
 
 
Durham Research Online 

 
Deposited in DRO: 
11 October 2013 
 
Version of attached file: 
Proof version 
 
Peer-review status of attached file: 
Peer-reviewed 
 
Citation for item: 
Montgomery, J. and Beaumont, J. and Jay, A. and Keefe, K. and Gledhill, A. and Cook, G. 
and Dockrill, Stephen J. and Melton, N.D. (2013) 'Strategic and sporadic marine 
consumption at the onset of the Neolithic : increasing temporal resolution in the isotope 
evidence.', Antiquity.  
 
Further information on publisher’s website: 
 
Publisher’s copyright statement: 
http://antiquity.ac.uk/archive.html 
 
Additional information: 
To be published in a forthcoming issue of Antiquity. 

 

 

 

 

Use policy 

 
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior 
permission or charge, for personal research or study, educational, or not-for-profit purposes provided that: 
 

 a full bibliographic reference is made to the original source 
 a link is made to the metadata record in DRO 
 the full-text is not changed in any way 

 
The full-text must not be sold in any format or medium without the formal permission of the copyright holders. 
 
Please consult the full DRO policy for further details. 

 
Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom 

Tel : +44 (0)191 334 3042 — Fax : +44 (0)191 334 2971 
http://dro.dur.ac.uk 



 
Montgomery, J., J. Beaumont, M. Jay, K. Keefe, A.R. Gledhill, G.T. Cook, S.J. Dockrill & N.D. Melton. In 
press. Strategic and sporadic marine consumption at the onset of the Neolithic: increasing temporal resolution in 
the isotope evidence. Antiquity 87 (338 December 2013)   © Antiquity Publications Ltd 
 

Strategic and sporadic marine consumption at the onset of the Neolithic: increasing 

temporal resolution in the isotope evidence 

Janet Montgomery1, Julia Beaumont2, Mandy Jay1, 2, 3, Katie Keefe4, Andrew R. Gledhill2, 

Gordon T. Cook5, Stephen J. Dockrill2 & Nigel D. Melton1,2 

  

1Department of Archaeology, Durham University, South Road, Durham DH1 3LE, UK (Email: 

janet.montgomery@durham.ac.uk; author for correspondence) 
2Archaeological Sciences, School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK 
3Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield S1 4ET, UK 
4York Osteoarchaeology, Ivy Cottage, 75 Main Street, Bishop Wilton, York YO42 1SR, UK 
5Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride G75 0QF, UK 

 

Received: 17 October 2012; Accepted: 6 December 2012; Revised: 4 February 2013 

 
Stable isotope analysis has provided crucial new insights 

into dietary change at the Neolithic transition in north-

west Europe, indicating an unexpectedly sudden and 

radical shift from marine to terrestrial resources in 

coastal and island locations. Investigations of early 

Neolithic skeletal material from Sumburgh on Shetland, at 

the far-flung margins of the Neolithic world, suggest that 

this general pattern may mask significant subtle detail. 

Analysis of juvenile dentine reveals the consumption of 

marine foods on an occasional basis. This suggests that 

marine foods may have been consumed as a crucial supplementary resource in times of famine, when 

the newly introduced cereal crops failed to cope with the demanding climate of Shetland. This 

isotopic evidence is consistent with the presence of marine food debris in contemporary middens. The 

occasional and contingent nature of marine food consumption underlines how, even on Shetland, the 

shift from marine to terrestrial diet was a key element in the Neolithic transition. 

 

Keywords: Shetland, Mesolithic–Neolithic transition, marine consumption, stable isotopes, 

dentine, bone 

 

Supplementary material, including Tables S1–5 and Figure S1, is provided at the end of this 

document.  
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Introduction 

Stable isotope analyses of Mesolithic and Neolithic human bone collagen from northern and 

western Europe have been reported to demonstrate a sharp shift away from the consumption 

of marine foods at the onset of the Neolithic (Tauber 1981; Richards et al. 2003). This has led 

to controversy over the apparent contradictions between the Neolithic archaeology and the 

isotope data, with part of the discussion being presented previously in Antiquity (Richards & 

Mellars 1998; Schulting & Richards 2002; Bailey & Milner 2003; Hedges 2004; Milner et al. 

2004; Richards & Schulting 2006; Bonsall et al. 2009). Some coastal site middens contain 

thousands of marine ecofacts, suggesting that these resources must have played a significant 

part in the subsistence base, and the suggestion that this was not the case has also raised 

questions about why coastal dwellers would reject a readily available food resource in the 

early days of establishing agriculture, especially on marginal and remote islands. The 

previously published work has utilised adult human bulk bone collagen which provides an 

average of many years’ diet and is thus a relatively blunt tool providing only blurred temporal 

focus (Hedges et al. 2007). In the research presented here we have used a new technique 

which utilises high-precision dentine increments, allowing us to increase temporal resolution 

and identify dietary patterns over very short periods of an individual’s early life. Our findings 

hold significance not only for Neolithic Shetland, which has “remained something of an 

enigma” (Sheridan 2012: 6), but also for understanding how the first farmers in marginal 

regions across Atlantic Europe survived during periods of resource shortages and famine. The 

results also address the paradox between the mainly terrestrial dietary isotope ratios of 

humans and the continued presence of marine food remains at some Neolithic sites. 

 

A marginal environment for early farmers 

Our study uses material dating to the Mesolithic–Neolithic transition from the Shetland 

Islands: at 60° N, these are the most northern Scottish islands in the North Atlantic (Figure 1) 

and an ideal place to test the hypothesis that marine resources would be included in the north-

west European diet during this period if conditions were difficult. Even accounting for the 

Holocene hypsithermal, the climate would have been marginal for agricultural purposes and 

expected to generate periods of crop failure and famine (Birnie et al. 1993). According to the 

‘dietary shift’ model, marine resources are proposed to have been abandoned by choice at the 

Mesolithic–Neolithic transition. The best place to confirm this is a coastal, marginal 
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environment where there is every reason to believe that such resources would be key to 

survival. 

 

 
 
Figure 1. Map showing the Shetland and Orkney Islands in the North Atlantic and Oronsay on the west coast of 

Scotland (left); and the locations of Sumburgh, West Voe and Jarlshof on Shetland (right).  

 

The disarticulated remains of a minimum of 11 adults and 9 juveniles and infants (Walsh et 

al. 2012) were recovered from a stone-lined, sub-rectangular pit, a non-megalithic funerary 

monument of a type not previously suspected, that was uncovered during the 1977 

construction works at Sumburgh Airport, at the southern tip of the archipelago (Hedges & 

Parry 1980) (Figure 2). They are the only skeletal remains of the Early Neolithic inhabitants 

to be recovered from these islands. The importance of this area to the colonisation of the 

archipelago has been further demonstrated by a Late Mesolithic-Early Neolithic sequence of 

middens exposed by coastal erosion at West Voe, some 400m to the south (Melton & 

Nicholson 2004, 2007; Melton 2009), and by recent investigations at the internationally 

renowned site of Jarlshof, on the opposite side of the voe (Dockrill & Bond 2009) (Figure 1).  

