Ann. Inst. Fourier, Grenoble
Working version — January 29, 2014

NON-ABELIAN p-ADIC L-FUNCTIONS AND
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ABSTRACT. In this work we prove various cases of the so-called
“torsion congruences” between abelian p-adic L-functions that are
related to automorphic representations of definite unitary groups.
These congruences play a central role in the non-commutative Iwa-
sawa theory as it became clear in the works of Kakde, Ritter and
Weiss on the non-abelian Main Conjecture for the Tate motive. We
tackle these congruences for a general definite unitary group of n
variables and we obtain more explicit results in the special cases of
n =1 and n = 2. In both of these cases we also explain their impli-
cations for some particular “motives”, as for example elliptic curves
with complex multiplication. Finally we also discuss a new kind of
congruences, which we call “average torsion congruences”

L-fonctions p-adiques non-abéliennes et série d’Eisenstein pour les
groupes unitaires; la méthode CM

RESUME. Dans cet article, nous démontrons divers cas particuliers
de “congruences de torsion” entre les L-fonction p-adiques abéliennes
liées aux représentations automorphes de groupes unitaires définis.
Ces congruences jouent un role central dans la théorie d’ Iwasawa
non-commutative, ce qui a été mis en évidence par les résultats de
Kakde, Ritter et Weiss sur la Conjecture Principale non-abélienne
pour le motif de Tate. Nous nous attaquons & ces congruences pour
un groupe unitaire défini général en n variables, et obtenons des
résultans plus explicites dans les cas n = 1 et n = 2. Dans ces deux
cas, nous expliquons aussi leur conséquences pour certains “motifs”
particuliers, comme par exemple, les courbes elliptiques munie d’une
multiplication complexe. Finalement, nous discutons d’un nouveau
type de congruences que nous nommons “congruences de torsion
modérées”.
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1. Introduction

In [8, 16] a vast generalization of the Main Conjecture of the classical
(abelian) Iwasawa theory to a non-abelian setting was proposed. As in the
classical theory, the non-abelian Main Conjecture predicts a deep relation
between an analytic object (a non-abelian p-adic L-function) and an al-
gebraic object (a Selmer group or complex over a non-abelian p-adic Lie
extension). However, the evidences for this non-abelian Main Conjecture
are still very modest. One of the central difficulties of the theory seems to
be the construction of non-abelian p-adic L-functions. Actually, the only
known results in this direction are mainly restricted to the Tate motive,
initially for particular totally real p-adic Lie extensions (see [20, 32, 34, 38])
and later for a large family of totally real p-adic Lie extension as it is shown
by Ritter and Weiss in [38, 39] and Kakde [33].

For other motives besides the Tate motive not much is known. For elliptic
curves there are some evidences for the existence of such non-abelian p-adic
L-functions offered in [2, 9] and also some computational evidences offered
in [10, 11]. Also, there is some recent progress, achieved in [6], for elliptic
curves with complex multiplication defined over Q with repsect to the p-
adic Lie extension obtained by adjoing to Q the p-power torsion points of
the elliptic curve.

The main aim of this work, as well as its companion work [3], is to
tackle the question of the existence of non-abelian p-adic L-functions for
“motives”, whose classical L-functions can be studied through L-functions
of automorphic representations of definite unitary groups. In this work we
will prove the so called “torsion congruences” (to be explained below) for
these motives. In a second part of this work [4] we use our approach to
tackle also the so called Mobious-Wall congruences (as for example are
described in [39]). Without going into details, we simply mention here that
these results allow one to conclude, under some assumptions, the existence
of the non-abelian p-adic L-function in the Kl(JﬁG\)S[%]) The stronger
result, that the non-abelian p-adic L-function actually lies in K7 (A(G)s [%])7
as is conjectured in [8], needs, with the present knowledge, one to assume
that the classical abelian Main Conjecture holds for all the subfields of the
p-adic Lie extension that corresponds to G.

The “torsion-congruences” for motives: Let p be an odd prime
number. We write F for a totally real field and F’ for a totally real Galois
extension with T’ := Gal(F’/F) of order p. We assume that the extension
is unramified outside p. We write G := Gal(F(p™)/F), where F(p>) is
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THE TORSION-CONGRUENCES FOR UNITARY GROUPS 3

the maximal abelian extension of F' unramified outside p (may be rami-
fied at infinity). We make the similar definition for F’(p°°). Our assump-
tion on the ramification of F’/F implies that there exist a transfer map
ver : Gp — Gps, which induces also a map ver : Z,[[Gr]] = Zpy[[Gr/]]
between the Iwasawa algebras of Grp and Gp/, both of them taken with
coefficients in Z,. Let us now consider a motive M/F (by which we really
mean the usual realizations of it and their compatibilities) defined over F
such that its p-adic realization has coefficients in Z,. Then under some
assumptions on the critical values of M and some ordinarity assumptions
at p (to be made more specific later) it is conjectured that there exists an
element pup € Zy[[Gr)] that interpolates the critical values of M/F twisted
by characters of Gp. Similarly we write pps for the element in Z,[[GF/]]
associated to M/F’, the base change of M/F to F’. Then the so-called tor-
sion congruences read ver(up) = pups mod T, where T is the trace ideal
in Z,[[G%]]" generated by the elements > er o7 with a € Z,[[G%]]. These
congruences have been introduced for first time and proved by Ritter and
Weiss [38] for M/F the Tate motive. Further, under some assumptions,
the author [2] has shown them for M/F equal to the motive associated to
an elliptic curve with complex multiplication. We also remark that for the
Tate motive, a geometric approach to the torsion congruences through the
so-called Shintani decomposition has been applied in [5]. In this work we
prove these congruences for motives that their L-functions can be studied
by automorphic representations of definite unitary groups.

The general setting of this work: We keep the notations already
introduced above. We now write K for a totally imaginary quadratic ex-
tension of F, that is K is a CM field. On our prime number p we put
the following ordinary assumption: all primes above p in F are split in
K. As before we consider a totally real Galois extension F’ of F' of de-
gree p that is ramified only at p. We write K’ := F'K, a CM field with
K'" = F'. Now we fix, once and for all, the embeddings incls : Q < C
and incl, : Q — Cp. Next we fix, with respect to the fixed embeddings
(inclo, incly) an ordinary CM type ¥ of K and denote this pair by (X, K).
We recall that ¥ is called ordinary (see [36]) when the following condition
is satisfied: “whenever o € ¥ and A € X (p is the complex conjugation),
the p-adic valuations induced from the p-adic embeddings incl, o o and
incl, o A are inequivalent”. We note that the splitting condition on p im-
plies the existence of such an ordinary CM type. We consider the induced
type X’ of ¥ to K'. That is, we fix a CM type for K’ such that for every
o € ¥ we have that its restriction ojx to K lies in X. We write (K’,%’)
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4 THANASIS BOUGANIS

for this CM type, and we remark that this is also an ordinary CM type. In
addition to the splitting condition we also impose the condition that the
reflex field E of (K, X) has the property that E,, = Q,, where w’s are the
places of E corresponding to the embeddings E < Q — C,. For example
this is the case if p does not ramify in F or if the type (K, X) is the lift of
a type (Ko, Xo) where Ky is a quadratic imaginary field, such that K/Kj
is a Galois extension and p splits in K.

Now we are ready to define the motives M/F that appear in this work.
We would like to warn the reader that the word “motive” is used here in a
very loose sense. What we really need is the existence of a p-adic measure
over G that interpolates some special values, and of course a measure over
G that is associated to the base changed M/F’. Then we can formulate
the torsion congruences.

Let ¢ be a Hecke character of K and assume that its infinite type is
—kY for some integer k > 1. We write M (¢)/F for the motive over F that
is obtained by “Weil Restriction” to F' from the rank one motive over K
associated to ¢. In particular we have that L(M (v)/F, s) = L(1), s) or more
generally for a finite character x of Gr we have L(M (¢) ® x, s) = L(¥x, s),
where X = x o Ng/p, the base change of x to G(KF(p™)/K). Now we
consider the character 1 := 1) o Ng//k, the base change of ¢ from K to
K'. Tt is a Hecke character of infinite type —kY’. Moreover we have that
M (") /F’ is the base change of M (¢)/F to F'.

We consider now a hermitian space (W,0) over K, that means that W
is a vector space over K, we write n for its dimension, and # is a non-
degenerate hermitian form on it. Moreover we assume that the signature
of the form 6, on the complex vector space W ® g , C is the same for every
embedding ¢ : K < C in Y. In particular this implies that our hypothesis
on the splitting of the primes above p in K is the usual ordinary condition;
for a more general ordinarity condition the reader should see [26, page 8].
We write U(@) for the corresponding unitary group (see section two for the
definition).

We let U(6') be the group Resp,,pU(W)/F', that is the unitary group
corresponding to (W', 6) where W = W ®g K’. The F-rational points
of U(¢') are the F’-rational points of U(#). We consider now a motive
M(m)/K over K such that there exists an automorphic representation 7
of some unitary group U(#)(Ar) with the property that the L-function
L(M(n)/K,s) of M(m)/K over K is equal to L(m,s). As we remarked
above, we use the word “motive” in a very loose sense. What we really
use is the fact that we can associate some periods to the various critical
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THE TORSION-CONGRUENCES FOR UNITARY GROUPS 5

values and then the conjectures of Deligne on algebraicity are meaningful.
In partcular we may speak of p-adic L-functions.

Let now ¢ be a large enough integral ideal of K that contains the conduc-
tor of the representation w. We will be assuming that (¢,p) = 1. We now
write 7’ for the base change of 7 to U(#’). This exists in this general setting
only conjecturally by Langlands’ functoriality conjectures but in the cases
of interest that we are going to consider later it is known to exist. Then we
have that L(M(7)/K',s) = L(n’,s) = L(M(7")/K’, s).

Our aim in this work is to prove the torsion congruences for the motive
M (m,4)/F obtained by Weil Restriction from the motive (p @ M (w))/K,
where here 1 is thought as the rank one motive over K associated to the
Hecke character 1. The L-function of M/F is by the inductive properties
of the L-functions equal to L(m,, s), or more general for a character x of
Gr we have L(M(m,v)/F, x,s) = L(m,9X,s), where X = x o Ng/p. We
moreover note that when the motive M(7) is defined over F' then we have
that M (m,v¢)/F = M(¢)/F x M(xw)/F by Frobenius reciprocity.

We will make the following three assumptions

(1) The p-adic realizations of M (7) and M () have Z,-coefficients (ac-
tually our methods should work for coefficients in Z

nr
p

integers of the maximal unramified extension of Q).

, the ring of

(2) 7 is an automorphic representation of a definite unitary group. The
infinite type of the representation is taken to be of parallel scalar
weight. We denote this weight by /.

(3) Let n be the number of variables of the unitary group associated to
7. Then for the weight of the character ¥ and of the representation
7 we have the condition k + 2¢ > n.

Now we indicate some cases of special interest that are included in the
motives that we described above.

The case n = 1: The main application in this case is obtained with 7
trivial. In this setting, our theorem proves the “torsion congruences” for
elliptic curves with complex multiplication, or in general for Hilbert mod-
ular forms of CM type. Results in this direction have been also obtained in
our previous work [2] on these congruences. However we stress that we do
not only reobtain these results with our new methods but also improve on
the assumptions that we made there. Actually we obtain the same result
almost unconditionally. Finally we mention that in [2] the main ingredient
was the Eisenstein measure of Katz as in [36] and is related to the auto-
morphic theory of the group GLsy/F, that is Hilbert modular forms. In this
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work we use the automorphic theory of unitary groups and hence hermitian
modular forms.

The case n = 2: Let us now discuss an application of the case n = 2.
We consider a Hilbert cuspidal form f of F', which is assumed to be a nor-
malized newform. For simplicity we take the infinite type to be of parallel
weight two. We write Ny for its conductor. We assume that Ny is square
free and relative prime to p. We now impose the following assumptions on

7.

(1) f has a trivial Nebentypus.

(2) There exists a finite set S of finite places of F' such that we have
(i) ord,(Ny) # 0 for all v € S, (ii) for v € S we have that v is inert
in K and finally (iii) §S + [F : Q)] is even.

Let us write D/F for the totally definite quaternion algebra that we can
associate to the set S, i.e. D is ramified at all finite places v € S and also
at all infinite places. Note that our assumptions imply that there exists an
embedding K < D. If we write 7’ for the cuspidal automorphic represen-
tation of GLa(AFp) associated to f then our assumptions imply that there
exists a Jacquet-Langlands correspondence 7w := JL(7') to D*(Ap). As we
will explain later there exists an isomorphism (D* x K*)/F* = GU(0)(F)
for some totally definite two dimensional Hermitian form (W, 6). In partic-
ular, the representation 7 induces an automorphic representation, by abuse
of notation, 7 on GU(0) and by restriction to U(#). The scalar weight of
the automorphic representation is zero (i.e. £ = 0). Moreover it is known
that L(m,s) = L(BC(n'),s), where BC(7') is the base-change of 7’ from
GL2(Ar) to GL2(Ak). In particular we may pick M (7)/F above to be the
motive associated to the Hilbert modular form f. This explains our inter-
est in the case n = 2. We also remark here that Ming-Lun Hsieh in [31]
has made important progress with respect to the classical abelian Iwasawa
Main Conjecture of such motives, i.e. M(7)/F x M(y)/F.

Now we are ready to state the main theorems of this work. We start with
the motive M (¢)/F. The precise interpolation properties of the measure
Kar(yp),F are given in Theorem 4.1. As we explain after that Theorem (in
Remark 4.2 (ii)), this measure has very similar interpolation properties to
the measure constructed by Katz, Hida and Tilouine. Namely this measure
interpolates values of the L function associated to v twisted by finite Hecke
characters of K. However there are some differences on some normalizing
factors as well as on the Euler factors that we remove. We refer the reader
to Remark 4.2 (ii) for more details on this.
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THE TORSION-CONGRUENCES FOR UNITARY GROUPS 7

THEOREM 1.1 (Main Theorem 1). — Let n = 1. Assume that the prime
p is unramified in F' (but may ramify in F') and let ¥ be an ordinary CM
type of K. Let ¢ be a Hecke character over K of infinite type —kX with
k > 1 and with values in Z, (its p-adic realization). Write M (y)/F for
the motive over F introduced above. Further write M (y")/F’ for the base
change of M (¢)/F to F’'. Then the torsion congruences hold true, that is

ver(piar(yp)/F) = par(yry/rr mod T

where pipr(p)/F and gy pr are the p-adic measures associated to M (1) / F
and M(¢")/F’.

In order to state the second main theorem of this work we need to in-
troduce some more notation. Let w be an automorphic representation of
a definite unitary group G = U(0)/F with 0 a positive definite Hermitian
form of dimension two over K. We write ©’ for the base change of 7 to
G' = Resp/pU(0)/F. We write ¢ for the conductor of m and ¢’ for the
ideal ¢ seen as an ideal of K'.

In this case, opposite to the case of n = 1, a new problem appears.
Namely one has to control the base change of the automorphic represen-
tation, in principle a very hard problem. We will now make a Hypothesis
(or conjecture) and we will provide also a family of hermitian forms satis-
fying it. Moreover later we will also state another Theorem (Theorem 1.4
on “Average Torsion Congruences”) where we do not assume the “Hypoth-
esis”. We believe that it is very interesting to compare the two theorems
(see also Remark 1.5).

We consider the canonical map A : G(Ar) — G'(Ap/) induced by the
embedding F' — F’. Below we write Ap ; for the finite adeles of F' and
similarly Ags ; for those of F”.

Hypothesis: Assume that we can associate to 7 (resp. ') a Q,-valued
modular form f, (resp. fn/) of G (resp. G’), which is an eigenform for all
Hecke operators away from ¢ (resp. ¢’) such that the following conditions
are satisfied:

(1) fr (rvesp. fr) is Zy,-valued on G(Ag})) ={z € G(Apy)| z, = 1,Vv|pc}
(resp. G'(ALY)) = {z € G'(Aprf)| 2 = 1,Yulpc}).

(ii) We write A*(f,/) for the pull pack of fr/ with respect to A, that is
A*(fa)(x) == fr(A(x)),Vz € G(Ap). Then for all x € G(Ag})) we have
A*(frr)(x) = fr(z) mod p.

(iii) For all z € G'(Aps ) and v € Gal(F'/F) we have fr(z7) = fa (),
where the action of the Galois group is the induced action on Ap/ ; =
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Ap s ®p F’ obtained by the action on F”.

In section 7 we provide a family of examples where the above Hypoth-
esis does hold. Moreover at the end of the next section, after introducing
some notation, we explain what does it mean that the automorphic form
is Qp-valued.

THEOREM 1.2 (Main Theorem 2). — Let n = 2 and let ¢ be a Hecke
character over K of infinite type —kY and m an automorphic representation
of parallel scalar weight ¢ of a definite unitary group U(6) with 6 a positive
definite Hermitian form of dimension two over K. We take k+2¢ > n. Write
M/F for the motive M (rm,)/F as introduced above. Assume that M/F
has coefficients in Z,, in its p-adic realization. Write M/F' = M (7', ¢")/F’
for the base change of M/F to F’'. Then under the Hypothesis above we
have,

¢
Q (Y, 5%\ 2 ] ] V |
(SI)(KZ) < frifm > ver(#éi,i)) =< fa, fx > ME:";,()W) mod T,
where uETfr";) and MEZ:’,”J},) are the p-adic measures associated to M/F and

M/F', and the interpolation properties are given in Theorem 4.1. Here we

~ o 20
write < fr, fr > for the inner product of f;. The factor (%) is an

element in 7, and it will be defined explicitly later. We simply mention here

that Q,(Y,X) are some canonical p-adic periods. In particular if < fr, fr >
has trivial valuation at p and ¢ = 0 then the torsion congruences hold true.

We remark here that the measure ,ugr “13)) (resp. HEZ: ’;'3),)) depends not only

on the automorphic representation m and the character 9 (resp. 7’ and ')
but also on the choice of the form f, (resp. fr/). We explain more on this
choice in the Remark 4.2 (iii) after Theorem 4.1.

FNY
‘We can state another theorem where we can avoid the factor (%)
P )

even when ¢ # 0. For this we need an extra condition. We need to assume
that there exists a Q,-valued eigenform fp of the unitary group G, of con-
ductor that divides ¢ and of parallel weight p¢ such that fy(x) = fr(z)
mod p, Vx € G(Aggcf)). Our hope is that the form fy will exist in many
cases if one can put the form f, in a Hida family, or equivalently one can
find a deformation of the Galois representation associated to the motive
M (7), with weight equal to pf. We note here that the family of examples
which satisfy the Hypothesis and we provide later do also satisfy this
extra condition.
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THEOREM 1.3 (Main Theorem 2 (second form)). — Let n = 2 and let
1 be a Hecke character over K of infinite type —k3 and w an automorphic
representation of parallel scalar weight ¢ of a definite unitary group U(6)
with 6 a positive definite Hermitian form of dimension two over K. We take
k+2¢ > n. Write M/F and M/F' as in the previous theorem. Then under
the Hypothesis above and the existence of the form fy we have,

< fur fr > ver(ugfrfi)) =< fr, fx > ug’,”'i,) mod T,

where “Efrﬂi) and ugﬂi,) are the p-adic measures associated to M /F and

M/F" as in the previous theorem. In particular if < fr, fr > has trivial
valuation at p then the torsion congruences hold true.

We now prepare our setting for a theorem which does not assume the
Hypothesis. We now write {7} crep(a,c) for the set of automorphic rep-
resentations of G of conductor that is contained in ¢ and of parallel weight
¢. We still write M(y) for the motive associated to a Grossencharacter as
before and we assume that its p-adic realization has Z, coeflicients. How-
ever now we consider 7 with no restriction on the coefficients. To each of
the motives M(m,v)/F we have a p-adic measure i on Gp. We now
consider the p-adic measure

pri= Y udn) € [(Grl),
mERep(G,c)

for some f, associated to m. The fact that the measure has coefficients
in Z, is due to the fact that if 7 € Rep(G,¢) then also 77 € Rep(G,¢)
for all ¢ € Gal(Q/Q), where here 7° denotes the representation obtained
by applying o to the coefficients of the finite part of 7. This will be ex-
plained later more formally. We now introduce also measures for Gp.
We write {7}/ crepar,ery for the set of automorphic representations of
G' = Resp/pG of conductor ¢’ = cv. We write M (¢)’) for the motive as-
sociated to a Gréssencharacter ¥’ := 1) o Ny k. As before to each of the
motives M (n’,¢)")/F’ we can assign a p-adic measure fi,/  on Gpr. More-
over we define the set Reppc(G’,¢’) of automorphic representations of G’
that are coming from base change from G. We define the measure

MBC,F" ‘= Z MST{TT;)/ S Zp[[GF’]],
n'EReppc(G’,¢’)

If one assumes the torsion congruences for each of m € Rep(G,¢), that is

ver(pr,y) = pargr mod T,
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where 7’ the base change of 7 to F’, then one can conclude the torsion
congruences for the measures i and ppc F/. Our last theorem indicates
that something in this direction is true. We first need to modify the above
defined measures. We believe that this modification is related with the fact
that we use automorphic periods in our interpolation formulas. But we do
not wish to say more on that at this point.

Let us write B C G(Ay ) for a fixed finite set such that G(Ap) =
ez G(F)OD(c) and B C G' (A pr) so that G(Ap:) = [, 5 G(F" )V D'(c).
Here D(¢) is the group define later in equation 2.1. Moreover by [40, Lemma
8.12] we may take b, = 1 for all v|pc and similarly for b’ € B’. The map
A defined above induces also map A : B — B’, where A(b) is the element
b’ € B’ so that A(b) € G(F')b'D'(c). We now fix an orthogonal basis {f;}
consisting of hermitian forms of G for the congruence subgroup D(c¢) and
of parallel weight ¢ which are eigenforms for all relative prime to ¢ Hecke
operators. Similarly we write {f;} for an orthogonal basis for hermitian
forms of G’ for the congruence group D’(c), parallel weight ¢, which are
eigenforms for all relative prime to ¢ Hecke operators. For a pair of elements
a,b € Bg we define the twisted measures

B o) = Z > fﬁ f] D, e z,(Gxll,

where f; is associated to m; for some m; € Rep(G,c). Note here that we
may have multiplicities. For Gg/ we have

A*(f})(a)A*(f7)(b) L)
; < T, > Pty €

HE (ab) = Zp||GF]],

The fact that this quantities lie in the corresponding Iwasawa algebras will
be proved later. We can now state our third theorem. We remark that
this theorem can be stated for any n and we remind the reader that this
theorem does not assume the “Hypothesis”.

