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 

Abstract — The paper presents a new model of the 

VSC-HVDC aimed at power flow solutions using the 

Newton-Raphson method. Each converter station is made up of 

the series connection of a Voltage Source Converter (VSC) and 

its connecting transformer which is assumed to be a 

tap-changing (LTC) transformer. The new model represents a 

paradigm shift in the way the fundamental frequency, positive 

sequence modeling of VSC-HVDC links are represented, where 

the VSCs are not treated as idealized, controllable voltage 

sources but rather as compound transformer devices to which 

certain control properties of PWM-based inverters may be 

linked– just as DC-to-DC converters have been linked, 

conceptually speaking, to step-up and step-down transformers. 

The VSC model and by extension that of the VSC-HVDC, takes 

into account, in aggregated form, the phase-shifting and scaling 

nature of the PWM control. It also takes into account the VSC 

inductive and capacitive reactive power design limits, switching 

losses and ohmic losses. 
 

Index Terms — VSC-HVDC links, PWM, Newton-Raphson 

method, power flows 

I. INTRODUCTION 

OWER transmission using VSC-HVDC is a relatively 

recent progression of the HVDC technology which was 

originally based on the use of mercury arc valves and 

replaced in the mid-seventies by solid-state valves of the 

thyristor type [1]. It is reported that on 10
th
 March 1997 

power was transmitted on the world’s first VSC-HVDC 

transmission system between Hellsjön and Grängerg in 

central Sweden - the scheme was an experimental one, rated 

at only 3 MW and ±10 kV [2]. The main two providers of 

this technology use their commercial brand names when 

refereeing to the VSC-HVDC technology: ABB uses the 

name HVDC-Light and Siemens uses the name HVDC 

PLUS. The semiconductor valves currently employed at 

VSC-HVDC stations are IGBTs and the valve firing control 

is PWM; this enables operation at switching frequencies 

higher than the fundamental frequency resulting in fast and 

independent control of both active and reactive powers. The 

HVDC-Light technology has evolved a great deal since its 

introduction in 1997. It is now in its fourth generation, 
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employs the cascaded-two-level (CTL) topology and low 

switching frequencies. It is termed HVDC Light G4 and 

offers two main advantages compared to previous 

generations: converter losses are in the order of 1% as 

opposed to 3% found in the early designs, and low harmonic 

generation which have made the use of AC harmonic filters 

all but redundant [3]. The HVDC PLUS exhibits similar 

operational characteristics - it uses multi-level converters of 

the modular type and low switching frequencies. 

The two most basic VSC-HVDC configurations are the 

back-to-back and point-to-point in either mono-polar or 

bipolar fashions. The two mono-polar VSC-HVDC links are 

shown schematically in Fig. 1 [5].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: VSC-HVDC schematic representation: (a) back-to-back; (b) 

point-to-point  
 

As illustrated in Fig. 1, each converter station comprises 

a VSC and an interfacing LTC transformer. The 

transformer’s primary and secondary windings are 

connected to the high-voltage power grid and to the AC side 

of the VSC, respectively – this makes each VSC to be 

shunt-connected with the AC system, just as if they were two 

STATCOMs. However, the two VSCs are series-connected 

on their DC sides; sharing a capacitor in the case of the 

back-to-back configuration and through a DC cable in the 

case of the point-to-point configuration. 

The fundamental frequency operation of the VSC-HVDC 

schemes shown in Fig. 1 may be modeled by employing two 

VSC models which are normally represented each by a 

variable voltage source behind a coupling impedance, and 

linked together by a mismatch active power constraining 

equation [4]-[6] and solved in a unified manner using 
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Newton-type methods. These contributions address key 