The human remains have been dated to between 3510 and 2660 BC (14 radiocarbon dates, 

calibrated taking into account a marine dietary component; details in Table S1). The two 

superimposed middens at West Voe are separated by a layer of sand and have been dated to c. 

4300–3250 BC, the lower midden spanning the Mesolithic–Neolithic transition and the 

upper, which has provided dates of c. 3500–3250 BC, overlapping with the human remains 

found at Sumburgh. Mussels (Mytilus edulis), seals, seabirds and a few small fish were found 

in the uppermost layers of the lower midden together with sheep and cattle which predate the 
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Sumburgh humans. The upper midden was composed entirely of cockles (Cerastoderma 

edule), many of which were shattered and discoloured from being heated, with continuing 

evidence for sheep and cattle in associated layers and contemporary with the human remains 

(Melton 2008, 2009). 

 

 
 
Figure 2. Plan of the cist at Sumburgh interpreted by N.D. Melton and S. Walsh from excavation photographs 

taken by G. Parry and archived at the RCAHMS. Human bones are identified by stippling. 

 

Together, they provide direct evidence for subsistence practices adopted by the earliest 

farmers, with the exploitation of marine resources (molluscs, fish, seals and seabirds) 

apparently continuing alongside the adoption of agriculture, represented by finds of cattle 

(confirmed by proteomics analysis, M. Buckley pers. comm.) and sheep bones. The recent 

investigations at Jarlshof have provided radiocarbon dates of 3770–3610 and 3640–3380 BC 

(both 95% probability; SUERC-15163 & 15123) from an oyster shell and a charred grain of 

six-row barley respectively, recovered from the earliest archaeological horizon. The dates 

indicate that this layer is equivalent to some of the earliest deposits in the West Voe midden 

sequence. The investment of labour to produce fertile soils, initially by a build-up of ash-rich 

midden material followed by organic additives, permits intensive arable production within 

small managed plots. These soils provide an inherited resource that can build in depth 
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through time and be passed on to future generations; they also form a catalyst for sedentary 

living. The crop six-row barley has an added advantage as a commodity whose storable 

surplus in ‘good years’ might be used in times of famine. Resilience and sustainability 

demonstrated by the longevity of settlements could only be achieved at such times of yield 

shortage (‘bad years’) by the combined use of other resources within the mixed economy 

(Dockrill & Bond 2009: 43–45). The archaeological evidence thus points to the existence of a 

mixed agricultural economy, supplemented by the exploitation of marine resources, at the 

time of the Sumburgh burials. The burials cut into a 0.5m thick layer of storm sands which 

were deposited c. 3500 cal BC. These sands separate the two middens at West Voe (Gillmore 

& Melton 2011) and suggest that much of the local area had been inundated by sand just prior 

to the commencement of the interments at Sumburgh, increasing its agricultural marginality 

and necessitating the creation of anthrosols capable of cereal production.  

 

Carbon and nitrogen isotope data 

One of the most widespread uses of δ13C and δ15N values (the ratios of 13C/12C and 15N/14N in 

a sample, relative to international standards) in the context of palaeodietary studies is to 

document the consumption levels of marine resources in prehistory. Marine food webs are 

significantly enriched in 13C compared to those terrestrial resources which have a C3 

photosynthetic pathway, while the effects of marine environments and trophic levels mean 

that consumers of marine resources will also show higher δ15N values (Lee-Thorp 2008). The 

expectation for individuals with significant levels of such resources in their diet relative to 

those with purely terrestrial C3 diets is that both δ13C and δ15N values from their collagen 

extracts will be higher. In this study, no consideration of C4 terrestrial diets is required since 

such plants were not present in prehistoric Britain. 

 

The problem and the solution 

Existing isotope data suggest the abandonment of marine food consumption at the 

Mesolithic–Neolithic transition. Not only does the archaeological evidence sometimes appear 

to refute the isotope data, but it seems counterintuitive that the early farmers living at isolated 

and marginal coastal locations would completely abandon an easily obtained resource. A 

problem which has been difficult to address is that bulk bone collagen, which is the material 

usually investigated for the isotope analyses, reflects a weighted averaged diet over a long 
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period of an individual’s life (Hedges et al. 2007). This means that short periods of unusual 

consumption, such as might occur when marginal environments do not yield sufficient 

terrestrial resources (e.g. sporadic and unpredictable crop failure), will not be visible in the 

target tissue. For this study we have used three distinct skeletal collagen fractions with 

progressively finer temporal resolution: (1) bulk bone; (2) bulk dentine; and (3) small (c. 

1mm/20mg) incremental dentine samples. The collagen in primary dentine, unlike bone, does 

not remodel once mineralisation is complete, and the age at which human teeth begin to form 

and the duration of their growth has been well established (Hillson 2005; AlQahtani et al. 

2010). New techniques for targeting small incremental dentine samples which have formed 

over periods of less than a year, as opposed to the larger increments covering several years 

(Fuller et al. 2003), allow a temporally focused study of an individual’s diet in which short 

periods of marine consumption may be visible (Beaumont et al. 2013). 

 

Samples analysed 

Collagen was extracted from: (1) 12 bulk bone samples; (2) bulk samples of the root dentine 

of 17 permanent second molars; and (3) incremental dentine samples processed from a 

further eight teeth. Methods are described in Beaumont et al. (2013; Method 2 for 

incremental sampling) and samples are detailed in Table S2. Up to 21 incremental transverse 

samples from root apex to enamel-dentine junction were taken from each tooth in the third 

group. These increments span periods of formation, depending on the tooth involved, from 

just before birth up to 15 years. These three fractions therefore represent: (1) lifetime 

averaged diet; (2) childhood averaged diet; and (3) serial data for short periods of less than a 

year throughout childhood. 

The composition of the primary dentine used in this study is, like enamel, determined largely 

at the time of formation (Rowles 1967; Veis 1989). Nevertheless, the cells of dentine, the 

odontoblasts, remain active, and formation of new, secondary dentine continues throughout 

life, in layers lining the pulp cavity (van Rensburg 1987; Hillson 2005). The presence of 

secondary dentine is used as an ageing technique and is rarely found in individuals below 30 

years of age (Gustafson 1950). Further deposition of dentine mineral (as opposed to collagen) 

within the dentinal tubules may occur in the fourth decade of life, starting from the root tip 

and progressing at a relatively constant rate (Nanci 2003; Hillson 2005). Any change to 

dentine composition over time is, therefore, chiefly of an additive nature and will be 
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negligible in individuals under the age of 30, such as those in this study (Table S2). As an 

extra precaution, all circumpulpal dentine was removed by reaming prior to demineralisation 

(Beaumont et al. 2013). Quality indicators for the processed samples are provided in Tables 

S3, S4 and S5 and all collagen, both from bone and dentine, fits well into the accepted ranges 

for atomic C:N ratios and percentages of carbon and nitrogen present (van Klinken 1999). 

