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Abstract. We associate a moduli problem to a colored trivalent graph; such
graphs, when planar, appear in the state-sum description of the quantum sl(N)
knot polynomial due to Murakami, Ohtsuki, and Yamada. We discuss how the
resulting moduli space can be thought of a representation variety. We show
that the Euler characteristic of the moduli space is equal to the quantum sl(N)
polynomial of the graph evaluated at unity. Possible extensions of the result
are also indicated.

Introduction

In their paper [6], Murakami, Ohtsuki, and Yamada gave an interpretation of
the quantum sl(N) invariant of a knot or link via a state sum model. This is a
generalization of the case N = 2 which is Kauffman’s interpretation of the Jones
polynomial via the Kauffman bracket. In MOY’s work, however, the states of an
oriented knot diagram are now planar oriented colored trivalent graphs. Based on
this model, Khovanov and Rozansky have given link homology theories [3] that
categorify the sl(N) knot invariant.

There are relationships between these quantum invariants and other invariants
of knots and links, such as the knot group, representation spaces of knot groups,
or the various Floer homology theories associated to knots and links. Based on
observations on (2, 2p+ 1) torus knots, Kronheimer and Mrowka [5] have given a
relationship between Khovanov homology, which appears as the N = 2 case of the
above mentioned homology theories, and (singular) instanton knot Floer homology

In this paper we relate MOY’s polynomial PN (Γ) of colored trivalent graphs
Γ to a certain moduli space of decorations of the graph which is itself a space of
representations of the graph complement in SU(N) with meridional conditions on
the edges of the graphs. Our moduli space can be considered as a subspace of a
product of projective spaces, which leads us to think our moduli space may have
some relation with the construction of a categorification of the sl(N) polynomial
by Cautis and Kamnitzer [1]. Fontaine, Kamnitzer, and Kuperberg have come to a
conjecture related to SL(N) webs. Presumably their web varieties are homeomor-
phic to our moduli spaces, and if this is the case our main Theorem 1.5 is a special
case of their Conjecture 6.3 in [2] that they have proved for N = 2 and N = 3.

In the first section we state our result and give context for it in terms of a
conjectural picture for higher rank instanton knot floer homology, the second section
contains the proof of the result.
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Figure 1. We show how the MOY polynomials associated to col-
ored planar trivalent graphs can be used to compute the quantum
sl(N) polynomials of the knot. On the left hand side of the local
equations are knot diagrams, on the right hand side are trivalent
graphs. We have indicated the edges on the right hand side that
are colored with 2, all other edges on the right hand side are colored
with 1.

Acknowledgements. We thank Hans Boden, Sabin Cautis, and Dmitri Panov
for useful general discussions, and Saugata Basu for answering some questions of
ours on real varieties. We thank the anonymous referee for useful comments and
for bringing the paper [2] to our attention. We thank CIRM and their Research in
Pairs program for providing the environment in which this paper was written.

1. Background and Results

1.1. Colored trivalent graphs and MOY moves. In [6], Murakami, Ohtsuki,
and Yamada give an invariant Pn(Γ) of colored trivalent planar graphs Γ, taking
values in the ring Z[q, q−1] with non-negative coefficients, which determines the
quantum invariant of a oriented knot colored with the fundamental representation
of sl(N) as a state sum via the relationship in Figure 1.

In Figure 1 the ‘colors’ are drawn from the set {1, 2} and correspond to associat-
ing to each edge of the graph either the fundamental N -dimensional representation
V of sl(N) or the representation V ∧ V . It is important that we restrict the color-
ings so that meeting at any vertex there are two edges colored with 1 and one edge
colored with 2.

More generally, in [6], all colors ∧iV for 1 ≤ i ≤ N − 1 are considered, giving
state sum interpretations of the quantum sl(N) invariants of knots colored with
any antisymmetric representation of sl(N). We expect the results of this paper to
generalize without too much difficulty to these situations, but here we shall mainly
be concerned with the two colors required to give a state sum interpretation of the
quantum sl(N) polynomial for a knot colored with the standard representation of
sl(N) as in Figure 1.