VSC-HVDC modeling issues such as back-to-back and 

point-to-point schemes [4], multi-terminal schemes [5], and 

extensions to optimal power flows [6]. In these contributions 

the emphasis is on the AC side of the VSC-HVDC links and 

no DC representation is available. One possible alternative 

to provide the VSC-HVDC with a certain amount of DC 

representation is to use two of the equivalent voltage source 

models reported in [7], where the STATCOM’s AC voltage 

is expressed as a function of the DC voltage and the 

amplitude modulation ratio. Nevertheless, incorporation of 

the switching losses in the DC bus or a DC load would be 

difficult to represent in this model owing to its equivalent 

voltage source nature. An alternative solution approach to 

solve the multi-terminal VSC-HVDC power flow problem is 

put forward in [8,9], where a sequential numerical approach 

is used. In this paper, the VSC-HVDC converters are 

represented as variable voltages sources to solve the AC part 

of the network whose calculated values are then injected into 

a DC conductance matrix representing the multi-node DC 

network. This is a full VSC-HVDC power flow solution but 

the strong convergence characteristics of the 

Newton-Raphson method are sacrificed owing to the 

sequential iterative solution adopted. Reference [10] takes a 

rather simplified approach to the solution of multi-terminal 

VSC-HVDC links, the VSC are taken to be lossless and the 

numerical solution is based on power injections in both the 

AC and the DC nodes of the hybrid power network. A 

unified method for power flow calculation in AC grids with 

embedded multi-terminal VSC-HVDC systems is proposed 

in [11]. In this method all DC and AC equations are solved 

simultaneously in the same iteration but the converter model 

itself is represented in a simplified manner - each station is 

modelled as a PV or PQ bus at the point of common coupling 

and switching losses are not included. In contrast to all these 

recent publications on VSC-HVDC, the VSC model reported 

in this paper and by extension that of the VSC-HVDC, takes 

into account, in aggregated form, the phase-shifting and 

scaling nature of the PWM control. It also takes into account 

the VSC inductive and capacitive reactive power design 

limits, switching losses and ohmic losses. Furthermore, the 

numerical power flow solution is a simultaneous one where 

the AC and DC circuits are solved together using the 

Newton-Raphson method, keeping its strong convergence 

characteristics. The power flow algorithm has been 

programmed in Matlab. It should be noted that although no 

multi-terminal VSC-HVDC test cases are presented in this 

paper, the formulation here presented is also suitable for 

solving such systems. 

II. NEW VSC-HVDC MODELS 

The fundamental frequency operation of the VSC-HVDC 

schemes shown in Fig. 1, may be modeled by employing two 

of the VSC models shown in Fig. 2, where the central 

component of this VSC model is the ideal tap-changing 

transformer with a complex tap, where the winding 

connected to node 1 may be interpreted to be a notional AC 

node, internal to the VSC, and the winding connected to 

node 0 may be interpreted to be the DC node of the VSC. 

Such an interpretation is born out of the following basic 

relationship widely used in power electronic circuits [12]: 
 

DC

j
1 ' EemV

a

                                   (1) 
 

where the tap magnitude m
'
a of the ideal tap-changing 

transformer corresponds to the VSC’s amplitude modulation 

coefficient where the following relationship holds for a 

two-level, three-phase VSC: 
aa

mm  23' , where in the 

linear range of modulation, the index ma takes values within 

bounds: 10 
a

m  [12].  The phase angle  is the phase 

angle of the complex voltage 1V  relative to the system phase 

reference, and EDC is the DC bus voltage which is a real 

scalar and on a per-unit basis carries a value of 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: (a) VSC Schematic Representation; (b) VSC equivalent circuit 
 

Physically the VSC is built as a two-level or a multi-level 

inverter operating on a constant DC voltage, EDC. A 

relatively small DC capacitor bank of value CDC, is used to 

support and stabilize the controlled DC voltage, EDC, needed 

for the converter operation [3]. The VSC provides either 

reactive power generation or absorption purely by electronic 

processing of the voltage and current waveforms within the 

VSC – the PWM control shifts the current waveforms to lead 

or lag the voltage, according to requirement. It ought to be 

emphasized that CDC is not used per se in the VAR 

generation/absorption process. The switching valve pattern 

governed by the PWM control gives the converter bridge the 

overall characteristic of an equivalent susceptance, Beq, 

which could be either capacitive or inductive according to 

operational requirements. Other elements of the electric 

circuit shown in Fig. 2(b) are the inductive reactance X1 

representing the VSC’s interface magnetics, the series 

resistor R1 associated with the ohmic losses, the shunt 

resistor (conductance Gsw) relating to the switching losses in 
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the presence of a DC voltage and paralleled with the small 

rating capacitor CDC. 

It is noted quite straightforwardly that R1 is proportional to 

the AC terminal current squared. However, Gsw requires 

further elaboration. Under the presence of constant DC 

voltage and constant load current, the switching loss model 

would be well represented by a constant resistance 

(conductance) G0, which would yield constant power loss for 

a given switching frequency of the PWM converter. 

Admittedly, the constant resistance characteristic may be 

inaccurate because although the DC voltage is kept largely 

constant, the load current will vary according to the 

prevailing operating condition. Hence, it is proposed that the 

resistance characteristic derived at rated voltage and current 

be corrected by the quadratic ratio of the actual current to the 

nominal current, 
 

sw
G

I

I
G 












2

nom

2

act

2

0
                             (2) 

where Gsw would be a resistive term exhibiting a degree of 

power behavior. 

Note that the secondary winding current I2 splits into I’2 

and I’’2. The latter current is rather small and it is 

proportional to the internal power loss of the DC capacitor 

[1,11]. Indeed, if the capacitor losses are neglected then the 

average current I’’2 would be zero in the presence of a 

constant DC voltage. Alternatively, if the capacitor loss is 

represented by a small resistor (not shown) in parallel with 

the capacitor then that resistor may be paralleled instead with 

the resistor representing the VSC switching losses. In such a 

case I’’2 would be zero in a fundamental frequency, steady 

state model and the full power relationship between nodes 1 

and 0, will be:  

2

1

*
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*
,

1

*

1120
j)( VBIVIIVIV

eq
                          (3) 

The following nodal admittance matrix, developed in 

Appendix A in equation form, represents the fundamental 

frequency operation of the VSC: 
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where vRV and vRI  are the complex voltage and current at 

node vR, 0I  is a zero injected nodal current at node 0 and V0 

is the voltage at the DC bus which equals the voltage EDC 

across the DC capacitor. Also, )sinj(cos   aV mT , 



 IV TT  and )j/(1
111 XRY  . 

