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Unique topological characterization of braided magnetic fields
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We introduce a topological flux function to quantify the topology of magnetic braids: non-zero,

line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function

is an ideal invariant defined on a cross-section of the magnetic field, and measures the average

poloidal magnetic flux around any given field line, or the average pairwise crossing number

between a given field line and all others. Moreover, its integral over the cross-section yields the

relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian

formulation of the field line equations, we prove that it uniquely characterizes the field line

mapping and hence the magnetic topology. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4773903]

I. INTRODUCTION

In many plasmas, ranging from astrophysics to magnetic

confinement fusion, the topology—i.e., the linking and con-

nectivity of the magnetic field lines1—is an approximate

invariant of the dynamics. This is because these plasmas typ-

ically have such low dissipation that, to first approximation,

their evolution is ideal. That is, on large scales where the

magnetohydrodynamic approximation holds, they satisfy an

ideal Ohm’s law,2 preserving the magnetic topology. There-

fore, a practical question is, given two magnetic fields satis-

fying the same conditions on the boundary of some volume

V, can one be reached from the other by some ideal evolution

in V?

We restrict our attention to line-tied magnetic flux tubes,

where all field lines stretch between two boundaries and the

magnetic field in the volume is non-vanishing. This models,

for example, a coronal loop in the Sun’s atmosphere, where

the footpoints remain essentially fixed on the rapid timescale

of coronal relaxation.3 To simplify the presentation in this

paper, we consider a magnetic field B defined on a cylinder

V ¼ fðr;/; zÞj0 � r � R; 0 � z � 1g, satisfying Bz > 0

everywhere in V and impose the boundary conditions that

Bj@V ¼ ez and vj@V ¼ 0, where v is the velocity. Extensions

of the results to more general boundary conditions are dis-

cussed in Sec. V. For convenience, we call magnetic fields

satisfying the above conditions “magnetic braids” (Fig. 1).

Two magnetic braids are topologically equivalent if they can

be linked by an ideal evolution where v¼ 0 on @V
throughout.

In principle, one can determine whether two magnetic

braids are topologically equivalent by comparing their field

line mappings from z¼ 0 to z¼ 1. Throughout this paper, let

f ðx0; zÞ 2 V denote the point at height z on the field line

traced from x0 � ðr0;/0; 0Þ on the z¼ 0 boundary. Under

this parameterization of field lines by z, we have

d f ðx0; zÞ
dz

¼ Bðf ðx0; zÞÞ
Bzðf ðx0; zÞÞ : (1)

For shorthand, we shall denote the mapping from z¼ 0 to

z¼ 1 as Fðx0Þ � f ðx0; 1Þ. Under our boundary conditions,

two magnetic braids B, ~B are equivalent if and only if F ¼ ~F.

Note that if we were to relax the condition that B ¼ ez on the

side boundary r¼R, then F would determine the topology

only up to an overall rigid rotation through 2np; n 2 Z.

Mathematically, field line mappings are symplectic, since

they preserve magnetic flux. Symplectic mappings have long

been used themselves as models of periodic magnetic fields

in fusion devices,4 and field line mappings have also been

used extensively for characterizing line-tied coronal magnetic

fields.5 But the mapping is usually very sensitive to small

fluctuations in the underlying magnetic field. This makes it

very difficult, if not impossible, to determine whether two

field line mappings can be related by an ideal evolution in

anything other than highly idealized situations.

A much more robust topological quantity is the total

magnetic helicity, which has a broad range of applications in

both laboratory and astrophysical plasmas.6 It has proved so

robust that it has been hypothesized to be the only quantity

determining the final state of turbulent relaxation in

reversed-field pinches and similar devices.7 But the helicity

is an extreme reduction of the topological information in the

three-dimensional magnetic field to a single number and it

does not uniquely characterize the topology. There are a

large class of magnetic fields that have the same helicity but

different field line mappings.

In this paper, we describe a quantitative measure Aðx0Þ
which we call the “topological flux function.” This is a scalar

function defined on a cross section of the magnetic field or

equivalently on each field line. It is more robust than the field

line mapping, while containing more detailed information

than the helicity. A similar function was introduced for mag-

netic fields in a half-space by Berger,8 who showed that it is

effectively a helicity per field line. The function A has also

appeared in the literature in a different guise: as an action
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integral yielding the magnetic field line equations in a varia-

tional formalism.4,9,10 These interpretations are discussed in

more detail in Sec. III. Recently, we have described how A
may also be viewed as a generalization of the scalar flux

function used to define two-dimensional magnetic fields, and

how it may be used to define and measure magnetic recon-

nection.11 Here, we go further. Our main result is that, with a

particular choice in its definition, A uniquely characterizes

the topology of a magnetic braid. In other words, A ¼ ~A for

two magnetic braids if and only if they are topologically

equivalent. Moreover, not only can A determine whether

two braids are topologically equivalent but also it can quan-

tify how much dissipation or reconnection is needed to

connect the two states. This will be invaluable in future

dynamical studies of such systems.