In [6] it is important that the graphs Γ considered admit a consistent orientation
of the edges. Namely at any trivalent vertex of Γ the two 1-colored edges either
both point in or both point out, and the 2-colored edge does the opposite. Another
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way of saying this is that the total flux into a trivalent point (counting the colors as
a quantity of flux) should be zero; this is how the consistency condition generalizes
to higher antisymmetric powers. Note that trivalent graphs arising as states of an
oriented knot diagram inherit a consistent orientation from the orientation of the
knot (see Figure 1). From now on whenever we write colored trivalent graph we
will only mean graphs satisfying such a condition.

The polynomial PN (Γ) associated by Murakami, Ohtsuki, and Yamada to a
colored trivalent graph Γ can be computed by use of the MOY moves. These are
local relationships that look much like the Reidemeister moves. We give these
moves in the next section where we will see that they hold also (up to a shift in
some cases or after evaluation at unity in all cases) for the Euler characteristic of
a certain moduli space associated to a colored trivalent graph.

1.2. A moduli problem and the main theorem. Given a colored trivalent
graph Γ where each edge is either colored with either 1 or 2 as in the last section,
decorate each edge colored with 1 by a point of complex projective (N − 1)-space
P
N−1, and each edge colored with 2 by a point of G(2, N), the Grassmannian of

2-planes in CN . We call this decoration admissible if the edge decorations at any
trivalent vertex correspond to two orthogonal lines in CN and the plane that they
span.

Definition 1.1. The set of all admissible decorations of such a colored planar
trivalent graph Γ forms a moduli space which we denote M (Γ).

There is a natural generalization of this definition which associates a moduli
space to a colored trivalent graph with colors drawn from the set {1, 2, . . . , N − 1}
such that at any vertex the three edges are colored by a, b, and a + b. In this
situation admissible decorations are decorations of each a-colored edge with a point
in G(a,N) such that at at any vertex the three decorations consist of two orthogonal
subspaces of CN and the subspace that they span.

As we are mainly motivated by the invariants of knots colored with the standard
representation of sl(N), we shall mostly restrict our attention to the case when we
draw colors from the set {1, 2}. We expand this to the set {1, 2, 3} when doing so is
convenient in Subsection 2.5. We expect our results to generalize straightforwardly
to MOY invariants of planar graphs colored with higher antisymmetric representa-
tions of sl(N) (in other words, drawing colors from the set {1, 2, . . . , N − 1}).

In Figure 2 we draw a colored graph G. As an example, we now determine
H∗(M (G)) in the case N = 3. In the discussion we sometimes write the “span”
of points in projective space: we mean the projectivization of the span of the
corresponding subspaces of CN .

Definition 1.2. Given a space X with homology finitely generated and of bounded
degree, we write π(X) for the Poincare polynomial of the homology of the space:

π(X) =
∑

i

qi dimHi(X) ∈ Z[q].

Proposition 1.3. For the graph G as drawn in Figure 2 we have

π(M (G)) = (1 + 3q2)(1 + q2)(1 + q2 + q4).
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Figure 2. We draw a colored graph G. In G the edges col-
ored with 2 are straight and vertical and have been drawn slightly
thicker than the edges colored with 1. The labels a, b, c, d, e, f, g
refer to points of projective space P2 decorating the 1-colored edges.

Proof. If we consider f ∈ P2 as fixed while all other decorations are allowed to vary
over P2 we get a moduli space that we call M1. By evaluation of f we see that
M (G) is a fiber bundle over P2 with fiber M1.

With f fixed, we see that g is orthogonal to f , and so must lie in a P
1. Writing

M2 for the moduli space in which we fix both f and an orthogonal g, we see that
M1 is a fiber bundle over P1 with fiber M2.

We focus on M2. Observe that h has to lie in the P1 consisting of points or-
thogonal to g. In the case that h is not the unique point of this P1 that is also
orthogonal to f , there is a unique admissible decoration of the rest of the graph,
namely a = f , b = c = d = g, e = h.

Suppose now that h is orthogonal to both f and g. The point e has to lie in the
P
1 consisting of points in the span of g and h. Suppose that e 6= h. Then it is easy

to check that there is a unique way to decorate the rest of the graph admissibly.
In the case that e = h then any possible choice of a in the P1 spanned by f and g
determines an admissible decoration of G.