III. POWER FLOW MODEL: BACK-TO-BACK VSC-HVDC 

The linearized equation corresponding to the power flow 

solution of the back-to-back VSC-HVDC, using the 

Newton-Raphson method is derived in this section.  

A. Back-to-Back VSC-HVDC Nodal Power Equations 

The complex power model for the rectifier is derived from 

the nodal admittance matrix: 
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Following some arduous algebra, the nodal active and 

reactive power expressions for the rectifier are arrived at: 
 

   2

1 0 1 0 1 0' cos sinvR R vR aR vR R R vR R R R vR R RP G V m V V G B             
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(6) 

Likewise, another set of equations may be developed for 

the inverter, 
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(7) 

Since both converters are connected their DC side to a 

common bus 0; it is quite clear that buses 0R and 0I are the 

same bus in this back-to-back VSC-HVDC application.

 

B. Back-to-Back VSC-HVDC Linearised Equations 

These nodal power equations are non-linear and their 

solution, for a pre-defined set of generation and load pattern 

may be carried out using the Newton-Raphson method. A 

large number of parameter regulation options are available 

for the VSC-HVDC link by making use of the voltage and 

power regulating capabilities of the two VSCs and the 

voltage regulating capabilities of the two LTCs. A common 

practice is to use the rectifier to regulate power on its DC 

side and to use the inverter to regulate voltage magnitude on 

its AC side. Also, the small DC capacitor banks associated to 

each VSC are used to support and stabilize the DC voltage, 

EDC, which is needed for converter operation. 

A constraining active power equation is required for the 

action of the phase shifter element of the VSC model to take 

place - one such equation will be required for the VSC 

rectifier and another for the VSC inverter. The two state 

variables associated to the two constraining power equations 

are the angles of the phase shifter elements. Moreover, 

constraining equations are required for the reactive powers 

to force to zero the reactive power at node 0. Hence, two 

additional state variables become available, namely the 

equivalent susceptances of the two VSCs. 

Linearization of eqns. (6) and (7) around the base 

operating point: ),,,,',,,,,( )0()0()0()0()0()0(

0

)0()0()0()0(

eqIIeqRRaIvIvIvRvR
BBmVV  , is 

suitable to regulate power on the DC bus and to regulate 

voltage magnitude at the inverter’s AC side using m’aI. 

Notice that V0 is kept at a constant value by treating node 0 as 

a PV-like bus. The relevant system of equations is arranged 

in the structure shown in equation (8). 
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1) Mismatch power terms and control variables: 

The mismatch power terms used will be the difference 

between the net power and the calculated power at buses: vR, 

vI and 0. The calculated powers are determined using the 

nodal power eqns. (6) and (7), giving, 
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The mismatch power flow in branches 0R-vR and 0I-vI is 

the difference between the target power flow at the branch 

and the calculated power. In this application, the reactive 

power targets are set to zero and 
reg,0reg,0 vIIvRR

PP


 . 

2) State variables and increments: 

The state variables are updated at iteration (r), as follows: 
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3) Practical implementations: 

a) Control strategy: 

As illustrated in Fig. 1(a), the VSC acting as rectifier is 

assumed to be connected between the sending bus, vR, and 

the receiving bus, 0, with the former taken to be the VSC’s 

AC bus and the latter taken to be the VSC’s DC bus. The 

voltage V0 is kept constant by the action of a small DC 

capacitor bank, each of value CDC.
 

The voltage magnitude VvR is regulated within 

system-dependent maximum and minimum values afforded 

by the following basic relationships: 

1
2

1

2

1
IXREmV

DCaRvR


                
(11) 

Note that in the linear range of modulation, the index maR 

takes values within the bounds: 10 
aR

m . However, in 

VSC-HVDC power transmission applications, it is unlikely 

that values of the actual amplitude modulation ratio lower 

than 0.5 will be used. Upper design limits for the VSC 

current are adhered to: 
max1 VSC

II  ; and the upper and lower 

ceilings of BeqR are attained from the design values of EDC 

and QVSC: 2

DCVSCeqR
EQB 

  
and 2

DCVSCeqR
EQB 


. Similar 

relationships exist for the VSC acting as inverter which is 

connected between the sending bus, vI, and the receiving 

bus, 0. 

b) Simplifying assumptions: 

The two resistors that account for the internal losses of 

each one of the VSCs and the inductors that represent their 

interface magnetics are taken to be constant parameters. 

A key feature of this model is that the phase angle value at 

node 0 is independent of circuit parameters or network 

complexity to the left of bus vR and to the right of bus vI. The 

reason is that the ideal phase shifter decouples, angle-wise, 

the circuits to its left and to its right. Moreover, the phase 

angle voltage at bus 0 keeps its value given at the point of 

initialization. Hence, in the application pursued in this paper, 

it makes sense to stick to zero phase angle voltage 

initialization for this bus - when looked at it from the vantage 

of rectangular coordinates, its imaginary part does not exist, 

i.e. 
000000 0j0 eVeVVV  . 

c) Initial parameters and limits: 

Three sets of VSC parameters require initialization: the 

amplitude modulation ratios (m’aR and m’aI); the phase 

angles (R and I) and the equivalent shunt susceptances 

(BeqR and BeqI). The amplitude modulation ratios and their 

phase angles may be set at 1 and 0. The VSCs are assumed to 

operate within their linear regions [12] taking positive 

maximum values of 1 whereas the phase angles are assumed 

to have no limits. The equivalent shunt susceptances are 

initialized at values that lie within the range Beq+ and Beq-. 