This paper is organized as follows. In Sec. II, we define

A and give its basic physical interpretation in terms of mag-

netic flux. Its interpretations as a field line helicity, as an av-

erage crossing number, and as a Hamiltonian action are

described in Sec. III. In Sec. IV, the Hamiltonian interpreta-

tion is used to prove our main result that A uniquely charac-

terizes the magnetic topology. We outline in Sec. V how the

boundary conditions may be relaxed.

II. DEFINITION OF THE TOPOLOGICAL FLUX
FUNCTION

The topological flux function A is defined simply by

integrating the vector potential A (where B ¼ r� A) along

magnetic field lines. It may be written as

Aðx0Þ �
ðz¼1

z¼0

A � dl �
ð1

0

Aðf ðx0; zÞÞ � Bðf ðx0; zÞÞ
Bzðf ðx0; zÞÞ dz: (2)

Broadly, A is conceived to measure poloidal (horizon-

tal) magnetic fluxes in the domain V. But it will be beneficial

to restrict the gauge of the vector potential A in definition

(2). This is because the value Aðx0Þ for a general field line is

not gauge invariant. Indeed, under a gauge transformation

A! Aþrv,

A ! Aþ F�v� v; (3)

where we use the pull-back notation F�vðx0Þ � vðFðx0ÞÞ.
Provided that v is chosen to be periodic in z, then it follows

that for periodic field lines, where Fðx0Þ ¼ x0, the value of

Aðx0Þ is gauge invariant. In an ideal evolution, two periodic

field lines define a comoving surface with flux Aðx1Þ
�Aðx0Þ, as in Fig. 1(a), and the set of periodic field lines can

be used to define a poloidal flux partition of the magnetic

field.11 But for a general, non-periodic field line, A is not

gauge invariant unless we impose further gauge conditions

on A in its definition (2).

We show here that A is a physically meaningful quan-

tity for any field line if we impose

n� Aj@V ¼ n� Aref j@V ; (4)

where Aref ¼ ðr=2Þe/ is the vector potential of a reference

field Bref ¼ ez that matches B on @V. A similar restriction is

used to ensure gauge invariance in the well-known relative

magnetic helicity.12 To demonstrate how A becomes mean-

ingful, define a “poloidal surface” with flux Uð/Þ bounded

by (i) the field line, (ii) a vertical line on the side boundary

r¼R at azimuth /, (iii) a straight line L0 on z¼ 0 joining the

startpoints of the first two lines, and (iv) a straight line L1 on

z¼ 1 joining their endpoints (Fig. 1(b)). In view of the

boundary condition vj@V ¼ 0, this is a comoving surface and

Uð/Þ is an ideal invariant for any /. By Stokes’ Theorem,

Uð/Þ ¼ Aðx0Þ þ
ð

L0þL1

A � dl; (5)

with no contribution from the side boundary since Az ¼ 0

there by our gauge choice. For a periodic field line, the inte-

grals in Eq. (5) along L0 and L1 will be equal and opposite,

so the flux Uð/Þ is independent of the “viewing angle” /
and is given by Aðx0Þ. For a non-periodic field line, the inte-

grals need not cancel and will depend in general on /. How-

ever, we can show that in this case, Aðx0Þ gives the average

flux over all viewing angles. To see this, consider the shaded

quadrilateral lying on the lower boundary in Fig. 1(b). The

integral over L0 and L1 returns the magnetic flux through this

quadrilateral, since Ar ¼ 0 on z¼ 0, 1. Since Bz ¼ 1, this is

simply the area of the quadrilateralð
L0þL1

A � dl ¼ R

2
Fr sinðF/ � /Þ þ r0 sinð/0 � /Þ
� �

: (6)

This expression vanishes on averaging over / so, for this

gauge restriction,

1

2p

ð2p

0

Uð/Þ d/ ¼ Aðx0Þ; (7)

for any field line.