This shows that topologically M2 = ∨3P1. Since this is a space with only even-
dimensional homology, as is projective space, we have triviality of all differentials
in Serre’s spectral sequence computing first H∗(M1) and then H∗(M (G)), hence
we have the result. �

The motivating hypothesis for this paper is that for a general colored graph Γ,
the Poincare polynomial of the homology H∗(M (Γ)) is related to PN (Γ).

Hypothesis 1.4. We have

qCπ(M (Γ)) = PN (Γ),

for some C ∈ Z.
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Although this hypothesis looks strong when considering the first few MOY
moves, it fails in general. In fact for the graph G of Proposition 1.3 we have

P3(G) = (q + q−1)3(q2 + 1 + q−2) 6= qCπ(M (G)) for any C ∈ Z.

Note that this also invalidates the hypothesis for ‘braid-like’ trivalent graphs. In-
stead we prove that a version of Hypothesis 1.4 holds when restricting our attention
to the Euler characteristic.

Theorem 1.5. For a colored planar trivalent graph Γ we have

χ(M (Γ)) = PN (Γ)(1),

where χ denotes Euler characteristic.

We believe in fact that the homology of M (Γ) is supported in even degrees, but we
are not yet able to show this.

Conjecture 1.6. For any graph Γ and for i odd we have Hi(M (Γ)) = 0.

Clearly this conjecture and Theorem 1.5 would together imply that Hypothesis 1.4
holds when setting q = 1.

1.3. Relation to representation spaces. The complement of a planar graph
Γ in S3 is homotopy equivalent to a wedge of k circles, where k is equal to the
first Betti number of Γ. Therefore, its fundamental group GΓ is isomorphic to the
k-fold free product of Z, and the space of homomorphisms Hom(GΓ, SU(N)) is
just the k-fold product of SU(N). Nonetheless, for a planar trivalent graph this
homotopy equivalence does not suggest the most natural generators. Instead we
use the presentation given in the following Lemma.

For stating this easily, we shall give an orientation to the 2-colored edges. We
orient the 2-colored edges coherently so that we can think of the edges coming with
a flux of magnitude given by the color of the edge, and so that there are no sources
or sinks of flux at any point of the graph. (In this paper, we are only looking at
such oriented colored planar graphs where this is possible.) We shall also give an
orientation to the plane in which the graph lies, and we fix a base point somewhere
above the plane.

Lemma 1.7. The group GΓ = π1(S
3 \ Γ, ∗) admits a presentation given by

〈x1, . . . , xm | R1, . . . , Rc 〉 ,

where m is the number of edges, xj represents a positively oriented meridian to the
jth edge, where c is the number of trivalent vertices, and where the relation Ri at
the ith vertex is given as follows: If x and y are the oriented meridians to the two
1-colored edges, z is the meridian to the 2-colored edge, and (x, y, z) is the order in
which the three corresponding edges meet at the vertex in a counter-clockwise sense
(when seen from above the plane), then Ri = x y z−1 if the two 1-colored edges have
flux out from the vertex, and Ri = y x z−1 if the two 1-colored edges have flux into
the vertex.

Proof. The proof follows from induction on the number of 2-colored edges quite in
analogy to the situation where one proves that the Wirtinger presentation gives the
knot or link group. �
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We can think, once and for all, that the basepoint is fixed somewhere above the
plane of the graph, e.g. in the eye of the observer. Ignoring the dependence on the
basepoint makes everything well-defined up to global conjugation.

We are motivated by the perspective of a potential relationship between the sl(N)
knot homology theory of Khovanov and Rozansky [3] and the instanton Floer ho-
mology associated to the group SU(N), as developed by Kronheimer and Mrowka
in [4]. Therefore, we are only looking at representations for which a certain condi-
tion on the conjugacy class of a meridian is satisfied. In [4, Section 2.5 Example
(ii)] a coherent condition is that the conjugacy class of a meridian m is sent by a
representation ρ : GΓ → SU(N) to the conjugacy class of the element Φ1 given by

Φ1 := ζ




−1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 . . . 0 1




,

where ζ is a primitive N th root of −1, e.g. ζ = exp(iπ/N). We shall also need
another special element of SU(N):

Φ2 := ζ2




−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 . . . 0 1




.