The samples are, therefore, considered to be free of post-mortem contamination. 

The disarticulated and commingled nature of the burial deposit means that it is not possible to 

directly associate bone samples with teeth. Whilst it is a possibility that the bone samples 

come from a group of individuals with dietary histories different from a second group 

represented only by the teeth samples, it is an exceptionally unlikely one: the osteological 

analysis of the material concluded that there were 11 adults and 9 juveniles or infants present, 

totalling 20 individuals (Walsh et al. 2012), whilst the sampled dental assemblage of 25 teeth 

represents a minimum number of 13 individuals (7 adults and 6 juveniles) (Table S2). Two of 

the juvenile bulk dentine samples (SUMB-5 and SUMB-11: upper and lower right second 

molars) may have come from the same individual, based on tooth development and similarity 

of isotope ratio data.  

Mesolithic–Early Neolithic bone collagen data for terrestrial animals, seals and seabirds from 

West Voe and Sumburgh have also been obtained, together with modern Cerastoderma edule 

(cockle) flesh. The midden material suggests that cockles were available and used during the 

Neolithic, but the flesh is not preserved in the archaeological contexts. The modern proxies 

were collected in order to provide an estimate of their place in the food web, although the 

data obtained have not been adjusted for the fossil fuel effect (see online supplementary 

information). 

 

Results: bone collagen and bulk dentine collagen 

Figure 3 (using data from Tables S3 and S4) plots the Sumburgh bone and bulk dentine data 

separately (sample types (1) and (2)) with comparative Mesolithic and Neolithic human data 

published for other Scottish islands (Orkney Islands and Oronsay, see Figure 1). Also plotted 

are archaeological animal bone data from the West Voe middens and Sumburgh, together 

with the modern cockle flesh (see Table S4). The Mesolithic Oronsay humans are high-level 

marine resource consumers (plotting with the Neolithic marine-consuming animals), whilst 

the Neolithic Orkney Islands individuals are considered to have a mainly terrestrial diet 
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(Schulting & Richards 2009; Schulting et al. 2010). The highest δ13C value for the 

comparative Neolithic data sets (–19.1‰) is used as a conservative limit for a largely 

terrestrial diet. The diet in that case was interpreted as mainly terrestrial, although a small 

percentage of marine resources may have been present and this is one of many locations in 

Europe where the evidence seems to suggest a low level of such consumption which is not 

easily identified from the bulk stable isotope data (Lubell et al. 1994; Fischer et al. 2007; 

Eriksson et al. 2008; Bonsall et al. 2009; Smits et al. 2010). Those individuals with carbon 

isotope ratios more enriched in 13C than this limit are seen to the right of the middle vertical 

line and it is these that are indicative of a marine component in the diet. Only one of the bone 

collagen samples falls to the right of the line together with 11 of the 25 bulk dentine data 

points which are enriched in both 13C and 15N. There is no correlation between the Sumburgh 

radiocarbon dates and the level of marine consumption (Figure 4) and thus no suggestion that 

the earliest Neolithic humans from this group relied more heavily on marine resources than 

those living there later in the period.  

δ13C values are affected by local environmental conditions as well as dietary considerations. 

For this reason, comparisons are best made with data sets from the same region and this is 

why the Orkney Neolithic data have been shown here. End-members for terrestrial and 

marine diets have been empirically estimated at –21.0‰ and –12.4‰ respectively and 

between these two extremes the upper boundary for terrestrial diets, the lighter blue line in 

Figure 3, as –19.1‰. Terrestrial diets in the region, therefore, are conservatively deemed to 

range between the boundary value of –19.1 ‰ and the terrestrial end-member (–21.0‰; the 

green line in Figure 3), discussed in the online supplementary material for the calibration of 

the radiocarbon dates. This upper boundary is used for illustration based on the interpretation 

of the geographically closest available data set for the time and place under discussion. It 

would not necessarily reflect a purely terrestrial diet in north-west Europe, however, but more 

probably a low level of marine resource consumption at some time in an individual’s life. A 

more likely boundary for a purely terrestrial diet in this region is –20.0‰ (Bonsall et al. 

2009). If that were used in this chart, the distinctions being highlighted would only be 

reinforced. By using the more conservative boundary value of –19.1‰, Figure 3 shows the 

very clear difference between the analyses of bone collagen (an averaged lifetime dietary 

input) and those of dentine (childhood dietary input) even where a low level of marine 

consumption may be present. 
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Figure 3. Carbon and nitrogen stable isotope ratios for Sumburgh bone and bulk dentine, with comparative 

Scottish island Neolithic and Mesolithic data. Samples from Middle to Late Neolithic Quanterness (Schulting et 

al. 2010) and Holm of Papa Westray (Schulting & Richards 2009) are all human bone; both sites are in Orkney. 

Mesolithic humans are from Oronsay (Richards & Mellars 1998). The modern cockle muscle samples have not 

been adjusted for the Suess effect (see online supplementary information). The light blue vertical line represents 

the limit of the highest δ13C value for the Orkney Neolithic material, a conservative estimate for the limit at 

which the diet might be considered mainly terrestrial. The dark blue and dark green lines are the estimates for 

100 per cent marine and terrestrial diets respectively, as used for calibrating the radiocarbon dates (Table S1). 

 

Individuals who were juveniles at the time of death are circled (Figure 3), with the bone 

collagen sample that is highlighted as a marine consumer being from a five- to six-year-old 

child (Walsh et al. 2012). The bone collagen values represent a weighted lifetime dietary 

average (Hedges et al. 2007), whilst the dentine reflects only childhood. Thus the bulk 

dentine samples and the juvenile bone (which represents no more than seven years of life) 

appear to indicate low level marine resource consumption during childhood which is not 

visible in the adult bone samples. Three of the δ13C values are above –18.0‰, indicating a 

relatively higher level of marine food consumption: all are juveniles. Two are bulk dentine 

analyses of incompletely formed roots (SUMB-5 and SUMB-11; Figure 5) and are suspected 

to be from the same individual aged 11.5 to 12.5 years at death. The third is the bone of the 
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Figure 4. Carbon stable isotope ratios plotted against radiocarbon age BP for dated dentine samples (see Table 

S1 for dating details). There is no correlation between date and the higher δ13C values, suggesting that marine 

consumption patterns do not change over time during this period. 

