc on a side periodic
volume.

While the Fourier method has proved to be a popular method for
making resimulations for nearly two decades, it has, since the late
1990s, coexisted with an alternative approach for making multiscale
Gaussian initial conditions suggested by Salmon (1996). Salmon
pointed out that it is easy to make a discrete realization of a real-
space multiscale Gaussian white noise field with the aid of any
standard pseudo-random generator. This is because the values of
a Gaussian white noise field at different points are independent
and so can be set up sequentially. Once such a white noise field
has been generated, it can be transformed by convolving it with an
appropriate filter to produce a Gaussian realization with any other
power spectrum. This idea gave birth to what we will call the real-
space white noise field method for making multiscale Gaussian
fields – it was adopted by Pen (1997) and Bertschinger (2001).
Bertschinger released a public code called GRAFIC2 based on this
idea that can generate multiscale Gaussian fields. This code has
been used by others to generate resimulation initial conditions.
A parallel version of GRAFIC2 has been developed by Stadel et al.
(2009), who used it to set up the GHALO series of halo simulations.
Most recently Hahn & Abel (2011) have refined the real-space white
noise field method by applying a new algorithm that uses an adaptive
convolution to improve the accuracy of the numerical convolution
by two orders of magnitude when compared to the Fourier methods
deployed in the GRAFIC2 code.

To make resimulation initial conditions using a real-space Gaus-
sian white noise field, it is necessary to be able to refine the white
noise field in any region of interest to allow finer spatial scales to
be resolved. This refined patch of the white noise field must remain
consistent with the unrefined white noise it is replacing to ensure
that the same structures are reproduced. Ideally, this process of re-
fining would operate as if some predefined underlying Gaussian
white noise field were simply being revealed in more and more
detail with increasing levels of refinement rather than simply being
invented to order. This idea is only partially achieved in the current
approaches to refinement described in the literature.

Typically the process of refining starts with a discretized Gaussian
white noise field that is specified on a cubic grid of coarse cells. Each
coarse cell is labelled by a single field value that is associated with
the cell centre. Each field value is picked at random from a Gaussian
distribution with zero mean and a variance that is proportional to the
inverse of the cell volume. A refined version of the field is produced
for a grid of finer cells. These fine cells are generated by splitting
the coarse cells in a patch of interest into smaller equal-sized cubic
cells. In Pen (1997) and Bertschinger (2001), the Gaussian values
over the fine grid are chosen freely in the same way as the coarse
cells, but subject to the constraint that the sum of the values over the
fine cells within each coarse cell equals the value associated with
that coarse cell. While elegant, this approach does not guarantee
that the corresponding Fourier modes for the patch as a whole taken
in isolation are the same for the coarse and fine versions. A more
complex approach also using linear constraints has been developed
by Hahn & Abel (2011) which forces the corresponding Fourier
modes in the coarse and fine overlapping region to agree. While the
latter approach guarantees that the large-scale power on the patch
is precisely reproduced in the refinement, neither method succeeds
in defining a truly objective white noise field – that is one that is
independent of the details of how the refinements are laid down.
This lack of objectivity applies equally to the Fourier method of
making initial conditions as the precise placement, and phases used
for the additional grids are arbitrary.

The goal of this paper is to develop a practical way to create a
realization of an objective Gaussian white noise field. There are two
major advantages for having such a Gaussian white noise field: (i)
it guarantees that sets of initial conditions made for the same region
with different numerical resolutions are as consistent as they can be –
so that the process of performing successive resimulations becomes
one closer to discovery – as the structures on all physical scales are
predefined; (ii) if the Gaussian white noise field is made public, then
it becomes easy to share or publish the phase information. All that
is needed is to give the precise location of the phase information
within the realization as a whole. The routine publishing of the phase
information has the potential to enrich the literature by making
it easier for others to check, reproduce or build upon published
simulation work.

The reason why Gaussian white noise fields are convenient to
work with numerically is one particular property. This is the fact
that the expansion coefficients of a Gaussian random white noise
field with respect to any orthogonal basis function expansion are
necessarily independent Gaussian variables. This property means
that a realization of Gaussian white noise fields can be conveniently
created by using a pseudo-random number generator to set the
values of the expansion coefficients.

The fact that this property is true for any orthogonal basis function
set suggests that it might be possible to find a set of orthogonal basis
functions that are particularly well suited for making cosmological
initial conditions. Neither Fourier modes nor sets of independent
values arranged on a real-space grid are obviously optimal for the
task of generating cosmological multiscale Gaussian fields.

The ability to resimulate any region of a simulation to any desired
numerical resolution requires that it must be possible to successively
refine the Gaussian white noise field at an arbitrary location. This
requirement suggests looking for an orthogonal basis set with a
hierarchical structure. An octree, which is the set of cells formed by
dividing a cube into eight subcubes and continuing this operation
recursively on the subcubes, would seem the simplest and most
convenient geometrical structure to adopt. Using this structure we
can define ‘orthogonal octree basis functions’ to be functions that
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are localized to particular octree cells being zero everywhere else.
Clearly defined in this way, octree basis functions in octree cells
that do not overlap are trivially orthogonal. For octree cells that do
overlap, the requirement of orthogonality is non-trivial and limits
the possible functional forms for the octree basis functions as we
show later. The high-symmetry and self-similar nature of an octree
means in practice that a relatively small set of functional forms are
needed to describe the infinite set of octree basis functions needed
to populate an octree to unlimited depth.

We can define the phase information for a periodic cosmological
simulation in the following way. We identify the cubic volume of
the simulation with a corresponding cubic subvolume within the
octree. This region in the octree can be made of a single octree
cell or a group of cells. We can then use the values of the Gaussian
white noise field in this chosen subvolume of the octree to define the
phases for the cosmological simulation to any desired resolution.
Because a Gaussian white noise field within a region is completely
independent of the field outside of that region, we can effectively
cut out conveniently sized cubic blocks from a much large Gaussian
white noise field and use these independent blocks to define the
phases for particular cosmological volumes.

The octree functions form a discrete four-dimensional space –
three of these dimensions span physical space in the form of a cubic
grid consisting of eight to some integer power cells, while the fourth
dimension spans the allowed side lengths of the octree cells which
are the side length of the root cell divided by two to some integer
power. A realization of a Gaussian white noise field can be made
using these octree basis functions by first establishing a 1D to 4D
mapping between a pseudo-random Gaussian number sequence and
the space of octree functions. Each pseudo-random number is taken
as the expansion coefficient of the white noise field for a particular
octree basis function. Similar mapping strategies, although more
commonly from 1D to 3D, are used in all methods used to make
Gaussian cosmological initial conditions.

To exploit the full potential of this 1D to 4D mapping so that it is
possible to refine the white noise field at any location to any depth, it
must be possible to access all of the relevant expansion coefficients
at reasonable computational cost. This requires choosing a pseudo-
random number generator that allows large jumps through the linear
pseudo-random sequence to be made cheaply. Fortunately there are
classes of pseudo-random number generators with this property,
and amongst these there are well-tested generators in common use.

Given that it is possible to access any expansion coefficient rel-
atively easily, it becomes possible by assigning the entire period
of the pseudo-random generator to the octree to create a realiza-
tion of a Gaussian white noise field with a truly enormous dynamic
range. The typical periods of generators commonly in use are so
large that the resulting white noise field is far larger than needed
for any one simulation, or indeed for all simulations that have ever
been run (at least on this planet!). For most generators, the period
is big enough to define a white noise field that can resolve scales
below the putative CDM free-streaming scale (Hofmann, Schwarz
& Stöcker 2001) everywhere within a volume that greatly exceeds
the current Hubble volume.

The rest of this paper is a detailed elaboration of the ideas out-
lined in this introduction leading to the construction of a particular
realization, called Panphasia, which is designed for the purpose of
making accurate cosmological and resimulation initial conditions.
We make this field public in a companion paper (Jenkins & Booth
2013). The outline of the rest of the paper is as follows: in Sec-
tion 2, we will give the mathematical background to the properties
of Gaussian fields needed later. In Section 3, we give a general de-

scription of how to construct the octree orthogonal basis functions
and outline their properties and choose the most suitable set for
making simulation initial conditions. We save the nitty-gritty and
more tedious details of the practical implementation to Appendix
A. In Section 4, we introduce the pseudo-random number generator
and its properties, but leave the details of the precise mapping of
the sequence to the octree to Appendix B. In Section 5, we show
how to add Panphasia to the IC_2LPT_GEN initial conditions code
first described in Jenkins (2010). In Section 6, we generate and test
cosmological and resimulation initial conditions and show that it is
possible to obtain good results using Panphasia. In Section 7, we
define a convention for publishing phases and give the phases for
several of the most recent Virgo Consortium volumes together with
the locations of a few haloes within these volumes. In Section 8, we
give an overview of the code to compute Panphasia. Section 9 gives
the summary. Finally in Appendix C we give the formal definition
of Panphasia.

2 MATH E M AT I C A L BAC K G RO U N D

2.1 Orthogonal basis function expansions
of Gaussian white noise fields

In the �CDM model, the primordial density fluctuations are a ho-
mogeneous and isotropic Gaussian field. Taking the spatial curva-
ture to be negligible, a �CDM universe can be modelled as a finite
cube of side length L, with periodic boundary conditions. For such a
cube, we can describe the density fluctuations in terms of the matter
overdensity, δ(x), where x is the position, as a sum over Fourier
modes:

δ(x) =
∑

k

δ(k) exp [ik · x] . (1)

The periodic boundary conditions require the wavevector, k, to
take discrete values with Cartesian components (kx, ky, kz) =
(2π/L)(lx , ly, lz), where lx, ly, lz are integers.

By definition, a Gaussian field is one where the amplitudes of the
Fourier modes, δ(k), are independent, with the real and imaginary
parts of each mode drawn from the same Gaussian distribution.
The statistical properties of a Gaussian random field are completely
determined by its power spectrum, which is defined by

P (k) = 〈|δ(k)|2〉/L3, (2)

where the angular brackets signify an ensemble average. For a
real Gaussian field with zero mean overdensity, the Fourier mode
amplitudes obey the constraints δ(k = (0, 0, 0)) = 0 and δ(k) =
δ∗(−k), where δ∗ is the complex conjugate of δ.

By definition, a Gaussian white noise field has a constant power
spectrum. For convenience, we will take 〈|δ(k)|2〉 = 1 for all Gaus-
sian white noise fields in this paper. There are two properties of
Gaussian white noise fields that are particularly relevant for this
paper.

First, a white noise field has power at all wavenumbers which
means that it can always be transformed into another Gaussian
field with any desired power spectrum by convolving it with a
suitable kernel function. As is well known, the operation of a spatial
convolution corresponds in Fourier space to a simple scaling of the
amplitude of each of the Fourier modes. By choosing a scaling factor
with a modulus of

√
P (k), the power spectrum of the convolved

white noise field becomes P (k). The scaling can include an arbitrary
phase factor, but as the goal of this paper is to use a white noise
field to define the phase, we need to insist that the kernel function
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must be real and non-negative in Fourier space. With this choice,
the phase information is purely contained in the white noise field
itself.

The second property, which we derive here, is the fact that the ba-
sis function coefficients of any orthogonal basis function expansion
of a Gaussian white noise field are necessarily independent Gaus-
sian variables. Our definition of a Gaussian field asserted that the
expansion coefficients are independent Gaussians for a plane wave
expansion, and the plane waves are an example of an orthogonal
basis function set. We now show that given that this is true for a
plane wave expansion of a Gaussian white noise field, it is also true
for all other sets of orthogonal basis functions.

To show this, we first consider a vector V with N components,
vi, i = 1, N, which are Gaussian independent random variables with
〈vi〉 = 0 and 〈vivj〉 = δij. When we say the variables are independent,
we mean that the joint probability distribution of the N variables is

Prob(v1, v2, . . . , vn) = 1

(2π)N/2
exp

[
−1

2
V T V

]
, (3)

which is just the product of the N individual Gaussian probability
distributions.

Consider now an alternative vector W , with N components wi,
i = 1, N which are linearly related to the vi by

W = RV , (4)

where the matrix R is any orthonormal matrix, so that RTR = I.
As the magnitude of the Jacobian for a linear transformation be-

tween the vi and wi variables is just the magnitude of the determi-
nant of R, which is unity for an orthonormal matrix, we can simply
transform equation (4) to give the joint probability distribution of
the wi:

Prob(w1, w2, . . . , wn) = 1

(2π)N/2
exp

[
−1

2
W TW

]
, (5)

which shows that the wi are independent Gaussian variables too.
To apply this result to Gaussian white noise fields themselves,

we need to go from using finite vectors to using infinite vectors to
represent functions in Hilbert space, in the manner made familiar
by quantum mechanics.

Let the fi(x) be an infinite set of real functions defined over the
periodic volume which obey these orthogonality and normalization
relations:∫

fi(x)fj (x)d3x = δij , (6)

where the indices i, j label the functions, and the integral is over
the volume. Using Parseval’s relation the corresponding normaliza-
tion/orthogonality relations in Fourier space are∑

k

f̃ i(k)f̃ j (k) = δij , (7)

where the function f̃ i is the Fourier transform of fi. If we express a
Gaussian white noise field as an expansion in the functions fi, with
expansion coefficients Ci, and assume that these functions form a
complete set, then we can express the overdensity field as a sum
over these basis functions

δ(x) =
∑

j

Cjfj (x), (8)

where the sum is over the whole set of functions.
Formally this sum is ill defined for a white noise field, but

nonetheless this expression can be employed inside of integrals

in a well-defined way. An expression for the Ci can be obtained by
multiplying both sides by fi and integrating over all space, applying
Parseval’s relation to the l.h.s. and equation (6) to the r.h.s. to give

Ci =
∑

k

f̃ i(k)δ(k), (9)

where the sum is over all wavenumbers. We can recognize this equa-
tion as being an orthonormal transformation, analogous to equation
(4) between the plane wave set of expansion coefficients, δ(k), and
the Ci expansion coefficients of the fi orthogonal basis function set.
Thus, the Ci must be independent Gaussian variables.

Having shown this, we can define a Gaussian white noise field in
terms of the Ci coefficients. By using a pseudo-random generator
to assign values to the Ci, we can create a realization of a Gaussian
white noise field in terms of the fi functions.

To date only two sets of orthogonal basis functions have been
used for making cosmological simulation initial conditions. These
are the plane waves and real-space grids of delta functions.

Plane waves are attractive because it is possible to refine a Gaus-
sian white noise field simply by adding higher wavenumber modes
to the modes already present. Their disadvantage is that this ap-
proach is very expensive computationally. This is because the plane
waves are not localized in real space. This means to refine a white
noise field in one region, it is necessary to provide the information
to refine the field everywhere to the same degree. This high cost
has been avoided by for example Navarro et al. (1995) by placing a
smaller Fourier grid around the region of interest so that the newly
added modes only contribute to a small part of the simulation vol-
ume. This approach is necessarily approximate as the added modes
are not truly orthogonal to the original plane waves.

By contrast, arrays of delta functions are perfectly localized,
which makes them very efficient from a computational point of
view. However, their disadvantage is that they are not able to resolve
scales smaller than the distance between adjacent delta functions
and cannot simply be added to generate a finer version of the field.
The approach in the literature (Pen 1997; Bertschinger 2001; Hahn
& Abel 2011) to get round this limitation has been to simply replace
one set of delta functions with an ‘equivalent’ finer set. This equiv-
alence is achieved by using a set of linear constraints to force the
phase information to be as similar as possible between the original
and its replacement. This approach is also approximate.

However, it is possible to find orthogonal basis functions that
have a strong degree of locality like the real-space delta functions
and enable a Gaussian white field to be refined just by adding more
components as with the plane waves. In this paper, we develop a set
of orthogonal octree basis functions that have these properties. The
octree basis functions are spatially extended, but each is localized to
a single cell of the octree. Using them a Gaussian white noise field
can be refined at relatively low computational cost by just adding
new basis functions from deeper in the octree to the existing field
in the region of interest only.