Notice that for N = 2 the corresponding meridional condition is satisfied with
either orientation on the edge, in contrast to the situation where N ≥ 3.

We now define a subspace of Hom(GΓ, SU(N)) topologized by the compact-open
topology, that we will relate to the moduli space of decorations considered above.

Definition 1.8. Suppose we are given a trivalent oriented graph with 1-colored and
2-colored oriented edges. We denote by RΦ1,Φ2

(GΓ;SU(N)) the space of homomor-
phisms ρ : GΓ → SU(N) such that for any oriented meridian m to an oriented
1-colored edge e, and to any oriented meridian n to a 2-colored edge E we have

ρ(m) ∼ Φ1 and ρ(n) ∼ Φ2 ,

i.e. ρ(m) is conjugated to Φ1 inside SU(N) and so is ρ(n) to Φ2.

In order to connect these representation spaces to the moduli spaces M (Γ) above,
we shall also need the following

Lemma 1.9. Let S, T ∈ SU(N) be two elements that are both conjugate to the
element Φ1 above. Then the composition ST is conjugate to Φ2 if and only if the
(−ζ) eigenspaces of S and T are orthogonal.

Proof. We just have to prove the ‘only if’ statement as the other direction is trivial.
Observe that we have

tr(Φ2) = ζ2(−2 + (N − 2)) = ζ2(N − 4) ,
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and that the trace is clearly an invariant of the conjugacy class of an element in
SU(N). On the other hand it follows from explicit computation that tr(ST ) is
equal to this value only if the two 1-dimensional eigenspaces of S and T are orthog-
onal to each other. �

There is a natural map

D : RΦ1,Φ2
(GΓ;SU(N)) → M (Γ) (1)

defined in the following way. To a representation ρ we are going to associate the
following decoration of Γ: Let e be an oriented 1-colored edge and m an oriented
meridian of e. We decorate e by the 1-dimensional eigenspace of ρ(m) ∈ SU(N)
with eigenvalue −ζ. Let E be a 2-colored edge and n an oriented meridian of E.
We decorate the edge E by the 2-dimensional eigenspace of ρ(n) ∈ SU(N) with
eigenvalue −ζ2.

We need to check that this definition is well-defined, i.e. that we get an admissi-
ble decoration in the above sense: The 1-dimensional eigenspaces of the 1-colored
edges have to meet orthogonally at each trivalent vertex and have to span the
2-dimensional subspace associated to the 2-colored edge.

Suppose we are given a vertex with the two oriented 1-colored edges pointing
out from the vertex. We assume x, y are oriented meridians to these edges, and
that z is the oriented meridian of the in-pointing 2-colored edge, and all of these
have base-point above the plane. By Lemma 1.7 above these three elements satisfy
the relation xy = z. Consequently, in SU(N) we must have ρ(x)ρ(y) = ρ(z). Now
by hypothesis ρ(z) is conjugate to Φ2, and ρ(x), ρ(y) are both conjugate to Φ1. In
particular ρ(x)ρ(y) is conjugate to Φ2, and so Lemma 1.9 implies that ρ(x) and ρ(y)
have orthogonal 1–dimensional subspaces. It is also clear that the (−ζ2) eigenspace
of ρ(z) is the sum of the 1–dimensional eigenspaces of ρ(x) and ρ(y). The same
argument applies if the two oriented 1-colored edges point into the vertex.

Proposition 1.10. Suppose we are given a trivalent oriented graph Γ as above.
Then the map

D : RΦ1,Φ2
(GΓ;SU(N)) → M (Γ)

just defined is a homeomorphism.