THEOREM 1.4 (Main Theorem 3 (Average Torsion Congruences)). —
For all a,b € B we have
(1) Let € be a Z, valued locally constant function on Gp: with €' =€

for all v € I'. Then we have the congruences,

0, (Y, %)% /
O vy d = A d ».
< Qp(}/, Z) /;F e over ,UF,(a,b) G € aup ,(a,b) mod p
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(2) If we assume that F'/F is unramified at p then there exists a con-
stant c(a,b) € Z, such that

c(a,b) (QP(Y, 2

20
0, (V%) ) ver (u(py(a,b))) = c(a,b)pupr (ap)) mod T,

that is the torsion congruences hold for all twisted normalized mea-
sures c(a,b)fi(p,(a,p)) and c(a,b)p(pr (ap)), a,b € Bx. The constant
c(a,b), which depends also on the selected basis {f}}, is defined as
the smallest power of p so that

A*(f7)(a)A*(f;)(b)
<[fif;>

c(a,b)

is integral for all these fj{ which do not belong to a representation
ﬂ;, which comes from base change from F'.

Q,(Y.3)
be removed if one assumes now the existence of forms fy ; of parallel weight
pf with similar properties as before.

2¢
We just remark here that as before the factor (w) € Z,, could

Remark 1.5. — We give to this kind of congruences the name average
torsion congruences. We would like here to remark that these congruences
seem to separate the problem of proving the torsion congruences in two
steps. First one proves congruences between Siegel-type Eisenstein series
(as we will see they are enough to prove the average torsion congruences)
and then study the behaviour of the projection of the Siegel-type Eisenstein
series to the various eigenspaces associated to the selected automorphic
forms by means of the doubling method. The second step needs the under-
standing of the behaviour of the automorphic periods under base change,
which seems to be a quite challenging problem in the theory. Another fea-
ture that makes these congruences interesting to us is that they can be
proved in more general settings, like indefinite unitary groups or symplec-
tic groups, in which cases the problem of periods could turn out to be even
harder to handle.

Before we discuss the general strategy for proving the above theorem
we would like to remark that the condition, that p is unramified at F' is
imposed because up to date the so-called g-expansion principle (in its p-
integral form) is not known for the group U(n,n)/F when p is ramified in
F.
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Strategy of the proof: This work and its continuation [3] are based in
the following key idea (see also the works of Kato [34], Ritter and Weiss
[38] and the authors [2]) : Special values of L functions of unitary represen-
tations can be realized with the help of the doubling method either (i) as
values of hermitian Siegel-type Eisenstein series on CM points of Hermit-
ian domains or (ii) as constant terms of hermitian Klingen-type Eisenstein
series for some proper Fourier-Jacobi expansion. We explain briefly the
two approaches. Approach A below is used in this work and approach B is
applied in [3].

Approach A (Values of Eisenstein series on CM points): In this
approach we consider Siegel-type Eisenstein series of the group U(n,n)
with the property that their values at particular CM points are equal to the
special L-values that we want to study. The CM points are obtained from
the doubling method as indicated by the embedding U(n,0) x U(0,n) —
U(n,n). Then we make use of the fact that the CM pairs (K, X) and (K', %)
that we consider are closely related (i.e. the second is induced from the first)
which allows us to relate the various CM points over K and K’. Then we use
the diagonal embedding, induced from the embedding K — K’, between
the symmetric space of U(n,n),p and that of Resp:,pU(n,n),p to relate
the Eisenstein series over the different fields and hence also their values
over the CM points. But the last is nothing else than the special values
that we want to study. This is also the idea that was used in [2].

Approach B (Constant term of Fourier-Jacobi expansions): In
this approach we obtain Klingen-type Eisenstein series of the group U(n +
1,1) with the property that the constant term of their Fourier-Jacobi ex-
pansion is related with the special values that we want to study. Then again
we use the embedding K < K’ to relate these Klingen-type Eisenstein se-
ries over the different fields and hence also to obtain a relation between their
constant terms. The main difficulty here is that the Klingen-type Eisenstein
series have a rather complicated Fourier-Jacobi expansion, which makes
hard the direct study of the arithmetic properties of these Eisenstein se-
ries. However the Klingen-type Eisenstein series are obtained with the help
of the pull-back method from Siegel-type Eisenstein series of the group
U(n+1,n+1) using the embedding U(n+1,1) xU(0,n) — U(n+1,n+1).
The Siegel-type Eisenstein series have a much better understood Fourier
expansion, which turns out it suffices to study also the Klingen-type Eisen-
stein series.

Organization of the article: This article is organized as follows. The
next section serves as an introduction to the theory of hermitian forms, that

ANNALES DE L’INSTITUT FOURIER



THE TORSION-CONGRUENCES FOR UNITARY GROUPS 13

is automorphic forms associated to unitary groups both from the classical
complex analytic point of view as well as the arithmetic. Needless to say
that nothing in that section is new. In section 3 we introduce the Eisenstein
measure studied by Harris, Li and Skinner in [25, 26] plus some important
input from the work of Ming-Lun Hsieh [30, 31]. Also in this section, up
to some small modifications, there is not much new material. In the next
section we construct the measures pup and pp that appear in the “torsion-
congruences”. These measures are obtained by evaluating the Eisenstein
measure of Harris, Li and Skinner at particular CM points of U(n,n). This
construction is implicit in the papers [25, 26] and it will appear in full details
in the forthcoming work of Eischen, Harris, Li and Skinner [15]. For the
needs of our work we provide here some parts of this construction restricting
ourselves only in the cases of interest. The main part of this work is in
section 5 where we prove congruences between Siegel-type Eisenstein series.
In section 6 we discuss CM points. In section 7 we use the congruences
between the Eisenstein series to establish the “torsion congruences” for the
various motives that we make explicit in the introduction. In section 8 we
consider the “average torsion congruences”. Finally there is an appendix
where we simply reformulate a result of Ritter and Weiss in [38].

Acknowledgments: The author would like to thank Prof. Coates and
Prof. Venjakob for their interest in this work, which has been a source
of encouragement for the author. Finally the author would like to thank
the anonymous referee for his/her very helpful suggestions and comments,
which improved this paper considerably.

2. Automorphic forms of unitary groups and their p-adic
counterparts.

As we indicated in the introduction, in this section we simply recall the
definition and fix the notation of the key objects (automorphic forms of
unitary groups, Mumford Objects e.t.c.) that we are going to use later.
Our references are the two books of Shimura [40, 41] and the papers [13,
25, 26, 30, 31], where all the material of this section can be found. Actually
we indicate separately, at each paragraph, the references that we closely
followed while writing this section and hence the reader can find there
more details if he/she wishes.

Let F be a field (local or global) of characteristic different from two and
we consider a couple (K, p) of an F-algebra of rank two and an F-linear
automorphism of K. That is, K is either (i) a quadratic extension of F
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and p is the non-trivial element of Gal(K/F) or (ii) K = F x F and
(x,y)? = (y,x) for (z,y) € F x F. We will always (except when we indicate
otherwise) write g for the ring of integers of F' and t for the ring of integers
of K in case (i) and t = g x g in case (ii).

Let now V be a K-module isomorphic to K} and let ¢ = +1. By an
e-hermitian form on V' we mean an F-linear map ¢ : V x V — K such
that, (1) ¢(z,y)? = ed(y, z) and (ii) ¢(azx,by) = ad(z,y)b? for every a,b €
K. Assuming ¢ is non-degenerate we define the algebraic group GU(¢)/F
over F' as the algebraic group representing the functor from F-algebras to
groups:

GU(¢)(R) := {g € GLxa,r(VOrR)|$(gz, gy) = v(9)d(z,y), v(9) € R*},
for an F-algebra R. Similarly we make the definition for U(¢)/F by

U(¢)(R) := {9 € GLra,r(V ®F R)|¢(9z, gy) = ¢(z,y)}.
Complex analytic hermitian forms (see [40, page 38-40 and 78] and
[41, page 30]): We now pick F' = R and K = C above and as p the usual
complex conjugation. We consider the pair (V,¢) with V = C. and with
respect the standard basis we write

0 0 -1,
o= 0o 6 0 ,
i1, 0 O

where 0 € GL;(C) with §* = 6 > 0. That is, —i¢ is a skew-Hermitian form
and ¢ has signature (r 4 ¢,r) with n = 2r + ¢. For the moment we assume
that r > 0.

We now describe the (unbounded) symmetric spaces attached to this uni-
tary group as well as the operation of the unitary group on these symmetric
spaces. We put

39 .= 3p .= {( ; ) eCttzr e Cly e CLi(a* — ) > y*ely)}.

For ¢t = 0, we have that U(¢)(R) is isomorphic to U(n,n)(R). We write H,
for its symmetric space. We consider now an element a € G% := GU (¢)(R)
written as

a b c
a=| g e [ |,
h I d

with a,d € CI and e € Ct. Then we define an action of G?® on 3 := 34 by
( y ) ( . )
o = ,
Yy Y
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with 2/ = (az + by +¢)(he +ly+d)™, o = (92 +ey+ f)(hz +ly+d)~ .
Moreover we define the following factors of automorphy

A:G?x3— GL44(C), u:G?x3— GL,.(C)
by

hzt +d hyt —ilo

Ale, ) = ( 0L gzt + f) 0 Lyt + 0 ed

and
wla,z) =hx+ly+d

for z = ( z ) € 3. Finally we define j(a, z) := det(u(a, 2)).

We now consider a CM-type (K, ). We write a for the set of archimedean
places of K determined by ¥ and we define the set b := a U p a. We fix
a hermitian space (V,¢) over K and consider the symmetric space H :=
Hg :=[,ca 3%~ The group G4 := G]ﬁJr i=[Tyea G4 :=[1,ca G? operates
on Hy componentwise through the operation of each component G¢ on
3% described above. We write (m,,, n,) for v € a for the type of ¢,. For a
function f : H — C, an element o € G and an element k € ZP we define
the functions f||xa : H — C by

(FIka)(z) = ja(2)* F(a2),
where jo ()™ 1= j(a, 2) 7 = [T, e det ((crp, 2)) ™ det (A (@, 2,)) ~5+0).

Further we define the function f|ya : H — C by flra = f||k(V(0‘)a_%o‘)7
where v(a)a = (V(@)y)vea-

DEFINITION 2.1. — Let I" be a congruence subgroup of G. Then a func-
tion f : H — C is called a hermitian modular form for the congruence
subgroup T' of weight {k,} if

(1) f is holomorphic,
(2) flwy=fforally €T,
(3) f is holomorphic at cusps.

We may write jo(2)7% = [[,cadet(cw)*ordet(p(an, z,)) P "Fe ([41,
page 32]).

Unitary automorphic forms (see [40, page 80]): We write G¢ for
U(¢)/F and G} := G?(Ap) = [Iyen G®(Fo) [1,ca G*(R) for the adelic
points of the unitary group G®. We define Cy = {a € G¢|a(i) = i}.
We say that f : Gﬁ — C is an (unitary) automorphic form of weight
k € ZP if there exist an open compact subgroup D of Gﬁ such that for all
a € G*(F) and w € DC, we have f(azw) = j(a,i) *f(x). The relation
between classical hermitian forms and unitary automorphic forms is as
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follows. We pick g € Gﬁ and define T, := G?(F) N qDq~'. Then the
function f, : Hl — C defined by the rule

flay) = (fllky) (i), Yy € G2

satisfies fy||xy = fy for all v € T'y. We call f a unitary automorphic form if
the f,’s are hermitian modular forms for all ¢ € Gn. We denote this space by
M, (D). As it is well-known is we fix a decomposition G = Hyen G?(F)gD
for a finite set B C G, then the map f — f, establishes a bijection between
My(D) and [],cp Mi(T'g).

Some special congruence subgroups (see [40, 41]): We now describe
some congruences subgroups that play an important role in this work. We
start with G := GU(n,n) and introduce some special open compact sub-
groups D C Gy,. We consider two fractional ideals a and b of F' such that
ab C g, the ring of integers of F', and define using the notation of Shimura
[41, page 11]

Dla, b] := {x: ( ZI flm ) € Gnlaz < t,b; < ar,c, < br,d, -<t},

where we recall t is the ring of integers of K. One usually picks either
a=b=gora=b"!=0"! with 0 the different ideal of ' over Q. As it is
explained in [40, page 73] we may pick the finite set B C Gy, consisting of
elements of the form diag[#,r] for r € GL,,(Ak n). Actually we may even

pick the elements r to be of the form ( (t) 1
n—1

moreover remark the following computation,

70 a b PN [ RarTt et [ Rart et
0 r c d 0 r et rdr™t ) T\ rert rdrt )

Finally, for an integral ideal ¢ of g, we introduce the notations

) with t € A}Qh. We

To(b,c) ;== G1 N D[b~*, be], Ty(b,¢) :={y € To(c)|ay — L, € rc}

and we write Tg(c) := To(g,c). Now we pick an n-dimensional hermitian
space (V,60) over K with 6 positive definite. Let us write M for the g-
maximal v-lattice in V' and for an ideal ¢ of g we now define a congruence
subgroup D(c)? € GY. We first define C := {a € GY | Ma = M}, M :=
{z eV |0(z,M)C DI_(}F} and then

(2.1) DY(¢):={y e C | My(y, — 1) C ¢, M,, Yo|c}.

Following Shimura [40, page 87] we define an element o € GL,,(K)y such
that M'c = M where M’ =" | ve; for some fixed basis {e;} of V. Then
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if we write 6’ := ofo then for every finite place of F' we have that
v E De(c)v & 9’;1(07071 — 1)y < 0K /Fp-

Families of polarized abelian varieties over C (see [41, page 22]):
We consider the following data P := {A, A, ¢, {t;}7_;} where

(1) A is a complex abelian variety of dimension d.

(2) A: A — AV is a polarization of A

(3) v: K — Endg(A) aring endomorphism, where K is a CM field such
that ¢K is stable under the Rosati involution o — o’ of Endg(A)
determined by .

(4) The t;’s are points of A of finite order.

We fix an analytic coordinate system of A, that is we fix an isomorphism
¢ : C¥A = A(C), where A a lattice in C?. We define a ring injection
VU : K < C4 such that 2(a)¢(u) = £(¥(a)u) for a € K and u € C?. Then ¥
gives the structure of a K-vector space to the Q liner span QA C C¢, and
hence QA is isomorphic to K} for some r such that 2d = r[K : Q]. We can
find an R-linear isomorphism ¢ : (K,). — C¢ such that g(ax) = ¥(a)q(x)
for a € K and x € K}. We define L := g~ 1(A).

As it is explained in Shimura [42, 41], if we write E(-,-) for the Riemann
form of A determined by the polarization A, then there is an element T €
GL,(K) such that 7* = =T and E(q(z),q(y)) = Trx(=Ty"), z,y €
K}. Defining u; := ¢~1(t;) we have constructed the PEL-data

Q = {K7 \Ij; La T? {ui}f=1} .

Now we fix a CM-type X := {7, },ca of K and write m, resp. n, for the
multiplicity of 7, resp p7, in ¥. Then we have that m, + r, = r for all
v € a and we can decompose C¢ into a direct sum @,eal, so that each
V. is isomorphic to C™ and ¥(a) acts on V,, as diag[a, 1, ,ay1ls,] for each
a € K. With this definitions of m, and n, we have that the hermitian form
1T, has signature (m,,n,) for every v € a.

Lattices and polarizations (see [26] and [30, page 8 |): Even though
for this paper we need only to consider the case of unitary groups isomor-
phic to U(n,n) we present the more general case U(m,n) since we will
need it in [3]. We fix two nonnegative integers m > n > 0. We consider
a K vector space W of dimension m — n endowed with a skew-Hermitian
form 6. We fix a basis {w1, ..., Wm—n} of W such that 6(w;, w;) = a;0; ;.
Moreover we assume that io(a;) > 0 for all 0 € ¥ and o,(a;) is a p-adic
unit for all o, € ¥,. We let I* = @7 | Kz; and IY = &7 Ky; and we

SUBMITTED ARTICLE : FINAL VERSION.TEX



18 THANASIS BOUGANIS

consider the skew-Hermitian space (V,0,, ) defined by V := IY @ W & X
-1,
and O, = 0
1n
We now pick some particular lattices in the above defined hermitian
spaces. We recall that we write v for the ring of integers of K and g for the
ring of integers of F. We define X :=tx1 & -- Dz, an t lattice in IX and
Y = D;(}Fyl DD DI_(}Fyn, an t-lattice in 1. We choose a t-lattice L in
W that is g-maximal with respect to the Hermitian form 6 (see [40, page
26] for the definition of maximal lattices). Then we define the t-lattice M
inVasM:=Y®L®X. We now let M, := M ®, t,. We consider the
following sublattices of M,

M~ =Yy, &Ly, ®Ysy, M°:= Xy & Lyy & Xy,

where for a set S of places of K and an v ideal L we write Lg := L ®,
[1,cs to- The sublattices (M°, M ~1) have the following properties: (i) they
are maximal isotropic submodules of M, and they are dual to each other
with respect to the alternating form (-,-),, , defined by as (v,0)pn =
Trg/(0mn(v,v")) and (ii) we have that rankMgpl = Tank:Mgz = m and
rcmkMZ_;l = mnkMgp = n. Such a pair is usually called a polarization of
M,. As it is explained in [26, page 9] the existence of such a polarization
is equivalent to the ordinary condition that we have imposed on p.

Shimura varieties for unitary groups (see [30, pages 10-11 | and
[31]): Let G := GU(0,,,,)/F and M be as above our fixed lattice. For
a finite place v € h we set D, = {g € G(F,): M,g =M,} and D :=
[I,cn Do Our ordinary assumption allow us to identify for every v above
p

G(F,) 5 [] GLmsn(Fy) x FY
vEX,

and the maximality assumption of the lattice M gives

Glgp) H GLmin(go) X 95 -
CISPIM

That is, for every v|p we have D, = GL(Ms,) x g = GLpn(go) x 9. We
fix an integer N relative prime to p and define an open compact subgroup
K(N) with the propertyK(N) C {ge€ D: M(g—1) C NM}. We define
for r > 0 the groups

) 1y, % ”
K’(N)::{gEK(N):ng( 0 1 ) modp,Vv|p}.
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Let us write E for the reflex field of our fixed type (K, ®). We write
Op for its ring of integers and we consider the ring R := Op ® Z,). Let S
denote a finite set of rational primes. We write U C D for an open-compact
subgroup of G(Ay,). Let S be a connected, locally noetherian R-scheme and
5 a geometric point of S. An S-quadruple (A4, X, 2,7(%)) of level U consists
of the following data:

(1) A is an abelian scheme of dimension (m + n)d over S, where d =
K : Q,

(2) Mis a class of polarizations O(sy 4+ A, where A is a prime to S polar-
ization of A over S,

(3) v: v — Ends(A) ®z Zs) compatible with the Rosati involution
induced by A.

(4) 7O = UnS), with n®) : MRZS) 3 TS)(A;) an v-linear 7, (S, 5)-
invariant isomorphism and 7 (%) (A;) := @(N,S):l A[N](k(s))

(5) We write V(S)(A,) := T(A,)®zA®). Then the numerical structure
induces an isomorphism 7(%) : M @ AS) 5 V(S)(Ag). We obtain a
skew-hermitian form e” on V() (Ag) by

(2, 2") 1= O (0™ (2), 7" (2)).

Then, if we write e* for skew-hermitian on V() (Ay) induced by the

polarization, we require that e* = ue” for u € Aﬁs).

(6) We have that
det(X —1(b)| Lie(A)) = [ (X = (g0c) ()™ (X — a(b))" € Os[X], Wb € x.
ceEX
We will consider mainly two situations for §. Namely, the case where
S =0 and S = {p}. In the first case, it follows by the theory of Shimura
and Deligne that the functor Fy; from the category of schemes over E to
the category of sets defined as

Fu(S)={A=(AX1,7)/S}/=

is representable by a quasi-projective scheme Shg(U) defined over E. In the
other case, it is know by the theory of Kottwitz that if we pick U = K(N)
neat and such that U, = D,, then the functor ]-'((Jp ) from the category of
schemes over R to sets

]:[(]P)(S) = {A: (A,;\,Z,ﬁ(p))/S}/g

is represented by a quasi-projective scheme Sh(éf )(K (N))/R.
Algebraic hermitian modular forms (see [13, page 193]: Let (V, ¢)
be a hermitian form with ¢, of signature (m,,n,) for ¢ € X. We fix

SUBMITTED ARTICLE : FINAL VERSION.TEX



20 THANASIS BOUGANIS

an t-algebra Ro and we consider the algebraic representation (¢, ¥) of
[I,cx GLm, X GL,, defined over Ry, that is we have for every Ro-algebra
R a homomorphism

Vg || GLm,(R) x GLy,(R) = GL(Vg), Up =¥ g, R
ceY

that commutes with extensions of scalars R — R’ of Rg-algebras. In this
work we will be interested in scalar hermitian modular forms, which means
that the w above will always be taken of the form ¢ (z) = det(z)* for some
k = {ky }veb, where for (a,b) = (ao,bs)ses € [[,cx, GLm, (R) X GL,,(R)
we write det((a,b))* := I, s, (det(aq))* T, cx,(det(by)"7», where we have
identified the set a with the CM type 3.