 

five- to six-year-old child. In addition, the δ13C values of enamel apatite which derive from 

the whole diet (i.e. not just protein consumption) in early childhood (Lee-Thorp et al. 1989) 

range from –16.7‰ to –14.0‰ (Keefe 2007). The difference between the isotope values 

obtained from dentine collagen and enamel apatite of each individual tooth ranges 

from -5.7‰ to –2.9‰. These differences indicate a dietary range from a fully terrestrial/C3 

based diet through to one with a substantial component of marine animal protein and thus 

concur with the conclusions drawn from collagen alone (Lee-Thorp et al. 1989; Froehle et al. 

2010). Overall, this suggests that marine foods were a significant part of the diet of young 

children but were no longer detectable in completed tooth roots or adult bone samples. Did 

only children eat marine protein? Was childhood-only consumption no longer visible in adult 

bone collagen due to remodelling? Or were marine foods eaten by both adults and children 

for short periods of time, such as a period of crop failure, which would not be resolvable in 

adult bone due to slow bone turnover and lifelong averaging? 

 

Results: incremental dentine samples 

The age-constrained incremental dentine samples provide increased focus to resolve this 

issue. Figure 6 shows data from three of the eight teeth sampled in this way (the other five are 

shown in Figure S1). Only one of the eight teeth (SUMB-41) shows a relatively low variation 

in both δ13C and δ15N values that remain within the terrestrial diet range over the first 10 
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years of life (Figure 6a). For the other seven, the fluctuations have no consistent pattern of 

chronology or magnitude, although the data for carbon and nitrogen isotopes co-vary at most 

points and all indicate the likelihood of a period of marine consumption at some time during 

childhood. The most extreme of the fluctuations is shown for SUMB-42, an individual who 

survived to adulthood, but between the ages of 7 and 10 appears to have been a high-level 

marine food consumer (Figure 6b). 

 

 
 
Figure 5. Two of the teeth sampled in this study: (a) SUMB-5 is from a juvenile, 11.5 to 12.5 years of age, and 

was incompletely formed at death. It has paper-thin root edges; (b) SUMB-12 has completely formed roots, one 

of which is broken, and is estimated from tooth wear to belong to an adult aged 25–35 years (Table S2). 

 

For most of the individuals, the relationship between the δ13C and δ15N values indicates that 

these fluctuations do not relate to breastfeeding at a late age as a possible alternative famine 

strategy. In that case, the δ13C values would be expected to be lower given that the 

introduction of foods other than breast milk to the diet during the weaning process appears to 

have a bigger impact on δ13C values than on δ15N values (Fuller et al. 2006). The correlation 

between δ15N and δ13C, together with the magnitude of the higher δ15N values, also rules out 

physiological stress as the driver for most of the samples (Mekota et al. 2006). SUMB-44, 

between the ages of 10 and 16, does show a combination of relatively high δ15N values with 

δ13C values within the range expected for a terrestrial diet (Figure S1c). This could be 

explained by the consumption of breast milk at a late age, or freshwater aquatic resources. 
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However, exclusively freshwater fish are unlikely to have been available as there are no 

native species in the Shetland Islands: today only a few species are established in the lochs 

and burns of Shetland, and all of them have a salinity tolerance or a marine phase and are 

thus unlikely to provide the required terrestrial δ13C values (Johnston 1999: 116–17; Robson 

et al. 2012). A further interpretation for SUMB-44 is 

that the high δ15N values record a period of 

nutritional or physiological stress (Mekota et al. 

2006). 

Three of these incrementally sampled teeth may 

indicate that periods of marine consumption equate 

with crises which have led to early mortality (SUMB-

40, 8.8–9.5 years, Figure S1b; SUMB-43, 11.5–12.5 

years, Figure 6c; SUMB-46, 6.5–7 years, Figure 

S1e). These teeth were incompletely formed at death 

as is also the case for SUMB-5 (Figure 5). Their three 

profiles show high δ15N and δ13C values at the end of 

their arrested sequence. In accordance with the bulk 

root dentine for SUMB-5 and SUMB-11, which was 

also still forming at death and for which very similar 

values were obtained, the data suggest that marine 

foods were an important part of the diet at the end of 

their lives. 

 

 
Figure 6. Carbon and nitrogen stable isotope ratios of the incremental dentine samples from a) 

SUMB-41; b) SUMB-42; and c) SUMB-43. The shaded green area at the bottom of each chart 

represents a mainly terrestrial diet (see supplementary discussion). (a) First molar, age at death 17–

25 years, no significant marine component to the diet indicated; (b) second molar, age at death 25–35 

years, high level of marine component to the diet indicated at around age 9; (c) second molar, age at 

death 11.5–12.5 years, high level of marine component to the diet at time of death. Charts for the 

other five incrementally sampled teeth are available in the online supplementary information. 
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Conclusions 

Sporadic dietary shifts from terrestrial to marine protein consumption are not visible in adult 

bone collagen data. That is one reason why there may be an apparent discrepancy between 

the isotope data for dietary change at the Mesolithic–Neolithic transition and the 

archaeological evidence, particularly in the form of marine resource remains in middens. 

Bulk dentinesamples suggest a marine input in childhood, but it is the novel high-resolution 

dentine increments which show that this is extremely unlikely to be long-term, low-level or 

seasonal supplementation of a terrestrial diet with marine foods. Instead, it is consistent with 

short-term episodes of high-level consumption at different ages in different individuals. This 

strategic consumption may be a response to unpredictable environmental crises which led to a 

shortage of terrestrial foods and possibly, for some children, death. The  excavation of the 

later Neolithic Mound 11 on the Tofts Ness peninsula of Sanday, Orkney, provides evidence 

of an economy where grain (six-row barley) was harvested early and heavy emphasis was 

placed on fishing and bird capture; this suggests a site where such periods of shortage 

occurred (Dockrill & Bond 2007: 38). Added to this is the question of the contemporary 

organisation of society and how this might correspond to the social access to the economic 

resource (Dockrill & Bond 2007: 381). 

The isotope data thus support the continued consumption of marine resources such as seal 

and seabirds at Sumburgh, as indicated by the archaeological assemblage at this marginal, 

coastal site, but only as a short-term strategy. It also implies that even at the edge of the 

Neolithic world, where the establishment of agriculture was difficult and conditions adverse, 

requiring the use of midden material and organic additives to establish small managed plots 

for cereal production (Dockrill & Bond 2009), the Early Neolithic inhabitants of the Shetland 

Islands were attempting to maintain a terrestrial diet, resorting to marine foods only when 

necessity demanded. In other words, the ‘dietary shift’ model at this time holds up even in an 

environment where marine resources were key to survival. This is an important step forward 

for understanding the development of the Neolithic in north-west Europe. The increased 

temporal resolution obtained from incremental dentine sampling brings the lives of ancient 

people into sharper focus and enables diet in the last few months of life to be ascertained. 