Before discussing the nature of the basis functions, we first define
some terminology to describe the octree structure we need.

2.2 Notation to describe an octree

We identify the root cell of the octree with the whole periodic cubic
spatial domain of length L. We define a set of Cartesian coordinates,
(x1, x2, x3), aligned with the three orthogonal edges of the root cell
and place the corner at (0, 0, 0). The coordinates have an allowed
range 0 ≤ xi < L, i = 1, 2, 3. We define the root cell to be at level 0
of the octree.
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At level l of the octree, there are 8l cubes each of side length

�l = L

2l
. (10)

We will label these cells using integer Cartesian coordinates, j1, j2,
j3 where 0 ≤ ji < 2l, i = 1, 2, 3. The centre of a cell (j1, j2, j3) at
level l, xc, has coordinates

xc(l, j1, j2, j3) = (j1 + 1/2, j2 + 1/2, j3 + 1/2)�l. (11)

Each octree cell has eight child cells, and we will call this cell the
parent cell with respect to any of its child cells.

3 BU I L D I N G TH E O RT H O G O NA L O C T R E E
BA S I S FU N C T I O N S

The primary objective of this paper is to use a new orthogonal basis
function set based on an octree structure to construct a realization
of a Gaussian white noise field. By definition, these octree basis
functions are localized to particular octree cells and mutually or-
thogonal. We require that the infinite set of octree basis functions
can be described by a finite set of functional forms that are common
to all levels of the tree, save for a normalization constant that is
allowed to depend on the level of a cell in the octree.

It proves convenient numerically to define the octree basis func-
tions themselves in terms of a smaller set of more primitive building
block functions. The octree basis functions can all be built from dif-
ferent combinations of these building blocks. These building block
functions are similarly localized to particular octree cells and, as
described later, are each separable into the product of three one-
dimensional functions of the Cartesian coordinates. An approxima-
tion to a Gaussian white noise field can be constructed using these
blocks by placing one or more of these functions into each octree
cell at level l of the octree so that they collectively tessellate the
entire volume. Each function is given an individual weight, which
is determined by the Gaussian white noise field. For convenience,
the functional forms of these building blocks are chosen so that they
form an orthogonal basis set when occupying the octree cells at a
single level of the octree. We can use these blocks to approximate
a Gaussian white noise field by making a basis function expansion
of the field with these blocks. The expansion coefficients of these
blocks will be independent Gaussian variables as the blocks are
orthogonal.

This representation is an approximation to a white noise field
because no finite set of building block functions can form a complete
basis set. For cosmological initial conditions, we require that the
density fluctuations be accurate from large scales down to some
minimum lengthscale determined by numerical reasons such as by
the particle Nyquist frequency or the gravitational softening length.
For this basis function expansion of a Gaussian white noise field
to be a useful approximation for our purposes, we require that the
power spectrum tends to unity in the limit k → 0 so that the power
on large scales is accurately represented. If this condition is met,
then it becomes possible to generate an accurate approximation of
a Gaussian white noise field for all wavevectors with a modulus
below some given value provided the building block functions are
placed at a sufficient depth in the octree. It is not difficult to see that
a building block function that is just a constant within an octree cell
and zero everywhere else is one possibility. As we will see later, we
can add additional building block functions to improve the rate of
convergence to a white noise spectrum in the limit k → 0.

Another practical requirement on the possible set of building
block functions is that it must be possible to construct each of

these functions when placed in an octree cell at level l, out of a
superposition of the same set of building blocks placed at level
l + 1 in the eight child cells. If this is true and we assume that
the octree functions at level l can be built from the building block
functions placed at some deeper level, then it follows that all of the
octree basis functions from level l − 1 to the root cell can similarly
be exactly represented by these building block functions at this one
level. In other words, it is possible to project the four-dimensional
space of octree basis functions, above any given depth, on to a three-
dimensional grid and represent it exactly using the building block
functions placed in these grid cells with appropriate weightings.

In fact, the octree basis functions are to a large extent implicitly
defined by the choice of these building block functions. To see
this imagine taking a given realization of a Gaussian white noise
field and approximating it in two different ways as a basis function
expansion in a given set of building blocks at either level l or
at level l + 1. The expansion at level l + 1 will contain all the
information present in level l expansion, but not vice versa. The
additional information about the white noise field at level l + 1
is just that introduced by the addition of a single layer of octree
basis functions. It follows from this that the octree functions, which
occupy whole octree cells at level l, must each be built of eight
blocks with each child cell containing some superposition of the
building block functions and that they are orthogonal to the level
l building blocks. As the expansion at level l + 1 has the number
of expansion coefficients eight times that at level l, it follows that
the number of independent octree functions must be seven times
the number of building block functions. By a similar argument, we
can deduce that the ensemble average power spectrum of a layer of
octree basis functions placed at level l of the octree is simply given
by the difference between the ensemble average power spectrum of
a white noise field expanded using the building blocks at levels l
and l + 1.

While it may not be immediately obvious, it is not difficult to see
that it is possible to create sets of building blocks with the required
properties starting from Legendre polynomials.

3.1 Using Legendre functions to build the octree
basis functions

The Legendre polynomials, by definition, are localized in a finite
interval and obey the orthogonality relation∫ 1

−1
Pl(x)Pm(x)dx = 2

2l + 1
δlm. (12)

The lowest order Legendre polynomials are P0(x) = 1, P1(x) = x
and P2(x) = (3x2 − 1)/2.

We can define three-dimensional ‘Legendre block’ functions as
products of Legendre polynomials in all three Cartesian coordinates
within a unit length cubic cell and zero outside as follows:

pj1j2j3 (x) =

⎧⎪⎪⎨
⎪⎪⎩

3∏
i=1

(2ji + 1)1/2Pji
(2xi) if − 1

2 ≤ xi < 1
2 ;

0 otherwise.

(13)

The Legendre blocks, when placed within octree cells at a given
level in an octree, are orthogonal and obey the following normaliza-
tions and orthogonality relations when integrated over all space:∫

pi1i2i3 (x)pj1j2j3 (x)d3x = δi1j1δi2j2δi3j3 . (14)

 at D
urham

 U
niversity L

ibrary on Septem
ber 13, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


A new way of setting Gaussian phases 2099

All of the Legendre blocks meet the requirement for the building
blocks to be localized and orthogonal. The requirement that each
block can be built of a superposition of blocks deeper within the
octree does place some constraints on the suitable sets of blocks.
We will refer to a set of blocks with this property as being self-
representing.

It is not difficult to see that it is possible to define sets of blocks
that are self-representing by taking all possible blocks built from
combinations Legendre polynomials up to some given order. We
will call the S1 set the set that was made from P0 alone, S8 that was
made from the eight combinations of the P0 and P1 polynomials
and S27 that was made from the 27 combinations of the P0, P1 and
P2 polynomials. We will refer to the S1, S8 and occasionally the S27

sets of Legendre blocks throughout the rest of the paper. We will use
these labels also to refer to the octree basis function themselves, so
when we refer to for example the S8 octree basis functions, we mean
those that are built from the S8 set of Legendre block functions.

Having defined some potential sets of Legendre blocks for build-
ing a Gaussian white noise field, we need some way to judge their
relative merits. While all Legendre blocks contribute equally to the
total variance of the white noise field (in an ensemble averaged
sense), they differ in their relative contributions to the power spec-
trum as a function of wavenumber. To examine this further, we need
to look at the Fourier representations of the Legendre blocks.

The Fourier transform of the Legendre polynomials in the
[− 1, 1] interval is the spherical Bessel functions. The lowest order
spherical Bessel functions are j0(k) = sin (k)/k, j1(k) = (sin (k) −
kcos (k))/k2. As k → 0 so jn(k) → kn/(2n + 1)!!. We define the
Fourier transform of the Legendre blocks as follows:∫

L3
pj1j2j3 (x) exp[ik · x]d3x = injj1j2j3 (k), (15)

where the functions jj1j2j3 are related to the spherical Bessel func-
tions:

jj1j2j3 (k) =
∏
i=1,3

(2ji + 1)1/2jji

(
ki

2

)
. (16)

The spherical Bessel functions obey an identity for all k:

∞∑
l=0

(2l + 1)j 2
l (k) = 1. (17)

Similarly the functions jj1j2j3 obey

∞∑
j1=0

∞∑
j2=0

∞∑
j3=0

j 2
j1j2j3

(k) = 1. (18)

We will need this identity later to establish the completeness of the
octree basis functions.

It is possible to have two self-representing sets of Legendre
blocks, SM and SN with M < N, where the former set of blocks
is a subset of the latter. For example, S8 is a subset of S27. In such
cases, given a realization of a Gaussian white noise field that has
been constructed using the SN octree basis functions, it is possible
to obtain an equivalent representation of exactly the same field but
built from the SM octree basis functions by simply ignoring those
Legendre blocks that are not part of SM. While this might seem
paradoxical, this equivalence is only true for expansions made with
complete sets of octree basis functions which are infinite in number.
For expansions made with a finite set of octree basis functions, some
choices are better than others as judged for the purposes of making
initial conditions. We will show this later by comparing simulations

of a particular dark matter halo at redshift zero run from initial
conditions made using either S1 or S8 octree basis functions.

The reverse procedure of starting with a field based on the set SM

and wanting to create an equivalent field but using the superset SN is
non-trivial. The coefficients of the blocks that are part of SN but not
SM are implicitly determined by an infinite number of coefficients
belonging to the SM blocks at deeper levels of the tree. For this
reason, it is better to be somewhat conservative in the initial choice
of sets of Legendre block functions and to try and take as large a set
as might possibly be needed. Taking too large a set however risks
making the generation of the field needlessly slow. For this paper,
we will evaluate just the S1 and S8 octree basis functions. As will
be shown later, the former does not perform very well and the latter
performs well enough that there is no compelling reason to look at
more elaborate choices.

3.2 Properties of the octree basis functions

We can write the ensemble power spectrum of a basis function ex-
pansion of a Gaussian white noise field using the set SN of Legendre
blocks at level l of the octree as〈
P N

l (k)
〉 =

∑
SN

j 2
j1j2k3

(k�l), (19)

where �l is the size of the octree cells, defined in equation (10).
The j000 function, present in all sets, tends to unity as k → 0, while

the sum over the whole set of Legendre block functions, given by
equation (18), is unity for all wavenumbers. We can therefore see
that the power spectrum approaches unity from below as k�l → 0.
Similarly, the power spectrum tends to unity from below for any
given k as �l → 0. This demonstrates that the set of octree functions
is complete: the Fourier mode set is complete and the amplitude of
any Fourier mode can be reproduced by the octree basis functions
in the limit of infinite tree depth.

For practical purposes the tree depth is finite, and there are sig-
nificant differences between how well different sets of octree basis
functions approximate the large-scale modes of a white noise field.
As mentioned at the beginning of this section, we can determine
the ensemble power spectrum of a single level of octree basis func-
tions by taking the difference between the ensemble average power
spectrum of the building blocks placed at two adjacent levels of the
octree:〈
P N

l−1,oct(k)
〉 =

∑
SN

(
j 2
j1j2j3

(k�l) − j 2
j1j2j3

(2k�l)
)
. (20)

Note we have implicitly associated a level l − 1 for the octree basis
functions that are made from eight level l Legendre block functions.

Fig. 1 shows the ensemble average octree power spectrum for a
single octree layer for the S1 and S8 sets of Legendre blocks. The
power spectrum shown is an average over cubic shells in k-space.
The power in S8 is more sharply peaked with the logarithmic slope
at low k� of 4, compared to 2 for S1. At high k�, the logarithmic
slopes of both are −4, but as the S8 set contains eight times as many
basis functions as S1, it has eight times more power and therefore has
a significantly higher amplitude at higher k. The three-dimensional
power spectrum of the octree functions has cubic symmetry and is
therefore anisotropic. We will leave the practical issue of how to
restore isotropy on all scales to later in the paper when we describe
how to make initial conditions.

The deviation of the power spectrum from unity at low k for the S8

set scales as k4 which is significantly better than the k2 scaling of the
S1 set. This makes the S8 set significantly better at approximating
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2100 A. Jenkins

Figure 1. The ensemble average power spectrum of the octree basis func-
tions, given by equation (20), at a single level of the octree for two different
choices of Legendre blocks. The power spectrum given is the average over
a cubic shell centred on the origin and labelled by the maximum Cartesian
coordinate. The horizontal dotted line shows the amplitude of the white
noise field. Both S1 and S8 have a logarithmic slope of −4 at large values of
k�. The logarithmic slopes at small values are 2 and 4, respectively.

the large-scale power. By this measure the S27 set would be even
better with its k6 scaling, but there are disadvantages in using large
block sets.

Using a larger set of Legendre blocks incurs a greater compu-
tational expense when evaluating the field. This cost is made up
of two components: the extra pseudo-random numbers that need
to be computed, which scale linearly with the number of Legendre
blocks, and the time to compute the relevant Legendre coefficients
from the octree basis functions, which involves linear algebra with
a matrix whose size scales as the square of the number of Legen-
dre blocks. For the S8 set, these two elements take similar amounts
of cpu time. We would expect that S27 would be about a factor
of roughly 10 more expensive than S8 to evaluate per octree cell.
For practical reasons, discussed later, it would also be necessary to
evaluate the S27 field more times to avoid the code being any more
memory intensive and that could make it 30 times more expensive.
This view is informed by the performance of the code which we
make public in Jenkins & Booth (2013). If a significantly faster
code could be developed to compute the field, then the practical
argument against using the S27 set would be weakened.

In the next subsection, we explicitly define sets of the S1 and S8

octree basis functions.

3.3 Functional forms for the S1 and S8 octree functions

While the octree basis functions are three-dimensional functions,
they can be factorized into products of three one-dimensional
functions of each of the Cartesian coordinates. For S1 these one-
dimensional functions are built from the P0 Legendre polynomial,
which is just a constant, while for S8 the P0 and P1 Legendre

polynomials are required. For S1 we define two one-dimensional
functions:

D0(u) =
{

1 if − 1 ≤ u < 1;

0 otherwise,
(21)

D1(u) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ u < 1;

−1 if − 1 < u < 0;

0 otherwise.

(22)

Using these functions we can generate eight three-dimensional func-
tions, Fijk, occupying an octree cell at level l as follows:

F l
ijk(x) = 1

�
3/2
l

Di

(
2x1

�l

)
Dj

(
2x2

�l

)
Dk

(
2x3

�l

)
, (23)

where i, j, k are the integers either zero or one, x1, x2, x3 are the
Cartesian components of x and it is assumed that the origin is the
centre of the octree cell at level l. We can consider all of these
functions of being built from eight p000 Legendre blocks placed,
with appropriate weights, in the child cells at level l + 1.

The function F l
000 is just a constant and corresponds to a p000

Legendre block at level l. The seven other functions are the octree
basis functions themselves. Note that each octree function has at
least one discontinuity in value. Given that the functions D0 and D1

are, respectively, symmetric and antisymmetric about the origin, it
follows that all eight functions are mutually orthogonal:∫

F l
ijk(x)F l

lmn(x)d3x = δilδjmδkn, (24)

when integrated over the volume of the cell at level l. Clearly all
seven octree basis functions within a given octree cell are mutually
orthogonal. It is easy to see, given that these seven functions are
orthogonal to the p000 Legendre block at the same level, that all
octree basis functions, no matter what octree cells they occupy,
are mutually orthogonal. The functional forms of the octree basis
functions given in the equation above are particularly simple, but
they are not unique. Alternative functions can be generated by using
any 7 × 7 orthonormal matrix, as in equation (4) to produce a new
set.

It is not difficult to see that if a given realization of a Gaussian
white noise field is expanded using the p000 Legendre blocks at both
level l and l + 1, then the expansion coefficient of each block at level
l is just the sum of the corresponding eight coefficients of its child
cells. This relationship between the parent and child coefficients is
identical to that used by both Pen (1997) and Bertschinger (2001)
for refining a real-space Gaussian white noise field.