For an Rg-algebra R and each data A/R = {A, A\,1,a}/R defined over R,
we write w = H%(A, Q) ) for the invariant one forms of A/R. Then
we define modules

A/R HlsomR %WA/R A/R HlsomR ,epogA/R),
ceX ceY

and E4/p = EX/R@EX/R Here for o € ¥ [[ X we write e, € K®gQ for the
corresponding orthogonal idempotent related to the decomposmon K ®q
Q= ®UGEHEPQ We note that to give an element w € EA/R is equivalent
to fixing a basis for QA/R HUGZ €oWa/R and gA/R Hoez €poW A /R In
particular we have that the group [] .y GLm, (R) (resp [[,c5 GLn,(R))
acts on ‘SZ/R (resp. EA_/R) by

a-w©v) =wa), a€ [[ GLm,(R),we&f pve [[R™
oEX ceY

and hence the group [] s, GLm, (R) X GLy,(R) on E4/R.

ocy
DEFINITION 2.2. — A hermitian modular form of weight p and level a,
defined over Ry is a function f on the set of pairs (A,w)/R with values in

W /R such that the following hold:
(1) The element f(A,w) depends only on the R-isomorphism class of
(4,w).
(2) The function f is compatible with base change R — R’ of Ry-
algebras, that is
f(A XR Rlvw QR R/) = f(A7LU) R INS \IIR'

(3) For each (A,w) over R and o € [[ ey, GLm,(R) x GL,,(R) we
have

f(A7 Oé(.d) = ¢(O‘t)71f(4a w)'
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p-adic hermitian modular forms (see [25, 26, 30, 31]): For a natural
number N and a prime number p with (p, N) = 1 we consider the functor
]-'I(fz (N) from R schemes to sets given by

‘Ff(f’)l(N)(S) = {(Aa.]n) = (4, ;\71777(1))7«].”)/5} /=

where j, an t-linear embedding

Jn: M°® ppn = Alp"].
This functor is representable by a scheme Igg(K™(N))/R (this is what in
[26, page 26] is denoted by Iga,). We now consider the strict ideal class
group of F, that is CI}(K) = F} \Ap s/v(K), and pick representatives of it
in Agf)f. From each such representative ¢ we consider the functor F (p Z( N)e

from R-schemes to sets
.F](fl(N)yc(S) = {(A,jn) = (A, N 0,7P,5,)/S: Nisac —polarization} /=

This functor is representable by a scheme Igg, (K™(N),c)/R and we have
that

[ 796, (K™(N), ¢) = Iga(K™(N)).

As it is explained in [30, paragraph 2.5] the Igusa schemes Igg, (K™(N), c)
are associated to the unitary group U(n,n) and hence the above decom-
position gives us the bridge between the groups GU(n,n) and U(n,n),
and hence the notions developed here (algebraic modular forms e.t.c.) for
GU (n,n) can be extended also to U(n,n).

We now take the ring R above to be a p-adic ring, that is R = I&nk R/p*R.
We write Ry, := R/p*R. Now we fix a toroidal compactification Sg (K (N))/R
of Sq(K(N))/R and write Ty := Sg(K(N))[1/E]/Ry, for the ordinary
locus modulo p*. Here E is a lift of the Hasse invariant from R; to Ry
(see [26, page 30]). For a positive integer £ we set Ty := Igq(K*(N))/Ry.
There exist finite étale maps mp ¢ @ Ty — Tpr and we define T =
@e Tor = I9a(K*®(N))/Ry. Then Tk is galois over Ty with Galois
group isomorphic to Aut., (M 9). For £,k € N we define the spaces

Ver == H(Ty 1, Or, ),

and then Vi p := lim V. and V' := lim, Voo .. We call Vp(G,K(N)) ==
VN the space of p-adic modular forms of level K (N). Here N < GLyin(t,)
is the upper-triangular unipotent radical of G' L,y (tp).

Algebraic and p-adic hermitian modular forms (see [25, 26, 30,
31]): Now we assume that we are given a p™ arithmetic structure of an
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abelian variety A with CM by t of type (m,n) defined over a p-adic ring
R. That is we have compatible t-linear embeddings

o MO ® i < A",
for all n > 0. That is, we assume an embedding

Joo : M ® ppee — A[p™].
In turn we get an isomorphism
j:M°® Gm > A.

Identifying Lie(A) = Lie(A) we obtain an isomorphism

j:M°®p R5 Lie(A),
which induces also the isomorphisms

jt MY, @p R ex, Lie(A), j-: Mg; ®r R = e Lie(A).
Aswy p = Hom(Lie(A), R) we obtain isomorphisms
w(d)+ : Mgp ®pr R es,Wa/p, W(j)-: Mgp ®@r R = essWa/R
and then
w(j) = w(f)s Bw(i) - M*@r RS wy g

In particular we obtained an element w(j) € £4,r. This construction allows
us to consider every algebraic hermitian modular form also as a p-adic
hermitian modular form. Indeed if f is a hermitian form we can consider
it as a p-adic modular form by defining f(4,7) := f(4,w(j)).

Mumford Objects!") and ¢-expansions (see [13, pages 207-211]):
The familiar g-expansion with respect some given cusp of an elliptic mod-
ular forms has an algebraic interpretation as the evaluation of the modular
forms on the so-called Tate curve that corresponds to the selected cusp.

Our next goal is to introduce the analogues of the Tate curve for the uni-
tary groups GU(n,n). We start by considering a Hermitian space (V@)
0o -1, .

1, 0 ) . That is,
G? = GU(n,n). We now fix maximal isotropic spaces W and W' with
W2 W' =2 K" of ¢ and we have a decomposition V=W & W',

We consider the standard g-maximal lattice of ¢ in V defined as A :=
St > Dl_(l/Ffi for the standard basis of (V,¢) ie. ¢(e;,e;) =

over the CM field K and we assume that ¢ = (

(1) The author has been informed by Ellen Eischen that this terminology is not standard
and the term has been used for first time in this context in her Ph.D thesis.

ANNALES DE L’INSTITUT FOURIER



THE TORSION-CONGRUENCES FOR UNITARY GROUPS 23

é(fi, f;) = 0 and ¢(e;, fj) = —d;; and v/ the relative different of K
over F'. We now define the lattices

L:=WnA, and L' := W' NA.

Note the choice of the pair (L, L’) is equivalent to the choice of a polar-
ization as explained above. We write P for the stabilizer of W’ in G¢ and
Np for its unipotent radical. Then Np consists of matrices of the form

( 1(; IB >7 where B € S,,. For a congruence subgroup I' of G¢ we define

H:=T'NNp. Then H = ( 10" ]1\4 >, where M is a lattice in S,,. Writing
MY for the dual lattice of M, i.e. MY = {x € S,|Trp/o(tr(zM)) C Z},
1, MY

we define HY := ( > For a ring R we define the ring of formal

0o 1,
power series

R((q, HYy)) = { Z ang"lan € R, ap =0, if h << O}.

heHY
Over the ring R((q, Hﬁo)) we now define a Z-liner morphism ¢ : L —
(L") ®@ Gy, as follows:
L— Homz(H,L')2H"®L — L' @ G,,,

where the first map is given by ¢ — (h +— h(¢)) and the last one is given by
B g e Gm(R((g, HY))). The Mumford object corresponding to the
cusp (L, L") is given by the algebraification of the rigid analytic quotient

Mumz,1y(q) == (L' ® Gp)/q(L).

The PEL structure of Mumy, 1/(q) is given as follows. We have a canon-
ical endomorphism 2.4, @ t < EndR((qugo))(MumL?L/ (¢)) given by a —
({ = a-0) for a € v and ¢ € L. For the canonical polarization ey, of
Mumy,1)(q) we consider the dual abelian variety

Mumy, 11(q)" = Mum(zv 1vy(q) = (LY @ Gp)/g(LY).

Then there exist an isogeny Acan : Mumy, 1y(q) = Mum, 1(q)Y, in-
duced by the isomorphism LY ®. K = L' ®. K. The level structure is
induced by the embedding ay : L' ® uy — L' ® G,,,. Finally we have a
canonical differential weqy,. This is defined by dualizing the isomorphism

Lie(Mumr, 11y)(q) = Lie(L' ® G,, = L' ® R((q, H;O)).
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That is we obtain an isomorphism
n ~v Vv ~
Wean - R((qa H;O)) = X R((qa H;O)) = w]Wum(LﬁL/)(q)/R((q,H;O))-

Cusps: Now we study the (0-genus) cusps of the group U(n,n) with re-
spect particular congruences subgroups. We will see that to each of these we
can associate an arithmetic data (Mumy, 1/(q), Acans tean> Wean)- As above
we write P for the standard parabolic of G := GU(n,n) and Np for its
unipotent radical. Then a Levi part of P can be identified with GL,,(K)
by the embedding d — diag[d, d] for d € GL,(K). Then the set of cusps of
G with respect the open locally compact subgroup K is given by

Co(K) := GL,(K) x Np(F)\ G(Apy)/Ko.

It is well-known, see [40, lemma 9.8] that we can choose a decomposition
G(Apn) = [I}L, G(F)g;Ko, and if we pick g € Co(K) and write it as
g = vg;k with respect to the above decomposition then the Mumford object
associated to the cusp g is given by Mumyp, 1, (¢) where Ly := Lg;NV and
Ly :=LgNV.

The complex analytic point of view (see [13, page 209]): Now we

would like to describe the complex points of the Mumford object Mumy, +(q).
(F:Q]

(n,n)

Recall that the associated to GU(n,n) symmetric space is Hp := H
where
Hp,ny := {2z € Mp(C)li(z" — 2z) > 0}.
We note that if we write S for the set of hermitian matrices over K then
Hpny = S+ iS4 and hence also Hp = Sa + iSay. Given a 7 € Hp we
consider the lattice L, € C?* generated by L'®.1 € W@k C and 7L®.1 €
W’ @k C. Then using the exponential map exp we obtain exp(L,) C
W' @k C*. Then we have that if fix the indeterminate parameter q as
q = expa(2mitr(T)) we get
Mump, 1(q)(C) = W' @k C*/exp(L;).
Analytic and algebraic ¢g-expansions (see [40]): Let now f € My (T")

be a hermitian modular form for a congruences group I' of G. As it is
explained in [41, page 33] we can always find a Z lattice M in S such that

( 1(; 10 > € T, for all 0 € M. Then we have f(z + o) = f(z) for all

o € M and hence the hermitian modular form f has a Fourier expansion
(2.2) f(z) =) elh)eq(ha),
hel

where L := {h € S | Trg/g(tr(hM)) C Z}. In particular, by Shimura [40,
page 147], for T' = T'g(b, ¢) we have that L = 0167, where T is the lattice
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defined as {x € S | tr(S(v)x) C g} . Actually if we consider for an element
g € GL,(Agn) groups of the form

-1
— 9 0 g 0
e (4 Yoma(8 )

then we have that the lattice L above is now equal to 9~ tbgTg*.

The expression in 2.2 has an algebraic interpretation through the use of
the Mumford objects introduced above. To this end, we consider now an
hermitian modular form f € My (T'o(N) defined over the ring R. Then we
may evaluate f at the Mumford data (Mump, 1/(q),wean) defined over the
ring R((q, HY,)) to obtain

(2.3) f (MumLL/(q),wcan) = Z c(h)q".

heHY

When R = C we may pick ¢ := e?(z) and then the expression above is the
same as the one in (2.2). Finally we close this section by recalling also the
g-expansion for unitary automorphic forms. So we let ¢ € My (D), with
D = D[b7!,bc]. Then the following proposition is taken from [40, page
148].

PROPOSITION 2.3. — For every o € Sy and q € GL,(Ak) we have

o((8 1)) = X cthareter(ho)

hes
with the following properties
(1) (det(q)~*)c(h,q) depends only on ¢, h, qn and (qq*)a, where we
recall that p € Gal(K/F) denotes the complex conjugation,
(2) c(h,q) # 0 if and only if (¢*hq), € b,0, T, for all finite places v,
(3) ¢(h,q) may be written as
c(h, q) = det(q)* co(h, q)en (i - tr(q*hq)),
where ¢q(h,q) depends only on ¢, h and ¢y,.
We now briefly explain the relation of this automorphic g-expansion with
the complex analytic one in (2.2). We start with the remark that we may

write z € H = S, + 1Sat as z = z + iy. We then define ¢ € GL,(Ak)
by gn = 1, and ga = y'/? so that Gaqs = y. Further we pick ¢ € Sy by

on = 1 and o, = . With these choices we have that ¢ (( g qu )) =
det(q)?* f1(z).
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Qp-valued hermitian modular forms: We now return to the Hy-
pothesis in the Introduction to address the question what does it mean a
hermitian modular form of an definite unitary group to be Q,-valued. We
fix embeddings 2o, : Q < C and 1 Q — @. We also fix a finite set
B C G(Apy) such that G(Ap) = [[,c5 G(F)gD. We refer to [40, Lemma
9.8 (3) page 73] for this. Then by Lemma 10.8 in [40] we have an isomor-
phism My (D) =[], M(I').

In the case of definite unitary groups an automorphic form is uniquely
determined by its values on this finite set B. Indeed in the Lemma 10.8
of (loc. cit.) the symmetric spaces in this case are just points and hence
fq(i) = f(g) in the notation of Shimura. Further, it is explained for exam-
ple in Shimura [41, page 216, equation(26.41c)] that the space of algebraic
forms on Mg (I'?) for definite unitary groups is up to a constant (a CM
period which depends only on the weight) just Q-valued functions. This
implies that the algebraic automorphic forms My (D, Q) are also by def-
inition (up to this constant) Q-valued on ¢ € B. But then by [41, last
paragraph of page 230] an algebraic automorphic form is (up to this pe-
riod) Q-valued on every finite adele of G. Indeed as Shimura observes for
any p = aqu € G(Ap ) N G(F)gD where o € G(F), u € D and ¢ € B
we have f(p) = f,(i) = (fqllke™") (i). But in the case of definite groups
fallka™ = [l ca det(o)*r fo. In particular f(p) € K°(f(q)), where K¢
the Galois closure of K over Q in the fixed Q C C. Hence the field of defi-
nition of an automorphic form is uniquely determined by the values on the
finite set B, and it is a finite extension of Q. Moreover by the discussion in
paragraph 29.4 of [41]) we can take the eigenform f, as an algebraic auto-
morphic form. After nornmalizing it by this constant and using our fixed
embedding i, and 2, we can see any algebraic values as p-adic through the
composition 1, 0 15} (Q) C @,. So the condition of an automorphic form f
being Q,-valued means that after this composition the field of definition
lies in Q.

3. The Eisenstein Measure of Harris, Li and Skinner.

In this section our goal is to present the construction of an Eisenstein
measure due to Harris, Li and Skinner as in [25, 26]. As we will see the key
ingredients are (i) the computation of the Fourier coefficients of Siegel type
Eisenstein series by Shimura (see for example [40, 41]), (ii) the definition of
particular sections at places above p as done by Harris, Li and Skinner (loc.
cit.) and (iii) the definition of sections for other “bad” primes (not including
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those above p) as done by Ming-Lun Hsieh [30, 31]. Finally we also mention
here the recent work of Eischen [14] generalizing various aspects of the
work of Harris, Li and Skinner and working the relation of their Eisenstein
measure with the theory of the p-adic differential operators developed in
[13].

Siegel Eisenstein series for U(n,n): We start by introducing some
notation. For a pair of positive integers a and b we will denote by (a,b) the
element in ZP defined by taking a at all places v € a and b for the rest.

In this section we follow Shimura [40] as well as [25, 26] to define Siegel-
type Eisenstein series, but with a few changes on the normalization of our
Eisenstein series. We let (W, 1) be a Hermitian space that decomposes as
(W, ¢) = (V,¢) ® (Hm,Nm). We write n := dim(V') + m and we define

(X,w) =W, ¥) e (V,—9),

a hermitian space of dimension 2n over K. We consider the decomposition
of (Hp,nm) to its maximal isotropic spaces I and I’ i.e. H,, = I & I’ and
hence we can write X =W oV =I"®V & I ® V. We pick a basis of W
so that w = ( 15 _0¢ ) and hence obtain an embedding G¥ x G® — G¥
by (8,7) — diag|B,~]. If we write the elements of X in the form (¢/,v,%, u)
with ¢/ € I';i € I and u,v € V with respect to the above decomposition of
X we put U := {(0,v,4,v)|lv e V,ie I}, Py :={ye G¥|Uy="U}. Then
U is totally w-isotropic and P¥ is a parabolic subgroup of G¥. From [40,
page 7] we know that if U’ is another totally w-isotropic subspace of X with
dim(U) = dim(U") then there exists 3 € G* such that Py = 8Py, 8~ .

As it is explained in Shimura [40, page 176], we have that (X,w) =
(Hp, nn). In the group G := G we write P for the standard Siegel par-
a; by
by d
are ready to define the classical Siegel-type Eisenstein series attached to a
Hecke character x of infinite type —kX. for some integer & > 0, with re-
spect to the fixed CM type (K,X). By that we mean that y is a character
X : Aj /K> — C*, such that for each selected infinite place o € ¥ we have
that the local component at o of x is of the form y, : C* — C*, z+ 2F.

Further we write ¢ C g for the conductor of x. Moreover for our applica-
tions we are going to assume that k, = k > n for all ¢ € X. We now make
the following notational assumption. Given such an adelic character y it is
known thanks to Weil that one can attach a p-adic x, : Gal(K (¢p™)/K) —
Cj such that L(x,s) = L(xp,s), where K(cp>) denotes the maximal
abelian extension of K of conductor dividing ¢p.

abolic given by elements x = ( ) € G with ¢, = 0,. Now we
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Remark 3.1. — We make the following remarks

(1) Notational remark: In this paper we will use the same notation x
for the adelic as well as the Galois character. The setting will make
clear which realization of the character is meant.

(2) We also remark that in Shimura the condition ¢ # v is also assumed,
as for example it is used in [40, Lemma 18.8]. However, thanks to
our choices of the local sections at p (see below), the condition is
not needed for our purposes (see [26, Remark 3.2.2.3]).

We now note that the Siegel parabolic P in G is given by

~Y A B .
P:{( 0 A).AEGL”(K), BeSn},

where A = (*4)~! and S,, the space of n x n Hermitian matrices. Let v be
a place of F'. We define the modulus character dp,, : P(F,) — Rf_ as

0pu(9) = [Nk/r o det(A(9))l5 ", g € P(F).

We write 0pa, := ][], dp, for the adelic modulus character and for s € C
and x our Hecke character of K we define

5pa(g, X, s) := x(det(A(g))) " '0palg,s),

where dpa(g,5) := [Ng/p o det(A(g))],*, g € P(A). We define I, as the
parabolic induction Indggﬁigép,AF (9,x,9), i.e.

I(s) :={¢: G(Ar) = C: ¢(pg) = dpa,. (D, X, 5)d(g),p € P(Ar),g € G(AF)}

where ¢ is Dy = U(n)a X U(n), finite, for some maximal open compact
subgroup D, of Ga. Given ¢ € I, (s) we define

Eg:dx:8) =y (),

YEP(FO\G(F)

and D(g, ¢, x, s) := (H?;(; L.(2s— i,Xlei)> E(g,9,x,s). Both of them are
converge for Re(s) > 0. Moreover they have analytic continuation to whole
complex plane. We will discuss this in more details later after we have picked
our section at infinity. For this we follow [30, 31] and [25, 26].

In the Hermitian symmetric space H2 we pick a CM point i and write
Dy = {g € Ga(R)|gi = g} C G, for the stabilizer of it. For example we
Z(l)s _52(9) ) € H,,. We use
the group D, to identify Ga(R)/D, with the symmetric space H2. That

may take i := (iy),exn defined by i, = <
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is for every element z € H2 we find p € Pa(R) such that p(i) = 2. For
g € G(R) and z € H2 we define the automorphy factors attached to D, by

J(g,2) == det(cyz +dy), and J'(g,z) = det(¢,"z + d,) = det(g) "' J (g, 2).
For a given pair of integers (k,¢) we define the local section at infinity as

Goo(g,5) 1= det(9) (g, 1) 71T (g, D77 € Lo ).

With this choice of section we have that our Eisenstein series is holo-
morphic at s = ¢, whenever k + 2¢ > n. Moreover they are of weight

(k+¢,¢) € ZP. Indeed by [40, Theorem 19.3] and [41, Theorem 17.12]), we
have

(1) the Eisenstein series £(g, ¢, x, £) is an automorphic form of weight
(k+¢,0) when k+2¢ > n except when FF =Q, k+2¢{ =n+ 1 and
the restriction x; of x to Q is equal to €"t!
character of K/Q,

(2) the normalized Eisenstein series D(g, ¢, x, £) is an automorphic form
of weight (k + ¢,¢) for k +2¢ > n.

where € the non-trivial

Remark 3.2. — Here one should notice that Shimura in his books [40,
41] considers always unitary characters, that is with values in T := {z €
C*||#| = 1}. The relation to our character here is by multiplying our charac-
ter by NIIE//%Q, where N /g the norm character. This has as result a shifting
of the variable s in Shimura’s books by —g.

Fourier expansion of automorphic forms of G: We let ¢ : Ap/F —
C* be the non-trivial additive character with the property

Yoo (x) = exp(2mi Z Zg).

Then all the additive characters of Arp/F can be obtained as t,(x) :=
Y(az) with a € F*. For § a hermitian n x n matrix we define the character
vg : Up(F)\ Up(Ar) — C, n(b) — o(tr(pb)), where we have used the
fact that there is an isomorphism n : S, (Ar) = Up(Ap). Here Up is the
unipotent radical of the parabolic group P which is given by Up(F) :=
{( lél f( ) |X € Sn(F)} The S-th Fourier coefficient of (g, ¢, x, s) is
given by

E5(6,%.5)(g) = / £ (ug, &, %, 8)1b_s(u)du.

Up(F)\Up(AF)
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When g is of full rank n the Fourier coefficient equals up to a normalized
factor the Whittaker function Wg(g, ¢,s) = [[, Wa,0(guv, ¢v, s) with

Wﬁ,v(gv>¢v7$) = / st(wnvgaXvaS)l/}—Bdnv

Up(Fy)
0 -1
ith w = .
with w <1T 0 )

The local sections: We pick a finite set S of places of F' that include
(i) all places v in F' above p, (ii) all places of F' ramified in K/F (iii) all
places of F' that are below the conductor of x (iv) all places of F' such that
after localization of (V, ¢) at v we have (V,,, ¢,,) = (Ty,0,) ® (Hy,, 0y, ) with
t, = dim(T,) = 2. It is known (see ([40, Prop. 10.2 (1)] that this set is
finite. (v) Finally S contains all archimedean places of F'.

The spherical sections: We consider the places v of F' that are not in
S. For such a v, we pick the section ¢, € I,(x,s) to be the normalized
spherical sections for the group D, = D]g, g., a maximal normal subgroup
of U(n,n)(F,). Here normalized means that ¢,(1,x,,s) = 1. We more-
over define the lattice T in S := S,, by T := {x € S|tr(S(r)x) C g}. Then
Shimura has the local Fourier coefficients for such v’s explicitly computed
for 8 of full rank. We summarize his result in the next proposition.

PROPOSITION 3.3 (Shimura). — Let ¢, be the spherical local section
above Let m = m(A) € M(F,). Then Wg,,(m, ¢,,s) = 0 unless A'BA €
(U /Q T,. In this case Wg ,,(m, ¢y, s) is equal to

n—1

[N o det A" x, (det A)gg,m,o (o (@0)a5 ) TT Lo(2s = d xirel p) ™
=0
with gg,m.(X) € Z[X] with gg,m(0) = 1. When v is unramified in K and
det(ad,A'BA) € g* then ggm(X) = 1.