A fundamental property of A in our restricted gauge

(Eq. (4)) is ideal invariance. One can see this by calculating

dA=dt as a line integral over a moving domain.13 In an ideal

evolution, @A=@t ¼ v� Bþrw, so

FIG. 1. Magnetic braids in the cylinder V, showing (a) the comoving surface

defined by two periodic field lines and (b) the poloidal surface at viewing

angle / for a single field line (bounded by the arrowed path).
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dA
dt
¼
ðz¼1

z¼0

@A

@t
� v�r� Aþrðv � AÞ

� �
� dl (8)

¼
ðz¼1

z¼0

rðwþ v � AÞ � dl: (9)

The second term vanishes since vj@V ¼ 0. Under our gauge

restriction (Eq. (4)), w is constant on @V and the integral

vanishes.

III. PHYSICAL INTERPRETATIONS

Before proving our main result, we describe three illu-

minating interpretations of the topological flux function.

A. Field line helicity

There is a simple relation between A and the magnetic

helicity.8 Since V is magnetically open, we use the relative

helicity Hr (Ref. 12). Under our gauge conditions, however,

this reduces to the same expression as the total helicity

Hr �
ð

V

ðAþ ArefÞ � ðB� BrefÞ d3x ¼
ð

V

A � B d3x: (10)

Now suppose we change variables from ðr;/; zÞ to

ðr0;/0; zÞ, where ðr;/; zÞ ¼ f ðx0; zÞ and x0 � ðr0;/0; 0Þ is

the footpoint on z¼ 0 of the field line through ðr;/; zÞ. The

Jacobian of this coordinate transformation is

detðJÞ ¼ r0Bzðx0Þ
rBzðr;/; zÞ

(11)

as may be verified by considering a thin flux tube around the

field line and using r � B ¼ 0. Thus, we can re-write

Hr ¼
ð

V

Aðr;/; zÞ � Bðr;/; zÞ r drd/dz (12)

¼
ð

Aðf ðx0; zÞÞ � Bðf ðx0; zÞÞ Bzðx0Þ
Bzðf ðx0; zÞÞ d2x0dz (13)

¼
ð

z¼0

Aðx0ÞBzðx0Þ d2x0: (14)

So A is a density for Hr in the cross-sectional plane, weighted

by magnetic flux. (With our boundary conditions, we simply

have Bzðx0Þ ¼ 1.) Hence Berger8 calls A a “field line heli-

city.” Clearly, it is possible forA 6¼ 0 even when Hr ¼ 0, pro-

viding that the integral of A over all field lines vanishes.

An example of this is the magnetohydrodynamic simula-

tion of a relaxing solar coronal loop described by Wilmot-

Smith et al.14 and shown in Fig. 2. Although the evolution is

resistive and there is widespread reconnection as the field

relaxes, the relaxation is sufficiently fast to preserve the ini-

tial helicity Hr ¼ 0, as predicted by Taylor theory.7 But con-

trary to Taylor theory, which would predict a uniform

relaxed field B ¼ ez with A � 0, the final state maintains

equal regions of positive and negative A, manifesting itself

in non-trivial topology of the field lines in the end-state of

the relaxation, despite the conservation of helicity15 (see also

Ref. 16). This illustrates how A contains more detailed infor-

mation about the topology than Hr.

B. Average crossing number

The identification of Aðx0Þ with an average poloidal

flux (Sec. II) suggests the following alternative topological

interpretation. Given the field line f ðx0; zÞ and a second field

line f ðy0; zÞ, let hx0;y0
ðzÞ denote the orientation of the line

segment connecting f ðx0; zÞ and f ðy0; zÞ in the plane at height

z. Defining the signed crossing number8 between these two

field lines as the net winding angle

cx0;y0
¼ 1

2p

ð1

0

dhx0;y0
ðzÞ

dz
dz; (15)

one can show (see the Appendix) that

Aðx0Þ ¼
ð

z¼0

cx0;y0
Bzðy0Þ d2y0: (16)

In other words, Aðx0Þ is the average pairwise crossing num-

ber with all other field lines. In view of relation (14), this is

consistent with Berger’s formula17

Hr ¼
ð

z¼0

ð
z¼0

cx0;y0
Bzðx0ÞBzðy0Þ d2x0d2y0; (17)

for the relative helicity of a magnetic field between two

planes.