From a coding point of view, it is tempting to add Panphasia to
GRAFIC2 using only the information in S1 block coefficients as this
would be quick and easy to do. However, as we will see in the tests
shown later in this paper that using the S1 block alone does a poor
job in reconstructing the Panphasia phase information, so we cannot
recommend this approach.

We now define a set of S8 octree basis functions. These are built
from the eight Legendre block functions which are products of
the zeroth and first Legendre polynomials. We can do this in an
analogous fashion to equation (23) by first defining a set of four
one-dimensional functions, Ei, that are the S8 analogues of the two
D0 and D1 functions used to define the S1 octree basis functions.
These four functions are built from combinations of the P0 and
P1 Legendre polynomials. Similarly for S27 we would need six
functions built from P0, P1 and P2.
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A new way of setting Gaussian phases 2101

Figure 2. The functions defined by equations (25)–(28), where u is plotted
on the horizontal axis. These four one-dimensional functions can be used to
construct a set of S8 octree basis functions as explained in the main text.

The set of four Ei functions consists of the pair with the functional
forms of the P0 and P1 Legendre polynomials plus a pair of functions
that have discontinuities about the origin. The left and right halves
of the latter pair are linear combinations of P0 and P1 Legendre
polynomials, scaled to half the width, and one is even and one odd
about the origin. The four functions are as follows:

E0(u) =
{

1 if − 1 ≤ u < 1;

0 otherwise.
(25)

E1(u) =
{√

3u if − 1 ≤ u < 1;

0 otherwise.
(26)

E2(u) =

⎧⎪⎪⎨
⎪⎪⎩

√
3(1 − 2u) if 0 ≤ u < 1;

√
3(1 + 2u) if − 1 ≤ u < 0;

0 otherwise.

(27)

E3(u) =

⎧⎪⎪⎨
⎪⎪⎩

(2 − 3u) if 0 ≤ u < 1;

−(2 + 3u) if − 1 ≤ u < 0;

0 otherwise.

(28)

These functions are shown in Fig. 2. With respect to the origin, the
E0 and E2 are even functions and E1 and E3 are odd functions. By
construction, all four functions are orthogonal and obey a normal-
ization condition:∫ 1

−1
Ei(u)Ej (u)du = 2δij . (29)

We combine these functions to create an analogous set of three-
dimensional functions to equation (23) to give

Gl
ijk(x) = 1

�
3/2
l

Ei

(
2x1

�l

)
Ej

(
2x2

�l

)
Ek

(
2x3

�l

)
, (30)

where i, j, k are the integers either zero, one, two or three, and x1,
x2, x3 are the Cartesian components of x and it is assumed that the
origin is the centre of the octree cell at level l. The functions are
mutually orthogonal and obey a normalization condition:∫

Gl
ijk(x)Gl

lmn(x)d3x = δilδjmδkn, (31)

where the integral is over the volume of the level l octree cell. There
are 64 functions in total. The eight functions defined by the values
of i, j and k all being zero or one are the S8 Legendre block functions
at level l. The functional forms of the remaining 56 functions are
those of the S8 octree basis functions. All of the basis functions
have a least one discontinuity in value or slope about the principal
coordinate planes defined by x1 = 0, x2 = 0 and x3 = 0. All 64
functions can be built from combinations of S8 Legendre blocks
placed in the eight level l + 1 child cells.

For practical applications, it is easier to work with the smaller set
of eight Legendre block functions rather than the 56 distinct octree
basis functions. The actual S8 basis functions used for Panphasia
are defined in terms of Legendre blocks in Appendix A.

4 C H O O S I N G A S U I TA B L E P S E U D O - R A N D O M
N U M B E R G E N E R ATO R

Once a set of octree basis functions has been chosen, the next step
for creating a realization of a Gaussian white noise field is to assign a
value drawn from a Gaussian probability distribution to each octree
basis function. This requires choosing a pseudo-random number
generator and establishing a mapping between the linear pseudo-
random sequence it produces and the octree basis functions. We
will discuss the mapping first as the requirements of the mapping
drive the choice of pseudo-random generator.

The octree functions form a four-dimensional discrete space.
For a given choice of building block functions, there will be a
fixed number of octree functions per octree cell. We can develop a
mapping as follows:

(i) first, establish an ordering of the different types of octree basis
functions belonging to each octree cell;

(ii) secondly, an ordering of the octree cells at a given level of the
octree using a raster scan pattern over the three physical dimensions
of the octree;

(iii) finally, an ordering by octree level starting at the root node
and descending.

We give the full details of the ordering used for Panphasia in Ap-
pendix B.

In general, a randomly chosen point in the root cell will overlap
an infinite number of basis functions. The values of the expansion
coefficients of these functions are determined by an infinite series
of short segments of the pseudo-random sequence which are spaced
progressively further and further apart as the octree is descended.
If the cost of accessing these coefficients were proportional to the
linear separations between these segments, it would be impossible
in practice to descend far from the root cell. This would be a major
limitation for the method.

To avoid this limitation, we need a generator that allows essen-
tially random access to the entire sequence at a reasonable compu-
tational cost. The ability to jump N places in at worst of the order
of log N time is highly desirable as this opens up the possibility of
using the entire period of the generator.

 at D
urham

 U
niversity L

ibrary on Septem
ber 13, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2102 A. Jenkins

There are ways of accessing a pseudo-random sequence that
are independent of the jump size. This can be done using an en-
cryption algorithm which takes as input the linear position on the
pseudo-random sequence and then scrambles the position in a highly
non-linear way to produce a pseudo-random number. This kind of
calculation is typically quite expensive if the aim is to produce
cryptographically strong pseudo-random numbers. However, it is
possible to produce a relatively fast pseudo-random number gener-
ator with this approach, albeit one that should probably not be used
for encryption. The RAN4 random number generator from Press et al.
(1992) is an example of this type. The authors found that the RAN4
generator produced good quality random numbers for sequences of
a billion numbers. While we used this generator for a prototype to
Panphasia, this particular generator is not suitable for our purposes
as the total sequence length is too short. In principle, it ought to be
possible to devise a generator along similar lines to RAN4 but with a
longer sequence.

Rather than taking this route, we decided instead to take a gen-
erator that has been described in the literature and that has been
in common use and well tested. Following a recommendation,1 we
have used a generator first published in L’Ecuyer, Blouin & Couture
(1993). The generator has several names in the literature, but we
will call it MRGK5-93. This generator is available as part of the GNU
scientific library2 where it is called GSL_RNG_MRG.

The internal state of MRGK5-93 can be represented as a five-
element column vector with each element being an integer in the
inclusive range 0, m − 1, where m is the prime 231 − 1 = 2, 147,
483, 647. Given the nth state, T n

i , the next internal state is generated
by a matrix operation: T n+1

i = MijT
n
j mod m, where modular arith-

metic, base m, is applied to the results of the matrix multiplication.
A uniformly distributed pseudo-random number between zero and
one is associated with each state:

rn =
{

T n(1)−1/2
m

if 0 < T n(1) < m;
m−1/2

m
if T n(1) = 0.

(32)

The matrix for advancing one step for MRGK5-93 is

Mij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 a2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

where a1 = 107, 374, 182 and a2 = 104, 480. The state vector for
the starting point of the sequence used for Panphasia together with
a few other examples of state vectors is given in Table B1.

Although cast as a matrix multiplication above, the operations
required to advance the generator one step can be implemented
very efficiently on a computer. Because matrix multiplication is
associative and the property of associativity is not affected by the
application of modular arithmetic base m to matrix multiplication,
the jump matrix which advances the state N steps at a time is
just MN mod m. The use of modular arithmetic ensures that the 25
coefficients of this matrix always remain in the range 0, m − 1.
The cost of advancing the state vector with a general matrix of
this form is typically 30 times more expensive than advancing by
a single step. The cost of building a jump operator, MN mod m,

1 The author is grateful to Stephen Booth of the Edinburgh Parallel Com-
puting Centre for suggesting a suitable generator and providing him his own
f90 implementation of the generator.
2 http://www.gnu.org/software/gsl/

starting from equation (33) is O(ln N) which makes it practicable
to assign virtually the whole pseudo-random sequence to the octree
basis functions.

From a computational point of view, the cost of evaluating the
properties of a single octree cell in Panphasia is still very expen-
sive as it requires the evaluation of typically thousands of pseudo-
random numbers at many different places in the sequence. However,
the access pattern needed for making initial conditions is highly lo-
calized so the actual number of pseudo-random numbers that need
to be evaluated per cell is close to just 10. Using a raster scan access
pattern for the cells which mirrors the mapping of the pseudo-
random sequence on to the basis functions minimizes the number
of large jumps required and maximizes the number of consecutive
accesses to the sequence. Further improvements in speed can be
obtained by caching the results of previous evaluations. With cur-
rent processors it typically takes about 2 μs on average per cell to
return the expansion coefficients belonging to that cell. There is still
scope to improve the speed of the code with further optimizations,
but in practice the generation of the white noise field typically takes
only about 20 per cent of the time to generate initial conditions,
excluding the I/O.

As stated in the documentation for the GNU scientific library,
the full period of the MRGK5-93 generator is Pgen = m5 − 1 

4 × 1046. This means that the period consists of every possible
state vector with the exception of the null vector. Interestingly,
the generator has a subperiod, Psub = (m5 − 1)/(m − 1) 
 2 ×
1037. Over multiples of this subperiod, the jump matrix becomes
a multiple of the identity matrix (Booth, private communication).
When this multiple (which ranges from 1 to m − 1) takes on small
values, there are significant correlations between pseudo-random
numbers at this precise separation. The large size of the subperiod
precludes any possibility of such a coincidence occurring for levels
shallower than 40 in the octree. Going deeper still in the tree, there
is a remote possibility that some pseudo-random numbers separated
by a multiple of Psub may occur in a given set of initial conditions.
The chances of this happening, however, are vanishingly small for
any randomly chosen region.

Of more concern is the more general question of whether this
generator provides sufficiently good pseudo-random numbers for
making cosmological simulations. It is desirable that the generator
passes a diverse set of randomness tests. However, even in the epoch
of precision cosmology the requirements on a generator for cosmo-
logical simulations are less strict than many other applications such
cryptography. Some deviation from randomness is acceptable for
cosmological initial conditions provided it is sufficiently small. The
fact that the pseudo-random numbers are discrete and not truly
uniformly distributed is not a concern, although as described in Ap-
pendix B we do take measures to mitigate the discreteness effect
to ensure that the tail of the Gaussian distribution for the Gaussian
pseudo-random numbers is properly populated.

For some purposes such as encrypting secret messages or for
gambling machines, it is highly desirable that the pseudo-random
sequence cannot easily be predicted by studying a small part of
its output sequence. In this respect, MRGK5-93 performs poorly as
just five consecutive numbers are sufficient to deduce all five ele-
ments of the state vector. Once the state vector is known, the whole
sequence is determined. This property means that an n-tuple (for
n > 5) of pseudo-random numbers produced by MRGK5-93 cannot
uniformly sample the n-point joint probability function. However,
the coefficients, a1 and a2, used in the generator were selected in
part by a requirement that the deviations from uniformity in the
n-point joint probability function for 6 ≤ n < 21 are confined to
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very fine scales (L’Ecuyer et al. 1993). In practice, this means that
detecting deviations from randomness in the joint n-point function
requires very large samples in order to distinguish non-uniformity
from shot noise. This small-scale non-uniformity is not obviously
a problem for cosmological initial conditions as any effect is likely
to be dwarfed by sources of numerical error in any actual N-body
simulation.

A second feature of MRGK5-93 is that over the entire period,
with one exception, each pseudo-random number appears m4 times
exactly – a highly subrandom pattern. So a test looking at the
frequencies of occurrence of different pseudo-random numbers will
show a failure for a sufficiently large sample of the sequence. This
deviation from randomness is extremely small so hardly a concern
for making initial conditions. Given these known limitations, it is
interesting to see how well MRGK5-93 does perform in wide range
of standard tests of randomness.

L’Ecuyer & Simard (2007) have developed a software library,
TESTU01, for testing pseudo-random number generators empirically.
The results of libraries of tests performed on many common gen-
erators, including MRGK5-93, are given in this paper. Their most
rigorous test battery, called BigCrush, yields 160 independent sta-
tistical results from a total of 106 separate tests. A total of 2.7 × 1011

pseudo-random numbers for each generator are used in these tests.
The outcome of each test is a p-value, which for a perfect generator
would be expected to be drawn from a uniform distribution between
0 and 1. A generator is said to fail a test if the p-value is within
10−10 or zero or unity. A test where the p-value is within 10−4 of
the same limits is noted as suspect. Quite a few commonly used
generators do fail multiple tests. The MRGK5-93 generator does not
fail any of the BigCrush tests and none of the p-values are suspect.

This is encouraging and on this basis we are content to use this
generator. The size of the sample tested is larger than would typically
be used to generate most sets of initial conditions, although some
like those of the MXXL require more. We do nonetheless expect
this generator to eventually fail a randomness test applied to a
larger sequence of numbers than tested by BigCrush for reasons
explained above. The deviations from randomness we described
are small and not a great concern. Tests of pseudo-random number
generators, however, can never completely set the mind at rest as
it is impossible to be sure that some new random test may reveal a
significant flaw previously undetected.

5 A D D I N G PA N P H A S I A TO T H E I C_2LPT_GEN

C O D E

In this section, we describe how to modify the IC_2LPT_GEN code for
making cosmological initial conditions to use Panphasia to set the
phase information. There are two main goals of this section. First,
to show that it is possible to make initial conditions that accurately
reconstruct the phases defined by Panphasia and secondly to act as
a practical guide to help anyone wanting to add Panphasia phases
to other initial condition generators.

5.1 Overview of IC_2LPT_GEN

The IC_2LPT_GEN code is used by the Virgo Consortium to gen-
erate Gaussian initial conditions for a variety of projects relating
to large-scale structure, galaxy formation, the internal structure of
dark matter haloes and the formation of the first stars. The code is
able to make resimulation initial conditions with displacements and
velocities calculated using second-order Lagrangian perturbation

theory (2LPT). While the initial conditions we make for this paper
use this feature, there is no significant interaction between the meth-
ods we describe here and those required to generate 2LPT initial
conditions. We will describe only the most relevant features of the
code here. A more detailed description of the code, including the
method to make 2LPT multiscale initial conditions, can be found in
Jenkins (2010).

When it comes to modifying the code to use the phase information
from Panphasia, it is useful to divide the kinds of initial condition
that IC_2LPT_GEN can make into two classes. The first class is cos-
mological initial conditions where a single Fourier grid is used to
generate displacement and velocity fields for all the particles in a
large periodic domain. An example of this is the MXXL simulation
(Angulo et al. 2012), which modelled 303 billion particles in a cubic
volume of about 4 Gpc on a side.

The second class, which we will call resimulation initial con-
ditions (or equivalently zoom simulations), uses multiple Fourier
grids to compute the displacement and velocity fields to generate
multiscale initial conditions. In common with cosmological initial
conditions, a grid is used that covers the entire simulation domain.
We will call this the parent grid or outer grid. The extra grids, which
we will call collectively the inner grids, typically have a similar
number of grid points as the parent grid, but are physically smaller
and placed concentrically around a focal point of interest in the
simulation volume. The IC_2LPT_GEN code can place many nested
subgrids around a point allowing it to make very high resolution
initial conditions for the region that is contained within all of the
grids. The remainder of the simulation volume is required to pro-
vide the appropriate tidal forces only and is modelled at lower mass
resolution to reduce computational cost. A recent example of res-
imulation initial conditions made by IC_2LPT_GEN is those created
for the Phoenix project (Gao et al. 2012), the computational goal of
which was to model at high numerical resolution the dark matter in
individual galaxy clusters, selected from the Millennium simulation
(Springel 2005).