Attention should now be directed to less marginal, mainstream sites in Britain, Scandinavia 

and other parts of Europe to investigate whether marine foods were also consumed 

sporadically in the earliest Neolithic in regions more favourable to agriculture. 
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Supplementary material 
 

Modern cockle carbon isotope ratios 

The values provided from the modern cockle flesh for consideration as part of the 

possible available dietary resource have not been adjusted for the fossil fuel effect (Suess 

effect) (Long et al. 2005; Pfister et al. 2011). Reduced atmospheric CO2 δ13C values, 

primarily due to fossil fuel combustion since industrialisation, will have affected the 

modern samples when compared to the archaeological material. It is to be expected that 

the values for prehistoric cockle flesh would be higher than the modern. An estimate for 

this shift might be 1–2‰, although it is not possible to be precise. Such an adjustment 

would have no substantive effect on the conclusions in this paper. 

 

Table S1. Radiocarbon dates of Sumburgh humans. 

Sample 

code Lab number 

14C age 

(yr BP) 

1σ 

error 

Marine 

diet % 

        Calibrated ages (95.4%)  

         and major probabilities 

SUMB-45 SUERC-37437 4315 30 24 2930 (95.4%) 2660BC 

SUMB-46 SUERC-37441 4415 30 30 3090 (95.4%) 2860BC 

SUMB-43 SUERC-37435 4425 30 31 3090 (95.4%) 2860BC 

SUMB-41 SUERC-37433 4435 30 3 3340 (25.3%) 3210BC; 3190 (5.0%) 

3150BC; 3140 (65.1%) 2910BC 
SUMB-8 SUERC-14984 4450 40 10 3340 (21.9%) 3210BC; 3200 (5.2%) 

3150BC; 3140 (68.3%) 2900BC 
SUMB-40 SUERC-37432 4460 30 26 3120 (92.6%) 2880BC 

SUMB-42 SUERC-37434 4475 30 19 3330 (16.2%) 3210BC; 3190 (3.2%) 

3150BC; 3130 (75.9%) 2900BC 

SUMB-44 SUERC-37436 4475 30 21 3330 (13.3%) 3210BC; 3190 (2.4%) 

3150BC; 3130 (79.6%) 2900BC 
SUMB-13 SUERC-14986 4555 40 19 3360 (94.5%) 3010BC 

SUMB-14 SUERC-14987 4555 40 24 3360 (93.5%) 3000BC 

SUMB-7 SUERC-14980 4560 40 8 3370 (93.2%) 3080BC 

SUMB-11 SUERC-14985 4615 40 40 3360 (95.4%) 2960BC 

      

SUMB-24 SUERC-15178 4625 35 5 3510 (25.7%) 3420BC; 3390 (42.4%) 

3260BC; 3250 (27.3%) 3100BC 
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SUMB-17 SUERC-14988 4630 40 16 3510 (15.7%) 3420BC; 3390 (79.7%) 

3090BC 
 

Notes to Table S1 

Dating was undertaken at the Scottish Universities Environmental Research Centre (SUERC) 

in Glasgow, UK. All of the dated samples had δ13C values higher than –21‰ (Table S3) and this 

was taken to be the terrestrial end member (0% marine diet) when calibrating the dates using an 

assumed marine component to the diet. Previous work has suggested that –20.9‰ is a suitable 

calibration value for the Neolithic diet in north-west Europe generally (Bonsall et al. 2009). The 

value for the marine end member used was –12.4‰ based on the average values for seal, seabird 

and cockle in equal proportions plus one trophic level. Percentage marine diet was estimated using 

a linear interpolation between the 100% terrestrial and 100% marine dietary end members. Linear 

equations were also derived using the heaviest and lightest end member values, giving an average 

deviation from the mean value of 11%. Therefore, the estimated percentage marine diet ±11% was 

used in the calibration. A ∆R value of 7±48 14C years was determined from recalculation of data in 

Ascough et al. (2007) to provide a weighted mean value ± standard error for predicted values. 

Using this ∆R value and the estimated percentage marine diets, the 14C ages were calibrated using 

the OxCal 4.1 (Bronk Ramsey 2009) mixed curve (Marine09 [Reimer et al. 2009]). 

 

 

 

 

 

Table S2. Teeth analysed, age at death and minimum number of individuals 

for each Sumburgh dentine sample. 

Sample no. Tooth 

Root 

development 

Minimum possible 

age at death (in years) 

Estimated age at 

death (in years) 

SUMB-39 LLE apex closed 3–3.5 <9 

SUMB-46 LRM1 Rt 3/4 6.5–7 6.5–7 

SUMB-40 ULI1 complete 8.5–9.5 8.5–9.5 

SUMB-4 ULM2 Rt 1/2 10.5–11.5 10.5–11.5 

SUMB-5 URM2 Rt 3/4 11.5–12.5 11.5–12.5 

SUMB-6 URM2 Rt 3/4 11.5–12.5 11.5–12.5 

SUMB-11 LRM2 Rt 3/4 11.5–12.5 11.5–12.5 

SUMB-43 LRM2 Rt 3/4 11.5–12.5 11.5–12.5 
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Table S2 continued.  

Sample no. Tooth 

Root 

development 

Minimum possible 

age at death (in years) 

Estimated age at 

death (in years) 

SUMB-2 ULM2 apex closed 14–15 17–25 

SUMB-7 ULM2 apex closed 14–15 17–25 

SUMB-16 ULM2 apex closed 14–15 17–25 

SUMB-17 ULM2 apex closed 14–15 17–25 

SUMB-8 URM2 apex closed 14–15 17–25 

SUMB-24 URM2 apex closed 14–15 17–25 

SUMB-41 URM1 apex closed 9–10 17–25 

SUMB-45 LLM1 apex closed 9–10 17–25 

SUMB-3 LLM2 apex closed 14–15 25–35 

SUMB-12 LLM2 apex closed 14–15 25–35 

SUMB-42 LLM2 apex closed 14–15 25–35 

SUMB-44 LLM2 apex closed 14–15 25–35 

SUMB-9 URM2 apex closed 14–15 25–35 

SUMB-14 URM2 apex closed 14–15 25–35 

SUMB-15 URM2 apex closed 14–15 25–35 

SUMB-10 ULM2 apex closed 14–15 25–35 

SUMB-13 ULM2 apex closed 14–15 25–35 

 

Notes to Table S2 

Tooth identification: the first letter (L or U) indicates upper (maxillary) or lower (mandibular); the 

second letter (L or R) indicates left or right; the third letter and associated number indicates the 

tooth (E = deciduous second molar; I1 = first incisor; M1 = first molar; M2 = second molar). The 

minimum possible age at death is based on tooth root development (AlQahtani et al. 2010) and the 

estimated age at death is based on tooth wear (Brothwell 1981; AlQahtani et al. 2010). The MNI 

(Minimum Number of Individuals), based on age and tooth type, totals 13. Based on the isotope 

analyses, it is likely that the majority of the samples are from separate individuals, although SUMB-

5 and SUMB-11 may be from the same child. 
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Table S3. Carbon and nitrogen stable isotope data for the human bulk dentine and bone 

samples. 