The non-spherical sections: Now following [25, 26, 30, 31] we deal with
the non-spherical finite places, that is the finite places v of F' that belong
to the set S. We are going to distinguish between those above p, we call
this set S, and the rest.

Finite places not dividing p: Our choice of the local section is the one
described by Ming-Lun Hsieh [30, 31]. We first recall the sections that
are defined by Shimura [40, page 149]. We define a function b, on G, by
J)U(x) =0, for x € P,D, and

o(pw) = x(det(dy)) ™ xe(det(dy)) ™ detdydy| ~*,
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for p € P, and w € D, = D|g,g],. Now we recall that we are con-
sidering a form (W, ) = (V,0) & (Hy,, nm) and we have defined an ele-
ment Xy = diag[ly,, on, lm, 0n] with o, = 1 for v € S. Then we define

_1m

|
SIES

bu(g) = Gy (guw'S1), where w' := . We now

Im
o1
2

define u := ( L 6 > and the lattice L, := Her, (F,)N(uM,(2¢,)u*).
2
Then ¢, is the unique section such that supp(¢,) = P(F,)wUp(L,), and

qbv(w( 10" f ) = x, H(detu)|det(ui)| =%, ¢ € L,, where we recall w =

-1, . . .
( 10 0 ) Then as it is explained in [30, 31] we have that

We,o(m(A), v, s) =1y (A'BA)|det A|"?~ %y, (det A)vol(Ly)x " (detu)|det(ui)|, **.

The sections at infinite places: The Fourier expansion has been computed
in [30, 31] as well as in [25, 26]. We set Ty (s) :== 77 [[}—) T(s — j) and

L, 00(26 + k, 8) — in(2£+k)27n(2€+k7n+1)an(s+2é+k)1—\n(5 +20+ k)

Then as it is explained in [30, 31] and in [26] we have for every o € ¥ and
P € P(R)

J(Posie) T Wi o (o, doos)|s=0 = Ln,co (k+2€,0) ™ det(c(3)) 22 (7 (B)ze),

if 8 > 0 and zero otherwise, where z, := p, (iy).

Finite places dividing p, the sections of Harris, Li and Skinner, after
[25, 26]: Now we turn to the sections at finite places above p as defined by
Harris, Li and Skinner. (The interested reader should also see the work of
Eischen [14] for a more detailed study of these sections). We are assuming
that we are given the following data: A character x of F, x F,, a partition
n=mni+nz+...+ne with £ € Nand an ¢-tuple (11, ..., ) of characters v;
of F,. Moreover we assume that ordinary condition that is all the primes
v above p in F split in K.

We identify U(n,n)(F,) with GL(2n, F,,) and the character y used in
the parabolic induction of the Siegel-Eisenstein series with the character

( é ; > — Xl(det(B))71X2(d€t(A))|d€t(AB71)|S,

where we write x = (x1, x2) for x as a character on F, x F,,.

For a partition n := ny +...4+ng of n and write P for the corresponding
parabolic subgroup. For a set of characters v := (v1,...,1vy) of F* we pick
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an integer ¢ € N that is bigger than all the conductors of the characters p;,
j=1,...,¢. Writing p for the maximal ideal of g, we define the group I'(p?)
to be the subgroup of GL(g,) consisting of matrices whose off diagonal
blocks, determined by the selected partition of n, are divisible by p¢. Then
we define the Bruhat-Schwartz function

®,(X) = { gjwet(XH)) - ve(det(Xe)), X € T(ph);

otherwise.

Now we define the ¢-tuple (p1,. .., pe) where p; = 1/]-_1)(2_1. Using this
{-tuple we define @, in the same way that we have defined ®,. Then we
define the function

= [ wol(T(pt)) @, (z), ze€T(p");

ule) = { 0, otherwise.
where vol(T'(p?)) is defined as in [26] page 59. We now define the Bruhat-
Schwartz function on M (n,2n, F,,) by ®(z,y) = ®,(x)®,-1,, (y) and then
the section ¢, (h;x, s) := fo(h,s). where

fo(h,s) = Xg(deth)|deth\s/ (0, Z)h)xax1(detZ)|det Z|**d* Z
GL,(F,)
where &\)V—lxl is the Fourier transform (normalized slightly different than

in [26]) of ®,,-1,, defined as

Oy, (Z) = or,

/ B, (X)(tr(X 2)),
M, (Fy)

Remark 3.4. — This section is slightly different from the one of Harris,
Li and Skinner. This choice will be justified by our computations in the
proof of Lemma 4.14 in the next section. Note that if the v; are unramified
characters then the section does not depend on them. We remark here that
similar modifications occur in the works of Eischen [14] and of Ming-Lun
Hsieh [30, 31].

We now compute the local Fourier coefficient at v. By definition we have
that

W[ﬁv qusm / va wnn )1/) ,3( )

where w,, = 0 =) nd n(S) := b 5 . Note that since we
1, 0 0 1,

are in the split case we have that S,, = M, (F,). Hence putting also the
definition of our section we obtain that W3 (1, ¢y, s) equals

:/ / <I>((O7Z)< 0 —ln ))XzXl(detZ)|detZ\251/J_ﬁ(X)dXZdX
Mo (F) ) G (F,) ln X
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= / / ®(Z, ZX)x2x1(detZ)|det Z|**p_5(X)d* ZdX.
n(Fv) JGLn (Fy)

But ®(Z,ZX) = <I>#(Z)$,,_1X1(ZX) and hence the integral above reads

/ d,(2) / B0, (ZX)—5(X)dX | x2x1(detZ)|det 2| d* Z.
GLp(Fy) My, (Fy)

But by the Fourier inversion formula, after setting X — Z~'X, we have
that

- Y .
( )<1>,,,1X1(ZX)¢_B(X)dX:|detZ| ®,-1,,('Z ),
My (Fy

and hence we have that W, (1, ¢, s) is equal to

/ b,.(2)|detZ| 7" @1, (‘27 B)x2x1 (det Z)|det Z|**d* Z.
GLn(Fy)

By the definition of ®,, we have that the integral is over I'(p*) and by the
support of ®,-1,, it is non zero only if det(8) # 0. In this case, after
making the change of variables Z — Zf3, we get that Wps (1, ¢, s) is equal
to

xaxa (det(B))|det (8)** " / L Bl (27 s et 2)der 2
pi

= xax1(det(B))|det(B)|** " ®,.(B) 6, (2)®,-1,, (7 )x2x1 (detZ)d* Z
I(p?)

= x2x1(det(B))|det(B)** " 2, (B),
because of the normalization of ®,(Z). We summarize the computations
in the following lemma

LEMMA 3.5. — With the choices as above we have
W (L, ¢, 8) = xax1(det(B))|det(8)|** 7" @, ().

We note also the following lemma, a proof of which can be found in [26,
page 52].

gl tAql ) € U(n,n)(F) for A € GL,(K).

LEMMA 3.6. — Letm(A) = (
Then
Wp,o(m(A)gy, du,s) =[N o det(A)‘%78Xv(det(A))W"AﬁA,u(gvv¢v,5)~

Normalization: We now normalize the Eisenstein series D(g, ¢, X, §).
We introduce the quantity

e(n,F,K) := 2”(”*1)[F1Q/2]|§(F)|fn/2|§(K)|—n(n71)/4

Then as it is explained in [40] page 153 we have dx = c(n, F, K)[], dz,.
Here dz is the Haar measure on Sy normalized such that f S./8 dx = 1. For
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v € h the dx, are measures on S, that are normalized to give volume 1
to the maximal compact subgroup L, := S(Op),. For v € a we refer to
Shimura. Then we define C°(n, K, s) := c¢(n, K+, K)L,, o (k+2¢,5)7!, and
normalize E(g,$,x,s) := C%(n, K,s)"'D(g, ¢, X, 5).

We now pick gy := m(A) € M(Ay), A € GL,(Ay k) and consider the
hermitian form

E( ( )(ba ) _Jkl)(gOO’ ) (ga¢aX75)\s:Z

where g = gfgoe With gooi = 2z € H2 and Jii ¢)(a, 2) = det(g)*J(g,2)~
As we have seen the definition of the section ¢ depends on the charac-
ters x and v. Hence we may sometimes write E(z,m(A),v,x) instead of
Bz, m(4), 6, ).

As in [26] we write m(A) = m(A® [ 1., ho Where we identify h, with el-
ements in GL,(F,) and in particular erte h, = diag[A(hy), B(hy)]. More-
over we recall that x, = (X1,4, X2,0). From the remarks above we have that
the global Fourier coefficient of E(z,m(A),®,x) at 8 € S is given by

Es(m(A), ¢, x) = T°(8, m(A)) N /q(det(8) "~ x(det(A))|det(A)[" x
[T xi(det(B(ho)))xa.o(det(A(ho))ldet(B)]: " @u(‘A(h) BB (h) ™) %

k—2¢

vED)
[T Ly (ABAyvol(Lo)x: " (detu),
veS®)
where T°(8,m(A)) := [T, ]Ia;l/Q 17, (FABA) g5 m(4),0 (X0 (wy)). We define

Q(B, A, k,v) := Npg(det(B))*~™ (H |det(3 ) |det(A)|"x

vED,

HH?/ (‘ABA) [] Toy(‘ABA)vol(L.).

vgS ves®)
PB,m(A) = H gﬁ,m(A),v(w’U) = Z nﬂ(ﬁam(A))av nﬂ(/Bam(A)) € Z7
vgS (a,9)=1

where nq(3,m(A)) = 0 for almost all a and p( )(A)( ) X(Pésn)l(A)) _
> (a.5)=1 Ma(B)x®) (). Then

Eg(m(A), ¢, x) = Q(B, A, k, v)x(det(A)) P, (x)

(H X (det(B(h))) 2,0 (det(A(h)))Bu(A(hy) BB(h ) ( IT xo(detu

vEX, veS(P)

=Q(B, A k,v) Y na(B,m(A))x(det(A)x ¥ (a)

(a,8)=1
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(H XTH(det(B(h))) Xz (det(A(h))) @, (‘A(h,) BB(h ) ( T xo(detu™)

vED) ves(P)
Let now € := Ej cjXx; be a locally constant function of G4 written in a
unique way as a finite sum of finite characters. Moreover we let ¢ be a
character of infinite type kX as above. Then we define

E(z,m(A), ¢, e) : ch z,m(A), ¢, x;1)
and then
Es(m(A), ¢, etp) = Q(B, A k) > ma(B,m(A)) Y cjx;i(det(A))x
(a,9)=1 J

IT xaitra(det(B(ha)))x,0.5t2.0 (det(A(Ry)) @ (‘Alhy) BB(ho) ) | x

vEX)

[T xostu(detu™) | x\¥ ().

veSP)

) |

Moreover it follows easily from the above description that Eg(m(A), ¢, ey) €

Zley,v]. Indeed one needs to observe that the values of ®, are also given
by the local characters at v|p.

The Eisenstein measure of Harris, Li and Skinner: In the defini-
tion of the p-adic sections we have fixed an integer ¢ € N. We consider the
group

T() = ]J(e) x Ge= J] ()" x G-.

v|p CISPIM
We write Xy, (T'(¢)) for the set of finite characters of T'(¢). This set can be
parameterized by the (¢ +1)—tuples (11, ..., v, x) where v; are characters

of H”‘p g and x is a character of G. Recall that to the tuple (v1,..., v, X)
we have attached another tuple (p1, ..., ). Then Harris, Li and Skinner
in [26, page 67] have obtained:

THEOREM 3.7. — There is a measure p2L% on T(¢) with the property
that, for any (¢ + 1)-tuple (v1,...,ve, x) we have

/ (Vl,-~-aV€7X)dMg£S:E(';¢,X)a
(L)

where ¢ is the section described above. Here, by abusing notation, we write
both x for Grossencharacter and its p-adic realization as a character of G..
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For the applications that we have in mind, we are going to keep the tuple
(v1,...,vp) fixed and vary . Let us explain now how we are going to fix
the ¢-tuple (v4,...,vy) for the applications that we have in mind.

DEFINITION 3.8. — (see [25, pages 14-15] Let 7 be an irreducible cuspi-
dal automorphic representation of U(V)(Afr) with dimg (V) = n. Let v be
place of F that splits in K. Then 7 is called of type v = (v1,...,v) at v if
7y 1s a principal series of U(V)(F,) = GL,(F,) and if it is an eigenvector
for P(g,) C GL,(F,) with eigenvalues given by the {-tuple (v1,...,vp). Of
course here P is the parabolic of GL,, corresponding to the fixed partition
n= Zj:l n;.

In our applications the representation m, will be P-ordinary at v (see
[25, page 14] for a definition).

Finally we close this section with a remark pointed out by the referee.
For the construction of the Eisenstein measure in the situation which we
consider it was really necessary to compute the g-expansion for the con-
structed Eisenstein series in various cusps, namely around cusps of each
connected component of the Igusa tower. The expansion around only one
cusp would not have been enough. The reason is that the Igusa curve in the
unitary case is known after the work of Chai and Hida not to be irreducible.

HLS

4. Construction of the p-adic measure p; .

In this section we are going to use the Eisenstein measure of Harris,
Li and Skinner to obtain a measure that interpolates critical values (and
their twists) of the L-functions that we are interested in. The path is well
known, we will evaluate the Eisenstein measure at CM points and then use
the doubling method (in this setting the analogue of Damerell’s formula)
to prove the interpolation properties. We will need to compute some zeta
integrals in order to prove that our measure has the right interpolation
properties. As we mentioned in the introduction a more general study of
such measures is the subject of the work in preparation of Eischen, Harris,
Li and Skinner [15].

Here we are going to restrict ourselves in the cases that we need for
our work. We consider a motive M (w)/F ® M(x)/F as in the introduc-
tion (here we write x instead of ¢ there and it is a Hecke character of
infinity type —kX). The automorphic representation = of U(n) = U(n,0)
is taken of parallel scalar weight ¢ > 0 by which we mean that if we can
associate to m an automorphic form f; which is an eigenform for all “good”
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Hecke operators (i.e. away from the conductor of 7) and has the property
fr(gk) = frz(g)det(k)~, for k € G(R). The reader should notice here the
sign convention of the weight (i.e. —¢). We remark here that this a conven-
tion as taking the dual of 7 will give a representation of weight —¢ which
in turn can be seen also itself as a representation of weight ¢ of the group
U(0,n), since det(g)det(g) = 1 for g € U(n,0). Moreover we write ¢ for a,
relative prime to p, integral ideal of F' that contains the conductor of 7 (i.e.
7 is spherical at all v above p) as well as the non-p part of the conductor
of ¢ and some other bad primes which we describe in details below.

We write L(BC(w),x, s) for the L-function associated to 7w and x nor-
malized as in [21, page 141] after replacing there s with s — Z. Here BC(m)
is the base changed automorphic representation to GL,, (K ) Our goal in
this section is to prove the following theorem.

SU on Ge (the galois
group of K (p™¢)/K ) such that for every finite character ¢ of G, we have

Q,(Y, %) k+2e/ ¢duHLS (=) =

(27m)n(k+22) Ls(BC(ﬂ'), X¢, E) )
A x CS(n,K,0) Qo (Y,X)k+2¢ s(m, 7, xv, fo),

where Qoo (Y, X) (resp. ,(Y,X) ) is the archimedean (resp. p-adic) period
corresponding to the CM pair (Y, %) for a CM-algebra Y and they will be
defined below. Here S is the finite set of primes consisting of (i) all places v
in F above p, (ii) all places of F' ramified in K/ F (iii) all places of F' that are
below the conductor of x (iv) all places of F such that after localization of
(V,0) at v we have (V,,0,) = (T, &) ® (Hy,,ny,) with t, := dim(T,) = 2,
(it is known (see ([40, Prop. 10.2 (1)] that this set is finite), and (v) all
places v where 7 is ramified. Finally we take ¢ so that if v € S\ {v|p} then
vlc. Also the quantity

THEOREM 4.1. — There exists a measure Mw,x

= (x¥)n(det(c")) 27" det(8)" det(a) |~/ *00l(D(0))?,

will be explained below. Also we recall that C(n, K,0) defined as the
product ¢(n, K+, K) L, «(k + 2¢,0)™! is equal to

c(n, K K)
Z’n(QE—i—k)2—n(2£+k—n+1)7r—n(2é+k)Fn(2€ i k)a

where

C(?’L, K+, K) — 2n(n—1)[F:Q]/2|5(F)|—n/2‘6(K)‘—n(n—1)/4.
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Moreover we have that
Zs(m, 7, XY, fa) = Zs\ folpy (7, T, X, fa) X HZU(SJ,ﬁ,Xﬂ% fa),
vlp
and the following explicit description of the factors Z,(s,n, 7, x, fo) for
the places of v € S.
(1) If n =1 and we take 7 the trivial representation (hence ¢ = 0) then

for the place p € X, above v|p we have

Ly (0, xv)
ep (0, x¥) Ly (1, x "1y~ 1)’
for a(x, ) a factor that we make explicit in lemma 4.14. For the
rest of the places v € S we have

[ Zr7x0. fs) = vol(D(c))
veS\{v|p}

(2) If n = 2 and after the identification U(F,) & GLy(F,) for all v|p
we have m, = w(v1, Vo) with vy, vy unramified then Z, (7,7, x¥, fo)

ZU(WJEX% f‘I’) = a(x:w) X

equals

Lo(f—1,u7 ) Ly(0,vy ' ¢1)
eo(0 = 1,07 ) Ly(2 — 6,167 Y) eu(fy vy Y1) Ly(1 — £, 107 )’
where ¢ := x1 and ¢ = (¢1,¢2) corresponding to the split vt = pp
withp € ¥,,. Here, as above, the factor a(x, 1) will be made explicit
in Lemma 4.14. For the rest of the local bad integrals we only remark

that one can choose the form f, attached to w (as for example in
[31]) so that

Zs\(olpy (T, 70, XY, fo) = H Zy(m, 7, X9, fa) = vol(D(c))
veS\{v|p}

a(x,¥)

Remark 4.2. — At this point we would like to remark the following

(1) According to [25, Proposition 4.3] one has a similar form for the
local integrals Z,(m, 7, x¥, fo) for any n. We will compute these
local integrals in the cases n = 1, 2 that we need in our applications.
Moreover, our theorem should be a special case of the theorem 4.4
announced in [25] whose proof should appear in [15].

(2) It is interesting to compare the interpolation formula of our the
measure in the theorem above in the case of n = 1 and the measure
of Katz-Hida-Tilouine [36, 29]. The interpolation formula is almost
identical. However it is interesting to remark that the index factor
[Of : O] that appear in the measure of Katz-Hida-Tilouine does
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not appear in the formula above. Another difference is the Euler
factors that we remove. In our construction we also need to remove
also the Euler factors at all the primes of K that are over primes
that ramify in K/F. This is not needed in the construction of Katz-
Hida-Tilouine.

(3) Our measures depend on the choice of fr. As it will be seen in the
construction, the dependency is with respect to the factor
Z 3\ {olpy (7, 7, X, fa). For different choices of fr one gets different
values for this factor. As we state in the theorem for some choices of
f= we may compute quite explicitly this factor. However the rest of
the interpolation values of the measure is independent of the choice
of fr and depends only on the eigenvalues of it at the “good” Hecke
operators (i.e. away from the conductor of 7).

The doubling method of Garrett, Shimura, Piateski-Shapiro
and Rallis. We start with an exposition to the doubling method as was
developed by Garrett, Shimura, Piateski-Shapiro and Rallis. Our references
are [21, 25, 26, 18]. We write (V, ) for an n-dimensional hermitian vector
space over K and we write G? for the corresponding unitary group. As
before we define the hermitian space (V, —6) and the 2n-dimensional hem-
ritian space (2W = W@ —W, 0@ —0). Then we have U(0®—0) = U(2W) =
U(n,n). Later we will discuss this isomorphism a little bit more explicit
(see also [40, page 176]. Fixing such an isomorphism, we have an embedding
G:=G°x G~ U(n,n).

We pick a Haar measure dg = ®,dg, on G(Ap) such that for almost
places v of F' we have dg, assigns volume 1 to a fixed hyperspecial maxi-
mal compact subgroup K, C G(E,). We consider an irreducible cuspidal
automorphic representation (Vj, ) of G and we write (V;, %) for its dual
representation. We fix now decompositions 7 = ), m, and 7@ = ), 7,. We
now pick ¢ € V; and ¢ € Vi such that

(1) The vectors ¢ and ¢ are pure tensors away from S®) .= S\ {v|p}
. That is ¢ = ®U€S(P)¢v ® ¢ and ¢ = ®v€5(;v)¢'u ® Ggip With
¢y € Vi, and by € Vaz, -
(2) They are normalized, that is for all v’s that m, is spherical we pick
these so that < ¢y, ¢, >= 1.

After fixing an embedding V; in the space of automorphic forms then
this ¢ corresponds to our f, that appears in the theorem.
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Let x be a Hecke character of K and consider a section F € I, (s). We
consider the integral

Z(s,6,,x. F) =/ £((9,9"). F. x, 5)(9)d(g")x(detg")dgdy'.
GIENG(Ar)
Let us now write 7 = @), F, with respect to the decompositions I, =

&, Iy,o- We now state the following important results:

THEOREM 4.3 (Key Identity of Piatetski-Shapiro, Rallis and Shimura).

20,607 = [ F(lg.1)(r(0)6, 0.

This formula implies by computations of Li in [37] the formula,
THEOREM 4.4 (Li’s computations of the spherical integrals). —
dn(sa X)Z(Sa ¢7 év X ]:) =< ¢7 (& > ZS(57 ¢a (ﬁa Xa*’T:)LS(BC(ﬂ-)a X5 S)'

Remark 4.5. — Here we remind the different way that we have normal-
ized our Eisenstein series. The above formula is obtained by replacing s
with s — % in the formula of [21, page 141].

Let us explain the various notations arising in the formula

(1) S is the finite set of places but here including the archimedean ones,
which we have defined above. If we assume that ¢ is a pure tensor
at a prime v € S then the local factors for v is given by

Zy(s,q[),&x,]:) ::/ ]:v((gv»1);X73)(7Tv(9v)¢v7¢3v)dgv~
GO(Fy)
(2) The inner product < ¢, ¢ > is defined as

<¢$>=/ $(9)d(9)do.
GO(F)\GY(Ar)

(3) The factor d, (s, x) is a product of Dirichlet L functions
n—1
dn(sv X) = H LS(2S - i? X167:I(/F)7
i=0

where X1 is the restriction of the Hecke character from A% to Aj.