The IC_2LPT_GEN code uses Fourier methods to generate the Gaus-
sian displacement and velocity fields for each grid. The fluctuations
are created in k-space by generating independent random ampli-
tudes and phases for each Fourier mode (subject to the condition
that the field is real) with the option of using one of several dif-
ferent pseudo-random number generators to calculate a series of
independent Gaussian pseudo-random numbers. The amplitudes of
the Fourier modes are scaled appropriately so as to reproduce the
desired linear density fluctuation power spectrum. For a given grid,
the Fourier modes are set only in a range between low-k and high-k
limits.

For cosmological initial conditions utilizing a single grid, these
limits in k are determined by the fundamental mode of the simulation
cube at low k and typically by the particle Nyquist frequency at high
k. The high-k cut-off is chosen to be spherical so that the fluctuations
are isotropic at small scales. For resimulation initial conditions, the
low-k and high-k limits associated with each nested grid in real
space are dovetailed to ensure that the power spectrum in the high-
resolution region has the appropriate contributions all the way from
the fundamental mode of the simulation cube down to the particle
Nyquist frequency of the high-resolution region.

All grids are treated in the same way by IC_2LPT_GEN which
means that all field quantities are periodic on the physical scale of
the grid. This periodicity is only strictly correct for the parent grid.
However, the effect of periodicity on the other grids can be limited
by choosing a low-k cut-off which is significantly larger than the
fundamental mode of that grid. If this condition is met, then the

 at D
urham

 U
niversity L

ibrary on Septem
ber 13, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2104 A. Jenkins

correlation length of the field on the grid is much smaller than the
size of the grid itself.

Once the displacement and velocity fields (and other fields) have
been calculated on a grid, the IC_2LPT_GEN code uses interpolation
to compute the values of these fields at the locations of unperturbed
particles. The IC_2LPT_GEN code uses the value of the fields and
their spatial derivatives in the interpolation from the grid points to
the positions of the particles in the unperturbed particle load. The
interpolation scheme used is described in detail in the appendix of
Jenkins (2010).

For a resimulation to be successful, the phases present in the
original cosmological simulation must be reproduced on the parent
grid. For a resimulation with higher resolution in some region of in-
terest than the parent simulation, additional high-k power is needed.
The choice of the phases for this extra power is not constrained
by the large-scale power. In IC_2LPT_GEN the phase information for
the high-k power is determined by a series of arbitrarily chosen
pseudo-random number seeds: one for each extra grid. The precise
positioning and dimensions of the extra grids are ill determined:
all that is required is that it be approximately concentric about the
region of interest. All of these freedoms contribute to making the
choice of the phase information at high-k power rather arbitrary. In
practice, the phase information is encoded in a text parameter file,
the length of which increases as the number of grids increases.

5.2 Adding cosmological initial conditions from Panphasia
to IC_2LPT_GEN

The phase information for cosmological initial conditions is most
compactly represented as a finite set of amplitudes and phases, each
associated with a periodic plane wave that spans the simulation
volume. These waves range in wavelength from the fundamental
modes of the periodic simulation volume to a cut-off wavelength
typically determined by the interparticle spacing. This contrasts
with the equivalent octree basis function representation, where in
order to reproduce the phases of these particular waves exactly, an
infinite number of expansion coefficients are needed. Nonetheless,
it is possible to accurately reproduce the phase information with a
finite number of octree basis functions, particularly when using the
S8 octree functions introduced in Section 3. In practice, only octree
basis functions down to some maximum depth, lmax, in the octree
can be used, where the value of lmax should be as large as possible
given limited resources.

The IC_2LPT_GEN code makes initial conditions using Fourier
methods starting with a k-space representation of a Gaussian field
on a cubic grid. The natural way to incorporate Panphasia is to
choose a Fourier grid which is commensurate with the Legendre
block expansion of Panphasia at level lmax of the octree.

We assume that a particular cubic region within Panphasia con-
sisting of N3 whole octree cells at level l has been selected to define
the phase information for a given cosmological simulation. The
corresponding dimension of the cubic Fourier grid, M, should obey
M = 2(lmax−l)N , where lmax ≥ l. This ensures that there is a one-
to-one correspondence between grid points and octree cells at level
lmax. The use of fast Fourier transform algorithms places restrictions
on the value of N, limiting it to be a product of small prime factors
only.

Having matched the grid to Panphasia, the IC_2LPT_GEN code takes
only the information provided by Panphasia as deep as level lmax. For
each octree cell at level lmax, we know the basis function coefficients
of the expansion of Panphasia for S8 Legendre blocks. We can

associate a separate grid with each of the eight types of Legendre
block, and assign an expansion coefficient to a corresponding grid
point for all cells. Each of these grids is an independent discrete
realization of a Gaussian white noise field. The remaining task is to
combine the information on these eight fields to produce a single
field on a grid that accurately reconstructs the Panphasia phases.

Taking the grid points to represent delta functions, scaled by
the corresponding values of the expansion coefficient, we can in
principle exactly regenerate Panphasia truncated to level lmax by
convolving each of the eight grids with the appropriate Legendre
block and co-adding the results to give a single continuous field. This
continuous field would nonetheless have a discrete representation
in k-space because of periodic boundary conditions.

In practice, in IC_2LPT_GEN the eight grids are combined in k-
space to give a discrete combined field. This is done by applying
a fast Fourier transform to each real grid to produce a k-space
equivalent. Once in k-space, the convolution with the appropriate
Legendre block is achieved by multiplying by the Fourier transform
of the Legendre block (given by equation 15). An additional phase
factor corresponding to a uniform translation in real space has to
be included in this convolution for IC_2LPT_GEN. This is because
IC_2LPT_GEN places a grid point at the coordinate origin, which
means that the grid points and the octree cell centres are everywhere
displaced from each other by half a grid spacing in each of the
Cartesian directions. The translation by half a grid spacing in all
three Cartesian directions is needed to ensure that the phase pattern
appears in the correct physical location. Summing the eight fields
produced by the convolution results in a discrete and bandwidth-
limited representation of Panphasia in k-space. This field is not a
true Gaussian white noise field as the S8 Legendre blocks placed at
a given level of the octree are not a complete basis set.

The field produced in this way can be restored to a true white noise
field by adding an additional uncorrelated field with an ensemble
averaged power spectrum:

P l
add(k) = 1 −

∑
S8

j 2
i1i2i3

(k�l). (34)

Using identity (18) it is easy to see that the power spectrum of
the truncated field averaged over all directions deviates as k4 from
a white noise field at large spatial scales for the Legendre block
functions of S8 and as k2 for the S1 Legendre block.

This extra component should ideally be generated from the basis
expansion coefficients of Panphasia for levels deeper than lmax, but
there has to be a cut-off in practice and we take it to be lmax. So
instead IC_2LPT_GEN generates a ninth independent white noise grid
and uses the form of Padd(k) so that when combined with the other
eight fields the result is a true white noise field. This guarantees
that the initial conditions have the correct power spectrum with an
isotropic cut-off in k, but comes at the price that the phases of Pan-
phasia particularly at small scales are not perfectly reconstructed.
The pseudo-random numbers needed for the ninth grid are not part
of Panphasia, but as explained in Appendix B the coefficients for the
ninth field are generated at the same time as the basis coefficients
for the other eight grids.

The requirement to build the field with so many components
potentially has some negative practical effects on the memory effi-
ciency of the code. The memory requirements would be significantly
increased if all nine grids had to be stored at the same time when
using the coefficients for all eight Legendre blocks. In fact, the code
already needs to be able to store four grids in order to make 2LPT
resimulation initial conditions as described in Jenkins (2010). These
grids however are not required until the white noise field has been
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computed. So there does not need to be any increase in the memory
usage of the code provided the white noise field is evaluated three
times in succession. In practice, the actual code stores five grids
and therefore has to evaluate the white noise field twice. As it takes
both more cpu time and more memory to make initial conditions
using S8 in preference to S1, there has to be a good reason to prefer
it. This applies even more strongly to S27 which would require 28
grids to be combined. To keep the memory requirements the same
with S27 would require evaluating the white noise field six times,
and each evaluation of the white noise field would be significantly
more expensive too. There would need to be an even stronger reason
for rejecting S8 before considering the S27 set.

The ultimate decision as to the best set of octree basis functions is
made later in the paper from studying the end states of simulations.
It is useful nonetheless as a guide to help interpret the results of
these simulations to compare the different choices of the octree
basis function by looking at linear density fields first. We define
first an error field, which is the difference between the linear density
field reproduced by the method and the true Panphasia linear density
field. We can then characterize this error field by its power spectrum.
Because the ninth field is independent of Panphasia, the error power
spectrum is simply 2Padd.

Using this error power spectrum we can quantify the effect of
this error field on density fluctuations in the initial conditions, for
some assumed power spectrum P(k), by determining the fractional
error in the rms fluctuations, εrms, as a function of volume as

ε2
rms =

∫
2Paddk

2 W 2(k)dk∫
P (k)k2 W 2(k)dk

. (35)

The top and bottom terms on the r.h.s. are the rms fluctuations in the
error field and the true field, respectively, smoothed by a suitable
spherical filter, W, with some characteristic scale that can be varied.
For spherical perturbations, the collapse epoch is determined by
the linear overdensity at some fiducial epoch, so these fraction rms
fluctuations give an indication of how structure formation is affected
as a function of scale.

In Fig. 3, we plot εrms against the effective volume of the filter,
W, for power-law initial conditions with P(k) ∝ k−2.75 made with
either the S1 or S8 Legendre blocks. We take W to be a Gaussian
filter with the zeroth and second moments matched to a spherical
tophat with a volume plotted on the x-axis in units of the volume
per grid cell. The tophat filter itself is unsuitable because the top
integral in equation (35) is dominated by a surface term rather than
by the volume term for the error field generated by S8. The choice
of the power-law index is appropriate for CDM initial conditions
with fluctuations populated down to a particle Nyquist frequency
corresponding to a particle mass of about 106 M which will be
featured in the tests later in this section.

Clearly the field generated by S8 is a much better approximation
to Panphasia for all volumes than S1, with the difference increasing
with increasing volume. For a fractional error of εrms = 0.01, there
is a factor of about three orders of magnitude in volume between
the S1 and S8 initial conditions. This means that to achieve the same
accuracy in the phase reconstruction using initial conditions made
using the S1 octree basis functions requires orders-of-magnitude
higher numerical resolution than for S8. In Section 6, we will see
how these differences translate to the end states of simulations. Be-
fore this, however, we consider the task of how to adapt IC_2LPT_GEN

to make resimulation initial conditions.

Figure 3. A comparison of the relative accuracies in reproducing the correct
phases in initial conditions for two choices of sets of Legendre blocks. The
quantity of the y-axis, defined in equation (35), is plotted as a function of
the volume of the smoothing filter in units of the volume of the grid cells.
The integrals have been truncated at the grid Nyquist frequency.

5.3 Adapting IC_2LPT_GEN to make resimulation or zoom
simulations using Panphasia

As described earlier, the IC_2LPT_GEN code generates what we will
call Fourier resimulation initial conditions in a piecewise fashion
by calculating the displacement fields on a series of nested grids
about some focal point of interest in the parent simulation. The
total linear displacement for any particle is just the sum of the linear
displacements generated by the individual grids that it spatially
overlaps. The displacement fields for each grid are generated in the
same way as for cosmological initial conditions with starting point
being to generate a k-space representation of a Gaussian field on a
grid. To adapt IC_2LPT_GEN to use Panphasia requires finding a way
to generate equivalent k-space Gaussian fields based on Panphasia.
Once this has been achieved, no further modification of the code is
needed to produce initial conditions.

The precise placement of the Fourier grids in IC_2LPT_GEN Fourier
resimulation initial conditions is largely arbitrary. All that is re-
quired is that the different grids be nested and centred approximately
on the region of interest. With the Fourier method the displacement
field pattern is tied to the grid and would move rigidly with the grid
if it was decided to place the grid in a slightly different location.
In contrast, the octree basis functions of Panphasia have fixed coor-
dinates so moving the grid will not lead to the phase pattern itself
shifting. In practical terms this means that it is not necessary when
using Panphasian phases to publish the grid positions. It is true that
the ‘error fields’, that is the differences between the true initial con-
ditions and those actually generated, will depend on the choice of
grid positions, but as the aim in numerical work is to minimize the
numerical effects to the point where they do not affect the scientific
conclusions, it should not be necessary to specify the precise grid
positions.
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As with cosmological initial conditions, the extra grids must be
arranged so that the grids are commensurate with the octree cells
which means there is only a discrete set of positions where the grids
can be placed. These positions are those where the grid points are
located at the corners of octree cells. The sizes of the grids measured
in grid cells are also restricted for computational and numerical
reasons, by both the method of parallelization in IC_2LPT_GEN and
through the use of fast Fourier transforms. In practice, the ratios of
the physical sizes of the nested grids have to be simple fractions,
and for all the tests in this paper they differ by powers of 2 only.

In the Fourier method for making resimulation initial conditions,
the phase information on each grid is independent from that on
every other grid simply because each Fourier mode is set with a
different pseudo-random number and each Fourier mode belongs
to a single grid. To make the grids independent using Panphasia,
all that needs to be done is to assign each octree basis function to
a single grid. Any alternate approach that allows an octree basis
function to be split between grids does not appear attractive as the
contributions on the different grids would be sampled on different
scales and, because they are coherent, add in a complex way with
associated fringing.

While the octree basis functions themselves are perfectly con-
fined to a single cell, once a convolution has been applied to gener-
ate the initial conditions, the information contained within a single
cell is propagated to all points on the grid, although in a far from
uniform way. As discussed in Appendix A, both the zeroth and
first moments evaluated about the cell centre of the octree basis
functions are identically zero. This vanishing of the zeroth and first
moments means that the information stored in the octree basis func-
tion is more strongly localized than for the white noise as a whole
occupying the same volume. This property of partial locality makes
the size of edge effects when making multiscale initial conditions
using Fourier methods smaller than might first be supposed.

As the octree basis functions are built out of Legendre blocks,
the actual mechanics of calculating the k-space Gaussian field for
resimulation initial conditions is the same as for cosmological initial
conditions. The only extra ingredient needed to make Panphasia
resimulation initial conditions is to decide how to partition the
octree basis functions between a given set of nested grids. While
the majority of octree basis functions only overlap the outer most
grid so there is no choice, for all other octree functions there is a
choice between two or more grids. The choice should ideally be the
one that gives the best initial conditions, although it is difficult to
be precise about exactly what best means in this context. We have
opted to adopt a heuristic approach to the solution of this problem.
The justification of this approach is that it can be demonstrated to
work well in practice as we show later. This heuristic approach can
be described by four rules.

(i) Rule 1: ‘Any octree basis function that can be included, should
be included’. As every octree basis function contributes to the phase
information, missing out any of the octree basis functions will de-
grade the quality of the phase reconstruction. This rule makes it
easy to count basis functions that must be used in total over all grids
and makes it simple to check in the code that all have been placed.

(ii) Rule 2: ‘With the exception of the outermost grid, only whole
octree basis functions can be assigned to a grid.’ The reason for
this rule is to minimize unwanted edge effects. As explained earlier
in this section, in IC_2LPT_GEN all of the grids are periodic. These
are the correct boundary conditions only for outermost grid, and it
is therefore necessary for all other grids to try and minimize the
edge effects due to periodicity. Only whole octree basis functions

are guaranteed to have vanishing zeroth and first moments and this
is required to limit their range of influence as discussed earlier in
this subsection. The requirement that whole octree basis functions
are placed in these grids puts further restrictions on the possible
sizes and precise placements of the inner grids. The smallest octree
basis function measures two cells along each edge of the grid, which
means both that the grid dimensions must be even and that the edges
of the grids must line up with the octree cells these basis functions
occupy.

(iii) Rule 3: ‘Except where rule 4 is broken, an octree basis
function should be placed on the innermost grid allowed by rule 2.’
Far from any boundary it is desirable that an octree basis function is
represented over as many grid cells as possible. This is because the
Fourier transform of the octree basis functions is not intrinsically
bandwidth limited but its representation on a grid will be bandwidth
limited. Placing a basis function over as many cells as possible
minimizes the truncation of power at small scales. Near a grid
boundary however there is another factor to consider which requires
rule 4.