C. Hamiltonian action

To motivate why A might be a sufficient condition for

two magnetic braids to be topologically equivalent, we point

out another physical interpretation of A that demonstrates a

FIG. 2. Example calculation of the topological flux function A in a numeri-

cal magnetohydrodynamic simulation of magnetic relaxation,14 using the

gauge conditions (4) and Ar ¼ 0. Greyscale contours on the lower boundary

show A. Panels (a) and (b) correspond to before and after the relaxation,

respectively.
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deep connection with the magnetic field structure. Namely,

A is the action in a variational formulation that leads to the

equations of the magnetic field lines.9 In other words, for

given vector potential A and field line mapping, the magnetic

field lines x(l) are given by the Euler-Lagrange equations

that extremize the integral

Aðx0Þ ¼
ðz¼1

z¼0

AðxÞ � dx

dl
dl: (18)

It is well known that the magnetic field lines are trajec-

tories of a Hamiltonian system—a fact well exploited in the

modeling of toroidal fusion devices.4 So the action (Eq. (18))

is that of a Hamiltonian system, although it is not necessarily

written in canonical coordinates.9 To demonstrate that it

really is Hamiltonian, we can re-write Eq. (18) in canonical

coordinates by a gauge transformation A! Aþrv. This

adds dv=dl to the integrand (the Lagrangian), which leaves

the field line equations (the Euler-Lagrange equations)

unchanged. We can then write our system in canonical

coordinates by choosing an appropriate gauge. If we set

Ar ¼ 0 everywhere in space, then A � dl ¼ A/ r d/þ Az dz.

Making the identifications p$ rA/ðr;/; zÞ; q$ /; t$ z;
H $ �Azðr;/; zÞ, our action becomes

A ¼
ð1

0

p
dq

dt
� Hðp; q; tÞ

� �
dt: (19)

This is a 1 degree-of-freedom Hamiltonian system in canoni-

cal form. The generalized coordinate is /, the generalized

momentum is rA/, and the Hamiltonian is �Az. Time corre-

sponds to our z coordinate, so our Hamiltonian is in general

time dependent. We remark that the canonical gauge choice

Ar ¼ 0 is equivalent to writing B in the form

B ¼ rðrA/Þ � r/þrðAzÞ � rz, which is widely used in

toroidal plasmas.18 This gauge is also consistent with the

gauge restriction (Eq. (4)) imposed to ensure ideal invariance

of A.

IV. UNIQUE TOPOLOGICAL CHARACTERIZATION

Having identified A as the action in a Hamiltonian sys-

tem, we now use general results about Hamiltonian systems

to prove our main result that A is not only a necessary condi-

tion but also a sufficient condition for two magnetic braids to

be topologically equivalent. The argument is based on work

of Haro19 on primitive functions of exact symplectomor-

phisms and is best expressed in terms of differential forms.

We assume that A is in canonical gauge Ar ¼ 0 and satisfies

(Eq. (4)).

As a special case of a more general result about Hamil-

tonian systems, it follows that

dA ¼ F�a� a; (20)

where a ¼ ðr2=2Þ d/ is the canonical (Liouville) 1-form

(Ref. 20, p. 148). For more details and proof of Eq. (20), see,

for example, Ref. 21 (Proposition 9.18) or Haro,19 where A
is called a “primitive function” for F. Writing out the two

components explicitly, Eq. (20) says that

@A
@r0

¼ ðFrÞ2

2

 !
@F/

@r0

;
@A
@/0

¼ ðFrÞ2

2

 !
@F/

@/0

� r2
0

2
: (21)

To prove that A uniquely determines the topology, sup-

pose that we have two magnetic braids B, ~B, with topologi-

cal flux functions A; ~A and field line mappings F, ~F,

respectively. We already know that ~F ¼ F implies ~A ¼ A,

since A is an ideal invariant. But we can also see this from

Eq. (20), which gives

d ~A ¼ ~F
�
a� a ¼ F�a� a ¼ dA; (22)

so that ~A and A differ by at most an overall constant, which

vanishes since both braids satisfy AðR;/Þ ¼ 0.

To prove the converse, assume that ~A ¼ A and define

the mapping G � ~F� F�1. Then, using Eq. (20),

G�a� a ¼ ðF�1Þ�� ~F
�
a� a (23)

¼ ðF�1Þ�ðaþ dAÞ � a (24)

¼ ðF�1Þ�a� aþ ðF�1Þ�dA (25)

¼ ðF�1Þ�a� ðF�1Þ�� F�aþ ðF�1Þ�dA (26)

¼ ðF�1Þ�ða� F�aÞ þ ðF�1Þ�dA (27)

¼ �ðF�1Þ�dAþ ðF�1Þ�dA (28)

¼ 0: (29)

Now, we determine the possible mappings G satisfying

G�a ¼ a or equivalently (compare Eq. (21))

ðGrÞ2

2

@G/

@r0

dr0 þ
ðGrÞ2

2

@G/

@/0

� r2
0

2

" #
d/0 ¼ 0: (30)

The r0 and /0 components give, respectively, G/ ¼ gð/0Þ
and Gr ¼ r0ðdg=d/0Þ�1=2

. But the possibilities are restricted

by our boundary conditions: first, GrðR;/0Þ ¼ R implies that

dg=d/0 ¼ 1, so that G is a rigid rotation Gðr0;/0Þ ¼ ðr0;/0

þ constÞ. But then G/ðR;/0Þ ¼ /0 implies that G ¼ id, and

so ~F ¼ F. This completes the proof.