Proof. It suffices to give a map P : M (Γ) → RΦ1,Φ2
(GΓ;SU(N)) that is inverse to

D. An orientation of the graph gives, as in Lemma 1.7, a preferred set of generators
of π1(S

3 \ Γ, ∗) that we assume chosen in the sequel.
Now suppose we have given an admissible decoration d of the colored edges of

the graph Γ, i.e. an element M (Γ). To a 1–colored edge e with meridian me and
label a ∈ PN−1 we associate the unique element Sa ∈ SU(N) that is conjugate to
Φ1, and that has the 1-dimensional subspace a of CN as its (−ζ) eigenspace. We
define ρd(me) := Sa. Similarly, to a 2–colored edge E with meridian mE and label
A ∈ G(2, N − 1) we associate the unique element SA ∈ SU(N), conjugate to Φ2,
that has A as its (−ζ2) eigenspace. We define ρd(mE) := SA. Because d is an
admissible decoration, we see that this ρd satisfies the relations of Lemma 1.7, and
so defines an element in RΦ1,Φ2

(GΓ;SU(N)). We define P to be the map d 7→ ρd
that we have just constructed. It is easily seen that P and D are both continuous
and inverses of each other. �
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2

a

b

c

Figure 3. We call this subgraph G. The three edges labelled
a, b, c are colored with 1, we have indicated the edge colored with
2.

2. Proofs

In this section we establish Theorem 1.5 by considering the MOY moves, so
breaking the proof of the theorem into five subsections, one for each move. The first
three of these subsections contain results in terms of fiber bundles and are directed
towards Hypothesis 1.4 and Conjecture 1.6. Unfortunately it is not possible to
prove such a result in the last case (see Proposition 1.3 and the following discussion
for a counterexample) so we prove results on the Euler characteristic instead.

2.1. MOY move 0. The 0th MOY move, MOY0, states that the invariant Pn(U)
associated to a circle U in the plane colored with 1 is

PN (U) =
qN − q−N

q − q−1
.

Proposition 2.1. We have M (U) = PN−1.

The proof is immediate. Note this shows that U satisfies Hypothesis 1.4.

2.2. MOY move I. Suppose that Γ is a colored trivalent graph containing the
subgraph G defined in Figure 3 . The 1st MOY move, MOY1, states that if Γ′ is
the result of replacing G in Γ with a single 1-colored edge then

PN (Γ) =
qN−1 − q1−N

q − q−1
PN (Γ′).

Proposition 2.2. For Γ and Γ′ as above we have that M (Γ) is a PN−2-bundle
over M (Γ′).

Proof. Observe that any admissible choice of decoration of the graph Γ when re-
stricted to the subgraph G must have the same decoration b as a. Also, for a choice
of decoration a, c can be any line in the (N − 1)-plane orthogonal to a. �

Then immediately we see

Corollary 2.3. For Γ and Γ′ as above we have that

χ(M (Γ)) = χ(PN−2)χ(M (Γ′)) =
qN−1 − q1−N

q − q−1

∣∣∣∣
q=1

χ(M (Γ′)).

�



THE QUANTUM SL(N) GRAPH INVARIANT AND A MODULI SPACE 9

2

2

a b

Figure 4. We call this subgraph G. The edges labelled a, b are
colored with 1, the other edges are colored with 2 as indicated.

Observe further that with the assumption that M (Γ′) has only even-dimensional
homology we have

π(M (Γ)) = π(Pn−2)π(M (Γ′))

by the triviality of the differentials in the Serre spectral sequence. Note that this
is in the direction of Hypothesis 1.4.

2.3. MOY move II. Suppose that Γ is a colored trivalent graph containing as a
subgraph G as defined in Figure 4. Then the move MOY2 states that if Γ′ is the
result of replacing G in Γ by a single edge colored by 2 then

PN (Γ) = (q + q−1)PN (Γ′).

Proposition 2.4. For Γ and Γ′ as above we have that M (Γ) is a P1-bundle over
M (Γ′).

Proof. First observe that any admissible decoration of Γ must decorate each of the
the 2-colored edges of G with the same point of G(2, N). For such a choice, the
decoration a can be any line in the 2-plane decorating the 2-colored edges, and then
b must be the unique othogonal line to a in this plane. �

Then immediately we have

Corollary 2.5. For Γ and Γ′ as above

χ(M (Γ)) = χ(P1)χ(M (Γ′)) = (q + q−1)|q=1χ(M (Γ′)).