(iv) Rule 4:‘For grids other than the outermost, and for octree
basis functions other than the smallest, no octree basis function
should be placed within a perpendicular distance, measured from
its edges, from the grid boundary that is less than a factor X times its
own edge size.’ A rule of this kind is required to minimize unwanted
edge effects due to periodicity for all but the outermost grid. The
reason for not wanting to place large octree base functions close to a
grid edge is simply that the larger an octree basis function, the further
its influence spreads in the initial conditions. This requirement is
in direct opposition to rule 3 which encourages larger octree cells
where possible. The use of a distance criterion with a factor ‘X’ to
be determined empirically ensures that a compromise is possible.
For scale-free initial conditions, it would be natural to take ‘X’ to
be constant in the absence of any characteristic scale other than the
cell size itself. For CDM models, for example, the power-law index
varies with scale but at small scales is slowly varying. As there is a
smallest octree basis function that can be placed on a grid, and rule
1 requires these smallest basis functions to be present, they have to
be treated exceptionally and are allowed to be placed right up to the
boundaries.

Once the factor X in rule 4 is decided, there is then a unique
solution for placing the octree cells on a given set of grids. Different
values of X do in some cases result in the same placement. Small
values of X mean that the octree basis functions close to the edges
of the inner grids are large and therefore have longer range effects.
Large values mean that octree basis functions are assigned to small
numbers of grid points and are therefore less accurately represented.
As part of the next section we will compare dark matter haloes
generated with different values of X to determine a close to optimal
value. A code which implements the rules above is included in
addition to Panphasia in the public code release. See Jenkins &
Booth (2013).

6 T E S T I N G T H E AC C U R AC Y W I T H W H I C H
T H E PH A S E I N F O R M AT I O N FRO M
PA N P H A S I A C A N B E R E P RO D U C E D

The main goal of this section is to demonstrate that it is possible to
make good quality resimulation initial conditions using the phase
information provided by Panphasia. To do this, we will test how
well the methods for making cosmological and resimulation initial
conditions described in the previous section succeed in this task. We
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will judge success by looking at the end states of a set of simulations
at redshift zero. A further goal of this section is to provide a guide
to help anyone wanting to add Panphasia to an initial conditions
code for how to test that the code is actually working.

Judging what constitutes ‘good quality’ resimulation initial con-
ditions is inevitably rather subjective. There is relatively little pub-
lished about the efficacy or otherwise of resimulations that can help
define a standard. There is none at all that can be directly compared
with the results of this section. This is because published methods
of setting the phases do not define the phase in an objective way, so
it is not possible to make the same initial conditions in two different
ways and expect them to be the same, which is what we aim to
do here. Nonetheless, it is reasonable to require that the size of the
errors we can determine in this section should be comparable to or
ideally smaller than the sizes reported in the literature for typical
applications of resimulations. Hard numbers can be found in only
a few published papers. These numbers show how well the bulk
properties of dark matter haloes are reproduced for haloes resim-
ulated at several numerical resolutions. As two simulations of the
same halo at different resolutions do not have identical phase infor-
mation, there is no reason to expect that the bulk properties should
be exactly reproduced, but it is found for haloes represented by
millions of particles or more that properties such as virial mass or
maximum circular velocity are reproduced at sub-per cent accura-
cies (Springel et al. 2008; Hahn & Abel 2011; Gao et al. 2012). We
will use this crude measure to judge whether the resimulation initial
conditions produced from Panphasia are of a comparable standard
to published methods or not, and declare them to be of good quality
if they are.

Ideally, we need a reference calculation that precisely reproduces
the phases from Panphasia. We have seen from Section 5.2 that this
cannot be done, but it is possible in principle to produce a very
accurate approximation to the true phases by using an extremely
large Fourier transform to make cosmological initial conditions.
We can then run a simulation using these initial conditions and
create a reference end state. This can be compared to the end states
of simulations starting from cosmological and resimulation initial
conditions made using Fourier transforms of a size that would be
used in practice because they can be readily afforded.

The plan for this section is as follows: in Section 6.1 we intro-
duce the reference calculation; in Section 6.2 we describe and test a
method to measure how well the phase information is reconstructed;
in Section 6.3 we apply this measure to cosmological initial condi-
tions; in Section 6.4 we demonstrate that the proposed resimulation
method works well; finally in Section 6.5 we investigate the sensi-
tivity of the method to changes in parameters such as the Fourier
grid and the X parameter introduced at the end of the last section.

6.1 The simulations

We have chosen a fairly typical case of the resimulation method
which is to resimulate a single isolated dark matter halo with a
mass similar to the inferred mass of the Milky Way (MW; Springel
et al. 2008; Stadel et al. 2009). We have chosen a halo from a com-
pleted high-resolution N-body simulation run by the Virgo Con-
sortium called DOVE. This �CDM dark matter only simulation
is a 70.4 Mpc h−1 periodic box with similar mass resolution to the
Millennium-II simulation (Boylan-Kolchin et al. 2009). The cosmo-
logical parameters however differ from the Millennium-II and are
listed in Table 1. These parameter values are taken from table 1 of
Komatsu et al. (2011) and are based on constraints derived from the
cosmic microwave background, BAO and the Hubble constant. The

Table 1. The cosmological parame-
ters of the DOVE simulation and for
all of the test simulations in this pa-
per: �matter, �� and �baryon are the
average densities of matter, dark en-
ergy (with −1 equation of state) and
baryonic matter in the model in units
of the critical density; H0 is the Hub-
ble parameter; σ 8 is the square root
of the linear variance of the matter
distribution when smoothed with a
tophat filter of radius 8 h−1 Mpc; and
ns is the scalar power-law index of the
power spectrum of primordial adia-
batic perturbations.

Cosmological parameter Value

�matter(z = 0) 0.272
��(z = 0) 0.728
�baryon(z = 0) 0.0455
H0 (km s−1 Mpc−1) 70.4
σ 8 0.81
ns 0.967

CDM transfer function for this model was calculated using CMBFAST

(Seljak & Zaldarriaga 1996). The initial phases were taken from
Panphasia and a 30723 Fourier grid was used to make the initial
conditions. We give the precise location for the phases in Panphasia
in Section 7.1. The simulation was run to redshift zero using the
P-GADGET3 N-body code (Springel et al. 2008).

The test halo was chosen by the author to have no close large
neighbours by visual inspection of dot plots. Similar results to those
presented in this section have been obtained with a second MW
mass halo in a different part of the DOVE volume. The resimula-
tion methods described in the last section have also been applied
to resimulate cluster mass dark matter haloes in other Virgo simu-
lations set up with Panphasian phases, and the properties of these
haloes are reproduced to similar fractional accuracy as we report for
the halo studied in this section. We can therefore judge the quality
of the initial conditions by studying this one typical halo.

Although the DOVE simulation was used to select a halo, we
will not use any data from the DOVE simulation in this paper. We
have, however, compared the properties of the halo for the highest
quality simulations in this paper with its counterpart in the DOVE
simulation and find excellent agreement in its position and measured
properties.

We expect that the accuracy with which the phase information
is reproduced improves with the problem size as can be deduced
from Fig. 3. To test the methods, we should therefore not aim to
resimulate a halo at very high resolution. Going to the other extreme
of low resolution would mean simulating a halo represented by just
a few particles which would make it difficult to determine any of the
halo properties due to the discreteness. As a compromise we have
chosen a sufficiently high resolution for the halo to start to show the
very rich substructure revealed by ultra-high-resolution simulations
of dark matter halo formation (Springel et al. 2008; Stadel et al.
2009; Gao et al. 2012). The halo has about 250 000 particles within
R200 and around 50 identifiable substructures with more than 20
particles as determined by the SUBFIND group finder (Springel et al.
2001).
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Figure 4. (a) Image of the reference halo at redshift zero. The projection is in the x1−x2 plane. The side of the image measures 1 h−1 Mpc. The intensity of
the image is scaled by the integrated square density of dark matter, while the hue is set by the local velocity dispersion. See Springel et al.(2008) for more
details about this method of making images. (b) A resimulation of the same halo discussed in Section 6.4.

We used the same software to build the particle load as the Aquar-
ius haloes (Springel et al. 2008). The lowest mass particles are
placed in a region that occupies a small fraction of the simulation
volume. The particles making up the redshift zero halo and its im-
mediate surroundings are located within this high-resolution region.
Higher mass particles are placed further out around this region and
provide the appropriate tidal field on the region of interest. The
particle load has 787 939 high-resolution particles each with a mass
of 6.24 × 106 h−1 M. The total mass within the DOVE volume
is equivalent to about 16163 of these particles. The smallest Fourier
transform that can be used to generate power down to the Nyquist
frequency of high-resolution particles given the quantization con-
straints of Panphasia is 30723 – the same grid size used to make the
DOVE initial conditions.

The displacements and velocities are calculated with 2LPT us-
ing the method in Jenkins (2010) for all of the initial conditions.
The P-GADGET3 code was used to integrate the equations of motion
from the starting redshift 63 to redshift zero. The same numerical
parameters for P-GADGET3 were used for all simulations to ensure
that any differences observed are due only to differences in the
initial conditions. The gravitational softening comoving length for
the high-resolution particles was 2 h−1 kpc at all times. The SUB-
FIND group finder (Springel et al. 2001), which is integrated into
P-GADGET3, was run on the high-resolution particles only. There are
no heavier mass particles near the main halo at redshift zero.

For the reference calculation, we used a 12 2883 Fourier trans-
form to make a set of cosmological initial conditions. This required
35 Tb of RAM to run and was only possible through access to the
new Distributed Research utilising Advanced Computing (DiRAC)
II facility at Durham. Fig. 4(a) shows a projection of the refer-
ence halo made using the same software as was used to render
the Aquarius haloes (Springel et al. 2008). The location and some
of the bulk properties of the halo are both defined and given in
Table 2.

Table 2. Some properties of the reference halo at redshift
zero. The centre is the potential minimum. M200 and Mvir

are masses within spheres centred on the potential minimum,
with mean densities of 200 and 97 times the critical density,
respectively. The radii of these spheres are R200 and Rvir. The
velocity dispersion, Vdisp, is that of the main subhalo as de-
termined by SUBFIND. Vmax is the maximum circular velocity,
where all circular velocities are calculated assuming spherical
symmetry about the halo centre. The halo spin is given by λ′,
first defined in Bullock et al. (2001). The spin is determined
for all particles within a sphere of radius Rvir centred on the
halo potential, λ′ = J/

√
2MvirRvirVvir, where J is the angular

momentum and Vvir is the circular velocity at the virial radius.
The direction of the spin is given in terms of the directional
cosines projected on to the (x1, x2, x3) axes.

Property Unit Value(s)

Centre Mpc h−1 (43.1732, 49.9170, 2.2070)
M200 1010 h−1 M 91.61
Mvir 1010 h−1 M 110.02
R200 kpc h−1 157.95
Rvir kpc h−1 213.47
Vdisp km s−1 102.72
Vmax km s−1 181.71
λ′ – 0.0133
(c1, c2, c3) – (−0.213, −0.651, −0.728)

6.2 How to measure convergence in the phase information

We need a quantitative measure to determine how well the phase
information has been reproduced for different sets of initial condi-
tions. As the true solution is not known, the best we can do is to
use the reference halo as a close approximation to the truth, and
compare the haloes produced from other sets of initial conditions
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to the reference halo. This assumption cannot be fully tested but we
will make some consistency checks in the next subsection to show
that it is reasonable.

Rather than focusing on how well particular properties such as the
virial mass are reproduced, we will measure how well the redshift
zero particle positions are reproduced. As all simulations start with
the same particle load, we can match the particles that originate from
the same location of the particle load, for any pair of simulations,
and measure their separations as a function of time. We expect
the distribution describing the relative positions of particles in any
pair of our simulations to diverge over time. If for the end state at
redshift zero all the particle positions match well, then we can be
confident that not only will the physical properties of the halo at
redshift zero agree very well between the two simulations, but also
this agreement will apply over the entire past history. For if this were
not the case, it would require a vast coincidence to have occurred
– something that we can reasonably discount. This requirement is
considerably more rigorous than just trying to match a few physical
attributes of a single halo as these much more likely to agree well
just by chance.

Not surprisingly the degree to which the positions agree over time
depends strongly on the set of particles selected for comparison: we
observe larger differences in the redshift zero relative positions of
samples of particles chosen to be close to the halo centre than
further out beyond the virial radius. For our sample, we will take
all particles between 200 and 300 kpc h−1 of the potential centre of
the redshift zero reference halo. This choice is somewhat arbitrary,
and is ultimately made on aesthetic grounds: we find that our test
measure, described later, shows a greater variation between the
different sets of initial conditions than a sample chosen from within
the halo itself. This variation makes for clearer figures. In fact, the
conclusions we draw are insensitive to the sample choice provided
the particles are taken from the high-resolution region.

We define the positions of the particles relative to the halo centre
in each simulation, so the relative positions of particles between
initial conditions are insensitive to translations of the haloes. This
means the differences in the halo positions, as defined by their
potential minima, are an independent measure.

The distribution of the relative particle displacements between
the end states of two simulations has a very long tail to large sep-
arations: there are always some particles that end up on opposite
sides of the halo. The majority of particles however typically have
a much narrower spread. To avoid being strongly influenced by the
tail of the distribution, which contributes little to the total mass
density, we choose the median of the distribution of separations as
the test measure and call it �R. We have checked that taking other
percentiles such as 25 or 75 per cent makes no significant difference
to the rankings of pairs of simulations. For convenience, we will
measure �R in units of h−1 kpc.

To get some intuition as to how this measure behaves, we first
test it between pairs of simulations that are extremely similar. It
is well known that the end states of N-body simulations can be
very sensitive to extremely small changes in their initial conditions
(Miller 1964). We can see this effect using �R as a measure. Taking
the reference set of initial conditions, we make a new set of initial
conditions by copying them and modifying the velocities of each
particle, which are represented as single precision floating point
numbers, and randomly perturb each velocity up or down by the
smallest amount possible. We use different random sequences to
produce five sets of perturbed initial conditions. This perturbation
introduces a fractional ‘error’ on the velocities of about one part
in 10 million. It is inevitable at least with single precision veloc-

ities that any initial conditions will contain errors at least of this
magnitude.

We then ran these five sets of simulations to redshift zero and
looked at the median differences in the particle positions between
the 10 pairs of initial conditions. The values of �R in h−1 kpc are
shown below:

6.4

6.2 6.0

6.3 6.0 6.1

6.5 5.9 5.9 6.1.

The mean differences in �R between all the pairs are remarkably
consistent. In size they are slightly greater than 4 per cent of R200.
Had we taken a sample of all particles within 300 h−1 kpc instead,
then the differences would be about 18 h−1 kpc which is more than
10 per cent of the virial radius. These differences are largely ran-
dom rather than systematic as the physical properties of the halo
in these five different versions are extremely similar to each other
and to the reference halo. The fractional rms variation in the quanti-
ties M200, Vdisp and Vmax are 0.1, 0.15 and 0.2 per cent, respectively.
These uncertainties give a measure of how accurately one can rea-
sonably expect to determine these quantities even with extremely
high quality initial conditions and a lower limit of what to expect
for �R.

6.3 Testing cosmological initial conditions

Having established a benchmark for the size of �R for virtually
identical initial conditions, we will now look at the differences in
the final halo between sets of cosmological initial conditions. We
expect the quality of the phase reconstruction to depend strongly
on the size of the Fourier grids used. The larger the Fourier grid,
the more information from Panphasia can be used to generate the
phases. As described in the last section, all sets of initial conditions
contain additional information from a field which is uncorrelated
with Panphasia and that is introduced to restore isotropy to the
initial conditions particularly at small scales. We will call this field
the ‘independent field’. We can investigate the influence of adding
this independent field further by generating an ensemble of initial
conditions that differ only in using a different realization of the
independent field.

We can make cosmological initial conditions using the informa-
tion provided by all eight of the Legendre block coefficients, or
just the p000 block. This allows us to compare the relative merits of
using either the S8 or S1 octree basis functions. From Figs 1 and
3, we expect to see significant differences and dependences on the
Fourier grid size.