C. LTC Transformer Model 

The nodal admittance matrix of the LTC transformer 
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connected between buses k and vR, is: 
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where kV , kI , vRV , vRI  are the complex voltages and 

currents at nodes k and vR. Also, T is the LTC transformer 

tap and tY  is the transformer leakage admittance. 

The LTC nodal active and reactive power expressions at 

buses k and vR, are: 
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where Vk and k are the magnitude and phase angle of the 

nodal complex voltage    . Likewise, VvR and vR are the 

magnitude and phase angle of the nodal complex voltage 

      Also, Gt and Bt are the real and imaginary parts of Yt. 

The LTC tap may be used to regulate voltage magnitude at 

either bus k or bus vR. For instance, linearization of eqn. (13) 

around the base operating point: (0) (0) (0) (0)( , , , )k vR vRT V  , is 

suitable to regulate voltage magnitude at bus k: 
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(14) 

 

With equation (14) describing the LTC connected 

between buses k and vR in Fig. 1 (a) then a similar equation 

would exist to describe the LTC transformer connected 

between buses vI and m in that figure – in fact the only 

change would be in the subscripts, where k and vR would be 

replaced by m and vI, respectively. 

The interfacing of the two back-to-back VSCs and the two 

LTCs to represent the full back-to-back VSC-HVDC link 

shown in Fig. 1(a), is quite straightforward; it requires an 

expansion of equation (8) to encompass buses k and m, 

where the self-terms of bus vR in equations (8) and (14) are 

added together. Furthermore, the self-terms of bus vI in 

equation (8) and an equation similar to (14) but for an LTC 

connected between buses m and vI, are also added together. 

As seen from the linearized equation (14), the additional 

mismatch power terms introduced by the two LTC 

transformers are: Pk, Qk, PvRt, QvRt and Pm, Qm, 

PvIt, QvIt. Moreover, the power mismatches of the two 

LTCs coinciding with the AC nodes of the two VSCs, 

namely, vR and vI,  are added together: PvR and PvRt; QvR 

and QvRt; PvI and PvIt; QvI and QvIt.

 

 

The additional state variables calculated at iteration (r) 

are: )()()()( ,,, r

m

r

m

r

k

r

k
VV  . Moreover, if either bus k or bus vR is 

voltage controlled by the tap of the LTC connected between 

buses k and vR then the associated state variable is )(kT , 

which replaces either )(r

k
V or )(r

vR
V

 

depending on which bus 

the LTC tap is acting upon. A similar argument is developed 

for the LTC transformer connected between buses m and vI. 

D. Back-to-Back VSC-HVDC Test Cases 

The test case presented in this section relates to a system 

where the VSC-HVDC link is used to interconnect two 

otherwise independent AC systems represented in a rather 

simplified form, as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Back-to-back VSC-HVDC linking two equivalent AC sub-systems. The following parameters are used: (i) Transmission Line 1 and 2: RTL=0.05 p.u. and 

XTL=0.10 p.u., BTL=0.06 p.u.; (ii) VSC 1 and VSC 2 series resistance and reactance: 0.001 p.u., 0.01 p.u.; (iii) VSC 1 and VSC 2 initial shunt conductance for 

switching loss calculation Gsw= 0.01 p.u.; (iv)  LTC 1 and 2 series reactance: 0.06 p.u.; (v) active and reactive power load at bus 2: 1 p.u. and 0.5 p.u. ; (vi) active and 
reactive power load at bus 5: 1.5 p.u. and 0.5 p.u.  

In this numerical example the two VSCs are assumed to be 

connected to their respective AC systems by LTC 

transformers operating off their nominal tap positions. As 

shown in Fig. 3, the back-to-back VSC-HVDC is connected 

between buses 3 and 4, with bus 0 being the DC bus where 

the voltage is regulated at 1.4142 p.u. and the power leaving 

T2=0.9768 T1=1.1105 

1 

2
0
V  

1+j0.5 
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1 
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4 
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2 
0.5363 
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the rectifier is set at 1 p.u. using VSC 1. Notice that since the 

back-to-back VSC-HVDC provides for an asynchronous 

interconnection of the two AC sub-systems then each AC 

subsystem requires its own slack bus. 