Sample no. Age   Material δ13C(‰) δ15N(‰) %C %N C:N 

SUMB-2 adult dentine -19.0 12.2 40.6 15.0 3.3 

SUMB-3 adult dentine -18.8 11.7 42.2 16.4 3.0 

SUMB-4 juvenile dentine -19.3 11.9 42.3 15.2 3.2 

SUMB-5 juvenile dentine -17.8 13.0 42.1 15.3 3.2 

SUMB-6 juvenile dentine -18.5 12.6 42.2 14.8 3.3 

SUMB-7 adult dentine -20.3 10.8 43.1 15.7 3.2 

SUMB-8 adult dentine -20.1 10.6 41.5 14.8 3.3 

SUMB-9 adult dentine -19.3 11.0 42.1 15.2 3.2 

SUMB-10 adult dentine -19.3 11.6 42.7 15.1 3.3 

SUMB-11 juvenile dentine -17.6 13.0 40.8 14.6 3.3 

SUMB-12 adult dentine -19.8 11.5 42.1 15.2 3.2 

SUMB-13 adult dentine -19.4 12.0 43.5 15.8 3.2 

SUMB-14 adult dentine -18.8 10.6 41.9 15.3 3.2 

SUMB-15 adult dentine -19.7 11.7 40.3 14.0 3.3 

SUMB-16 adult dentine -18.8 12.1 41.5 15.0 3.2 

SUMB-17 adult dentine -19.5 11.3 41.5 15.2 3.2 

SUMB-24 adult dentine -20.6 10.7 44.1 17.5 2.9 

SUMB-39c juvenile dentine -20.3 11.2 42.0 15.2 3.2 

SUMB-40c juvenile dentine -18.9 11.5 42.0 15.3 3.2 

SUMB-41c adult dentine -20.6 10.9 42.0 15.3 3.2 

SUMB-42c adult dentine -19.4 12.0 42.1 15.3 3.2 

SUMB-43c juvenile dentine -18.5 12.1 42.0 15.9 3.1 

SUMB-44c adult dentine -19.7 11.6 42.4 15.3 3.1 

SUMB-45c adult dentine -19.0 11.7 42.0 15.3 3.2 

SUMB-46c juvenile dentine -18.7 11.9 42.1 15.4 3.2 

SUMB-25 juvenile bone: rib -17.9 11.6 46.5 17.5 3.1 

SUMB-26 adult bone: pelvis -19.8 10.6 46.6 15.8 3.5 

SUMB-27 adult bone: cranium -20.1 11.0 34.6 12.1 3.4 

SUMB-28 adult bone: ulna -20.7 10.8 39.8 14.0 3.3 

SUMB-29 adult bone: long bone 
fragment 

-19.9 11.4 37.1 12.3 3.5 

SUMB-30 adult bone: patella -20.3 10.6 38.5 13.1 3.4 

SUMB-31 adult bone: scapula -20.0 10.2 35.7 12.5 3.3 

SUMB-32 adult bone: rib -19.5 10.7 40.6 14.5 3.3 

SUMB-33 adult bone: ulna -19.3 11.6 42.5 14.7 3.4 



 
Montgomery, J., J. Beaumont, M. Jay, K. Keefe, A.R. Gledhill, G.T. Cook, S.J. Dockrill & N.D. Melton. In 
press. Strategic and sporadic marine consumption at the onset of the Neolithic: increasing temporal resolution in 
the isotope evidence. Antiquity 87 (338 December 2013)   © Antiquity Publications Ltd 
 

SUMB-34 adult bone: rib -20.2 10.6 36.9 12.6 3.4 

SUMB-35 adult bone: rib -19.5 10.6 40.7 13.9 3.4 

SUMB-36 adult bone: ilium -19.8 10.8 41.6 15.0 3.2 
 

 

 

Notes to Table S3 

Ages and tooth information are provided in detail in Table S1 for the dentine samples. Samples 

were measured in duplicate and the data averaged. SUMB-39 to SUMB-46 (marked c) are the 

eight samples for which incremental dentine analyses were undertaken and the data in this table 

are a combined mean for the increments (Table S5). 

 

 

 
Table S4. Carbon and nitrogen stable isotope data for the animal samples.  

The cow-sized ungulate, seal and shag (a type of cormorant) samples are all from the Late 

Mesolithic and Early Neolithic middens at West Voe. The cow samples are from the 

Sumburgh cist. The cockle muscle samples are all modern and were collected from Firths 

Voe, in the north of Mainland Shetland. 

Sample no. Species Material δ13C(‰) δ15N(‰) %C %N C:N 

Sumb-19 cow bone -22.0 4.8 41.1 14.4 3.3 

Sumb-22 cow bone -21.9 5.5 38.3 13.2 3.4 

Wevo-1 ungulate bone -22.1 5.6 41.2 14.6 3.3 

Wevo-2 ungulate bone -22.2 4.5 41.0 14.1 3.3 

Wevo-3 seal bone -11.9 16.8 42.4 16.5 3.0 

Wevo-4 seal bone -12.1 16.9 42.2 16.8 2.9 

Wevo-5 seal bone -11.6 18.1 42.0 16.2 3.0 

Wevo-6 seal bone -12.8 17.1 42.4 16.4 3.0 

Wevo-7 seal bone -13.7 19.1 39.9 15.1 3.1 

Wevo-8 seal bone -13.5 18.5 40.5 15.3 3.1 

WV04 039a bird: shag bone -12.5 16.7 42.8 16.7 3.3 

WV04 057a bird: shag bone -14.0 14.7 42.6 14.7 3.4 

WV04 075a bird: shag bone -12.6 13.7 43.0 14.7 3.4 

WV04 076a bird: shag bone -12.7 14.3 42.1 14.0 3.5 

WV04 079a bird: shag bone -12.9 13.9 42.4 14.3 3.5 

SC1a cockle muscle -17.0 8.1 44.7 12.9 4.2 
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SC2a cockle muscle -16.8 8.1 45.7 13.9 3.8 

SC3a cockle muscle -16.9 8.0 46.1 14.2 3.8 

SC4a cockle muscle -17.4 7.7 45.9 7.7 3.9 

SC5a cockle muscle -17.9 8.0 44.7 8.0 4.8 

SC6a cockle muscle -17.0 7.9 45.5 13.9 3.8 

SC7a cockle muscle -16.8 7.3 44.0 12.3 4.2 

SC8a cockle muscle -16.7 8.8 44.7 8.8 4.1 

SC9a cockle muscle -17.3 8.0 46.6 8.0 4.0 

SC10a cockle muscle -17.7 7.5 45.1 7.5 4.4 

 

 

Supplementary Table 5. Carbon and nitrogen stable isotope data for the 

incremental dentine samples. 