Table 3 shows all the cosmological initial conditions we use in
this subsection. The top set of initial conditions in the table is the
reference calculation described earlier. The ‘Ref-alt’ set is identical
to the reference calculation except that it has a different realization
of the independent field. These two sets of initial conditions were
very expensive to set up so we have made do with just two real-
izations of the independent field. The Cosm-6144 and Cosm-3072
sets are analogous to the reference simulation but were set up using
61443- and 30723-sized Fourier grids instead. For each of these, we
generate five further sets with different realizations of the indepen-
dent field as indicated by ‘-alt’ postfix to the names. In addition,
there are two sets Cosm-6144-S1 and Cosm-3072-S1 which were
made up using the S1 octree basis functions with 61443 and 30723

Fourier grids, respectively. Finally in the table the five sets of initial
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Table 3. Cosmological initial condition sets used
in Fig. 5. The index is used as a label in that figure.
See the main text for more details.

Index Name 1D FFT size S1/S8

1 Reference 12 288 8
2 Ref-alt 12 288 8
3 Cosm-6144 6144 8
4 Cosm-6144-alt1 6144 8
5 Cosm-6144-alt2 6144 8
6 Cosm-6144-alt3 6144 8
7 Cosm-6144-alt4 6144 8
8 Cosm-6144-alt5 6144 8
9 Cosm-3072 3072 8
10 Cosm-3072-alt1 3072 8
11 Cosm-3072-alt2 3072 8
12 Cosm-3072-alt3 3072 8
13 Cosm-3072-alt4 3072 8
14 Cosm-3072-alt5 3072 8
15 Cosm-3072-S1 6144 1
16 Cosm-6144-S1 3072 1
17 Ref-fp1 12 288 8
18 Ref-fp2 12 288 8
19 Ref-fp3 12 288 8
20 Ref-fp4 12 288 8
21 Ref-fp5 12 288 8

Figure 5. Each circle corresponds to a comparison made between two
completed simulations started from the initial conditions listed in Table 3.
The numbers in the rows and columns correspond to the index given in the
table. The radius of each circle is proportional to the quantity �R defined in
Section 6.2. The smaller the circle, the better is the agreement. A circle of
radius Rvir is shown for scale.

conditions with a ‘-fp’ postfix are those introduced in the previous
subsection. These differ from the reference set by the smallest dif-
ferences possible for single precision floating point representations
of the particle velocities.

The large and small triangles made of circles in Fig. 5 show
a set of comparisons between pairs of initial conditions listed in
Table 3. The row and column numbers of each circle correspond to

the indices given in the table and show which pair of simulations
is being compared. The radius of each circle is proportional to the
value of �R evaluated between the pair of haloes generated from
the initial conditions. For comparison, the large isolated circle has a
radius of 157 h−1 kpc, corresponding to R200 of the reference halo.

The observations from Fig. 5 are given as follows.

(i) The smallest circles are those corresponding to the compar-
isons between sets 17–20 and represent the smallest differences we
might reasonably expect to see between pairs of initial conditions
given the presence of single precision floating point errors.

(ii) The smallest circle in the main triangle is for the pair of
simulations run from initial conditions made with the S8 octree
basis functions and the largest Fourier transform size: 12 2883, as
we would expect from the predictions of the linear power spectrum
shown in Fig. 3. This circle has a radius of 13.5 h−1 kpc which is
about a factor of 2 greater than what is potentially achievable at
the floating point limit. As the separations are in three-dimensional
space, the associated change in volume corresponds to a factor of 10
worse. The addition of the independent field does have a measurable
effect on the accuracy of the phases even when using a 12 2883

Fourier transform. However, as we will see later that the effect on
the bulk halo properties such as virial mass and maximum circular
velocity is sufficiently small as to be indiscernible in practice.

(iii) Below this, the circles making rows 3–8 are comparisons
between pairs of initial conditions where one was made with a 61443

Fourier grid and the other a 61443 Fourier transform or greater.
These 27 circles are all very similar in size ranging from 15.9 to
18.0 h−1 kpc with a mean of 16.9 h−1 kpc. In volume terms �R3

is a factor of 2 larger when compared to the results for a 12 2883

Fourier transform.
(iv) The circles in rows 9–14 consist of comparisons between

pairs with one made using a 30723 Fourier grid and the other a
30723 Fourier grid or larger. Again these circles are remarkably
similar in size and distinct from those above. They range in size
from 21.5 to 24.9 h−1 kpc with an average of 23.2 h−1 kpc. (�R)3

is a factor of 5 larger than for the pair generated with a 12 2883

Fourier transform.
(v) Finally, the bottom two rows consist of comparisons where

one of the initial condition sets was made using the S1 octree basis
functions. A 61443 Fourier grid was used for the penultimate row,
and a 30723 grid for the bottom row. The average �R value for a
61443 Fourier grid is 60 h−1 kpc, and for a 30723 grid it is 86 h−1 kpc.
In terms of (�R)3, these values are about 90 and 260 times, respec-
tively, larger than using the S8 octree basis functions on a 12 2883

Fourier transform.

The consistency of the �R measure between the ensembles of
initial conditions made with 61443 and 30723 Fourier transforms
suggests that the one measurement between the pair of simulations
using a 12 2883 Fourier transform would likely to be representative
of an ensemble, had we been able to afford to make them.

The trends seen in Fig. 5 are consistent with what would be
expected: using a larger Fourier grid leads to a better match to the
reference simulation, and using the S8 octree basis functions is much
better than using the S1 set. The �R measure shows these trends
very clearly. There is no overlap in the sizes of the circles between
the sets of rows described above. While the trends in �R have a
clear physical interpretation, it is not obvious how these values are
related to errors in reproducing simple measured bulk properties for
a halo.

In Table 4, we compare the values of M200, Vdisp and Vmax for the
redshift zero halo from all of the runs listed in Table 3. Where there
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Table 4. Physical parameters of the dark matter halo at redshift zero for a series of simulations running using initial
conditions listed in Table 3. The column headings refer to initial conditions with indices in the table as follows:
Reference 1; Ref-fp 17–21; 61443/S8 3–8; 30723/S8 9–14; 61443/S1 16; 30723/S1 15. In columns where there is
more than one simulation, the numbers given are the average of the quantity for the sample together with the estimated
rms about the average.

Quantity Reference Ref-fp 61443/S8 30723/S8 61443/S1 30723/S1

Number of simulations 1 5 6 6 1 1
M200 (1010 h−1 M) 91.61 91.59 ± 0.09 91.52 ± 0.12 91.41 ± 0.12 90.08 86.16
Vdisp (km s−1) 102.72 102.89 ± 0.17 102.80 ± 0.27 103.26 ± 0.18 102.28 99.72
Vmax (km s−1) 181.71 181.83 ± 0.30 181.70 ± 0.37 182.23 ± 0.40 182.22 179.27

are several similar initial conditions, we compute a mean and rms
about that mean. With only quite small samples the estimates of the
rms themselves have a significant error.

We can see that the cosmological initial conditions made using S8

and a 61443 Fourier transform have properties that are close to the
reference calculation. The estimated rms values are comparable to
or smaller than the differences between the means. For the results
using the 30723 Fourier transform, the level of agreement is still
very good, but the differences between the mean and the reference
calculation are larger.

This situation for the two halo simulations run from initial condi-
tions made using S1 octree basis functions is much less satisfactory.
The two haloes produced from these initial conditions differ from
the reference halo by a much wider margin than any other halo. As
expected, using a larger Fourier grid does improve the quality of
the initial conditions. The result for a 61443 Fourier transform does
match Vmax well, but this is likely a coincidence as we know that
the underlying particle distributions are significantly different.

The �R statistic is by construction insensitive to whether the halo
potential centres agree or not. Comparing the absolute positions
of the halo centres we find that all simulations run from initial
conditions created using S8 agree in the position of the potential
minimum to better than 2 h−1 kpc, while the two simulations run
from initial conditions made using S1 differ from each other and all
other simulations by more than 10 h−1 kpc.

The degree of agreement in the physical properties between the
reference halo and the others is broadly consistent with the trends
in �R although less clear cut. The cosmological initial conditions
using the S8 octree basis functions with a 61443 Fourier grid appear
to be indistinguishable from the reference halo for the bulk halo
properties M200, Vdisp and Vmax. The agreement with those made with
a 30723 grid is extremely close and at the sub-per cent level. Using
S1 octree basis functions, however, leads to much poorer results
with properties such as M200 differing by more than 4 per cent when
a 30723 grid is used.

We conclude from these comparisons of the bulk properties of the
halo that it is possible to generate high-quality cosmological initial
conditions that accurately reconstruct the phase information given
by Panphasia. The results obtained using the S8 set of Legendre
blocks are sufficiently good that it is not obvious that going to more
complicated octree basis function expansions such as S27 would
reproduce the bulk properties of the halo any more accurately. It
is clear however that just using the S1 octree basis functions gives
poor quality initial conditions and is therefore not recommended.

6.4 Testing the resimulation method

Having established the quality of the initial conditions made using
the cosmological method, we can now use them to test the quality of

Table 5. The properties of the resimulated halo and a comparison to the
reference halo. The quantities and their units are explained in Table 2.
The third column gives the difference between the resimulated halo and
the reference halo. For the directional cosines, the angle between the
spin directions is given.

Property Value(s) �Reference

Centre (43.1712, 49.9135, 2.2093) (0.0020, 0.0035, 0.0023)
M200 91.32 −0.29
Mvir 109.96 −0.06
R200 157.77 −0.18
Rvir 213.43 0.04
Vdisp 102.89 0.17
Vmax 181.70 −0.01
λ′ 0.0133 0.0000
(c1, c2, c3) (−0.216, −0.641, −0.736) 0.◦75

the resimulation initial conditions made using the method outlined
in Section 5.3. The main goal of this subsection, and indeed the
section, is to demonstrate that it is possible to make good quality
resimulation initial conditions with Panphasian phases. To do this,
we will simply compare the bulk properties of a resimulated version
of a halo to the reference halo and show that they agree at the sub-
per cent level. We will then use the more rigorous �R measure to
check this conclusion.

There are quite a few choices that need to be made when set-
ting up resimulation initial conditions. In this subsection, we detail
these choices without justification. We explore in the next sub-
section how varying these choices affects the quality of the initial
conditions.

For these resimulation initial conditions, we use four Fourier
meshes centred around the high-resolution region with linear sizes
of 1, 1/2, 1/4 and 1/8 of the periodic volume. We use a 7683

Fourier transform for all meshes. The memory requirement of the
IC_2LPT_GEN code for this grid size is about 10 Gb which means the
code can comfortably fit on a modern supercomputer node. We will
take the value of the ‘X’ parameter, introduced in Section 5.3, to be
4. We will use S8 octree basis functions.

Fig. 4(b) shows an image of the resimulated halo. Clearly, it re-
sembles the reference halo closely. Table 5 gives some of the bulk
properties of this halo and shows how it differs from the refer-
ence halo. The differences are remarkably small – at the sub-per
cent level. We find similar levels of agreement for resimulations
of other haloes using the same methods so these numbers can be
taken as typical. We conclude that is possible to make high-quality
resimulation initial conditions from Panphasia.

This conclusion is supported by the measured value of �R be-
tween the reference halo and the resimulated halo. The value is
22.8 h−1 kpc, which is slightly better than the difference in the
mean between the reference halo and the haloes generated from
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cosmological initial conditions made with a 30723 Fourier trans-
form. By this measure the resimulation initial conditions are found
to be of similar quality as can be created using single very large
Fourier transforms. In effect, we can say that the resimulation
method is able to produce initial conditions of comparable qual-
ity to what can be achieved using the Fourier method developed
in the 1980s to model cosmological volumes, but at a considerably
lower computational cost.

Encouraging as these results are, we can see from the value of
�R that it may be possible to make better initial conditions than
we have achieved. Compared to the difference in �R between the
two sets of cosmological initial conditions made with a 12 2883

Fourier transform, the difference in (�R)3 is a factor of 4. This
is a reasonable comparison as the mesh spacing of the innermost
grid of the resimulation initial conditions is the same as for the
cosmological initial conditions made with a 12 2883 Fourier trans-
form so the same information from Panphasia is used for the inner
region.

6.5 Sensitivity to parameters

In this subsection we show how the choice of the Fourier mesh
size, the ‘X’ parameter (defined by rule 4 of Section 5.3) and the
choice of S8 or S1 octree basis functions affect the accuracy with
which the phase information can be reconstructed in resimulation
initial conditions. We expect the results to improve with the size of
the Fourier grid. This is both because more Panphasia information
is used and because each given octree basis function is sampled
more finely by the Fourier grid. We can maximize the sampling of
the octree basis functions by applying rule 3 of Section 5.3, which
states that we should place octree functions on the finest possible
grid. However, we introduced a fourth rule, which forbids large
octree basis functions being placed close to the boundaries of any
but the outermost grid. The reasoning for this was that placing large
octree basis functions near the boundaries of the inner grids would
lead to larger edge effects. We expect that for very large values
of X this rule will tend to place octree basis functions on coarser
grids, and will lead to poorer reconstruction of the phases because
of poor sampling of the octree functions. For very small values of X,
boundary effects may also have a negative effect. Finally, we expect
better results using the S8 octree basis functions compared to the S1

set as we saw for cosmological initial conditions.
We have made sets of initial conditions with a wide range of

combinations of Fourier grid sizes, X values and types of octree basis
function: the Fourier grid sizes used are 3843, 7683 and 15363; the
values of X are 2, 3, 4, 6, 8, 12, 16, 24, 32, 48 and 64; and octree basis
functions are S8 and S1. We then run each set of initial conditions to
redshift zero and have computed �R with respect to the reference
halo.

The results of those comparisons are shown in Fig. 6. As expected,
we see a clear trend with Fourier grid size, and between using the S8

and S1 basis functions. The best result using S1 and a 15363 Fourier
transform is still poorer than the best using S8 and a 3843 grid. The
former initial conditions are also almost two orders of magnitude
more expensive to generate. This confirms for resimulation initial
conditions the conclusion we had already reached for cosmological
simulations that the S1 basis functions are unsuitable for accurate
work.

Concentrating on the S8 results, we see in Fig. 6 that larger values
of X are clearly disfavoured for the 3843 and 7683 grids. There is
almost no trend for a 15363 grid. For this grid size, the value of �R

Figure 6. Each circle corresponds to a comparison between the reference
halo and a halo produced by running a set of resimulation initial conditions,
set up using the parameter values shown labelling the rows and columns. The
rows are labelled by the one-dimensional size of the Fourier transform used
and the columns by the value of the X parameter. The upper set of circles
use the S8 octree basis functions, the lower set the S1 ones. The smallest
circle corresponding to FT = 1536, X = 12, S8 has a radius of 20.0 h−1 kpc.
By contrast, the largest circle has a radius of 260 h−1 kpc.

does show an increase for X = 128 and 256 (not shown) where the
values of �R are 26.9 and 37.3 h−1 kpc, respectively. Choosing a
maximum value of X that depends on the grid size gives an upper
limit to the X parameter. Using a value X < M/24, where M is the
Fourier grid choice, appears a safe choice, with larger values clearly
disfavoured.

While large values of the X parameter give poor results, the range
of X explored does not show any convincing evidence for boundary
effects being important at low values of X. It is not true however
that the lowest values of �R occur for the lowest values of X; it
is just that there is no clearly distinct minimum in �R values. We
conclude from these tests that the quality of the resimulation initial
conditions is not that sensitive to precisely in which grid the octree
basis functions are placed, above a minimum sampling. The choice
of 4 ≤ X ≤ 12 appears to work well for all grid sizes we have tested.