The active and reactive power flows are given on Fig. 3 

where it is shown that the equivalent generators connected to 

buses 1 and 6 contribute 2.2822 p.u. and 0.5172 p.u. of active 

power, respectively. The voltage magnitudes at all seven 

buses are treated as voltage controlled nodes by appealing to 

the voltage regulating capabilities of the two generators, the 

two LTC transformers and the two VSCs. The phase angles 

are initialized at 0 in all seven buses. Buses 1 and 6 are 

designated to be the two Slack buses of this asynchronous 

interconnection and Bus 0 is a DC-like bus. The phase angle 

voltage at bus 1 provides a reference for the phase angle 

voltages at buses 2 and 3 whereas the phase angle voltage at 

bus 6 is the reference for the phase angle voltages at buses 4 

and 5. The voltage solution is given in Table 1. 

The active power loss incurred in the VSC connected to 

bus 3 stands at 1.43% with 0.99% due to switching losses 

and the rest due to conduction losses – the switching loss is 

represented by an initial equivalent conductance, G0, of 1%. 

It delivers 1.8780 p.u. of reactive power to supply the 

reactive power load of 0.5 p.u. connected at bus 2; with 

0.6355 p.u. being absorbed by the Slack generator at node 1 

and the remaining going to satisfy the reactive power loss 

incurred by the transmission line connected between nodes 1 

and 2 and LTC 1, which stands at 0.7425 p.u. 

The active power loss incurred in the VSC connected to 

bus 4 stands at 0.44%. Switching losses are 0.30% and 

conduction losses of 0.14%. These power losses are smaller 

than those of VSC 1 since there is less energy in this part of 

the network. It delivers 0.6131 p.u. of reactive power to 

supply the reactive power load of 0.5 p.u. at bus 5 and the 

reactive power loss of transformer 2. The Slack generator at 

node 6 absorbs 0.0717 p.u. of reactive power – this being 

contributed almost in an equal measure by the rectifier VSC 

and the transmission line connected between nodes 5 and 6. 
 

TABLE 1 

POWER FLOW VOLTAGE SOLUTION 

Nodes 1 2 3 0 4 5 6 

V(p.u) 1.02 1.00 1.01 1.4142 1.01 1.00 1.02 

 (deg) 0 -14.67 -18.51 - 0.29 -3.02 0 

 

The complex and real taps corresponding to the two VSCs 

and the two LTCs, respectively, are given in Table 2. VSC 1 

and VSC 2 are used to regulate voltage magnitudes at buses 

3 and 4 at 1.01 p.u. with actual amplitude modulation 

indexes maR and maI of 0.838 and 0.831, respectively. 

Likewise, LTCs 1 and 2 are used to regulate voltage 

magnitudes at buses 2 and 5 at 1 p.u. with resulting taps 

T1=1.1105 and T2=0.9768, respectively. 
 

TABLE 2 

TAP VALUES FOR THE TWO VSCS AND THE TWO LTCS 

VSC 1 2 LTC 1 2 

ma 0.838-19.178 0.8310.813 Tap 1.1105 0.9768 
 

The equivalent susceptances of VSC 1 and 2 produce 1.9226 

p.u. and 0.6383 p.u. of reactive power. The solution 

converges in 7 iterations to a mismatch tolerance of 10
-12

. 

E. Comparison of the new back-to-back VSC-HVDC 

model with conventional models 

For the sake of completeness, the test case in Section D is 

now solved using two alternative modeling solutions and 

contrasted with the new model put forward in this paper. The 

first option relates to a situation where the rectifier bus 3 and 

the inverter bus 4 are both assumed to be PV-type buses, i.e., 

the actual back-to-back VSC-HVDC model is removed from 

the diagram. The voltage magnitude at both buses is set at 

1.01 p.u. Since this is a case where the VSC-HVDC is 

assumed to incur no power loss then 1 p.u. active power 

leaves the rectifier bus and 1 p.u. active power is injected 

into the inverter bus. Notice that with the VSC-HVDC link 

removed, we end up with two unconnected AC subsystems. 

Table 3 presents a summary of the power losses incurred by 

using this modeling option. 

A fuller alternative than the PV-type models but still more 

constrained than the new VSC-HVDC model put forward in 

this paper, is to represent both converter stations by 

controllable voltage sources behind the corresponding 

converters’ impedances [4]. Such a model yields a closer 

modeling flexibility to that afforded by the new VSC-HVDC 

model but for its lack of proper DC circuit representation. 

More specifically, the DC voltage, the amplitude modulation 

ratio and the switching power loss are missing in the 

equivalent voltage sources model. Nonetheless, its 

numerical accuracy and modeling flexibility is much closer 

than that afforded by the PV-type model. Table 3 presents a 

summary of the power losses incurred by the three modeling 

options, where the difference in the calculated active power 

losses is clear. 
 

TABLE 3 

A SUMMARY OF POWER LOSSES INCURRED BY THE VARIOUS MODELS  

Model Active power losses (MW) Reactive power losses (MVAR) 
AC1 AC2 VSC-HVDC AC1 AC2 VSC-HVDC 

PV buses 26.36 1.27 N/A 72.83 4.13 N/A 

Sources 26.49 1.28 0.57 73.27 4.13 5.74 

New model 26.79 1.29 1.87 74.25 4.14 5.80 
 

This is a highly regulated test system and, as expected, the 

power flow solutions differ little from one another, except 

for the power losses in the converters which the PV-type 

modeling option is unable to take into account. However, if 

different operational conditions prevail and the requirement 

is to relax some of the control variables, say, the amount of 

power flowing through the VSC-HVDC link then 

application of the model based on PV-type buses becomes 

theoretically infeasible. In such a case, only the model based 

on the use of equivalent voltage sources or the new 

VSC-HVDC model may be used but the latter will yield a 

better estimate of power losses. 