(4) Finally the L-function Lg(BC(w),x,s)) is the standard L func-
tion associated to the automorphic representation BC(7) ® x of
GL,(K), where BC(r) is the base change from G’ to Resy/pG’ =
GL, /K. As usual the S subscript indicate that we have removed
the Euler factors at the places that are in S.
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The complex analytic point of view: We consider a hermitian space
(V,0) over K with 6 positive definite. By Shimura [40, page 171] there
exists a matrix A € K7 and a p-adic unit k € K*, such that (i) k” = —&,
(ii) iky0, has signature (n,0) for all v € ¥ and (iii) k0 = \* — . We then
consider the embedding

Yo : Goog — G :=U(n,n), diag(a,b)— S~ 'diag(a,b)s,

1, =X
-1, A*
V used to define the congruences subgroup DY C G¥. That is, for an ideal
¢ of v we define

C:={aecG)| Ma=M}, M::{x€V|9(x,M)CDI_(}F

where S = ( ) . Let us write M for the g-maximal t-lattice in

and then
DY(¢):={y e C| My(v, — 1) C ¢, M,, Vvlc}.

Following Shimura [40, page 87] we have defined an element o € GL,,(K)n
such that M’'c = M where M’ = Y7 | ve; for some fixed basis {e;} of V.
We define the element Xy, € Gy, by Xy, := diag[o, 5].

Let now D be an open compact subgroup of Gy, we fix a set C of rep-
resentatives of the double coset G = G(F) \ G(Ar)/DDy,, where K., =
U(n)(Fa) x U(n)(Fa), the standard compact subgroup in GU(n,n). It is
known [40, page 73] that we can pick the elements in C in the form diag(r, #)
with r € GL(K)p and r, = 1 for every v in a selected finite set of places v
of F. We have already seen that an automorphic form ¢ of G with respect
to D is equivalent to tuple of hermitian modular forms (f;),cc, where we
have abused the notation and wrote r for diag(r,#). As it is explained in
[40, page 181] there exist an element U € G, such that if we consider
2710 € iSa + C H, and define zoprp := U~! - (2716) € Ha then we have
that

Tn(a,b)(zenme) = zome, (a,b) € Ggg.

We now fix a set B of GY(F) \ GY/D?(c) such that for all b € B we
have b, = 1 for all v in the set S. For an element (b1, b2) € Gg,9.n, where
b1, by € B we write

Yn(b1,b2) = (b1, b2) (b1, b2) k(b1, b2),

where a(by, b2) € G, r(b1,b2) € C and k(b1,bs) € Dlg, c]. By the key identity
of the doubling method and recalling our definition of the Eisenstein series
E where the section F is defined as F = Q,pdn @y|p ¢Y, where ¢, are the
local sections which were defined in section 3 and should not be confused
with the local vectors of the automorphic form ¢. However since we will
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use this notation again we allow this abuse. Moreover ¢} (g) := ¢,(gY 1)
and Y is an element in U(Q,) defined as follows.

1, =X
Y._<_1n ¢ )eU(Zp),

where the last inclusion follows from our assumption on det() being a p-
adic unit. In most of the applications we will be starting with a Hermitian
form 6 with det(0) a p-adic unit and 6 skew hermitian for all embedings of
Y. Then we can simply take k = 1 and A = —6/2. For the Eisenstein series
we observe,

E(g,F,x) = E(gY ", @yu, X)-
Then by the doubling method we have (note that in the doubling method
we took the Eisenstein series without normalization)

CS(n, K, 5) / E(n(9,9), F.X)6(0)d(g )x " (detg)dgdg'
Gg,9(F)\Gg,0(AF)

=< 6,0 > Zs(s = 5.9,6,x. F)Ls(BO(x), x. 9),

where here we write for simplicity x instead of xi. If we write 2y, 3, =
a(b1,b2) zonm,e € Ha, then the integral on the left hand side can be rewrit-
ten as

/ E(m(g.9"), F.x,8)8(9)d(g" ) x(detg )dgdg' =
Gog,9(F)\Go,0(AF)

C(s / E(vn(9.9"), F.x,8)0(9)(g")x(detg)dgdg' =
G0 (F)\Gp.o(Ap)/(D(c)x DO (c))

C(s) Y E(y(bi,b2), F,x, s)x(det(b2))d(b1)b(b2),
by,boeB
where,

C(s) := xn(det(c™)) " |det(on)| |27 " det(0)"det(ca) 2"~ ?vol (D (c) x D’ (¢)).

Note that this plus our considerations over the doubling method are equiv-
alent to the formula of Shimura [40, equation 22.11.3] after one also mul-
tiplies the formula by f, and takes an extra summation over b (with the
notation as in Shimura formulas).

Now we explain the first equation, the second being trivial. We have to
study the integrand

E(v(9.9). F,x. 8)6(9)b(g")x(detg"),

with respect to the left translation by elements of 7, (D?(¢) x D?(c)). We
first study its behavior for the archimedean places and the we turn to the
finite part. We first note that since we take the automorphic representation
of scalar parallel weight ¢, we have that ¢(gk) = ¢(g)det(k)~ for k €

D?(¢)os. For ¢ we have ¢(g'k') = ¢(g')det(K')’. From the infinite type of
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the character we have y(det(g’'k’) = x(det(g"))det(k’)*. (In this setting we
remind to the reader that for an element £ € K and an integer n we write
det(k)" = [],ca det(ky)"™). From Shimura [40, page 182, (22.2.4)] we have

for (k,k") € D%(¢)oo X D?(¢)0o,
E(yu(gk,g'K'), F. X, 8) = E(m(9,9'), F. X, s)det (k) det (k') det (k') "7,
from which we conclude the invariance with respect the archimedean places.
Now we turn to the behavior of the integrand with respect to the finite
part of v, (D% (¢) x D(c)). The first point that we will explain is why we can
take here (¢, p) = 1 even thought the Eisenstein series has level divisible by
primes above p when the character y is ramified there. Actually this will

also explain the modification of the section used in the definition of the
Eisenstein series by the matrix Y. We write an element (k, k') in D?(c) x

DO(c) as (k, k') = (K@, &' P) (ky, k) where (kp, k.) € ©,1,G? (F,)xGY(F,).

Py p
Since the level of ¢ is prime to p we have that ¢(gk,) = ¢(g) and similarly

#(g'k;,) = ¢(g'). The same holds for é. We assume that y is ramified at
some prime above p. We claim that
E(’y”(gkpa g,k;?)v ]:a Xa S)X(det(g/k;)) = E(’Y’ﬂ (g’ g/)a ]:7 X7 S)X(det(g/))
Indeed we have by the definition of F that
E(n(9kp, 9'kp), F, X, 8) = E(yn(gkp, gkp)Y ", @o, X, 8) =

E(S, " (ya(9,9)Y 1) P diag(ky, k), @u, X, ) = E(va(9, ), Fx0 8)xp  (det(ky).
The last equality follows from the the definition of the local sections ¢, at
places v above p. Indeed for their construction we have identified the group
G(F,) with GLy,(F,) by taking the projection to to the first component
(corresponding to the primes ¥,,). With respect to this projection the image
of diag(ky,, k) is again diag(k,, k), but now as an element of GLa,(F,).
We then have the following lemma.

LEMMA 4.6. — For the section ¢, for v above p we have that
b0 (Y (guko, 9ok1)) = Gu(9)x2,0(det ()X, (det (k).

Proof. — We recall first the definition of the section ¢, (h) = ¢Y (h; x, s) =
f@y—l (h7 5)
bu(R) = x2,0(dethY ~")|dethY —1|° ®((0, Z)RY " V)x2.0X1,0(detZ)|det Z|**d* Z,
GLn(Fy)

hence

G0 (Yn(guko, gukn)Y ™) = xa,0 (det (Y (guko, Guky))Y ™) det (Y (guko, guky)Y ~1)[° %
/ (0, Z)Yn (guko, k)Y ") x2,0X1,0 (det Z)|det Z|** d* Z =
GLp(Fy)

Xz,0(det(yn(gv, 90))Y ™) x2,0 (det (ko)) det(vn(go, go)Y ™ H)|* X
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/ @((ngkv,Zg,ljk;))xszl,v(detZ)|detZ|25dXZ
GLyn(Fy)

By the definition of ® we have that
®((Zgokv, Zgiky)) = 2((Zgo, 29.)) Xz (det (ko)) X7y (det (K))).

Hence we have

/ D(Zgukv, Zguks))X2,0X1,0(detZ)|det Z|**d* Z =
GLp(Fy)

XQ_,i (det(k‘v))XI,v (det(k‘;)) / () (I)(((L Z)’Yn (gv»g;)Y_I)XZle_j; (detz)‘detz‘gsdxzv
GLn (Fy
from where we conclude the lemma. ]

Using the lemma we can conclude our claim. Indeed we need only to
notice that y, (det(k.)) = Xl’v(det(k’v))xii(det(k;)) since we use the pro-
jection to the first component (i.e. v € ¥ and not ) in our identification
of GY(F,) with G Ly, (F,), that is the first component of the map

Ge(Fv) — GLQn(Fv) X GL2TL(F’U)7 g+ (g’te tg_l te_l).

After the above argument we can now assume that x is unramified at
places above p. Our first remark then is that for k¥ € D?(c), we have that
det(k) € 1+ ¢ and hence Y 1(k) = 1 as the character y is taken trivial
modulo ¢. Indeed from [40, page 88] we have for every finite place v of F
that

ko € D2(c), & 0, (ko = 1), < €0k 10
In particular since 6" < DI}} 7 we conclude that for k € DY(c) we have that
det(k) — 1 = det(cko™!) — 1 < ¢ which concludes our claim. Now we state
the following facts that are taken from [40, pages 178, 179].

LEMMA 4.7. — Set b := k™0 p N F. Let € := YhS~ diag(l,~]SE,

with v € D%(c). Then e € D[b~!,bc] and d. — 1 < ¢ for e = ( CCLE i); )

Our choice of ¢ (i.e. 0 /F,, # t, implies v[c) we have from [40, page 177,
lemma 21.4(iii)] that for @ € D?(c) we have that  := Spy,(a, 1)E," €
D[b~!, bc]. Moreover by [40, equation 21.6.3, page 179] for all finite places
v of F' with v|c we have that

(det(dy) " tdet(a*))y € 1+ c,.

These remarks and the modular properties of the Eisenstein series and
the automorphic forms ¢ and ¢ allow us to conclude that for k, k" € D?(¢c)y,
we have

E(vn(gk, g'K'), F, x,8)d(gk)d(g'K ) x(detg'k') =
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Xn(det(c®) " E(vu(g, 9'), F. X 8)8(9)d(g") x (detg’).

Before we proceed to the proof of Theorem 4.1 we need to define the
p-adic and archimedean periods. We do that next.

The archimedean and p-adic periods Q. (Y, X) and Q,(Y, X). Now
we need to explain how we pick the complex and p-adic periods that will
appear in the interpolation formula. Our definition of these periods is the
natural extensions of that of Katz [36, page 268] in our setting.

In general we start with (W, 0), a positive definite Hermitian space of
dimension n over a CM field K with d := [F : Q], where F := K. We
write G for GY and fix a maximal open compact subgroup of G(Ap, ;). We
note that the Shimura variety

Sha(U) .= G(F)\ G(Arys)/U

is zero dimensional and parameterizes abelian varieties with CM by the
CM-algebra Y := @?:1 K and additional additive structure determined by
the open compact subgroup U. Indeed if U is defined as the open compact
subgroup of Gy that fixes an v lattice L in W =2 K™, then Shg(U) is simply
the set of classes of L contained in the genus of L (see [40, page 62]). For
our considerations we assume that we may pick L = Z;;l te; with respect
to the standard basis of W over K.

We may now pick (see [40, page 65]) representatives {L; }_; of the classes
of L such that L, = L - g; with g, € G(Ap ) such that the ideal of K
corresponding the the idele det(g;) is relative prime to p. We write X (L;)
for the abelian variety corresponding to the lattice L;. We define A := {a €
Q | incly(a) € Dy}, where D, is the ring of integers of C,, and incl, : Q <
@p — C,, the fixed p-adic embedding. As in Katz (loc. cit.), we have that
Lie(X(L;)) = Lie(X (L)) for all 1 <4 < h, where the equality is in L ®, A.

Now we let w(L) be a nowhere vanishing differential of X (L) over A,
that is it induces through diality an isomorphism

w(L) : Lie(X(L)) S o' @ A.

From the fixed isomorphisms Lie(X(L;)) = Lie(X (L)) we obtain for each
X(L;) a nowhere vanishing differential w(L;) by the composition of this
isomorphism with w(L), that is

w(Ly) : Lie(X(Ly)) = Lie(X(L)) “% 0, @ A.

Now we write wirans(L;) for the nowhere vanishing differential on the
complex analytic abelian variety X (L;)/C := X (L;) x 4 C, obtained after a
fixed embedding incls : A < C, corresponding to the lattice L; ¢ CF:Q,
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Then as in Katz [36, page 269] from the very definition of the w(L;)’s we
obtain the following lemma.

LEMMA 4.8. — There exists an element Qoo (Y, ) = (..., Q0 (4,0), .. i
in (C*)™>! such that for all selected L; as above we have

w(Li) = QOO(Y, Z) * Wtrans (Lz)

Now we can also define in the same way as in Katz the p-adic periods.
Our first step is to explain how we can give a p>-structure to the abelian
varieties X (L;). We recall that the ordinary condition implies that all the
primes above p in F' split in K. Then if we consider L, := L ® Z, the
splitting condition implies a splitting L, = L,(X) & L,(pX) with L,(3) =
L,(pX) =2 > | §®Z,. Then the embedding Y ;" | g®Z, < L, to the first
component provides the needed p*-structure. Through the isomorphisms
X (L) = X(L;) we define the p>°-structure to the rest of the varieties.

Hence, after extension of scalars incl, : A — D,,, we may consider the
canonical differential weqy, (L;) associated to the p> arithmetic structure of
X(L;). Then as in Katz (loc. cit.) we have the following lemma,

LEMMA 4.9. — There exists a unit Q,(Y,X) = (..., Q({,0),...) €
(D) )=l such that for the selected L;’s above we have

W(L:) = (Y, %) - Wean (L:)-

Proof. — The proof is exactly as in Katz [36, lemma 5.1.47]; one has only
to remark that over A we have an isomorphism X (L;)[p*°] = X (L)[p>]
induced from the identification L ®, A = L; ®. A. O

Our next goal is to relate the periods that we have associated to the
abelian varieties of the definite unitary groups U(n)/F to abelian varieties
of the definite unitary group U(1)/F. We start by recalling the following
theorem of Shimura [42, page 164].

PROPOSITION 4.10. — Let (A,2) be an abelian variety of type (K, ¥)
with a CM-field K and U of the form ¥,(a) = diaglayl,,,a,1s,] (Thus
dim(A) =d=m[K" : Q] and r, + s, =m). If Y
isogenous to the product of m copies of an abelian variety belonging to a

TSy = 0, then A is

CM-type (K, ®) with ® such that U is equivalent to the sum of m copies
of .

We now write B for an abelian variety with complex multiplication by
the CM field K and type ¥. As in Katz [36] or deShalit [12] we fix a
pair (Qs0(X), 2,(X)) € (C¥,DF)* of a complex and p-adic period. As
with the pair (Qu(Y,X),Q,(Y,X) the definition is again independent of
the particular B and depends only on the (K, X)-type. Then we have
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LEMMA 4.11. — We may pick the pairs (Qs (Y, %), Q,(Y, X)) and
(R0 (X), 2, (X)) so that

(200 (Y 5), 2, (Y, ) = (Qoo(5)", 25(2)").

Proof. — The only thing that we need to remark, is that with notation
as above we have that X (L) = &7, X (t), where X (v) is the abelian variety
with CM of type (K, ¥) associated to the lattice ¥ (r) ¢ CIF:l, O

Notation: We will write EY, (-) for the algebraic counterpart of the
Eisenstein series E(z,m(A), ¢, e) defined in section 3 as well as for its
p-adic avatar.

Proof of Theorem 4.1: Now we ready to proceed to the proof of The-
orem 4.1.

Proof. — (of theorem 4.1) We recall that we have defined the sets of
representatives B and C. We change now our notation and write f = ®,f,
for the normalized automorphic form associated to 7. Similarly we write f
for the associated to 7. Moreover it is well know that f is determined by
a set of data (f(a))ees where f(a) := f(a). Moreover we have defined an
embedding

TGP x G = G.
For a,b € B we write rq for the fixed representative in C of the element
Yn(a,b). We introduce the following notation, given an a € B, an r € C and
a r-polarized Eisenstein series E,(-) we denote by E;a)() the Eisenstein

series
det(r)

E}({cz)(.) = E\()x (det(a)> '

For every finite character ¢ of G, and a € B we define the measures

JTHNE Q/JHZE (Aq X A, j1 % §2) f(b),
beB

and then the measure

HLS .
/ w/‘ : <f’f>Z/~LaX

a€B
xt(det(b)) By (Aa X Ap, j1 X j2) f(a) f(D).
< f,f > ge:g e
The last equality follows from the fact that y (dzte tr‘; )b)> = x1(det(b)).

Indeed we can write v, (a,b) = yrqpk with v € G(F) and k € D(c). In
particular we have that

det(a)det(b) = det(y,(a,b)) = det(y)det(rqp)det(k)
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and of course x(det(y)det(rqp)det(k)) = xp(det(rqp)). Moreover we can
assume (see [40, page 65]) that b, = 1 for all finite places v of F where
the representation m, is not spherical or v € S. Then we claim that this
measure ;77 has the claimed interpolation property and that (f, f)u is
takes integral values. We use the doubling method as developed above. We

start by observing that,

W Z X (det(b)) Exy(Ag X Ap, j1 % ja) f(a) f(b) =
a,beB
e 3 X8 By X Ap o (4) % e (A (@) ).
R a,beB

Here weo = (271)"Wirans, that is we evaluate the Eisenstein series at abelian
varieties associated to our preselected lattices normalized by the factor 2.
We obtain the equation

<f.f> HLS (27”) nik+26)
(4’1) Y Z O _(V S\k+2¢ / wd - (Y Z)k-{—w

> (Z X (det(D)) Exy(Aa X Ap, woo(Aa) X wmmb))f(b)) f(a).

a€B \beB
Now we use an observation of Shimura in [40, page 88 and 186]. Namely,
the inner summation

)= D Xt (det (D) Exy(Ag X Ap,woo(Aa) X woo(A6)) F (D)
beB

corresponds to the value at a € B of the adelic automorphic form f|T
where f the adelic form corresponding to (f(a))ees and T := [[, T, =
[l,es %o x [l g5 Fv, where T, for v ¢ S is given as in Shimura (with
notation as therein but for us here normalized as for example explained in
page 168 of [40])

(1%, = [[ Lon—roxavne) Y- (EDuTD)x$(7 ()N (@7 (7))~

TED\Xy /D,y

and for v € S we have that

£1%, = [[ Lon=rixatne’) Y (E1Do7D,) fa, (1, )N (7)) 7 .

r=1 TED\X, /D,y

But we are taking f an eigenform and normalized. In particular g(b) is
equal to af(b) where « is the eigenvalue of f with respect to the operator
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%. Then we have

([ Tles T £) _ (@s]1Tes Fos )
(f,1) (¢s,bs)

or equivalently

= ZS(WJVT,X% f@xw)

os| [[ To = Zs(m, 70, X0, fo,, )5

veS

Indeed the last equations follow directly from the definition of the integrals

Zs(m, X, fo,) = /G o f (00105 65)dg

and the p-adic Cartan decomposition of D, \ G(F),)/D,. Putting the last
considerations together we get that the equation 4.1 reads

(27.‘.1 nk+2€

sy [ E(0.9).0.0)(0) (6 () detg gy’

where X = (G x G)(F) \ (G x G)(Ar)/D%(c) x D%()) and E(z,, xv)
is our normalized Eisenstein series. By the doubling method (the reader
should here note that the doubling method was without the normalizing
factos C¥(n, K, s)). Then we have that the last expression is equal to

@mi)"*+20(f, F) ( )stc( ™), X, £)
C(0)C3(n, K, 0) (Y, Z)k+2t

11 Zs(x. 7. xv. 9)
veS

where we have used the fact that B = G(F) \ G(Ar)/K(c) and G(F) =
Koo(c). The factor Zg(, 7,7, x1, ¢) will be computed in some case below.
O

From its very definition it is easily seen that the measure (f, f)#f,is

is integral valued. Hence we could for example establish that the measure
uH is is integral valued if we knew that the quantity (f, f ) is a p-adic unit.
It is well-known (see [25, page 2] that the p-divisibility of this quantity
corresponds to congruences modulo p between forms in 7 and other cuspidal
automorphic representations 7’ of U(n). Hence if we assume that there are
no congruences between forms of U(n) we can conclude that the measure
ﬂfis is p-adic integral

The local integrals for v archimedean: The local integrals for v
archimedean have been computed in general by Garrett [17, Section 3,
Quantitative Theorem] (see also the remarks (3) and (4) of Harris in [24])

and they are known to be elements in K *. However in our situation they
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are integrals over compact groups hence can be easily computed. Indeed
by definition

2t 6. F) = [ Fula 0)(al0)6, g

By our choice of the infinite section F we have that F (7, (g, 1)) = det(g)*F(1) =
det(g)’. Similarly we have (7(g)¢, ¢) = det(g)~*(p,d) = det(g)~*. Hence
the integral is simply the volume of the compact group G?(R). Our measure
is picked so that this volume is equal to 1 (see [21, page 83]).