V. DISCUSSION

For clarity of presentation, we have assumed certain

boundary conditions on the magnetic field, namely that

B¼ 1 on all boundaries of our cylinder V, and that v¼ 0 on

the bottom and top boundaries. We indicate here how the

results generalize when these conditions are relaxed.

If one allows B/ 6¼ 0 on the side boundary r¼R, then G
is determined only up to an overall rigid rotation, and we

would have the result that ~A and A differ by a constant if

and only if ~F and F differ by an overall rigid rotation. Such a

rotation can be detected from knowledge of F and ~F on the

side boundary alone. In physical applications, the mapping

on the side boundary may well be fixed in time.

It is also possible to consider more general Bz distribu-

tions on the boundaries z¼ 0, 1, providing A satisfies Eq. (4)
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for an appropriate Aref . In that case, the canonical 1-form a
is a ¼ rA/ðr;/; zÞ d/, and the possible mappings G that

preserve a (and are undetected by A) may differ, although

they take the general form of a cotangent lift Gð/0; pÞ
¼ ðTð/0Þ; pðdT=d/0Þ�1Þ, where p ¼ rA/ is the generalized

momentum (see Ref. 20, Proposition 6.3.2). If ~F ¼ F on the

side boundary r¼R, it follows that Tð/0Þ ¼ /0 and hence

again G ¼ id.

Finally, one could consider a toroidal domain where B

and v are periodic in z and remove the condition that v¼ 0

on the boundaries z¼ 0, 1. In that case, the freedom to shuf-

fle around field line endpoints on z¼ 0, 1 means that topolog-

ical equivalence is a weaker notion, although it is certainly

not true that any two field line mappings are equivalent, as

would be the case if one had the freedom to apply independ-

ent motions on both boundaries. In the periodic case, the

cross-section z¼ 0, 1 is no longer distinguished by the

boundary conditions. Changing cross-section has the same

effect on F as an ideal evolution, so that the new mapping

may be written ~F ¼ S� F� S�1 for some field line mapping S.

If A is the flux function for F, then one can show that the

flux function ~A for ~F is given by

~A ¼ ðS�1Þ�ðA þ F�v� vÞ; (31)

where v is related to the mapping S by S�a� a ¼ dv (see

Ref. 19). The practical problem of determining whether two

given topological flux functions are related in this way

remains for further investigation.
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APPENDIX: PROOF OF EQUATION (16)

Equation (16) may be established by expressing

Aðr;/; sÞ as a two-dimensional Biot-Savart integral. Writing

x ¼ ðr;/; sÞ and let y ¼ ðr0;/0; sÞ be another point at the

same height. Then since Br ¼ 0 on the side boundary, we

can write B ¼ r� A with

AðxÞ ¼ 1

2p

ð
z¼s

BðyÞ � r

jrj2
d2y; (A1)

where r¼ x – y is the vector connecting x and y, in the plane

z¼ s. Notice that this satisfies the required gauge condition

when s¼ 0 or s¼ 1.

Splitting B ¼ B? þ Bzez, where ez � B? ¼ 0, we find

AðxÞ � BðxÞ
BzðxÞ

¼ 1

2p

ð
z¼s

B?ðxÞ
BzðxÞ

� B?ðyÞ
BzðyÞ

� �
� ez � r

jrj2
BzðyÞ d2y:

(A2)

Expressing x ¼ f ðx0; sÞ and y ¼ f ðy0; sÞ in terms of their asso-

ciated footpoints x0; y0; x ¼ f ðx0; sÞ and y ¼ f ðy0; sÞ gives

Aðf ðx0; sÞÞ � Bðf ðx0; sÞÞ
Bzðf ðx0; sÞÞ ¼ 1

2p

ð
z¼0

dhx0;y0
ðsÞ

dt
Bzðy0Þ d2y0:

(A3)

Integrating from s¼ 0 to s¼ 1 and using Eq. (2) then estab-

lishes Eq. (16). We note that Berger8 derives a similar result

for magnetic fields in a half space but using a different argu-

ment where Aðx0Þ is considered as the limiting helicity of an

infinitesimal flux tube around the field line f ðx0; zÞ.
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