The averages for each tooth are shown in bold and these are the data shown in Table S3. 

Each of the incremental samples was analysed in duplicate and averaged. The 

approximate age in years is based on the known incremental growth phases of the teeth 

analysed (Beaumont et al. 2013). 

Sample no δ13C(‰) δ15N(‰) %C %N C:N 

Approximate  

age in years 

SUMB 39 E 1 -20.9 10.9 45.9 16.4 3.3 -0.30 

SUMB 39 E 2 -20.1 11.6 45.4 16.1 3.3 0.00 

SUMB 39 E 3 -20.6 10.8 46.9 16.8 3.3 0.35 

SUMB 39 E 4 -20.5 11.0 45.1 16.1 3.3 0.70 

SUMB 39 E 5 -20.8 10.9 45.8 16.3 3.3 1.05 

SUMB 39 E 6 -19.8 11.7 46.1 16.4 3.3 1.40 

SUMB 39 E 7 -20.2 11.7 45.5 16.3 3.3 1.75 

SUMB 39 E 8 -20.0 11.6 45.4 16.4 3.2 2.10 

SUMB 39 E 9 -20.2 11.0 45.4 16.1 3.3 2.45 

SUMB 39 E 10 -20.3 10.7 46.3 16.4 3.3 2.80 

SUMB 39 E 11 -20.4 10.8 45.5 15.9 3.3 3.15 

SUMB 39 E mean -20.3 11.2 45.8 16.3 3.3  
SUMB 40 U1 1 -20.2 10.7 43.7 15.8 3.2 0.50 

SUMB 40 U1 2 -19.7 10.8 45.5 16.4 3.2 0.93 

SUMB 40 U1 3 -19.2 11.4 45.1 16.3 3.2 1.36 

SUMB 40 U1 4 -18.9 11.8 45.4 16.4 3.2 1.79 
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SUMB 40 U1 5 -18.6 12.0 45.3 16.4 3.2 2.22 

SUMB 40 U1 6 -18.5 12.1 41.8 15.1 3.2 2.65 

SUMB 40 U1 7 -18.6 12.0 49.0 17.7 3.2 3.08 

SUMB 40 U1 8 -18.4 12.2 45.0 16.3 3.2 3.51 

SUMB 40 U1 9 -18.7 11.8 47.1 16.9 3.3 3.94 

SUMB 40 U1 10 -19.0 11.8 45.0 16.3 3.2 4.37 

SUMB 40 U1 11 -19.0 11.7 45.5 16.5 3.2 4.80 

SUMB 40 U1 12 -19.0 11.5 46.0 16.7 3.2 5.23 

SUMB 40 U1 13 -19.1 11.3 44.1 15.9 3.2 5.66 

SUMB 40 U1 14 -19.0 11.4 44.1 16.0 3.2 6.09 

SUMB 40 U1 15 -18.8 11.3 45.6 16.5 3.2 6.52 

SUMB 40 U1 16 -19.0 11.4 44.7 16.1 3.2 6.95 

SUMB 40 U1 17 -18.8 11.4 45.0 16.2 3.2 7.38 

SUMB 40 U1 18 -18.8 11.3 44.5 16.1 3.2 7.81 

SUMB 40 U1 19 -18.8 11.3 45.5 16.4 3.2 8.24 

SUMB 40 U1 20 -18.5 11.4 46.0 16.6 3.2 8.67 

SUMB 40 U1 21 -18.2 11.7 44.7 16.0 3.3 9.10 

SUMB 40 U1 mean -18.9 11.5 45.2 16.3 3.2  
SUMB 41 M1 1 -21.1 11.1 40.5 14.6 3.2 0.93 

SUMB 41 M1 2 -20.8 10.8 40.8 14.8 3.2 1.36 

SUMB 41 M1 3 -20.6 10.9 42.3 15.4 3.2 1.79 

SUMB 41 M1 4 -20.5 11.1 42.1 15.3 3.2 2.22 

SUMB 41 M1 5 -20.6 11.0 41.1 14.9 3.2 2.65 

SUMB 41 M1 6 -20.6 11.2 42.1 15.4 3.2 3.08 

SUMB 41 M1 7 -20.5 11.1 41.6 15.1 3.2 3.51 

SUMB 41 M1 8 -20.5 11.0 41.3 15.0 3.2 3.94 

SUMB 41 M1 9 -20.4 10.8 41.7 15.2 3.2 4.37 

SUMB 41 M1 10 -20.5 10.8 41.7 15.1 3.2 4.80 

SUMB 41 M1 11 -20.4 10.7 41.8 15.1 3.2 5.23 

SUMB 41 M1 12A -20.5 10.5 41.5 15.0 3.2 5.66 

SUMB 41 M1 13 -20.6 10.5 41.5 15.0 3.2 6.09 

SUMB 41 M1 14 -20.6 10.7 41.9 15.1 3.2 6.52 

SUMB 41 M1 15 -20.4 10.5 41.6 15.0 3.2 6.95 

SUMB 41 M1 16 -20.5 10.7 42.6 15.4 3.2 7.38 

SUMB 41 M1 17 -20.6 10.7 40.8 14.8 3.2 7.81 

SUMB 41 M1 18 -20.5 11.0 41.0 14.7 3.3 8.24 

SUMB 41 M1 19 -20.4 11.0 41.0 14.7 3.2 8.67 

SUMB 41 M1 20 -20.5 11.1 40.7 14.5 3.3 9.10 
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SUMB 41 M1 21 -20.4 11.3 41.5 14.8 3.3 9.53 

SUMB 41 M1 mean -20.6 10.9 41.5 15.0 3.2  
SUMB 42 M2 1 -20.0 11.6 41.8 15.3 3.2 2.50 