Computation of the local integrals for finite v € S not above p:
In the case of n = 2 the integrals depend on the particular choices of ¢,.
For some specific choices of these ¢,’s in the case of n = 2 and in general
for n = 1 the integrals have been computed by Ming-Lun Hsieh in [30, 31]
where he proves:

Zy(1,0, ¢, X, F) = vol(D%(c),)

Computation of the local integrals for v above p: We now compute
the integrals

Zp(5a¢)a§£7X7~7:) = HZU(SaQﬁvaévavafv)

vlp

in the special case where n = 1 or 2. We start with some general remarks
with respect the Fourier transform over GL; and then we generalize to
GL,. Our main references are [30, 31]. We let F' be a local field with ring
of integers g and we fix a uniformizer w of g and write p = (w) . For a
complex character x : F’* — C* we define the Bruhat-Schwartz function
O\ () = x(x)Igx (x). If we define the quantity

L(s,x)
€(S,X)L(1 - 87X71)7

where L(s, x) the standard L factor of x and e(s, x) the epsilon factors of
X, then it is well known that

E,(s,x) =

Z(8, X, By-1) = /Fx(x)Cbx—l(;vﬂdexx = vol(g)

and

~

Z(s,x,By) = /F X(@)[2* B (@) d*x = By (s,X),

where :ISX the Fourier transform of ®, defined as </I\>X(m) = &Py (y)(yx)dy
for an additive character ¢ : F — C*. Moreover it is well known that if we
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write ¢(x) for the valuation of the conductor of x and d for the valuation
of the different of F' over Q, then

X @ @700,
K@) = { Io(x) — [l Ty-1 ().

o

(x) # 0;
(x) =0.

where ¢ := @+ and 7(y) = fgx X(2)Y(%)d* z, a Gauss sum related to
1

C
C

b

the local-epsilon factor by e(x, s) = |¢|*7(x)~

We now generalize these considerations to the case of GL,,. For a Bruhat-
Schwartz function ® of M, (F) we define its Fourier-transform ®(X) :=
fM"(F) O(Y)y(tr('Y X))dY. For a partition n := ny + ... + ng of n and
a set of characters v := (v1,...,14) of F* we have defined the Bruhat-
Schwartz function

3, (X) = { (V)j(det(Xu)) covg(det(Xyp)), X € T(ph);

otherwise.

Now we recall the Godement-Jacquet zeta functions as introduced in
[19]. So we consider an automorphic representation (m,V;) of GL(n)(F),

which always we take to be a principal series of the form m = w(vy, ..., vp).
We write w(g) :=< m(g)v,? > for the matrix coefficient where v € V and
¥ € V in the space of the contragredient representation 7 and < -,- >

properly normalized so that < v,¥ >= 1. For a Bruhat-Schwartz function
® of M, (F) and a character x of GL1(F) = F* we define the integrals

Z(s,®,w,x) := / O () x(det(z)) w(x) |det(x)|® d* z.
GL,(F)

These integrals generalize the theory of Tate (in the case n = 1) as it is
proven in [19]. It is known [19, page 80] that if 7 and y are spherical and
we pick ® := 1,/ (5) then we have that

Z(87 (b7 w) X) = L(S’ 7‘-7 X))

that is the L—factor of 7 twisted by x. Now we take n = 2 and £ = 2. Then
we have the following lemmas that generalize the case of GL;.

LEMMA 4.12. — Consider the principal series representation m = m(v1, vs),
where v is an unramified character and define w(x) =< mw(x)v,v > with
b
v € Vi so that w(z)v = vi(a)v for x = ( Z d ) € T'(p'). Then the

Godement-Jacquet integral Z(s,®, 7, x) with ® := &, -1,-1 is equal to
vol(T(p)) < v, 0 >.
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Proof. — By definition we have that Z(s, ®, 7, x) equals
/ ®(z) x(det(x)) w()|det(z)|* "z = / (x) x(det(z))w () |det(z)|*d* (z).
GL3a(F) I(pt)

b
d
v1(a)v, o >=1v1(a) < v,v >. That means we have,

But for z = ( Z ) € I'(p') we have that w(x) =< 7(z)v,0 >=<

(s, ®,mx) =< 0,0 > / B () x(det(x) )1 (a)|det (@) *d* (z), = = ( “ ! ) .

L(pt)
But by the definition of ® we have that ®(z) = vy (a)vy *(d)x " (ad) and
we notice that by the choice of ¢, i.e. bigger than the conductors of v; and ,
we have that y(det(x)) = x(ad —be) = x(ad)x(1+p?) = x(ad) as a,d € g*
by the definition of I'(p?). Putting these considerations together we have
Z(s,®,m, x) is equal to

. _ - 1 s 7% _(a®
< v,0 > /F(pt) ! 1(a)V2 1(d)X (ad) x(ad)v1(a)|det(@)*d* (x), @ = ( c d ) .

Since 15 is not ramified we have that v5(g*) = 1 which concludes the proof
of the lemma. a

We now compute the integrals Z (s, %, 7, x)- As we mentioned above these
integrals should be computed in full generality in [15]. In the following
lemma we will compute them only in the case of interest, namely for n = 2.
We note also here that a similar integral has been computed in [31, Lemma
6.7].

LEMMA 4.13. — With the setting as in lemma 4.12 but with m =
7(v1, v2) unramified and for ® := ®,,,, we have that the Godement-Jacquet
integral Z(s, ®,m, x) is given by

Z(S,‘/I;,TF,X) = 0p| X Ey(s — 1,v1x) Ey (8, v2X),
where 0f Is the different of F.

Proof. — We start by exploring the support of 3. By definition we have
that ®(X) = [, (V) (tr(*Y X)). Writing X = ( ) and Y =

( L& ) we have that
Ys Y4

Ty X2
Tr3 T4

B(X) = / @((yl y2))¢(x1y1)w<m2y2>w<zsy3>w<x4y4>dyldyzdysdm.
M (F) Ys Y4
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By the definition of ® = ®,, we have that

B(X) :/IVlX(fUl)V2X($4)w(flylW(932y2)¢(933y3)¢($4y4)dy1dy2dy3dy4,

where Z C My(F') the support of ®. The above integral we can write as
the product

([ mxtewtaman ) ([ v ) »

( . ¢($2y2)dy2> < i 7/)(I3y3)dy3> :

L I
ER
I, = g* and hence we have that

/I vix(xy)(ziyr)dys = ‘T)ulx(yl), /I vox(xa)Y(xaya)dys = $u2x(y4)~

where we have written Z = < ) By definition we have that I, =

For the other two integrals we have that

'UOZ(IQ), .132[2 S a;l;
0, otherwise.

U(x2y2)dys = {

Iz

and similarly for fls Y(x3ys)dys. Now we turn to the integral Z (s, EIS, T, X)-
By definition we have

Z(s,®,m,x) = / & (z) x(det(x)) w(z)|det(x)]° d* .
GL>(F)

By the Iwasawa decomposition GLy(F) = B(F)K with K = GLa(g).

Hence if we write x = bpk and by = < g g

la|~Ydyd* ad* bdk then the integral above reads

/px /p /F/K‘T) (( 0 b >k> X(abdet(k)) w (( 0t )k> Iablsdy%dxbdk.

By definition we have that w(x) =< 7(z)v,? > with v a normalized spher-

) and observe that d*z =

ical vector. That means, as m = 7(v1, /2) that we have w << 8 z > k) =

vi(a)va(b) < v, >= vi(a)va(b). Moreover we note that by definition
@(mk) = &)(x)@(k’l). Indeed from the definition of the Fourier transform
after the change of variable y — y%il and noticing that tr(%yxk) = tr(k'yx)
we have that

@@@—Ammﬂwww@M»—A4 Sy

2(F)

1

Yy (tr(yz)).
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But now we note that by the very definition of ® that ®(y% ") = ®(y)®(%k ') =
®(y)® (k=) which proves our claim. Our next observation is that ®(k~!) =
X~ !(det(k)) since vy and v, are unramified characters. These considerations
together give us that Z(s, </I;, m,X) is equal to

= vol(K) (/F <T>V1X(a)ulx(a)|a|5*1dxa) (/F 6V2X(b)u2x(b)|b|5de) /F Izw(yx)dyd:v.

But we have that [ [} ¢ (yz)dydz = vol(I2) [y-1, 1 dy = vol(I)vol (05" I; 1) =
F 72

0r]. O

1, =X

We have defined the matrix S = ( T

> . We define the matrix

0
w = ( 0 709 > and write G¥ for the corresponding unitary group. That

is, G¥ corresponds to the hermitian space (2V := V @ V,0 @ (—0)). As
-1, . .
always we write 7, for the matrix ( 1 0 ) Then as it is explained

in Shimura [40, page 176]we have S™!G¥S = G and if we define P* :=
v€GY:Uy=U with U := {(v,v) € 2V,v € V} then ST1P¥S = P
with P the standard Siegel parabolic {x € G™ : ¢, = 0}. We write
Yot GY 5 G, g — ST1gS. Now we note that if we define the group
Gop = G? x G? then we have a canonical embedding Gg,9p — G¥ given by
(9,9") — diag(g, g’). Then we remark that

Y Y (P™) N Gop = {(9,9)|g € GY.

LEMMA 4.14. — Let v be a place over p and let ® := ®,, be the Bruhat-
Schwartz selected above. Then if we write fés) for the corresponding local
section we have

Zy(s,m, 7, £$7)) = / S (g, D)w(g)d* g =
GL,, (Fy,)

Ly, (s—1,xv) . _q.
a(XJ/J,S) X Bp(s—l,XJ)Lp(21<57X71¢7l)’ 1fn = ]_,

= Lo(s=1,vy '¢1) Ly(s,v5 ' é1) o
XY 8) X T T e L@ d ) oo o0 Ee(i-sar AP =2

where the notation is as in Theorem 4.1.

Proof. — In this proof we will write F' for F,,. Moreover we write (X1, x2)
for the pairs (xptp, Xp¥p) in case n = 1 and (¢, ¢2) in case n = 2. By
definition we have fé,s)(x) = fo(xS™1) with

fo(h) = Xg(deth)\det(h)P/GL (F)fI)((O,Z)h)X2X1(detZ)\det(Z)\QSdXZ.
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That is the integral Z,(s, 7, 7, <és))) is equal to
1) =z (et Sdet(s)| " [ [ @((0.2)diag(e, )5 )
GLn(F) JGLn(F)

Xzx1(det(Z))|det(Z)|* x2(det(g))|det(g)|*w(g)d™ Zd* g.
By the definition of ~,, we have that

@((0, 2) (g, 1)S™1) = @((0, 2)S ™ diag(g, 1)).
We have that

G (A A k710700
1 1, 0 sl )

After doing the algebra we obtain that the matrix S—! ( g 10 ) equals

AFA k107 1g 0 ( NETT g ATl
1, 1, 0 k~to-1 ) k797lg k7RO )

In particular

*,.—19—1 —1p-1
¢ ((O,Z) ( )\Kljlaﬁlgg )\l:_lee_l )) = @(Zli_le_lg,Zli_le_l).

The integral now reads

I(s) = Xgl(det(S))\det(S)rS/ / ®(Zk 0 g, 20 ) x
GLyp(F)JGL,(F)

X2x1(det(2))|det(Z)|* x2(detg)|det(g)|*w(g)d” Zd* g.

As in [18, page 36], we make the change of variables Zx~ 1071 — Z5 and
ZKk'07'g — Z,. That is Z; ' Z; = g and by the translation invariance (re-
call that GL,,(F) is unimodular i.e. left and right Haar measures coincide)
of the measures we have

1(5) = x3 ' (det())|det(S)| =" x
/ / B(Z1, Z2)Xox1 (det(50)) | det(50) 2 xax (det( Za) )xo (det(Z2) 1)
GL.(F) JGL, (F)

xa(det(Zy))|det(Z2)|*|det(Z,) |Pw(Zy t Z1)d* Zyd™ Zs.
As it is explained in [18, page 36] this integral is equal to

I(s) = x5 ' (det(S))|det(S)| ™ xax1(det(x0))|det(x0)|> /GL - /GL (F)q)(Z1,Z2)><

Xz(det(Zl)))a(det(Zz))\det(Zg)P\det(Zl)|Sw(Z;1)w(Z1)dxZldXZz
which in turn is equal to
X2 ' (det(S))|det(S)| ™" x2x1(det(r0))|det(k0)|* x
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/GL " (131(Z1)Xz(det(Z1))w(21)|d€t(Z1)|stZ1><

/GL (F) D3(Z2)x1(det(Z2))w(Zy ") |det(Z2)|* d* Zs.

But &; = érflx;l and ¢, = </15,,71X1. These integrals we have already
computed. Finally we set

a(x, 1, 5) = [op| x x3 ' (det(S))|det(S)|~*x2x1 (det (D)) det (10)|**
and a(x,v) = a(x,¥,1). O

5. Congruences between Eisenstein Series

We recall briefly part of our setting. We consider a CM field K and a CM
extension K’ of degree p with totally real field F = K+ and F' = K't.
We also fix CM types (K,X) and (K',Y’) with ¥’ be the lift of . We
moreover make the following assumption: The primes that ramify in F’/F
are unramified in K/F. Our aim now is to study the natural embedding:

U(TL,TL)/F(F) — RBSF//FU(TL,TL)/F/(F).

The diagonal embedding; algebraically and analytically: We start
by first observing that the compatibility of the CM-types induces an em-
bedding of the corresponding symmetric spaces. That is, we have

A Hp — HF’7 (Za)aea — (Zo/)a’ea’a

with z,/ := 2z, for ¢/|x = 0. We now consider the congruence subgroup
To(b,c) of U(n,n),p for an integral ideal ¢ of g and a fractional ideal
b of F. We moreover consider the congruences subgroup I'g(bg’,cg’) of
RespypU(n,n) p. Then we have that the embedding

U(n,n)/p = ResppU(n,n) p

induces an embedding I'y(b,¢) < Tg(bg’, cg’). We simplify our notation by
setting " := Tg(b,¢) and I := T'y(bg’, cg’). Now we easily observe that A
induces, by pull-back, a map

A* Mk(F’) — Mpk(l“), f — f o A.

Next we study the effect of this map on the g-expansion of the hermitian
modular form. Namely, if we assume that f € My (I"”) has a g-expansion of
the form f(2') = >, cp c(h')el (h'2"), where we recall that L' = o,
then the following lemma provides us the g-expansion of the form A*f.
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LEMMA 5.1. — For f € My (I") as above we have

A f(z) = Z Z c(R) | el (hz).

heL \h' €L Try:, i (h')=h

Proof. — We first observe that Trp//p : L' — L, where Trp,/p(h') :=
YveGai(k /i) (h)7. Indeed, we recall that L' = ' and L =071T. To
see this, consider an element d't' € L' with &’ € 9/ and ¢’ € T". For an
element y € S(t) we compute

tr(yTric i (dt) = tr(y Y (d)7(t)7) =D _(d'tr(yt"))”.
g o

But S(r) € S(t') hence we have that ¢’ := tr(yt’) € g’. That is we have
shown tr(yT'rg: kg (d't")) = > (d'g")7 and d'g" € o' But TrK//K(D’fl) -
27! hence we have shown that tr(S(v)Trg: /(L)) € 971 or equivalently

0Trg k(L") C T which concludes our claim.
Now we consider what happens to the A’ th component of f after setting

t' := A(z). We have

(W A(z)) = 2™ Eoren (Si g W23 _ 2 Sgesy il 2
MiVoen Lotest ol =0 i my 7 = _ SR R #i Dol ext of =0 e

2™ X0 Loen 7 (Trrr /e ()7 = 2m1 oen (i T /x (M )75,6)7 = el (Tricr /e (h)2).

These calculations allow us to conclude the proof of the lemma. O
It is easily seen that the above considerations can be generalized to more

general congruent subgroups. Namely, for an element g € GL,, (Ax n) we
consider groups of the form

— 9 0 -1 9 0
e (40 Yowte (1)

We note that for ¢ = 1,, we have I'y, = I'o(b,c). Similarly for the same
g c GLTL(AKJ) C GLn(AK/7f) we define

=G n < g 2 >D[b_1g',bcg’] < g 2 )

We now observe that the embedding U(n,n)(Ar) — U(n,n)(Ap/) in-

duces the embeddings D[b~", bc] < D[b~'g’, beg/] and Ty — T,. In partic-

ular, as before, we have that the map A induces as before a map My (T')) —
My (Ty).

Our next goal is to understand the above analytic considerations alge-

braically. We start by recalling the moduli interpretation of the Shimura

-1

-1
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varieties I', \ H. We fix a K-basis {e;}?"; of V so that the group U(n,n)/F
is represented as U(n,n),p(F) := {a € GLa, (K ) | o nna =1 }. We con-
sider the g-maximal t-lattice L := > | te; ® ZJ A K/Fej C V. Then
we note that for all y € GyND[b~1, b] with b := DK/FﬂF we have Ly = L.
Moreover, for g € G(Ap,f) and L, := (L @, t)g~' NV we have L,y = L,
for all v € Gy NgD[b~!,b]g~!. In particular the groups I'y above respect
the lattices L. Following now Shimura [41, page 26] we recall that the
space I'y \ Hp parameterizes for every z € Hp families of polarized abelian
varieties P, = (A;,Cs, iz, ), where A, := (C*")2/p,(L,) with p, defined
by

P, (Ka)s, = (C*)2, 2 ([2, 1] - 25, [20 1n] - ) vea-
Moreover C, is the polarization of A, defined by the Riemann form
E.(p.(7),p-(y)) = Trg,/r(xn.y*). Themap i, : K < Endg(A.) is by the
map ¥ : K — End((C?")2) defined for a € K as ¥(a) := diag[¥,(a)]vea
and VU, (a) := diag[ay1,, a,1,]. Finally the arithmetic structure a. is in-
duced from the embedding ¢ 'L < K?". As is explained in Shimura (loc.
cit. page 26) we have that two such data P, and P, with z,w € Hp are
isomorphic if and only if there exists v € I'y so that w = vz.

Now we observe that the diagonal map A : Hp < Hp introduced above
induces a map I'y \Hp — I‘fq \Hg by P, — P/A(z) where the structures for
the group GU (n,n)/F" are with respect to the v'-lattice L} :=t'®, L,. We
note here the crucial assumption that the ramification of F/K and F’'/F
is disjoint. In particular we have that 0/ = DK/Ft’.

We now explain briefly how the analytic considerations above can be
extended to their algebraic counterparts. We consider the scheme M(I'y)/R
over some ring I?, associated to the congruence subgroup I'y, that represents
the functor S — (A4, \4,«.)/S discussed in the introduction. Then the
algebraic counterpart of the map above is a map M(I'y)/R — M'(T'))/R
given by (A, A\ i,ac) — (A, N i,a) @ t'. When R = C this map is the
previously defined map. In particular we see that we can define the map
A*: My(TY) = Mpi(Ty) algebraically by A*f(A,w) := f(A@: v, w @ t).

Before going further and providing also the algebraic counterpart of
lemma 5.1 we remark that if write A’ := A ®, v/, the image of the abelian
variety A, then this is isogenous to [K’ : K] many copies of A. Indeed, this
follows by writing the t-module t’ as a direct sum b ® @[K K=t for some
ideal b of t.

We now consider the Mumford object associated to the standard 0-genus

cusp associated to the group I'y. We decompose the lattice L = """ | ve; +

2 2
D imni1 DK/Fe] to L' := 37" vejand L7 := 37" 1) DK/FeJ Then we see

ANNALES DE L’INSTITUT FOURIER



THE TORSION-CONGRUENCES FOR UNITARY GROUPS 59

g

. 0
that since we consider elements of the form < > for the components
g

of GU(n,n), we have that L, = L} ® L? with L} := L'g* and L* := L?¢g~".
The Mumford data associated to the standard 0-cusp of the g’s component
is then (MumLé,Lg (@), Aean, tean, @S®™), defined over the ring R((¢q, H)),
where HY = 27 1gTg* C S with T := {z € S | tr(S(x)r) C g}. We now
consider the ring homomorphism T : R((¢', H'")) — R((g, H")) defined
by q’h/ s ¢q7"x' /(") Then we have that

(Mule L2 (Q)7 )\cana Tean; asan) Qr V=
(M’U,mL/&lNLﬂ( ) )\/can7 .lcan’ a/can) ®R((q/ H’V)) Tr R((q,HV))

In particular if f € M, (T)) is an algebraic hermitian form with g-expansion
given by

. ’
f(MumL’é,L’z( ) >‘/can7 /canaalian7w/can) = Z c(h/)qh )
h/EH/\/

then its pull-back form g := A*(f) has g-expansion
g (Mumy 13 (@), Aeans icans 06" wean ) =
I ((Mumy 13(0): Acans fcans 05" wean) @)
=f ((MumL';,ng(q/)v Avans beans @ o s Whan) @Rr((q 1)), R((4, HV)))
§ (A2 12(6), N s 2" ) @i, R0 HY)).

Again with R = C we have the algebraic counterpart of lemma 5.1. We
summarize this discussion in the following lemma.

LEMMA 5.2. — Let f € My (T, R) be an algebraic hermitian modular
form defined over R. Then the g-expansion of g := A*(f) € Mp,(Ty, R) is
given by

9(q) =) > c(h') | 4",
h h’eL’,TrK//K(h’)—h
when the q-expansion of f is given by f(q) =Y, c(h')q"

For a function € := ) 5 CiXG of G4, where X; are characters of the form
and X;L/J, where 1) a fixed Hecke character of infinite type k¥ and X} finite
order characters we have that Eg(m(A), ¢,€) equals

QB AK) > na(Bm chxj det(A)XS (@) | T] xws(detu™)

(a,9)=1 vesS®)
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[T xio.(det(B(hu))xz .0 (det(A(ho)) @, (*Ahy) BB(ho) ™)

vEY,

Now we assume that €’ = ¢ for all v € I'. Since we assume that m(A) €
GL,(Ak) we have that

j(det(A (H X, (det(B )))Xz,v,j(det(A(hv)))%(tA(hv)ﬂB(hv)1)) X

vEX)
—1
H X'u,j (detu) =
ves(P)

X; (det(A (H X1, (det(B )))X;,v,j(det(A(hU)))q)H(tA(hU)ﬂB(hU)_l)) X

vEX)
H Xo. (detu).
ves(p)

Claim: For the function €)(a, 8) on G/ (cp>) x Hery(F) defined as

ZC;X; (det(A (H Xi.0,j(det(B )))X2,u,j(det(A(hv)))‘I’u(tA(hv)ﬂB(hv)_1)> X

vEX)
H Xu] detu ] ( )
ves(P)

€9(a,p) =S (a7, 87).
Indeed, we notice first that €7 = ¢ if an only if ¢; = c(;) where cy(;

denotes the coefficient of the character X =: x,(;) in the sum ), ¢;x;. In
particular that means that we may decompose the locally constant function

€ as follows
€= ZCZX7,+ZC]€ZX[€7

yel’

we have

where for the characters y; that appear in the first sum we have that
X; = xi for all v € I'. Then the claim follows from the observation above,
the definition of ®, and the fact that 17 =v.

For the applications that we have in mind we need to understand how
the polynomials gg ., ., depend on 5, m and v. We explain this by following
closely Shimura’s book [40]. We start with some definitions.