�

Observe further that with the assumption that M (Γ′) has only even dimensional
homology we have that

π(M (Γ)) = π(P1)π(M (Γ′))

by the Serre spectral sequence. Again, this is in direction of Hypothesis 1.4.
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aaa bbb

ccc ddd

e

f

22

G G1 G2

Figure 5. We show three subgraphsG, G1, G2 of colored trivalent
graphs. Each edge decorated with a lower case English letter is 1-
colored, those shown with 2 are 2-colored.

2.4. MOY move III. Suppose that Γ is a colored trivalent graph containing as a
subgraph G as defined in Figure 5. Then the move MOY3 states that if Γi is the
result of replacing G in Γ by the subgraphs Gi shown in Figure 5 for i = 1, 2 then

PN (Γ) =
qN−2 − q2−N

q + q−1
PN (Γ1) + PN (Γ2).

Note that

qN−2 − q2−N

q + q−1

∣∣∣∣
q=1

= N − 2.

Proposition 2.6. For Γ, Γ1, Γ2 as described above we have

χ(M (Γ)) = (N − 2)χ(M (Γ1)) + χ(M (Γ2)).

Proof. Consider the subgraph G of Γ as shown in Figure 5. It is easy to see that for
an admissible decoration of Γ we must have either (a = b and c = d) or (a = c and
b = d). In the case when a = c 6= b = d, there is a PN−3 of choices of decoration
for the interior edges of G (this PN−3 corresponds to the projectivization of the
(N − 2)-plane perpendicular to the 2-plane spanned by the lines a and b). In the
case when a = b 6= c = d, there is a unique choice of decoration for the interior
edges of G. And finally, in the case when a = b = c = d, there is a PN−2 of choices
for the interior edges of G (this PN−2 being the projectivization of the othogonal
complement to the line a).

Clearly for admissible decorations of Γ1 we must have a = c and b = d, and for
admissible decorations of Γ2 we must have a = b and c = d.

Note that our moduli spaces M (Γ), M (Γ1), M (Γ2) naturally have the structure
of compact real varieties embedded in a product of complex projective spaces (the
orthogonality condition at a trivalent vertex is a real polynomial condition not a
complex condition).

By evaluation at a, b, c, d we get algebraic maps to (PN−1)4 from each of M (Γ),
M (Γ1), M (Γ2). We write V , V1, V2 for the preimages of the subvariety ∆ of
(PN−1)4 given by a = b = c = d.

Since we are dealing with an algebraic map of real varieties, for a small enough

open set U ⊂ (PN−1)4 containing ∆ we have that the respective preimages Ṽ , Ṽ1,
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Figure 6. We show three subgraphsG, G1, G2 of colored trivalent
graphs. Each edge decorated with a lower case English letter is
1-colored, those decorated with upper case English letters are 2-
colored, and that decorated with Φ is 3-colored.

Ṽ2 of U are each homotopy equivalent to V , V1, V2 respectively. This is a standard
argument using Hardt triviality.

Note also that V1 = V2 naturally (although we will retain both indices for nota-
tional convenience) and V is a PN−2-bundle over V1 = V2 so that

χ(Ṽ ) = χ(V ) = (N − 1)χ(V1) = (N − 2)χ(V1) + χ(V2) = (N − 2)χ(Ṽ1) + χ(Ṽ2).

Using the Mayer-Vietoris sequence we see that

χ(M (Γ)) = χ(M (Γ) \ V ) + χ(Ṽ )− χ((M (Γ) \ V ) ∩ Ṽ )

= χ(M (Γ) \ V ) + (N − 2)χ(Ṽ1) + χ(Ṽ2)− χ(Ṽ \ V ).

Now note that M (Γ) \V is the disjoint union of M (Γ2) \V2 and a PN−3-bundle

over M (Γ1) \V1, and Ṽ \V is the disjoint union of Ṽ2 \V2 and a PN−3-bundle over

Ṽ1 \ V1. Hence we have

χ(M (Γ)) = χ(M (Γ2) \ V2) + χ(Ṽ2)− χ(Ṽ2 \ V2)

+ (N − 2)χ(M (Γ1) \ V1) + (N − 2)χ(Ṽ1)− (N − 2)χ(Ṽ1 \ V1)

= (N − 2)χ(M (Γ1)) + χ(M (Γ2)).