SUMB 42 M2 2 -19.8 11.4 42.2 15.6 3.2 3.30 

SUMB 42 M2 3 -19.9 11.6 41.5 15.3 3.2 4.10 

SUMB 42 M2 4 -19.6 11.6 41.5 15.2 3.2 4.90 

SUMB 42 M2 5 -20.0 11.6 42.0 15.5 3.2 5.70 

SUMB 42 M2 6 -19.9 11.8 42.4 15.6 3.2 6.50 

SUMB 42 M2 7 -19.0 12.4 51.3 18.9 3.2 7.30 

SUMB 42 M2 8 -18.7 12.6 41.4 15.2 3.2 8.10 

SUMB 42 M2 9 -18.5 12.9 41.1 15.0 3.2 8.90 

SUMB 42 M2 10 -17.8 13.3 41.5 15.1 3.2 9.70 

SUMB 42 M2 11 -19.4 11.9 42.5 15.5 3.2 10.50 

SUMB 42 M2 12 -20.1 11.8 41.1 15.0 3.2 11.30 

SUMB 42 M2 13 -19.5 11.7 41.8 15.3 3.2 12.10 

SUMB 42 M2 14 -19.7 11.8 43.2 15.8 3.2 12.90 

SUMB 42 M2 15 -19.6 12.0 40.8 14.9 3.2 13.70 

SUMB 42 M2 16 -19.1 12.1 42.0 15.4 3.2 14.50 

SUMB 42 M2 17 -19.2 12.1 40.2 14.6 3.2 15.30 

SUMB 42 M2 mean -19.4 12.0 42.3 15.5 3.2  
SUMB 43 M2 1 -19.2 12.2 41.1 15.2 3.1 2.50 

SUMB 43 M2 2 -18.5 12.5 41.4 15.7 3.1 3.02 

SUMB 43 M2 3 -19.0 11.6 43.8 16.7 3.1 3.54 

SUMB 43 M2 4 -19.2 11.6 35.5 13.4 3.1 4.06 

SUMB 43 M2 5 -19.0 11.8 43.8 16.6 3.1 4.58 

SUMB 43 M2 6 -18.9 11.5 42.3 16.1 3.1 5.10 

SUMB 43 M2 7 -18.9 11.2 41.8 15.8 3.1 5.62 

SUMB 43 M2 8 -18.6 11.3 42.1 15.9 3.1 6.14 

SUMB 43 M2 9 -18.1 11.8 42.1 16.0 3.1 6.66 

SUMB 43 M2 10 -17.7 12.4 43.2 16.3 3.1 7.18 

SUMB 43 M2 11 -17.8 12.6 40.7 15.3 3.1 7.70 

SUMB 43 M2 13 -18.0 13.0 42.4 16.0 3.1 8.74 

SUMB 43 M2 14 -18.1 12.9 43.4 16.3 3.1 9.26 

SUMB 43 M2 mean -18.5 12.1 42.0 15.9 3.1  
SUMB 44 M2 1 -20.1 11.8 40.8 15.2 3.1 2.50 

SUMB 44 M2 2 -19.4 12.1 43.3 16.2 3.1 3.37 

SUMB 44 M2 3 -18.8 11.8 43.5 16.2 3.1 4.24 

SUMB 44 M2 4 -18.8 11.4 42.4 16.0 3.1 5.11 
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SUMB 44 M2 5 -19.5 10.7 42.8 16.2 3.1 5.98 

SUMB 44 M2 6 -19.9 11.2 42.0 15.8 3.1 6.85 

SUMB 44 M2 7 -19.8 11.2 42.1 15.7 3.1 7.72 

SUMB 44 M2 8 -19.9 11.0 42.2 15.8 3.1 8.59 

SUMB 44 M2 9 -20.0 11.9 43.4 16.0 3.2 9.46 

SUMB 44 M2 10 -19.9 11.8 41.8 15.6 3.1 10.33 

SUMB 44 M2 11 -19.7 11.9 42.8 15.8 3.2 11.20 
SUMB 44 M2 12 -20.0 11.7 42.2 15.7 3.1 12.07 

SUMB 44 M2 13 -20.1 11.8 43.5 16.0 3.1 12.94 

SUMB 44 M2 14 -20.1 11.9 39.6 14.3 3.2 13.81 

SUMB 44 M2 15 -19.9 12.2 42.4 15.3 3.2 14.68 

SUMB 44 M2 mean -19.7 11.6 42.3 15.7 3.1  
SUMB 45 M1 1 -20.2 10.4 39.7 14.4 3.2 0.50 

SUMB 45 M1 2 -19.4 11.0 40.2 14.5 3.2 1.10 

SUMB 45 M1 3 -19.0 11.6 42.7 15.4 3.2 1.70 

SUMB 45 M1 4 -18.8 11.9 40.8 14.7 3.2 2.30 

SUMB 45 M1 5 -18.5 12.1 41.2 15.0 3.2 2.90 

SUMB 45 M1 6 -18.8 11.9 45.7 16.6 3.2 3.50 

SUMB 45 M1 7 -18.6 12.1 36.3 13.1 3.2 4.10 

SUMB 45 M1 8 -19.0 11.8 41.0 14.7 3.3 4.70 

SUMB 45 M1 9 -19.1 11.8 41.9 15.0 3.3 5.30 

SUMB 45 M1 10 -19.0 11.7 45.3 16.2 3.3 5.90 

SUMB 45 M1 11 -18.9 11.9 40.0 14.4 3.2 6.50 

SUMB 45 M1 12 -19.2 11.8 40.0 14.2 3.3 7.10 

SUMB 45 M1 13 -19.2 11.6 40.4 14.4 3.3 7.70 

SUMB 45 M1 14 -19.2 11.8 41.6 14.6 3.3 8.30 

SUMB 45 M1 15 -18.7 12.0 28.9 9.9 3.4 8.90 

SUMB 45 M1 mean -19.0 11.7 40.4 14.5 3.3  
SUMB46 M1 1 -19.0 12.2 40.8 14.7 3.2 0.50 

SUMB46 M1 2 -18.5 12.3 39.2 14.3 3.2 0.92 

SUMB46 M1 3 -18.9 11.8 38.3 14.0 3.2 1.34 

SUMB 46 M1 4 -19.1 11.6 38.9 14.0 3.2 1.76 

SUMB46 M1 5 -19.2 11.6 39.5 14.3 3.2 2.18 

SUMB46 M1 6 -19.2 11.4 42.3 15.1 3.3 2.60 

SUMB46 M1 7 -18.9 11.2 39.4 13.8 3.3 3.02 

SUMB 46 M1 8 -18.8 11.3 39.4 13.9 3.3 3.44 

SUMB 46 M1 9 -18.6 11.5 40.7 14.3 3.3 3.86 

SUMB 46 M1 10 -18.4 11.7 39.0 13.5 3.4 4.28 
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SUMB 46 M1 11 -18.2 12.2 39.4 13.9 3.3 4.70 

SUMB 46 M1 12 -17.9 12.8 40.6 14.2 3.3 5.12 

SUMB 46 M1 13 -18.5 12.9 40.8 14.0 3.4 5.54 

SUMB 46 M1 mean -18.7 11.9 39.9 14.1 3.3  
 

 

 

(a)                (b)    (c) 
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Figure S1. Carbon and nitrogen stable isotope ratios of the incremental dentine samples from a) SUMB-39; b) 

SUMB-40; c) SUMB-44; d) SUMB-45; and e) SUMB-46. The shaded green area at the bottom of each chart 

represents a purely terrestrial diet, based on the conservative limit of –19.1‰.  
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