The smallest circle in the diagram corresponds to X = 12 and
a 15363 Fourier transform and has a value of �R of 20.0 kpc h−1.
This value is intermediate between that found for the 30723 and
61443 cosmological initial conditions. The run time to make the
resimulation initial conditions with a 15363 Fourier grid is how-
ever longer than the N-body simulation takes to go from redshift
63 to redshift zero. This seems rather excessive for a real applica-
tion. For this reason, we chose to use a 7683 Fourier transform for
the last subsection to demonstrate the quality of the resimulation
initial conditions. With this grid size, the lowest value of �R is
22.8 h−1 kpc for X = 4. These particular 2LPT initial conditions
take about 20 min to be made on a single 16-core node. Zeldovich
initial conditions would be made considerably quicker. The N-body
simulation on the same node takes about 2 h. For more sophisti-
cated simulations of structure formation modelling hydrodynamics
and complex subgrid models, the run time may be much longer than

 at D
urham

 U
niversity L

ibrary on Septem
ber 13, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


A new way of setting Gaussian phases 2113

Table 6. The phases of several recent Virgo Consortium simulations. The text phase descriptor gives
the location of the phase information in Panphasia. See Section 7.1 for details. The MW7 simulation has
been added to the Millennium data base (Guo et al. 2013).

Simulation Reference Phase descriptor

DOVE Not yet published [Panph1,L16,(31250,23438,39063),S12,CH1292987594,DOVE]
MW7 Guo et al. (2013) [Panph1,L11,(200,400,800),S3,CH439266778,MW7]
MXXL Angulo et al. (2012) [Panph1,L10,(800,224,576),S9,CH1564365824,MXXL]

that for the pure N-body simulation. In such cases, the fractional
costs of making the initial conditions become relatively small.

7 PUBLISHING PHASE INFORMATION

All that is needed to specify the phase information of initial condi-
tions generated from Panphasia is the spatial location of the phases
within the volume. To use this information to resimulate a region
of interest within a simulation requires specifying the position and
dimensions of the region at high redshift.

In Section 7.1, we define a convention for specifying phases
taken from Panphasia and using this convention publish the phases
of three cosmological volumes run by the Virgo Consortium. In
Section 7.2, we give the locations and sizes of a region within each
of these volumes out of which forms a dark matter halo at redshift
zero. We show images and give the positions and a few properties
of these haloes for reference.

7.1 How to publish Panphasia phases

For the purposes of designing a convention for publishing phase
information, we will assume that the phase information for all sim-
ulations is defined by specifying either a cube or a cuboid within
Panphasia made of complete octree cells. The location of a cube
within an octree requires five integers: one integer to define the
smallest level in the octree that is possible; three integers to specify
the location of the corner cell closest to the origin, using the Carte-
sian coordinates described in Section 2.2 to label the cells; and one
integer to give the side length of the cube in units of the octree cell
at the given level. For a general cuboid, or one with two different
side lengths, we will require three side lengths to be given.

Taking these integers we define two text phase descriptors incor-
porating these numbers: one for cubic regions and one for a general
cuboid. Because making an error in the value of any of the integers
in a descriptor would change the phase information, we include an
additional check number in the descriptor. To be useful this check
integer must depend on all of the integers that define the phase.
While having an error check can avoid some human errors, it is no
safeguard against simply using the wrong descriptor. It is desirable
for the descriptor to also include a human readable name that can
be readily associated with a particular simulation volume.

The check number we have selected combines the random num-
ber states associated with the three corner cells adjacent to the corner
cell nearest to the origin and the name of the phase descriptor. The
full details are given in Appendix B.

For a cubic region, we define a plain text phase descriptor:

[Panph1, L#0, (#1, #2, #3), S#4, CH#5, STRING],

where each symbol # represents an integer: #0 is the octree level,
(#1, #2, #3) are the Cartesian coordinates of the corner cell nearest

to the origin, #4 is the side length and #5 is the check number. For a
cuboidal region, we define a second phase descriptor:

[Panph1, L#0, (#1, #2, #3), D(#4, #5, #6), CH#7, STRING],

where the three side lengths are given by (#4, #5, #6) for each Carte-
sian direction and #7 is again the check number. Finally, STRING is
a text string, again without spaces, naming the particular realization
of the phases. This should be distinctive as this is the best protection
against using the wrong descriptor by accident.

There are no spaces within the phase descriptor and the type of
brackets punctuation, and cases of the letters should be observed.
The string ‘Panph1’ is intended to help identify the descriptor and
to make it possible to make a text search for Panphasia descriptors.
The ‘1’ allows for the possibility of extending or adapting the format
in the future.

A code to randomly generate phase descriptors, including the
check digit, is included with the public release of Panphasia.

Table 6 gives the phase descriptors for three cosmological simu-
lations run by the Virgo Consortium including the DOVE simulation
from which we resimulated the reference halo. In the next subsec-
tion we give examples of a halo that can be resimulated from each
of these volumes.

7.2 Example haloes for resimulation

For anyone wanting to implement Panphasian phases in a new code,
it is desirable to have some test cases to check that the code is
working correctly. In Table 7, we give the locations and sizes of a
single sphere within each of the DOVE, MW7 and MXXL volumes
at high redshift. A resimulation of these spheres results at redshift
zero in the formation of a prominent dark matter halo selected from
these cosmological volumes. Images of these haloes at redshift zero,
projected on to the x1−x2 plane, are shown in Figs 7–9. The DOVE
and MW7 volumes have the same cosmological parameters, given
in Table 1. The MXXL parameters are different and are given in
Angulo et al. (2012). We use the same coordinate system to describe
these locations as for Panphasia: the coordinates are non-negative
and the origin marks one corner of the volume.

Table 7. Locations of a sphere within each volume from
which a sizeable dark matter halo forms. The first three
digits within the round brackets mark the centre of the
sphere, while the fourth gives the radius of the sphere. The
coordinates of the simulation volume include the origin and
are non-negative.

Simulation Position and size of halo Lagrangian region
(h−1 Mpc)

DOVE [(41.11,48.80,3.00),4.5]
MW7 [(307.46, 52.51,434.33),46]
MXXL [(1806.8,1207.5,1617.9),35]
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2114 A. Jenkins

Figure 7. High-resolution version of the DOVE reference halo used in this
paper. The projection is the same as in Fig. 4.

Figure 8. High-resolution version of the MW7 reference halo at redshift
zero. The projection is in the x1−x2 plane and the side length of the image is
10 h−1 Mpc. This is the most massive cluster in the MW7 volume at redshift
zero.

The redshift zero properties of these haloes, as determined by a
resimulation using the methods described in this paper, are given in
Table 8. The halo in the DOVE volume is a resimulation of the same
volume as was used for the reference halo in Section 6, but with
a factor of about 30 more particles. The properties of this halo are
very similar to those obtained in the reference calculation. As this
resimulation has additional small-scale power, it does not follow that
the value of M200 should be precisely reproduced. The difference we
observe between the two versions of the halo at different resolutions

Figure 9. High-resolution resimulation of a reference halo in the MXXL
simulation. The projection at redshift zero is in the x1−x2 plane, and the
image measures 15 h−1 Mpc on a side.

Table 8. Location and a few properties of reference haloes at red-
shift zero. The position (x1, x2, x3) is the location of the particle
with the lowest potential as determined by SUBFIND. The quantity
mp is the mass of the particles in the high-resolution region of
the resimulation. The other quantities are defined in the caption of
Table 2.

Halo property Unit DOVE MW7 MXXL

x1 h−1 Mpc 43.174 303.06 1802.15
x2 h−1 Mpc 49.918 52.90 1205.52
x3 h−1 Mpc 2.203 423.55 1614.56
mp 106 h−1 M 0.115 133.54 51.65
M200 1010 h−1 M 90.81 117 756 42 433
R200 h−1 kpc 157.47 1717 1222
Vdisp km s−1 104.8 1054 737
Vmax km s−1 182.1 1673 1305

is similar in size to that seen in Springel et al. (2008) between the
Aq-A-5 and Aq-A-4 resimulations. This particular halo has also
been simulated at very similar numerical resolution to the example
given in this subsection with initial conditions made using a single
61443 Fourier grid. The properties of the two higher resolution
versions of this halo are a very good match to each other with
smaller difference than seen between versions of the halo simulated
with very different particle numbers.

The haloes in the MW7 and MXXL volumes are both in the cluster
mass range. Both these haloes are in the process of formation and
are far from equilibrium. Each is resolved with about 8 million
particles within R200.

8 OV E RV I E W O F T H E P U B L I C C O D E TO
G E N E R AT E PA N P H A S I A

In this section we give a brief overview of the code to generate
Panphasia. The full details are given in the companion paper
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(Jenkins & Booth 2013), which being on the arXiv may be updated
after this paper is published. The following therefore provides only
a very general overview.

From the point of view of adding Panphasia phases to an existing
code for making initial conditions, there are just two subroutines that
need to be called directly. The first is an initialization routine which
takes the Panphasia phase descriptor. The second is an evaluation
routine that returns values of the field itself for a location chosen by
the user.

The routines are serial codes. They take very little memory how-
ever so there is no significant cost to a parallel code in having
multiple instances of the code – with one belonging to each mpi
process for example. The code is therefore easy to use in parallel
applications: different parts of the white noise field can be computed
completely independently. The main parallel programming needed
to incorporate these routines is to ensure that the white noise field
is assigned to the correct locations as dictated by the way the rel-
evant grids are distributed in parallel by the application code. As
discussed in Jenkins & Booth (2013) the speed of the code does
depend significantly on the precise ordering of successive accesses
to octree cells and it is therefore important to consider the effects
of the access pattern when adding Panphasia to a parallel code.

For making cosmological conditions, these two subroutines are
especially simple. The initialization routine needs the Panphasian
phase descriptor and the size of the grid that will be used to make
the initial conditions. The latter is needed to decide which level of
the octree to sample the region of Panphasia selected by the descrip-
tor. The evaluation routine just needs to be called with three inte-
ger Cartesian grid coordinates, and returns nine Gaussian pseudo-
random numbers – all drawn from a distribution with unit mean
and unit variance. The first eight of these are proportional to the ex-
pansion coefficients of Panphasia expanded in the eight Legendre
block functions, while the ninth independent value can be used to
construct a field that is independent of Panphasia.

For resimulation initial conditions, a more general initialization
routine is provided which requires a refinement within the cosmo-
logical volume to be specified. The evaluation routine in this case
returns the same nine values, but now as a function of three inte-
ger coordinates that are defined relative to the refinement origin.
This function operates in the same way even if the refinement is
wrapped by periodic boundary conditions across a simulation coor-
dinate boundary. In fact, the halo we resimulated from the DOVE
volume is located close to a coordinate boundary so this feature is
tested in this paper.

The refinement evaluation routine also takes values for a mini-
mum and maximum octree level. The values of the eight Legendre
blocks returned are calculated using only the octree functions over
the range of octree levels specified. In this way, the user can decide
how to place the octree basis functions. The method for placing the
octree basis functions used by IC_2LPT_GEN for setting up the res-
imulations in this paper is determined by a subroutine which gives
suggested minimum and maximum values for the octree levels as
a function of position in the grid. This subroutine is included with
the public code.

As well as the routines to evaluate Panphasia, we also provide a
routine to choose a random region from Panphasia and generate a
phase descriptor. For this purpose, it is assumed that Panphasia itself
has a physical size. The user must specify both the physical size
of the cosmological volume and the required dimension of volume
(assumed to be a cube) measured in grid cells. The code uses the user
supplied information together with the Unix timestamp to generate
a descriptor.

It is assumed that the root cell of Panphasia measures 25 000
h−1 Gpc on a side. This gives a volume which is about 10 billion
times the current Hubble volume for �CDM. At the same time, the
mass associated with the smallest defined octree cells at level 50 of
the octree has a corresponding mass of about 10−12 h−1 M, which
is below the cut-off scale for a WIMP dark matter candidate which
is estimated to be around 10−7 h−1 M (Hofmann et al. 2001).

Finally, as an example we add Panphasia to a serial public ini-
tial conditions code described in Crocce, Pueblas & Scoccimarro
(2006).3

9 SU M M A RY A N D D I S C U S S I O N

In this paper, we describe a new way for setting the phase infor-
mation for Gaussian initial conditions for cosmological simulations
and resimulations of structure formation. This work builds upon the
idea of using a real-space white noise field to define the phase infor-
mation – a method put forward by Salmon (1996) and implemented
by a number of authors including Pen (1997), Bertschinger (2001)
and Hahn & Abel (2011). We have developed a way of defining
Gaussian white noise fields in terms of a basis function expansion
using purpose designed orthogonal basis function sets that have
a hierarchical structure based around an octree. Vast realizations
of Gaussian white noise fields can be easily created by assign-
ing expansion coefficients, which are created by a pseudo-random
number generator, systematically to the space of basis functions.
Using a pseudo-random number generator that allows rapid ac-
cess to any part of the sequence results in the creation of what is
effectively an objective Gaussian white noise field sampled over
a very wide range of spatial scales, any part of which is readily
accessible.

We have chosen a particular set of octree basis functions that
we find on the basis of tests to be most suitable for making cos-
mological initial conditions. This choice is a compromise between
the accuracy with which the phases of large-scale modes can be
reproduced from a finite number of octree functions and the com-
putational cost of evaluating the white noise field. We have found
that the simplest choice with seven distinct functional forms for the
octree basis functions is unsuitable for accurate simulation work.
We show through resimulation tests that a choice based on 56 func-
tional forms (that can however be expressed in terms of eight more
primitive functions) is sufficiently accurate as judged against the
published results of state-of-the-art resimulations of dark matter
haloes.

We have created a particular realization of a Gaussian white
noise field called Panphasia. This uses our preferred octree basis
functions, with expansion coefficients derived from a commonly
used pseudo-random number generator that passes very strong ran-
dom number tests. We use almost the entire period of the generator
to create a realization with 50 octree levels which is able to define
phase information over 15 orders of magnitude in linear scale. We
make Panphasia public by publishing in a companion paper, Jenkins
& Booth (2013), a code to compute Panphasia. Small subregions of
this larger field are suitable for setting the phases for cosmological
simulations. The phases for these simulations can themselves be
published by pointing to the location in Panphasia, from which the
phase information was taken.

3 We thank Martin Crocce for permission to include this modified code with
our software.
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To help with this we have defined a convention for publishing
phase information for cosmological simulations set up using Pan-
phasia. We have published the phases of three cosmological volumes
run by the Virgo Consortium. As a guide for anyone wanting to add
Panphasian phases to an initial conditions code, we have given the
locations and properties of three dark matter haloes that can be
resimulated within each of these cosmological volumes.

In order to demonstrate that it is possible to create high-quality
resimulation initial conditions using phases from Panphasia, we
have developed a method using Fourier transforms to do the numer-
ical convolutions of the white noise field required to make initial
conditions with a given CDM linear power spectrum. We are able to
show that these methods work well by essentially making the same
initial conditions using two different methods: as cosmological ini-
tial conditions using very large Fourier transforms – essentially the
Fourier method in use since the 1980s – and by the new resimu-
lation method described here. We find by looking at the properties
of a dark matter halo at redshift zero that it is possible to recover
the final positions of the particles to similar accuracy when using
the resimulation method or the Fourier method. Similarly a num-
ber of halo properties are reproduced consistently between the two
methods to sub-per cent accuracies. At the same time, these tests do
show that there is some room for improvement in the resimulation
initial conditions. It may well be that the very accurate multigrid
methods developed by Hahn & Abel (2011) for the MUSIC code
can be applied successfully to Panphasia and yield more accurate
resimulation initial conditions than the methods described in this
paper. This paper provides a guide on how to test the quality of
resimulation initial conditions made using Panphasian phases. Any
new implementation can be tested on the reference halo studied in
Section 6 and so can be compared directly with the implementation
applied in this paper to the IC_2LPT_GEN code.

While it is important that it is possible to make accurate resim-
ulation initial conditions from Panphasia, this is not necessarily its
most important feature. The fact that using Panphasia allows the
phase information to be published by giving a short phase descrip-
tor has potential benefits for all those involved in simulations of
cosmological structure formation from Gaussian initial conditions.
Using Panphasia provides a convenient way to keep track of how
simulations were set up, and makes it possible for others to repro-
duce and check published simulation results, and to exploit existing
simulations. It should also make it easier to apply very different
numerical techniques to standard problems, for example in the field
of galaxy formation, by using Panphasia as a convenient way to
define the initial conditions.