�

2.5. MOY move IV. We refer to the discussion after Definition 1.1 for the defi-
nition of the moduli space associated to a trivalent graph colored with colors from
the set {1, 2, 3}.

Suppose that Γ is a colored trivalent graph with a subgraph G as indicated in
Figure 6. Form Γ1 and Γ2 from Γ by replacing G with G1 or G2 respectively. Then
the move MOY4 states that
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1
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3 3

Figure 7. If Γ is some colored trivalent graph with the left-hand
picture appearing as a subgraph and Γ′ is the result of replacing
the subgraph with the right-hand picture, then clearly M (Γ) =
M (Γ′).

PN (Γ) = PN (Γ1) + PN (Γ2).

Proposition 2.7. For such graphs Γ, Γ1, Γ2 as above we have

χ(M (Γ)) = χ(M (Γ1)) + χ(M (Γ2)).

At first sight, this proposition does not seem to give a relationship between
trivalent graphs colored only drawing from the palette {1, 2}. However, using the
relationship between moduli spaces shown in Figure 7 we get such a result. Mu-
rakami, Ohtsuki, and Yamada use an analogous trick in [6] to get a relationship
between the polynomials PN of {1, 2}-colored graphs.

We note that this proposition is less strong than would be demanded by a proof
of Hypothesis 1.4, but the example of Proposition 1.3 shows that Proposition 2.7
does not admit a lift to the Poincare polynomial in general.

Proof. By evaluation at the endpoints a, b, P,Q we get algebraic maps from each of
M (Γ), M (Γ1), and M (Γ2) to (PN−1)2×G(2, N)2. Let V , V1, V2 be the respective
preimages of the subvariety ∆ of (PN−1)2 × G(2, N)2 carved out by the three
requirements P = Q, a = b, and a is perpendicular to P .

Just as in the proof of 2.6, for a small enough open set U ⊂ (PN−1)2 ×G(2, N)2

containing ∆ we have that the respective preimages Ṽ , Ṽ1, Ṽ2 of U are each homo-
topy equivalent to V , V1, V2 respectively.

Note that naturally V1 = V2 but we will retain both indices for notational con-
venience.

Consider the subgraph G of Γ. For a not perpendicular to P , one can check that
there is a unique way in which to choose decorations for the other edges of G. It
follows also in this case that P = Q and b = a.

For a perpendicular to P , it follows that Q is a plane in the 3-space spanned by
a and P and b is the unique perpendicular line to Q in this 3-space. In this case,
when Q 6= P there is a unique choice of decorations for the other edges of G, and
when Q = P there is a a P

1 of choices of decorations for the other edges.
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Note that this implies that V has the structure of a P1-bundle over V1 = V2 so
that

χ(Ṽ ) = χ(V ) = 2χ(V1) = χ(V1) + χ(V2) = χ(Ṽ1) + χ(Ṽ2).

Hence, using the Mayer-Vietoris sequence, we have

χ(M (Γ)) = χ(M (Γ) \ V ) + χ(Ṽ )− χ((M (Γ) \ V ) ∩ Ṽ )

= χ(M (Γ) \ V ) + χ(Ṽ1) + χ(Ṽ2)− χ(Ṽ \ V ).

Finally note that M (Γ) \V is the disjoint union of M (Γ1) \V1 and M (Γ2) \V2,

and also Ṽ \ V is the disjoint union of Ṽ1 \ V1 and Ṽ2 \ V2. Thus we have

χ(M (Γ)) = χ(M (Γ1) \ V1) + χ(Ṽ1)− χ(Ṽ1 \ V1)

+ χ(M (Γ2) \ V2) + χ(Ṽ2)− χ(Ṽ2 \ V2)

= χ(M (Γ1)) + χ(M (Γ2)).

�

2.6. Proof of main theorem.

Proof of Theorem 1.5. Since for any colored trivalent graph Γ the value of the poly-
nomial Pn(Γ) ∈ Z[q, q−1] is determined by the fact that Pn satisfies the five MOY
relations it is enough to verify that χ(M (Γ)) satisfies the MOY relations after
evaluating at q = 1. But we have verified this in Propositions 2.1, 2.6, 2.7 and
Corollaries 2.3, 2.5. �
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