First of all we need to introduce the notion of the denominator of a matrix
as is defined in [40] p18. Let t be a principal ideal domain and let K denote
its field of quotients. We assume that K # v. We set £ = E"™ = GL,(t).
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Given any matrix X € K] of rank r, there exist A € E™ and B € E™ and

elements eyq, ..., e, € K* such that e;y1/e; € v for all i < r and
AXB = Df 0;,‘1__7; , D =diagles, ..., e
oy 0p;

The ideals e;v are uniquely determined by X and we call them the elemen-
tary divisors of X. We call an element X € 7 primitive if rank(X) =
min(m,n) and the elementary divisors are all equal to t. Shimura shows
that for any given z € K there exist ¢ € tJ" and d € ]! N GL,,(K)
such that the matrix [c d] is primitive and = d~'c and the integral ideal
vo(z) := det(d)r is well-defined and called the denominator ideal of x.

Now we fix a local field F, a finite extention of Q,, for a prime p. We write
g for its ring of integers and p for its maximal ideal. We put ¢ := [g : p]. We
pick an additive character y : F — S such that g = {a € F : x(ag) = 1}.
Following Shimura as in [40] (only for the case that we will consider) we
fix symbols K,t,q,0,0,p and € as follows

(1) if K is a quadratic extension of F then t is the integral closure of
g in K ,q its maximal ideal,d the different of K relative to F',0 € K
that generates the different,p the non-trivial element of Gal(K/F)
and e =1,

2) K =FxF,thent=0=gxg,q=pxp,0 =1, pis the
automorphism of K defined as (z,y)? = (y,z) and € = 1.

We introduce the following notations
S=5")={he Kh =¢h}, S(a):=5nN(ca)y,
where a is an v or g ideal. Also we introduce the set of matrices
T=T"(e) ={x € S"(e)|tr(S(v)x) C g)}.

Now we extend the definition of the denominator of a matrix z € K}
defined above for the case where K is not a field as follows. If K = F x F
then for x = (y, 2) € F* we define vo(x) = vo(y)e+vo(2)e’ where e = (1,0)
and ¢/ = (0,1). Then vy(z) is an v-ideal. Shimura shows in [40] that in
both cases (K being a field or not) we have that vy(o) = (g N (o))t for
o € S. We then define for o € S the quantity v[o] := N(g N vy(0)). Given
an element ¢ € T™ we consider the formal Dirichlet series

acs)i= 3 x(tr(¢o)wlo] .

o€S/S(x)
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For 0 € S we define the non-negative integer k(c) by v[o] = ¢*(?) and
introducing the indeterminant ¢ we consider the formal series
Acty=" Y x(tr(Co)t
0€5/5(v)
such that A¢(¢~°) = a¢(s). As Shimura explains, we have for v € GL, ()
that A cy)(t) = A¢(t). Hence we may assume that ¢ is equal to 0 or equal

to diagl¢ 0] for £ € T" N GL,(K) where r the rank of ¢. The following
theorem is proved in [40, page 104].

THEOREM 5.3. — Let ¢ € T™ and let r be the rank of (. Suppose that
¢ =0 or ¢ = diagl§ 0] with £ € T" N GL,(K). Then Ac(t) = fe(t)ge(t)
where g; € Z[t] with g¢(0) =1 and f. a rational function given as follows:

H?:l(l _ T’i*lqiflt)

t) = - 3
fC( ) H?;lr(l _ Tn+1qn+zflt)
where
1, ifiisevenor K =F x F;
Tti= —1, ifiisodd,d=rt, and K # F x F;
0, if7is odd and 0 # t.
PROPOSITION 5.4. — We consider the polynomial gg ,,(a),.(t) € Z[t] in

the K'-setting i.e. B € S"(K'), A € GL,,(Ay k') and v a finite place of K'.
Let now v € I' = Gal(K'/K). Then we have gg m(a),o(t) = 987.m(a7),07 (1)

Proof. — We first note that it follows from [40, page 156] that

98.m(4).0(t) = g¢(1),
where ¢ := w,A}[A, with w, a generator of 3(F’/Q), and g¢(t) is defined
as above for K. We consider the following two cases,

(1) The element v fizes v: In this case we have to show that gc+(t) =
gc¢(t). Since the ranks of ¢ and {7 are the same we have that f:(t) =
fer(t). So in order to conclude our claim it is enough to show that
Ac(t) = Ac+(t). By definition

Ac ()= > ey(dg'tr((7e))t ).
0€5/5(x)
This implies Ac+ (t) = 3,55 € ((dp!)tr(¢Co? )@, But we
have k(o) = k(o7 ) asvjo? ] = N(gNup(o™Y)) = N(gNwp(o)) =

v[o]. This means

Ao = 3 en(dph)ytr(cor N = Ac(),
o€S/S(v)
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which allows us to conclude the proof in this case as v~! permutes
the set S/S(v) and A(t) is independent of the additive character
e, picked (i.e. makes no difference whether we pick eq,(d;L) or

ev((d;‘vl)v')-

(2) The element v does not fix v: We fix an identification of K/ and
K., and write 27 for the image in K/, of an element x € K| with
respect to this identification. We write

98.m(A) (1) = g, (1)

with ¢, := w, A} BA, with w, a generator of ?9(F’/Q), and gc, +(t)
is defined for K. Similarly we have

97 ,m(AY), v (t) = 9Cuv 0 (t)
with (v 1= wyr AY*BY AT with w,~ a generator of 9(F’/Q),» and
9o o (t) is defined for K ,. We need to show that gc, () =
9o o (t). But the rank of ¢, is equal to the rank of (,» and hence
feow(t) = fe,v0v(£). So it is enough to show that A¢ (¢) = A, (2),
which follows from the identification of K/ with K.
(|

Now we can prove the following proposition.

PROPOSITION 5.5. — Let m = m(A) with A in GLn(Ag,))xGLn(t’@Zp)
be an element in the Levi component of P. Then for all v € T' we have,

nar (87, m(A7)) = na(B,m(A4)).

Proof. — Let as write q for the prime ideal of K’ that corresponds to
the place v of K’. Then we note that ngm (8, m(A)) is the m-th power coef-
ficient of the polynomial g¢ ,(t) with ¢ := w, A} SA, with w, a generator of
9(F’/Q),. Moreover from its very definition we have that nq (8, m(A)) =
I, Mgmi (B,m(A)) for a =], q;nj. But that means that we need to prove

the statement for a a powers of a prime ideal q, that is to show ngm (8, m(A))

ngyvm (87, m(A7)). But this follows directly from the previous proposition.
O

We need in addition to understand how the coefficients of the polyno-
mials g3, (4),, behave with respect to K’ and K. We have the following
proposition.

PROPOSITION 5.6. — Let 8 € Sk be positive definite and A € GL,,(Ak).
Then we have the congruences

ngs (B,m(A)) = nl,;(8,m(A4)) mod p,
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where q' := qOp: for every prime ideal q of F' that is not in S.

Proof. — We consider the case where q splits in F’ and where it inerts.

q splits in F’: We start with the splitting case. We write g’ = []}_,
for the ideals above q and v] for the corresponding places. Then by the con-
siderations above (as 3, A are coming from K') we have that gg m(a)../ () =
98,m(A),0(t). Hence in particular we conclude that ng; (8, m(A)) = Ngi (8,m(A))
for all ¢. But then

q’d ﬁa Hn /Ba an(/gam(A))p

=ng (B, m(A))? =ng(B,m(A)) mod p.
Hence we conclude the congruences in this case.
q inerts in F’: As before we write v for the place of F' that corresponds
to q and v’ for the one that corresponds to q’, Moreover only for this proof
we set F':= F, and F’ := F/, and hence [F’ : F] = p and it is an unramified

v
extension, since we assume that v is not a bad place. We first show that

fet) = fé(t) mod p,

for ( € Sk C Sk and of full rank n. We note that for the cases that we
consider this is always the case as 3 is always a positive definite hermitian
matrix. Indeed in this case we have that

n n n

gy =T[a-7"¢""y=[a-7"¢ Pty =[a-7""¢"""t) = fc(t) (»)

i=1 i=1 i=1
as ¢ = ¢P. That is fe(t) = fé(t) € F,[t] where tilde indicates reduction
modulo p. Now we claim that also

Ac(t) = AL(t) mod p.

We note that in the case that we consider with ¢ of full rank n these are
polynomials in Z[t]. Recalling the definitions we have

A= 3 ewldpltr(¢o)i,
o'€S/S (v)
But then as ¢ € Sk and since we may pick dpr = dp € F C F’ we have
that e, (dp tr(Co’)) equals

e (dpr Y (Gjo5i)) = eu(dp' > (CTrrr /i (05:))) = e (dp' tr((Tric 5 (o))
i, %)
Hence we have

ALty = >0 el(dpttr(CTrgx (o)),

0'€8' /S (v')
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But then since Trg:/x(0') = Trg x(0’”) and k[o’] = klo"7] for v €
Gal(K'/K) we have that

AWz Y euldptr(CTri (@) mod p
c€S/S(x)

after collecting the v orbits of order p. The last sum is equal now to

Y eolpdpttr(Co)it? = A1),

0€S/5(v)

where the last equality follows from the fact that p is a unit in v (recall
that we consider places not in S and p is in S) and moreover the A¢(t) is
independent of the character e, used [40, page 104]. That is we conclude
that A.(t) = A¢(t) as polynomials in Fp[t]. Hence we obtain also that
g¢(t) = g¢(t) mod p, which concludes the proposition also in that case. [

THEOREM 5.7. — [Congruences of Eisenstein series of U(n,n)]Let m =
m(A) with A in GLH(A(I?)) X GL,(t®Zy) be an element in the Levi compo-
nent of P. Let € be a locally constant Z,-valued function on Gk (cp™) with
€Y =¢€ for all v € T". Let also 1 be a Hecke character of K of infinite type
k¥ and let 9" := 1) o N/ /. Then we have the congruences of Eisenstein
series:

Res’ (E'(z,m(A), ey’ V) = Frob,(E(z,m(A),eovery?, vP)) mod p.

Here the Eisenstein series E(z, m(A), eovery?, vP) is taken of weight (pk, p{)
when the Eisenstein series E'(z,m(A), ey’ ,v') is of weight (k,{).

Proof. — If we write the Fourier expansion of Ej (z,m(A),¥,v') as

E(va(A)va//aV/) = Z Ellc,,ﬁ’(m(A)vewlvyl)qﬁ,v
Bes’ (A)

then we have seen that
Resi (E'(z,m(A), e ,v)) = Yo Ep(m(A),e V)]
BES(A) \Tryr k(B')=B

The group I' = Gal(K'/K) operates on the inner sum. In particular we
recall that if the write the function e’ as a finite sum of characters ey’ =

>-;¢ix; then

Ejy(m(A), e’ ,v") = QB Ak, ) S nly(8,m(A))ew' ™ (a, 8),

(a,5)=1
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where

o = Sotaano ( 1 xitonn) -
J

ves ()

(H X1,u,j(d€t(3(hv)))xii,j(det(A(hu)))%(tA(hv)ﬂB(hv)_1)> :

vEXY

The group I' operates on the pairs (', a). From Proposition 5.6 we have
that n/(8',m(A)) = nl, (87, m(A)). In particular since we assume that
Y = 1 we have seen that it implies that ew’(s)(a'y,ﬁm) = ew’(s)(a, B
and as it easily seen that Q(8'", A, k,v') = Q(B8', A, k,v') we have that if
the pair (5, a) is not fixed by v € T then

Z Q(B, A k1"l (B, m(A)ey’ (@, #7) =0 mod p.
yel’

In particular that means that modulo p we have the congruences

Resi (E'(z,m(A),e0/,1/)) =

3 @@Amo > %mmmwmmﬂfﬁmw.

BESL(A) (a,5)=1,aCK

On the other hand we have
Frob,(E(z, m(A), e overy?, vP)) Z B 5(m(A), € o very? , vP)gb®.
BES+(A)

Hence to conclude the congruences we have to show that

QB AkY) > ni(Bm(A)er’ ) (a,8) = Es(m(A), covery”, v7).
(a,9)=1,aCK

We recall that (note that P =)’ o ver),

By (m(A), ecovery?, 17) = Q(B, A, pk,v?) >~ na(B,m(A))ew’ (ver(a), B).

(a,5)=1

But ez//(s) (ver(a),B) = ew’(s)(aOK/,ﬂ) and by Proposition 5.5 we have
that nq(8,m(A)) = n,(8,m(A)) for a an ideal of K. Finally we observe
that

Q(B, A, pk,v") = Q(B, A, k,v') mod p,

which allows us to conclude the proof of the theorem. O

ANNALES DE L’INSTITUT FOURIER



THE TORSION-CONGRUENCES FOR UNITARY GROUPS 67

COROLLARY 5.8. — With the assumptions and notations as in the the-
orem above we have for every a € G%(Ary,) that

Res?(E'(a/)(z,m(A), e’ V")) = Frob,(E (2, m(A), eovery?, vP))  mod p,
where a' := 1(a) under the natural embedding 1 : G®(Apyn) < G?(Ap ).

Proof. — The corollary follows directly from the theorem and the defi-
nition of the twisted Eisenstein series after observing that for a locally con-
stant function e with €7 = € also its twist €,(z) := e(zy) by a I'-invariant
ideal y in F' is again a locally constant I'-invariant function as we have

ey(2)" = €y(27) = e(27y) = e((xy)7) = e(zy) = €y(2)
|

Here we make a remark for the case of £ # 0. Note that in the definition
of the Eisenstein series E(®) (z,m(A), € o veri, v) there is always the extra
parameter £. Let us write E(® (z,m(A), e o very,v, ) in order to demon-
strate the dependence on £. Then for an Z,-valued locally constant function
(v is always assumed Z, valued) we have following congruences modulo p

E(’l)(z,m(A)7 eyP v, pl) = E(“)(z7m(A), eYP v, L) = E(“)(z,m(A)7 e, v, ).

This follows immediately from the g-expansion by observing that P = ¢
mod p and than the weight of the Eisenstein series appears only as power of
the norm N g map which is Z,-valued and hence we have N ?}1@ =Ngjo
mod p, for any m € N.

A relation between archimedean and p-adic periods: For the rel-
ative setting that we consider, that is (K,X) and (K',¥’) as well as the
CM algebras Y and Y’ we have the following relation between the periods.

LEMMA 5.9. — We have the equalities
Qoo (Y, 2) = Qe (Y, )P, and Q,(Y', ') = Q, (Y, X)P
Proof. — We have seen in lemma 4.11 that
Qoo (Y, X)) = Q0o ()", and Qoo (Y, 2) = Qe ().

But we have that Qo (X) = Q(X)?, from where the equality for the
archimedean periods follows. The same argument shows the equality for
the p-adic periods. (|
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6. The Theory of Complex Multiplication.

The formalism of CM points for unitary groups and the reci-
procity law: We start by recalling the notion of CM points on the symmet-
ric space associated to the unitary group G := U(n,n)/F. We will follow
the books of Shimura [41, 42]. Let us write r := 2n. We consider the CM
algebra Y := K1 @ ... ® K; with CM fields K; such that K C K; (later
we just pick K; = K). Let us denote by F; the maximal real subfield of
K; and by p the automorphism of Y which induces the non-trivial element
of Gal(K;/F;) for every i. Let us assume that we can find a K-linear ring
injection h : Y — K such that, h(a?) = n,h(a)*n,!, a € Y. We put
Y* = {a € Y|aa” = 1}. Then we have h(Y"*) C G(F'). But Y* is contained
in a compact subgroup of (Y ®g R)* hence the projection of h(Y™) to Ga
is contained in a compact subgroup of G, hence A(Y™) has a common fixed
point in H,,, and it can be shown that actually there is a unique one. A
point of H,, obtained in this way is called a CM point. The case that we
are mostly interested in is when ¥ = K & ... ® K, r copies of K. The
CM points obtained from this CM algebra correspond to an abelian vari-
eties with multiplication by Y and of dimension exactly [V : Q]. We note
also here that if (4,1) is an abelian variety A with multiplication by Y i.e.
i:Y < End(A)g and 2dimA =Y : Q] = r[K : Q], then A is isogenous to
a product Ay X ... x A, with 7, : K — End(A;)g and [K : Q] = 2dimA,;.

Shimura’s Reciprocity Law (for CM algebras): We consider the
CM-algebra Y = K1 @ - - - ® K¢, where the K;’s are CM fields. We consider
an abelian variety (A, \) with CM by Y. As it is explained in Shimura [42,
page 129] we have that A is isogenous to Ay x...x A; where A; is an abelian
variety with CM by K; and 2dim(A4;) = [K; : Q]. Let us write the type of
the A; variety as (K;,Y;). Then we have that the type ¥ of A is the direct
sum of the ®;’s in the way explained in Shimura (loc. cit.). Let (K}, ®F)
be the reflex field of (K, ®;) and let K* be the composite of the K}’s. As
is explained in Shimura (loc. cit.) we have a map g : (K*)* — Y™, which
extends to a map ¢ : (K*); — Y. In Shimura [42, page 125 and page
130] the following theorem is proved.

THEOREM 6.1. — Let P = (A, A, 1) be a structure of type Q = (Y, ¥, a, ()
and let K* as above. Further let o be an element of Aut(C/K*), and s an
element of (K*); such that Ty, = [s, K*] Then there exists an exact
sequence

0 qlg(s)"'a) = C" & A7 50
with the following properties
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(1) P is of type (Y, ¥, g(s)"ta,(’) with (' = N(st)¢ with respect to
&', where v is the maximal order of K*.
(2) £(g(w))” = €'(qlg(s)~w), where & is such that

O%q(a)%@"gAHO.

Using the Theory of Complex Multiplication: Now we explain
how we can use the theory of complex multiplication to understand how
Frobenius operates on values of Eisenstein series at CM points. In this
section we prove the following proposition, which is just a reformulation of
what is done in [35] (page 539) in the case of quadratic imaginary fields and
the group GLy. This proposition has also been proved by Ellen Eischen in
[13, section 5.2].

We first recall some of the assumptions that we have made. Recall that
we consider a CM type (K, X) such that (i) p is unramified in F, where F
the totally real field K+, (ii) the ordinary condition is that all primes above
pin F are split in K and (iii) that for p in K* above p we have that Np = p.
We write @, for the Frobenius element in Gal(K,/K*) corresponding to
the prime ideal p of K* through Artin’s reciprocity law.

PROPOSITION 6.2. — (Reciprocity law on CM points) Consider the g-
lattice 4l of the CM algebra 'Y and the tuple (X (Y1), w (L)) defined over KJ,.
Let E be a hermitian form defined over Q. Then we have the reciprocity
law:

(6.1) Froby(E)(X (), w(t)) = (E® (X (80), w(th)))®>.

In particular if E is a hermitian form defined over K* then we have
(6.2) Frob,(B)(X (1), w(tl)) = (E(X (4), w(1h)))*>.

Proof. — From the compatibility of hermitian modular forms with base
extensions we have that

(6:3)  (B(X(W),w(w))™ = BT (X (Y),w(t) ®:,.0, Kap),

where the tensor product is with respect to the map ®, : K}, — K, i.e.
the base change of the tuple (X (), w(l)) with respect to the Frobenius
map. But then, from the theory of complex multiplication explained above
and our assumptions on p we have that

(6.4) (X (1), w(t0) @ky, .0, Kap = (X(W), W' (40)),

ab’
where (X' (), w’(4)) is the g(p)-transform of (X (U), w()). We notice that

X'(4) = X(g(p)~'h) = X()/Hean, where Heqy = i(M° @ pp) and i
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the p-numerical structure (see also [13, page 45] or [36, page 222]). More-
over, we have that the Mumford object (Mum(q),w.,,) is obtained from

(Mum(q),Weqn) by the map g — ¢P (see [13, pages 46-47], from which we

conclude the proposition. O

The relation of CM points with respect to the diagonal map:
For this section we write G for the unitary group U?, with @ a definite
hermitian form and G’ for Resps, »U?/F’. Then for an integral ideal ¢ of
g we have defined the open compact subgroup D(¢) C G(Ap ) and the
open compact subgroup D(¢') C G(Ap s = G'(Apy), where ¢ = cg.
Then we have defined the finite sets Bx = G(F) \ G(Ars)/D(c) and
B == G(F') \ G(Ap y)/D(c"). We write I' for Gal(F'/F) and consider
its action on G(Aps ;). Then we note that D(¢')I' = D(c) and also that
this action induces an action of I' on Bg-. Moreover the natural inclusion
F < F’ induces a map ¢ : By — Bg/. We now examine the conditions
under which the map 2 : Bx — B, is a bijection. The proof of the following
proposition was inspired from a similar proof of Hida in [28].

PROPOSITION 6.3. — Assume that there exist a prime ideal q of F' such
that

(1) If we write ¢ := q N Q for the prime below q in ¢ and e for the
ramification index of q over q, then q”|c for some v > (e+1)/(qg—1),
(2) The extension F’'/F is not ramified at q.

Then the canonical map 1 : Bg — BE(, is a bijection.

Proof. — We recall that the sets Bx and By are defined as Bg =
GY(F)\ GQ(AF,f)/D(c) and similarly B := GY(F’) \ GQ(AFIJ)/D(C')7
with ¢ = c¢t/. The conditions above imply (see [40, page 201, remark
2] that the groups D(c) are sufficiently small, that is we have for every
a € GY(Apy) (resp. B € GY(Aps 1)) that GY(F)NaD(c)a~! = {1} (resp.
GY(F"Yn BD(')B~t = {1}). Now we are ready to prove the injectivity.

Assume that +(z) = o(2’) for x,2’ € Bg. Then there exists v € G(F")
and d € D(¢') such that gz = 2’d. This implies, that for all v € T'(F'/F)
that g7z = 2/d”. In particular we conclude that ¢7~! = zD(c)z~ !t N
G(F’) = {1}. Hence, we obtain that g € G(F) and similarly that d €
D(¢)NG(Aps) = D(c). Hence = = 2’ in B.

Next we prove the surjectivity of the map 1. Let z € G(Aps 5)/D(¢).
Then for v € T we define g, € G(F’) by g,& = ". Then for 71,72 € I' we
have

Gy = 2172 = (2])? = (g, )% = g;yfgwx.
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Under the conditions of the lemma we have that the stabilizer of

G(Afpr y)/D(c) in G(F') is trivial. That is we have that g,,,, = ¢J2g,,-
That is v +— g gives an element in H'(I',G(F')). As we will show in
the next proposition, we have that H'(T',G(F’)) = {1}, i.e. it is trivial.
Granted this, we then can find a b € G(F’) so that g, = b7/b. That
means, b7b~'z = 27 and hence b~'x € G(Ap,f). This in turn implies the
surjectivity of the map 2. O

PROPOSITION 6.4. — Let A := Gal(F'/F) be the Galois group of a
totally real field extension and assume that (2,|A|) = 1. Consider G, a
unitary group over F' (with CM field K), and write G’ for the base changed
to F' unitary group. Then the first non-abelian cohomology group is trivial,
that is HY(A,G'(F)) = HY(A,G(F') = 1.