IV. POWER FLOW MODEL: POINT-TO-POINT VSC-HVDC  

The nodal power equations developed for the VSC in 

Appendix A are used here to represent one of the two 

VSC-HVDC converters, say the rectifier. However, a new 

model must be derived for the other VSC-HVDC converter, 

say the inverter. The model derived in this section comprises 

the VSC model in Appendix A in series with a DC cable 

where the common point of connection of these two 
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elements is mathematically eliminated. This is so because of 

the inherent difficulties found in the power flow 

Newton-Raphson method to carry out the so-called remote 

control. 

A. Combined VSC-DC Cable Representation  

The fundamental frequency operation of a combined VSC 

and a cable impedance (resistance), shown schematically in 

Fig. 4 (a), may be represented by combining the simple cable 

susceptance model shown in Fig. 4 (b) and the VSC model, 

derived in Appendix A and shown in Fig. 4 (c). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. (a) VSC-DC cable schematic representation; (b) cable equivalent 

circuit; (c) VSC equivalent circuit 
 

The VSC admittance matrix equation (4), with changed 

subscripts to represent the inverter, and that of a DC cable: 
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are combined to yield the compound representation below, 
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Mathematical elimination of node 0I, yields, 
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It should be noted that tor the sake of generality, the DC 

cable parameter has been taken to be an admittance. 

B. Point-to-Point VSC-HVDC Nodal Power Equations 

The complex power model is derived similarly to eq. (5) 

but making use of the nodal matrix eq. (17). Following some 

arduous algebra, the following active and reactive power 

expressions are arrived at: 
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C. Point-to-Point VSC-HVDC Linearised System of 

Equations 

The numerical solution of the point-to-point VSC-HVDC 

link involves the combined solution of equations (6) and 

(18), for a pre-defined set of generation and load pattern. The 

former set may represent the rectifier and the latter set the 

inverter. These equations are non-linear and their solution 

may be carried out very efficiently using the 

Newton-Raphson method, which implies a linearisation 

process similar to the one carried out for the back-to-back 

VSC-HVDC model in Section III.B. 

D. Point-to-Point VSC-HVDC Test Cases 

The test case in this section relates to a simple system 

where the VSC-HVDC link is used to interconnect two 

otherwise independent AC systems, as shown in Fig. 5. 
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Figure 5: Point-to-point VSC-HVDC linking two equivalent AC sub-systems. The following parameters are used: (i) Transmission Line 1 and 2: RTL=0.05 p.u. and 

XTL=0.10 p.u., BTL=0.06 p.u.; (ii) VSC 1 and VSC 2 series resistance and reactance: 0.001 p.u., 0.01 p.u.; (iii) VSC 1 and VSC 2 initial shunt conductance for 

switching loss calculation Gsw= 0.01 p.u.; (iv)  LTC 1 and LTC 2 series reactances: 0.06 p.u.; (v) active and reactive power load at bus 2: 1 p.u. and 0.5 p.u. ; (vi) 

active and reactive power load at bus 5: 1.5 p.u. and 0.5 p.u.; (vii) resistance of DC cable: 0.05 p.u. 

  

The rectifier is connected between buses 3 and 0R, the 

inverter is connected between buses 4 and 0I and the DC 

cable is connected between DC buses 0R and 0I. For the 

purpose of the iterative voltage solution, bus 0I is not 

represented explicitly. Instead, the nodal voltage and power 

existing at bus 0I is calculated quite straightforwardly once 

the iterative voltage solution has converged. 

Similarly to the back-to-back VSC-HVDC case, bus 0R is 

treated as a PV-type node and regulated at 2 p.u. The power 

leaving the rectifier is set at 1 p.u. The inverter and rectifier 

are set to regulate voltage magnitude at 1.01 p.u. at Bus 3 and 

4, respectively, whereas the voltage magnitudes at buses 2 

and 5 are both regulated at 1 p.u. using LTC 1 and LTC 2, 

respectively. 

Buses 1 and 6 are taken to be the two Slack buses of this 

asynchronous interconnection and bus 0R and 0I are DC-like 

buses. The phase angle at bus 1 provides a reference for the 

phase angles at buses 2 and 3 whereas the phase angle at bus 

6 provides a reference for the phase angles at buses 4 and 5. 

The full voltage solution is given in Table 4. 
 

TABLE 4 

POWER FLOW VOLTAGE SOLUTION 

Nodes      1 2 3 0R 0I 4 5 6 

V (p.u.) 1.02 1.0 1.01 1.4142 1.3788 1.01 1.0 1.02 

 (deg) 0 -14.67 -18.51 - - 0.03 -3.19 0 
 
 

The solution converges in 7 iterations to a mismatch 

tolerance of 10
-12

, where the nodal voltage at Bus 0I is 

calculated upon convergence of the iterative solution. The 

active and reactive power flows are given on Fig. 5 where the 

generators connected to buses 1 and 6 contribute 2.2822 p.u. 

and 0.5434 p.u. of active power, respectively. Power 

regulation at the DC output of the rectifier was set at 1 p.u. 