These wider benefits will only accrue if Panphasia is commonly
used. This requires two developments. First, Panphasia would need
to be used when setting up large cosmological volumes – partic-
ularly where these simulations or products derived from them are
made publicly available. Currently there are no simulations us-
ing Panphasian phases on the MultiDark data base (Riebe et al.
2011), and just one on the Millennium data base (Lemson & Virgo
Consortium 2006). However, the Virgo Consortium is now using
Panphasia, so this situation will improve in the future. Secondly,
Panphasia needs to be added to existing initial conditions codes.
It is relatively easy to add to codes that make cosmological initial
conditions, but it will require some effort from a relatively small
set of people to make Panphasian phases available in all existing
resimulation codes.

If both these developments can be achieved, then anyone could
use these data bases to select samples of objects for resimulation.
An alternative to this however, also requiring investment of effort,

would be for those providing the data bases to provide a service that
serves resimulation initial conditions in the appropriate format to
the users.

Finally, while this paper and its companion, Jenkins & Booth
(2013), are intended to act as a self-contained guide on how to add
Panphasia to other initial conditions codes, the author would be
more than happy to provide help and advice to anyone interested in
adding Panphasian phases to their codes.
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A P P E N D I X A : T H E PA N P H A S I A O C T R E E BA S I S F U N C T I O N S

In this appendix, we define the octree basis functions for Panphasia, in terms of the S8 set of Legendre block functions, which themselves are
defined by equation (13).

Before we can define the octree basis functions themselves, we first define, on the left-hand side below, a set of 64 functions each of which
is some linear combination of Legendre block functions determined by the appropriate matrix equation on the right-hand side. The eight
functions, for example P000, heading each column on the left-hand side have by construction the functional forms of the Legendre blocks
one level shallower in the octree. The 56 functions below these eight functions will be used below to define the S8 octree basis functions
themselves,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P000

Q1

Q2

Q3

Q4

Q5

Q6

Q7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p000

p001

p010

p011

p100

p101

p110

p111

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Key:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P100 P010 P001

Q8 Q15 Q22

Q9 Q16 Q23

Q11
4 Q17 Q24

Q10 Q18 Q25

Q12 Q19 Q26

Q13 Q20 Q27

Q14 Q21 Q28

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 0 0 0 0 0 0
−a2 a1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p000 p000 p000

p100 p010 p001

p001 p001 p010

p011 p011 p011

p010 p100 p100

p101 p101 p101

p110 p110 p110

p111 p111 p111

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 =
√

3
2

a2 = 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P110 P011 P101

Q29 Q36 Q43

Q30 Q37 Q44

Q31 Q38 Q45

Q32 Q39 Q46

Q33 Q40 Q47

Q34 Q41 Q48

Q35 Q42 Q49

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 b2 b2 b3 0 0 0 0
−b2 −b3 b1 b2 0 0 0 0

b3 −b2 b2 −b1 0 0 0 0
−b2 b1 b3 −b2 0 0 0 0

0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p000 p000 p000

p010 p001 p001

p100 p010 p100

p110 p011 p101

p001 p100 p010

p011 p101 p011

p101 p110 p110

p111 p111 p111
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b1 = 3
4

b2 =
√

3
4

b3 = 1
4
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P111

Q50

Q51

Q52

Q53

Q54

Q55

Q56

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 c2 c2 c3 c2 c3 c3 c4

−c2 c1 c2 −c3 −c2 c3 c4 −c3

−c2 −c2 c1 −c3 c2 −c4 c3 c3

−c2 c2 −c2 c4 c1 −c3 c3 −c3

c3 −c3 −c3 −c1 c4 c2 c2 −c2

c3 c3 −c4 −c2 −c3 −c1 c2 c2

c3 c4 c3 −c2 c3 −c2 −c1 −c2

−c4 c3 −c3 −c2 c3 c2 −c2 c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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p010

p011
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 =
√

27
64

c2 = 3
8

c3 =
√

3
64

c4 = 1
8 .

4 It is just a feature of Panphasia that the ordering of Q10 and Q11 is reverse from what might have been expected.
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The eight Legendre blocks each have distinct symmetries with respect to a reflection about the three principal coordinate planes about the
cell centre. So for example p000, which is a constant, has even parity with respect to all three reflections while p111 has odd parity for all three
reflections. Before we can define the octree functions, we first define the following function, which is antisymmetric about the origin:

A(u) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ u < 1;

−1 if − 1 < u < 0;

0 otherwise.

(A1)

Creating a product of three of these functions each acting on one of the Cartesian coordinates, we arrive at a useful function Ai(x1)Aj(x2)Ak(x3),
which has the same parities about the origin as the corresponding Legendre block, pijk(x), where x ≡ (x1, x2, x3).

As stated earlier, the functions, Pijk, heading each of the eight columns on the left-hand side of the matrix equation are linear combinations
of Legendre block functions, and are simply related by construction to Legendre block functions of twice their linear scale by the following
equation:

pijk(x) = Pijk

(
2|x1| − 1

2
, 2|x2| − 1

2
, 2|x3| − 1

2

)
Ai(x1)Aj (x2)Ak(x3). (A2)

Similarly taking the remaining seven functions in each of these columns, we can now define the functional forms of the octree basis functions
themselves in an analogous way:

qn(x) = Qn

(
2|x1| − 1

2
, 2|x2| − 1

2
, 2|x3| − 1

2

)
Ai(x1)Aj (x2)Ak(x3), (A3)

where n is an integer in the inclusive range [7(i + 2j + 4k) + 1, 7(i + 2j + 4k) + 7], and i, j and k each take the values of zero or one.
Combining all eight columns yields 56 functions qn(x), n = 1, 56 which gives the functional form for the Panphasia octree basis functions,

plus the eight Legendre block functions. These 64 functions when placed in any given octree cell are mutually orthogonal. This can be
seen as follows. Functions drawn from different columns have different parities, and are therefore orthogonal. Within a given column the
orthogonality can be verified by inspection of the orthogonality between pairs of rows of the square matrices, combined with the knowledge
that the Legendre block functions in the columns on the right-hand side are themselves mutually orthogonal.

Because the 56 octree basis functions are orthogonal not only to each other, but also to the 8 Legendre block functions, and the octree basis
functions are built of (smaller) Legendre blocks, it follows that any two different octree basis functions, placed in any two octree cells, are
necessarily orthogonal, whether the octree cells overlap or not.

Using the fact that the octree basis functions are orthogonal to the Legendre block functions occupying the same octree cell, we can see
this implies that the S8 octree basis functions must have vanishing zeroth and first moments:∫

x
α1
1 x

α2
2 x

α3
3 qn(x1, x2, x3)d3x = 0, (A4)

for αi = 0, 1 where i = 1, 2, 3 and the integral is over all space.
We can now define the Panphasia octree basis functions themselves using the functional forms defined above. Using the notation established

in Section 2.2, we define a set of functions for each cell (j1, j2, j3) in the octree at level l:

Bl,n
j1,j2,j3

(x) = 1

�
3/2
l

qn

(
x − xc(l, j1, j2, j3)

�l

)
, (A5)

and n = 1, 56 labels the octree functional forms. The terms xc(l, j1,j 2, j3) and �l give the cell centre and cell size defined in equations (11)
and (10), respectively. The octree basis function obey the following normalization/orthogonality relations:∫

L3
B

l1,n1
j1,j2,j3

(x)Bl2,n2
k1,k2,k3

(x)d3x = δl1l2δn1n2δj1k1δj2k2δj3k3 , (A6)

where the integral is over the entire volume of the root cell. Because they are mutually orthogonal, as we have shown in Section 2, the
expansion coefficients of a basis function expansion of a Gaussian white noise field are independent Gaussian variables. In Appendix B, we
give the mapping between the pseudo-random number sequence and the basis functions that defines the Panphasia realization.

A P P E N D I X B : G E N E R AT I N G A G AU S S I A N P S E U D O - R A N D O M SE QU E N C E A N D M A P P I N G
I T O N TO T H E O C T R E E

As described in Section 4 we use the MRGK5-93 generator to provide a very long periodic sequence of pseudo-random numbers ri which
are uniformly distributed between 0 and 1. We use the Box–Muller transformation (Box & Muller 1958), with a modification to generate a
corresponding sequence of Gaussian pseudo-random numbers, gi, with zero mean and unit variance:

g2i =
√

−2 ln(r2i) cos(2πr2i+1)

g2i+1 =
√

−2 ln(r2i) sin(2πr2i+1). (B1)

A significant fraction of the computing time when evaluating Panphasia is spent in generating the Gaussian pseudo-random numbers. A
faster method is described in Press et al. (1992), but as it uses the rejection method it is not suitable because we wish to establish a mapping
for the entire available sequence without having to look at the pseudo-random number values themselves.
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Table B1. Some reference values for Panphasia. The first column gives the position of a random number relative to the starting point. The sequence ri are
uniformly distributed pseudo-random numbers in the range 0 < ri < 1. The sequence gi are corresponding Gaussian pseudo-random numbers, with zero
mean and unit variance, and are generate in pairs using the Box–Muller transformation as described in the text of Appendix B.

i ri gi State of pseudo-random number generator for ri Comment

0 0.716 483 784 0.536 408 766 (1538637210, 861452511, 1738028090, 1398591498, 1039141497) Origin of sequence
1 0.864 066 010 −0.615 682 518 (1855567628, 1538637210, 861452511, 1738028090, 1398591498)

4657 948 6.915 07 × 10−8 4.574 061 225 (149, 1149276986, 1622633566, 1876117056, 1232329462) Branch point
4657 949 0.101 988 118 3.411 353 097

4657 949+2137 8.507 921 × 10−2 (182706232, 1864678143, 1322192784, 650896850, 1598221492) rnew

Equation (B1) does not work well for the rare occasions when r2i is very small, as the pseudo-random numbers are discrete and there is a
smallest non-zero pseudo-random number with a magnitude of about 2.3 × 10−10. As the number of Gaussian variables in Panphasia is huge,
the extreme tail of the Gaussian variables will be truncated if nothing further is done. To deal with this, we first check if r2i < 10−6, and if
it is, then replace the value in equation (B1) with r2i = 10−6rnew where rnew is an alternate random number, whose origin will be discussed
below. Should rnew be less than 10−6, the procedure is repeated until a larger value is obtained.

The number rnew cannot be taken from the pseudo-random number sequence close to r2i, as with the rejection method, it would interfere
with the mapping between the octree and the pseudo-random number sequence, or the same number would be reused, which violates the
requirement that the random numbers be independent. To get round this, rnew is computed by advancing the sequence from the position
corresponding to r2i by a very large and arbitrary shift of 2137 + 1. This large shift guarantees in practice that the same random number is not
used twice in making some particular initial conditions. This branching procedure is only really required for the even pseudo-random numbers,
r2i, as the odd values r2i + 1 are used to calculate an angle which does not have singular behaviour at either end of the range. However, the
code used for Panphasia applies the same branching conditions to both even and odd values although this makes a fairly negligible difference
to the actual values of the Gaussian pair for the odd case.

This whole procedure is only enacted once in a million times. We tested that the modified routine does return a Gaussian distribution well
into the tail of the distribution where the modification becomes important. The routine was also tested with a less stringent branch condition,
r2i < 10−2, to ensure that it works if rnew is also small and one or more further iterations are required.

Having described the origin of the pseudo-random sequence, we move on to the mapping between this sequence and the octree. For
each cell in the octree, there are 56 octree basis functions and we need to generate an expansion coefficient for each of these drawing the
value from a Gaussian distribution with zero mean and unit variance. For reasons explained in Section 3, we also associate a further eight
Gaussian random variables with each cell. These are not properly part of Panphasia but can be used if desired to generate an independent
pseudo-random field. In total, 64 random numbers are needed for each octree cell.

For the ensemble average power spectrum on the scale of the root cell to be a white noise field, we need to add the effects of an infinite set
of octree basis functions which are larger and overlap the root cell. This can be achieved simply by expanding the root cell in Legendre block
functions. The first eight Gaussian pseudo-random numbers gi, i = 0, 7, are reserved for the coefficients of these root-cell-sized Legendre
block functions. After this every 64 consecutive Gaussian pseudo-random numbers are assigned to a particular octree cell, level by level, with
increasing depth. For each cell, the first 56 pseudo-random numbers are assigned to the octree functions, while the final eight are not part of
Panphasia and are available to generate a field with one value per octree cell that is independent of Panphasia. A raster scan pattern over the
cells is used at every given level. Using the same notation for the octree cells as in the previous appendix, we define an integer function:

φ(l, j1, j2, j3) = 8 + 64

[
4lj1 + 2lj2 + j3 + 8l−1 − 1

7

]
, (B2)

for l > 0. For octree cell (j1, j2, j3) at level l of the octree, the first and last pseudo-random Gaussian variables for that cell are g[φ(l,j1,j2,j3)] and
g[φ(l,j1,j2,j3)+63].

To define Panphasia we need also to specify the starting point of the pseudo-random number sequence. Table B1 gives the initial state
of the random number generator plus some additional values which are useful cross-checks for anyone wanting to write their own code to
generate Panphasia. The final three entries of the table show an example where the generation of the two Gaussian variables using equation
(B1) requires the branching procedure described above to generate the final numbers.

Section 7 described how to publish the phases for a cuboidal patch within Panphasia. The final number in the Panphasian descriptor is a
check number. This check number depends on the location of the cell in the octree, and also on an ASCII character string included in the
descriptor. For a cuboid at level l of the octree with a corner nearest to the origin at (jx, jy, jz) and side lengths dx, dy, dz, we define three
integers I1 = φ(l, jx + dx − 1, jy, jz), I2 = φ(l, jx, jy + dy − 1, jz) and I3 = φ(l, jx, jy, jz + dz − 1).

The check number, Ncheck, is given by

Ncheck =
(

T I1 (1) + T I2 (1) + T I3 (1) +
n∑

i=1

iT ascii(string(i))(1)

)
mod m, (B3)

where T is the state vector of the random number generator, used in equation (32) and the sum is over the n characters given in the descriptor
name. The function ascii() returns the ascii value of character. For example, ascii(A) = 65, ascii(a) = 97.
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A P P E N D I X C : T H E D E F I N I T I O N O F PA N P H A S I A

We now combine the results of the previous appendices to give a complete definition of the Panphasia field at a position x = (x1, x2, x3),
where 0 ≤ xi < L, i = 1, 2, 3,

WPanphasia(x) =
1∑

i1=0

1∑
i2=0

1∑
i3=0

g4i1+2i2+i3
pi1i2i3

(
2x1 − L

L
,

2x2 − L

L
,

2x3 − L

L

)
+

49∑
l=0

2l−1∑
j1=0

2l−1∑
j2=0

2l−1∑
j3=0

56∑
n=1

g[φ(l,j1,j2,j3)+n−1]B
l,n
j1,j2,j3

(x),

where all the symbols are defined as follows. The first term on the right-hand side is a sum over the eight Legendre block functions, pj1j2j3 ,
defined in equation (13). The coefficients g4i1+2i2+i3 are Gaussian pseudo-random numbers with zero mean and unit variance, and are described
in Appendix B. The summation in the second term on the right-hand side is over the entire set of octree basis functions. The index l denotes
the level in the octree, where l = 0 corresponds to the root cell and increases with depth. The summations over j1, j2, j3 are over the cubic
cells making up level l of the octree. A description of the octree is given in Section 2. The sum over n is over the 56 orthogonal octree basis
functions which occupy each cell and are defined in Appendix A. The sequence of Gaussian pseudo-random numbers, g, are linear within a
cell and begin for a given cell at a location given by the integer function, φ(l, j1, j2, j3), defined in equation (B2). The octree basis functions
themselves, Bl,n

j1,j2,j3
, are defined by equation (A5).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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