 

As expected, all results relating to nodal voltages, power 

flows and tap value, comprising buses 1 to 0R do not change 

compared to those obtained for the case of the back-to-back 

VSC-HVDC, since the power constraint at Bus 0R decouples 

the power flow solution of the two circuits to the left and to 

the right of Bus 0R. Changes in the solution do occur for the 

circuit connected to the right of Bus 0R since less active 

power from Slack Generator 1 arrives to the load connected 

to Bus 5, due to the power loss incurred in the DC resistance. 

Hence, the Slack Generator at Bus 6 provides additional 

power to satisfy the demand of 1.5 p.u. active power at Bus 

5. The amplitude modulation ratios and taps for the two 

VSCs and the two LTCs, respectively, are given in Table 5. 
TABLE 5 

TAP VALUES FOR THE TWO VSCS AND THE TWO LTCS 

VSC 1 2 LTC 1 2 

ma 0.838-19.178 0.8510.534 Tap 1.1105 0.9762 
 

The power loss analysis for the power circuit to the left of 

Bus 0R is the same as that existing in the back-to-back 

VSC-HVDC case, but changes do take place for the circuit to 

the right of Bus 0R. For instance, the active power loss 

incurred in the VSC connected to bus 4 stands at 0.41% with 

0.276% due to switching losses and 0.134% due to 

conduction losses. The power loss in the DC cable is 2.5%. 

The VSC 2 delivers 0.6252 p.u. of reactive power to supply 

the reactive power load of 0.5 p.u. connected at bus 5. It also 

caters for the reactive power loss of LTC 2 and together with 

reactive power generated by the transmission line connected 

between nodes 5 and 6, injects 0.0827 p.u. of reactive power 

into the slack generator at Bus 6. 

E. Comparison of the new point-to-point VSC-HVDC model 

with conventional models 

Similarly to the numerical exercise carried out in Section 

III. E, where the new back-to-back VSC-HVDC model and 

two conventional models are compared in terms of their 

power loss representation, the point-to-point VSC-HVDC 

model is addressed in this section. However, use of the 

PV-type bus concept to represent the rectifier bus and the 

inverter bus is not an option since the power loss in the DC 

link cannot be determined a priori. 
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
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Hence, the new point-to-point VSC-HVDC model is 

compared only against an equivalent voltage sources model 

[6] – one that represents the AC circuit correctly but where 

the DC circuit does not exist explicitly. Table 6 presents a 

summary of the power losses incurred by the two modeling 

options. 
TABLE 6 

A SUMMARY OF POWER LOSSES INCURRED BY THE TWO MODELS  

Model Active power losses (MW) Reactive power losses (MVAR) 
AC1 AC2 VSC-HVDC AC1 AC2 VSC-HVDC 

Sources 26.51 1.31 1.13 73.44 4.14 5.75 

New model 26.79 1.43 4.34 74.25 4.25 5.77 
 

The active and reactive power losses in AC systems 1 and 

2 calculated by the two models differ little. This is an 

expected result since both VSC-HVDC models represent 

well the AC system but the difference lies in the power 

losses associated with the VSC-HVDC since the equivalent 

voltage sources model lacks proper DC representation; in 

particular, switching loss representation, with the associated 

impact shown in the column corresponding to the MW 

VSC-HVDC. The new model yields a more realistic result 

not only because of the incorporation of switching losses but 

also because of a more accurate representation of the DC 

voltages than in [6] and with it, a more accurate DC current 

representation. 

V. CONCLUSIONS  

A new model suitable for assessing the fundamental 

frequency operation of VSC-HVDC links using 

Newton-Raphson power flows solutions has been 

introduced. The back-to-back and the point-to-point 

configurations have received attention. This model 

represents a paradigm shift in the way the fundamental 

frequency, positive sequence modeling of VSC-HVDC links 

is carried out. The new model does not treat the rectifier and 

inverter stations as idealized controllable voltage sources but 

rather as compound transformer devices with which key 

control properties of PWM-based inverters may be linked – 

just as DC-to-DC converters have been linked, conceptually 

speaking, to step-up and step-down transformers [12]. The 

phase angle of the complex tap changer represents the phase 

shift that would exist in a PWM inverter. More specifically, 

this would be the phase angle required by the VSC to enable 

either reactive power generation or absorption purely by 

electronic processing of the voltage and current waveforms 

within the VSC. The switching and ohmic losses are all 

explicitly represented in the new VSC-HVDC model. 

Comparisons with available models show that the new 

model yields similar results to a model based on the use of 

equivalent voltage sources when no switching losses are 

included in the new model. However, switching power 

losses do exist in practical VSCs and only the new 

VSC-HVDC model caters for such losses, hence, the two 

VSC-HVDC models yield different amount of power loss 

when realistic conditions are taken into account. 

Comparisons were also made against a model where the 

VSC-HVDC link is represented as two PV-type nodes at its 

connecting nodes with the two AC sub-systems. The 

limitations of this rather contrived VSC-HVDC 

representation are too many to be of any practical use in light 

of the two more advanced VSC-HVDC representations 

already in existence. Concerning reliability towards the 

convergence, all three VSC-HVDC models converge equally 

reliable – they exhibit quadratic convergence characteristics. 

The model has been tested in a simple system for ease of 

reproduction by interested parties. 

REFERENCES 

[1] J. Arrillaga, High Voltage Direct Current Transmission. IET 1998. 

[2] G. Asplund, “Application of HVDC Light to Power System 
Enhancement”, IEEE Winter Meeting, Jan. 2000. 

[3] S. Dodds, B. Railing, K. Akman, B. Jacobson, T. Worzyk and B. 

Nilsson, “HVDC VSC (HVDC light) Transmission – operating 
experiences”, CIGRE 2010, paper B4_203_2010, Paris, France. 

[4] C. Angeles-Camacho, O. Tortelli, E. Acha and C.R. Fuerte-Esquivel, 

“Inclusion of a High Voltage DC-Voltage Source Converter Model in 
a Newton-Raphson Power Flow Algorithm”, IEE Proc. Gen., Trans. 

and Dist., vol. 150, pp. 691-696, Nov. 2003. 

[5] X.P. Zhang, “Multiterminal Voltage-sourced Converter-based HVDC 
Models for Power Flow Analysis”, IEEE Transactions on Power 

Systems, vol. 19, no. 4, pp. 1877–1884, 2004. 

[6] A. Pizano-Martinez, C.R. Fuerte-Esquivel, H. Ambriz-Perez and E. 
Acha, ‘Modeling of VSC-based HVDC Systems for a 

Newton-Raphson HVDC Algorithm’, IEEE Transactions on Power 

Systems, Vol. 24, No. 4, pp. 1794-1803, Nov. 2007. 
[7] C.A. Cañizares, “Power Flow and Transient Stability Models of 

FACTS Controllers for Voltage and Angle Stability Studies”, IEEE 

PES WM, 23-27 Jan. 2000, Singapore, pp. 1447-1454, 2000. 
[8] J. Beerten, S. Cole and R. Belmans, “A Sequential AC/DC Power 

Flow Algorithm for Networks Containing Multi-terminal VSC HVDC 

Systems”, IEEE PES General Meeting, July 2010, pp. 1-7. 
[9] J. Beerten, S. Cole and R. Belmans, “Generalized Steady-State VSC 

MTDC Model for Sequential AC/DC Power Flow Algorithms”, IEEE 

Trans. on Power Systems, vol. 27, no. 2, May 2012, 821-829. 
[10] L. Gengyin, Z. Ming, H. Jie, L. Guaagkai and L. Haifeng, “Power 

Flow Calculation of Power Systems Incorporating VSC-HVDC”, 

2004 Int. Conf. on Power System Technology - POWERCON 2004, 

Singapore, 21-24 Nov. 2004, pp. 1562-1566. 
[11] M. Baradar, M. Ghandhari and D. Van Hertem, “The Modeling of 

Multi-Terminal VSC-HVDC in Power Flow Calculation Using 

Unified Methodology”, IEEE PES International Conference and 
Exhibition on Innovative Smart Grid Technologies (ISGT Europe), 

Dec 2011, pp. 1-6. 

[12] N. Mohan, T.M. Undeland and W.P. Robins, Power Electronics: 
Converters, Applications and Design. John Wiley & Sons, 2003. 

APPENDIX A: BASIC VSC MODEL 

The nodal admittance equations representing the 

fundamental frequency operation of the VSC, shown 

schematically in Fig. 2(b), is developed below using first 

principles. Key assumptions in the derivation of the VSC 

model are that the tap magnitude m’a is an equivalent 

amplitude modulation coefficient of the actual VSC and that 

its phase angle  is the phase angle of the complex voltage 

1V . The two resistive components representing the VSC’s 

internal loss are placed one in series and the other one in 

shunt. The former is associated with the ohmic loss which is 

proportional to the AC terminal current squared and the 

latter yields a power loss for the switching action of PWM 

converter. The first term is placed on the primary side of the 

equivalent tap-changing transformer, together with the 

inductor representing the interface magnetics, and the 

second term is placed in parallel with the DC bus. The rating 

of the DC capacitor is quite small; it normally stands at about 
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10% of the total reactive power capacity of the VSC. 

In a phase-shifting transformer the relationship between 

the voltage tap and the current tap is a complex conjugate 

one, 


 IV TT                                 (A.1) 
 

Hence, in connection with Fig. 2(b), the voltage and 

current relationships in the ideal tap-changing transformer 

are: 
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where  aV mT '  and 


aI mT ' . 
 

The current through the admittance connected between vR 

and 1 is: 
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where )j/(1
111 XRY  . At node 0, the following relationship 

holds: 
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Combining equations (A.3) and (A.4) yields: 
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