Before we start with the proof of the above proposition we recall the
following Hasse principle for unitary groups (see [23] for more details).
We introduce some notation first. Let K/F be a quadratic extension of
p-adic fields. As it is explained in [40, page 30 and page 56] for each even n
there exits, up to isomorphism, exactly two n-dimensional hermitian spaces.
The unitary group U(V ) corresponding to the one of them is quasi-split,
it is associated to the hermitian space with maximal isotropic space of
dimension n/2. We write U(V ™) for the other one. It corresponds to the
hermitian space with an anisotropic subspace of dimension 2 over K. For
n odd there is only one isomorphic class of unitary groups for K/F. For a
hermitian space V we define ¢(V) = %1 if dimg (V) is even and V = V+
and €(V) = 1 if dimg (V) is odd. Now we consider the archimidean case.
We pick complex hermitian space (V, ¢). If dimcV is odd we set ¢(V) = 1.
If dimcV is even, then if we write U(V) = U(p, q), we set (V) = (—=1)2 7.

We turn now to global considerations. We consider a totally real field F
and totally imaginary quadratic extention K. Then we have the following
well known result (see [23]).

THEOREM 6.5. — Let n be a natural number. For every place v of F' that
is not split in K choose a hermitian space V,, of dimension n associated to
the extension K, /F, such that if we write G,, for the corresponding unitary
group and define ¢,(G,) := €,(V,), then ¢(G,) = 1 for almost all v. Then,
there exists a unitary group G over F such that for each place v of F
G®p F, =G, if and only if ], €,(G,) = 1.

We note that the condition is trivial if n is odd. Before we start with the
proof of the Proposition 6.4 we need one more lemma. That is,
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LEMMA 6.6. — Let F'/F be a finite Galois extension of p-adic fields
such that (|G|,2) = 1 for G := G(F'/F). Let (V,¢) be a hermitian form
over K/F and write (V',¢") for the base-changed hermitian form to F’.
Then we have ¢(V) = ¢(V’).

Proof. — The statement is clear if n is odd. So we are left with the sit-
uation where n is even. Now we can reduce everything to the case n = 2.
Indeed, by definition, e(V) = —1 if V has an anisotropic space of dimension
two and (V') = 1 if there is none. That means in order to prove the lemma,
we need to show that in our situation a (two-dimensional) anisotropic her-
mitian (V) @) over F remains anisotropic after base change to F’. But we
can study this question by study the same question for quaternion algebras
(see [40, pages 24-25], that is, if we write B/F for the corresponding to
V division algebra (since V' is anisotropic), then the base changed quater-
nion algebra B’ := B ®p F’ is a division algebra. But we know that F’
will split B, that is B’ is not a division algebra if and only if there is an
F-algebra A that is similar to B, contains F” and [A : F'] = [F’ : F]. But
that means that A = M,,(B) for some m, and hence [A : F] = 4m. But
[A: F)=[A: F'][F': F] = [F': F]3. Since we assume that ([F" : F],2) =1
we conclude the proof of the lemma. O

Proof. — (of Proposition 6.4) Let us write (V,¢)/K for the hermitian
space over K that correspond to the group G(F). Then the space (V' :=
Vog K' ¢ = ¢ @ K') correspond to the group G(F”). Then we know
that the group H(T', G(F")) classifies classes over K of hermitian forms
(W,0)/K that become isomorphic to (V’, ¢') over K'. Since the signature at
the archimedean places is determined by ¢’ we know that also the signatures
of the forms # at infinite is fixed. So there is only freedom at the finite places.
If n is odd there is nothing more to prove. If n is even, then we can use
the previous lemma to establish that e,/ (V') determines €, (W) for every v
under v’. Hence there is only one class that can be base changed to (V', ¢’)
and hence we conclude the proof of the proposition. O

7. Proof of the “Torsion-Congruences”: The CM Method.

We are now ready to prove the main result of this work, namely the
“torsion congruences” for the motives that we described in the introduction.
Explicit Results I; the case n = 1: Let E be an elliptic curve defined
over Q with CM by the ring of integers Ry of a quadratic imaginary field
K. We fix an isomorphism Ry = End(F) and we write % for the implicit
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CM type of E. Let us write 9, for the Grossencharacter attached to E.
That is, ¥k, is a Hecke character of K of (ideal) type (1,0) with respect to
the CM type g and satisfies L(E, s) = L(¢k,, s). We fix an odd prime p
where the elliptic curve has good ordinary reduction. We fix an embedding
Q= Qp and, using the selected CM type, we fix an embedding Ky — Q.
The ordinary assumption implies that p splits in K, say to p and p where
we write p for the prime ideal that corresponds to the p-adic embedding
Ko —Q— @p. We write N for the conductor of E and § for the conductor
of 'l/)KO.

We use the setting of the introduction. That is we consider a totally
real field extension F’/F of degree p, unramified outside p. We let K (resp
K') be the CM-field FK (resp. F'Ky = F'K) and recall that we write I’
for the Galois group Gal(F’'/F) = Gal(K'/K). We now consider the base
changed elliptic curves E/F over F and E/F’ over F’. We note that the
above setting gives the following equalities between the L functions,

(7.1) L(E/F,s) = L(¢k,s), L(E/F',s)=L({x,s)

where Vi 1= ¥k, o Nk, and Vi := Yk o Ng/jg = YK, © N1k, , that
is the base-changed characters of ¥k, to K and K’.

We write G for the Galois group G(F(p*°)/F) and Gp: := G(F'(p>)/F")
for the analogue for F’. As we have remarked in the introduction our set-
ting induces a transfer map ver : Gp — Gp/. Moreover we have an action
of I' = Gal(F'/F) on G by conjugation. We now define measures pip/p
of Gr and pg/p of G/ that interpolate the critical value at s = 1 of the
elliptic curve E/F and E/F’ respectively twisted by finite order characters

of conductor dividing p>°. We let pp,p 1= ALfZILS and pp pr = ugLS, where

HLS

nx_ constructed above in the case n =1, w

we have taken the measure p
trivial and x = .

THEOREM 7.1. — We have the congruences
(7.2) / € over duE/FE/ € dpg/pr mod pZy,,
GF jald
for all e locally constant Z,-valued functions on Gps such that €7 = e

for all v € T, where €(g) := (g7 ~!) for all g € G/ and for some lift
¥ € Gal(F'(p™)/F)) of .

Proof. — The proof of this theorem is exactly the same as the proof of
Theorem 7.4 that we prove below for the case n = 2. One simply needs to
set there f = 1 and 7 the trivial representation. The rest of the proof is
identical, so we defer the proof for the next section. O

SUBMITTED ARTICLE : FINAL VERSION.TEX



74 THANASIS BOUGANIS

As it is explained in appendix in Theorem 9.1 a remark of Ritter and
Weiss allow us to conclude from Theorem 7.1 the following theorem

THEOREM 7.2. — (Torsion Congruences for CM Elliptic Curves) With
notation as in the introduction we have,

ver(pg/r) = pp/pr mod T,
where T' is the trace ideal. That is, the torsion-congruences hold.

We note here that the important improvement in comparison to the
previous result in [3] is that we do not need to make any assumption on
the relation between the various class groups of F, F', K and K'.

Explicit Results II; the case n = 2: In this section we explain our
results in the case of n = 2. We start by providing a family of examples
where the Hypothesis of the introduction holds.

A family of examples for the Hypothesis: We take K’ and K Galois
over Q. We start from a Grossencharacter ¢ of K of conductor ¢ C g. We
moreover take ¢ relative prime to the g, p, the relative different of K over
F, and both ¢ and 0k ,p prime to p. This character induces a character
on U(1)/F since its F-points is nothing else than {x € K*|za? = 1}. We
keep writing ¢ for this character of U(1) (actually this is nothing else than
a hermitian form for U(1)). We also write ¢’ for the character of U(1)/F’
obtained by ¢ o Nk, i.e. the base-change of ¢. To the character ¢ (resp.
¢') we now explain how we can associate a hermitian modular form f, (resp.
for) of U(0)/F (resp U(0)/F"). We first observe that taking determinants
we get maps det : U(0)/F — U(1)/F and det : U(0)/F' — U(1)/F'. We
define the functions fy := ¢ o det and fy := ¢’ o det. We now show that
these are hermitian modular forms. We do this for fg, and similarly can be
done for f4 . Recall that we write G for U(0)/F. For o € G(F), z € G(Ap)
and w € D we have fs(azw) = ¢ o det(azw) and so

folazw) = ¢(det(a))p(det(x))p(det(w)) = fo(x)Pn(det(wn)poo (det(w)oo)

From this we see that if the character ¢ is of infinite type —kX+>"_ A(0)(oc—
o”) then we have that the weight of fy is (k — 2A(0))sp. Indeed since the
character ¢ is taken of infinite type —kX + 3" _A(0)(0 — o) we have for a

k[ det(w)? Ao)
place o € X that ¢, (det(w),) = det(w)® ( ) . But det(w) € U(1)

det(w) o
hence det(w)?. = det(w);

-1 and hence 1, (det(w),) = det(w)ﬁ_m(g). More-
over if we take A(c) = A(o”) for all 0,0’ we get an automorphic form of
parallel weight.

Now we observe that ¢y, (det(w)n) = 1. Indeed since we are taking the
character ¢ of conductor ¢ prime to 95/ this follows from [40, Lemma 24.8
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(3) page 206] (see pages 203 and 205 of (loc. cit.) for the definition of U*
and W*¢). Indeed this implies that we have det(D(¢) C {z € U(1)(Ar) N
[Toent™lz—1 € ¢y, Volc,} and hence ¢y (det(w)n) = 1. In particular fy is
of trivial nebentypus.

We now observe that we can easily find examples where f4 and fg4 are
Zy-valued (after 1! o1, as we explained in the introduction) on finite
adeles relative prime to ¢p. As an example we may take the values of the
character ¢ on finite ideles to be in Ky for a quadratic imaginary field
and take p split in Ko, then the values of ¢ are in Z; for ideles away
from the conductor and p. Such a Hecke character we may obtain from
elliptic curves with CM by Kj and taking the CM type (K, ) to be the
inflation of the CM type (Ko, 09) with o¢ the selected embedding of K in
Q. Moreover we observe that the form f, is a Hecke eigenform. Indeed for a
Hecke operator D7D = | | .y Dy we have (fy|DTD)(z) =3, folzy™t) =

(Zy w(det(y_l))) fs(x). Actually we have the following for the standard
L-function attached to fy.

L(fos) =TT (1= d@N @) (1= d@N@' )
ate

where q runs over the integral ideals of K prime to ¢ and ¢~> is the character
¢(z)/p(xP) where p the non-trivial element of Gal(K/F'). For this equa-
tion we refer to [21, page 150 (3.5.1)]. There we take m to be the trivial
representation. Then we use [40, Lemma 20.11] to conclude the above equa-
tion. The fact that Harris is working with GU (V') and we are working with
U(V') makes no difference when it comes to the L-functions, since they are
always defined by restricting the automorphic representation to U(V') (see
for example [21] just before equation (3.5.1) in page 150).
Similarly we have that
- - ~1
Lifos) =T ((1=@@N@™) (1= F@N@))
q’fe

In particular we see that fe is the base change of f, since we have L(fy, s) =
[1, L(fs, X, 8), where x runs over the characters of Gal(F"/F) and

Lifare ) =TT ((1 - d@x@nN @) (1= dax@n@ )

qfe

Now the conditions (i) (ii) and (iii) which we stated in the Hypothesis
it is easy to see that they hold. We have already discuss (i) above. For the
second one we only need to observe that since ¢’ is simply ¢ o Ng//k its
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restriction to K is simply ¢P, and since we are taking the values of ¢ in
Z, we obtain ¢’ = ¢ mod p on finite ideles away from cp. In particular
A*(fo)(x) = for(x) = f5(x) = fo(x) mod p for every = € G(AYY). The
third property is also straightforward since it holds for ¢’ which is nothing
else than the base change of ¢. We also note that the family of examples
that we have constructed satisfy also the existence of the form fg in the
introduction. Indeed the form fy» is such a form.

We now explain in details the relation between automorphic forms of
quaternion algebras and definite unitary groups of two variables, which
provides an interesting family of applications of our theorem.

Quaternion algebras and unitary groups in two variables: In this
section we follow closely the exposition in Harris [22]. Let D be a quaternion
algebra over a totaly real field F' and assume that there is an embedding
i: K < D for a CM field K with K+ = F. We consider the algebraic
group over F'

GUK(D) = (HK X l)x)/}IF7

where Hx = Resg/oGm/K and Hp = Resp/qGy,/F and Hr is embedded
diagonally into Hx x D*. Next we will identify the group GUk (D) with a
unitary group as its notation suggests.

Let us write ¢ : D — D for the main involution of D, that is the reduced
norm and trace are related by Np(d) = Trp(d-d"). We can then obtain the
non-degenerate inner form (z,y)p := Trp(x - y*) on the four dimensional
F-vector space D and define the orthogonal group GO(D) as

GO(D) ={g € GLr(D)|(97,9y)p = v(9)(=,y)D},

for some homomorphism v : GO(D) — Hp. Further there is a map p :
D* x D* — GO(D) defined by p(dy,ds)(z) := dyxdy*, = € D.

The map p has kernel Hp embedded diagonally in D* x D* and v(p(dy, ds)) =
Np(dy-dy*'). Let now consider K as above i.e there is an embedding i : K <
D and D splits over K. We define the group GUk (D) as the subgroup of
K-linear elements of GO(D). Actually the group GUk (D) is a the group of
unitary similitudes of the a hermitian form (-, -) p x characterized uniquely
from the properties that (-,-)p = Trk/r(-,-)p,x and (z,y)p,x = = -y for
z,y € K. Now the relation with our previous considerations is that the
map p restricted to Hx x D* has image in GLk (D) NGO(D) and induces
an isomorphism (Hgx x D*)/Hp = GUk (D). Finally when the quaternion
algebra is unramified at all infinite places then the hermitian form (-,-)p x
is positive definite.
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Now we recall a setting that we are interested in which gives interest-
ing applications. We consider a Hilbert cuspidal form f of F', which is a
newform. We take the parallel weight of this to be £. We write Ny for its
conductor. We assume that Ny is square free and relative prime to p. We
now impose the following assumptions on f,

(1) f has a trivial Nebentypus.
(2) There exists a finite set S of finite places of F' such that we have
(i) ord,(Ny) # 0 for all v € S, (ii) for v € S we have that v is inert
in K and finally (iii) £S5 + [F : Q)] is even.
Let us write D/F for the totally definite quaternion algebra that we can
associate to the set S, i.e. D is ramified at all finite places v € S and also
at all infinite places. Note that our assumptions imply that there exist an
embedding K — D. If we write 7y for the cuspidal automorphic represen-
tation of GL2(AF) associated to f then our assumptions imply that there
exist a Jacquet-Langlands correspondence 7 := JL(my) to D*(Ap). As we
explained above there exists an isomorphism

(D* x K*)/F* = GU(9)(F),

for some totally definite two dimensional Hermitian form (W, 6). In partic-
ular, since the representation 7 is taken of trivial central character we can
consider the representation 1x7 of (D xAj)/AL, where 1 the trivial rep-
resentation (character) on Ay . In particular 7 induces an automorphic rep-
resentation, by abuse of notation we denote it again with 7w, on GU () and
by restriction to U(#). Moreover it is known that L(w,s) = L(BC(x'), s),
where BC(7y) is the base-change of m from GLy(Afp) to GLy(Ak).

We now turn to the proof of the main theorem. We start by recalling
it. We assume the Hypothesis and we write f := f, and f’' := f.. for the
automorphic forms assumed by the hypothesis.

THEOREM 7.3. — Beside the Hypothesis of the introduction and the
existence of the form fy in the case of £ # 0 (but see also the introduction
for what can be proved if we do not assume the existence of such an fr)
we assume the following conditions are met.

(1) The p-adic realizations of M (m) and M () have Z,-coefficients.

(2) The prime p is unramified in F (but may ramify in F’).

(3) If we write K* for the reflex field of (K,3) (note that this is also
the reflex field of (K’,%")), then for the primes p above p in K* we
have Nk q(p) = 2

(4) If we write < f,f > for the standard normalized Peterson inner
product of 7, then < f, f > has trivial valuation at p.
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Then we have that the torsion congruences hold true for the motive M (¢, 7))/ F,
where 1 a Hecke character of K infinity type —k¥ with k 4+ 2¢ > 2.

We now construct the measures pup = ugi)w) (resp. pp = pgl,?w,))

on G := G(F(p™)/F) (resp. G' := G(F'(p>°)/F"')) that appear in the
theorem. We consider the CM algebras Y = K @ K and Y/ = K' & K'.
Then we define the measures by

- HLS,(f) o1 HLS,(f")
— Jarac o) 1) Xom i o Jaarrer ooy ey X Hint
PR Q, (Y, D)2t o YR Q, (Y7, 5)k+2e d

where  (resp. ') is the base change of x (resp. X’ from F (resp. F’) to K
(resp. K').

We will prove the following theorem. As we explain in the Appendix (see
Theorem 9.1) the following theorem implies Theorem 7.3. The theorem
below is of course under the same conditions as the theorem above.

THEOREM 7.4. — Assume that m; and v have coefficients in Q. Let
€ be a locally constant Z,-valued function of Gp: with €' = €, for 7 €
Gal(F'/F). Then we have the congruences

<£.7> [ dayverur)@=<1.f> | daprta) modp.
In particular we have that if < f,f > is a p-adic unit then the torsion
congruences hold for M(m)/F ® M (v)/F and the extension F'/F.

From the construction of the ufi 55 (resp. uﬁﬁﬁ we know that for a

locally constant function ¢ of G (resp. ¢’ of G’) we have
/G bur= 3 BO¥(Awx Ay i x j2) F(0)f(0),

resp. [ Sue= 3 EY (A x Ayt x )P 6)F(@) )
G’ a’ b’ e€B s

LEMMA 7.5. — Let &/ = 4(b) € Bg: and a’ = 1(a) € Bk for a,b € Bg.

Then we have that
Froby(ES:")(Aa % A, j1 % j2) = ES Y (Ay x Ay, ji % jb) mod p,

for ¢’ a locally constant Z,-valued function on G’ such that ¢'" = ¢' and
¢ = ¢’ owver.

Proof. — By Theorem 5.7 (see also the congruences at the end of section
5) we have

Frob,(ES)") = Resik ES)" mod p.

Then the lemma follows by observing that

Resk Ef;w);“ (Ag X Ap, j1 X jo) = E;}?J;" (Ag X Ay, J1 X 5b).
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O

COROLLARY 7.6. — Keep the notation of ¢ and ¢’ as before. Then we
have the congruences

( > B (Aaxfhnﬁsz)f(b)f(a)> =

a,beBk

S B (A x Ava x i) F®)F (@) mod
a’,b'er(Bg)

where ®, is an in Theorem 6.2.

Proof. — From the theory of complex multiplication (Theorem 6.2) and
the assumptions on ¢ and f we have that

Z Frob, E;‘;)py )(Aa % Ay, j1 % j2) f(b) f(a) =

a,beBk

2p
S B (Aa x Ay i x G2)f(0)f(a) |
a,beBg

The Hypothesis implies that f/(:(a)) = f(a) mod p. Then the corollary

follows from the lemma above. O

PROPOSITION 7.7. — Let € be a locally constant function such that
€Y =¢€ for all v € T'. Then for all a’,b’ € Bk, we have that

ES)" (Ay x Ay, jl % j3) = B

Ry . .
) (AY X AL 1 X a),

where A}, := Aq~ and similarly A}, := Ay-.

Proof. — We write the locally constant function e as a sum of finite
characters. That is, € = Zj ¢;x; with ¢; € Q(e, x;). Now the fact that
¢’ = ¢ implies that this sum is of the form € = >=, cixi + >4 ¢k Do cr X2»
where for the first sum we have x; = x;, that is x; comes from base change
from K. From the definition of the Eisenstein series we have

k+2¢
LY b5 e,

(A’Y X Ab/7]1 X ja) = <m

where ¢ is the sections that we have constructed in section 3. But we know
that

(z,0,e0)) = Zuﬂp az)e(ar)” ®|s=0, A:=P\G.
acA

The invariance of € with respect to the action of I' implies the invariance
of peys with respect to the action of I'. Indeed we recall that for a char-

acter y we have defined 1 := [], _,a 1) supported on P(Ar)D(c) N

SUBMITTED ARTICLE : FINAL VERSION.TEX



80 THANASIS BOUGANIS

P(Ap)w,P(AFp), where for = pw € P(Ap)D(c) N P(Ap)w, P(AF)

Xv(Ao(Pv)), veE€handv [
u(Xv)(m ) = Xo(Ao(Pv))xo(Ao(wy)), v € h and vc;
v N XU(AO(pv))jﬁ)u (i)ilv vV € a;
f‘PX (x’v)> U‘p.

Hence uegs () = 55, 500" () = X2, eipl 00 ()4 3y e 0¥ ()
(note that ¢'7 = 4'). It is clear that the “trace” part, >, ¢k D e DY (),
is invariant under the operation of I'. But also the other part is invariant
thanks to the fact that the characters x; (as well as ¢') that appear there
are of the form y; o Nk, with X a finite order character of Gi. The
only thing that needs to be also remarked is that for v|p that is inert in
F' we have that fs  (27) = fs, (@), but this follows easily from the
definition of the section and the invariance of X;- Indeed we recall that if
we write x, = (X1, x2)

fa, (@) = x2(det(x))|det(z)|” - (m‘%((07Z)w)xlm(det(z))|d€t(Z)|25dXZ7

where we recall that @, (X,Y) = &)V_IXZ—I (X)® (Y). It is easy to see

_—
v=lx1

that the functions @V,lxgl(X) and ®,-1,,(Y) are invariant with respect
to I' and hence also

Ba )= [ @, (ORXY)X,
My (F)

since we have (note that ¢ = )

_—

P, (V)= / P,y (X)Y(XY")dX =
My (F})

_ —1 —
/ O, (X7 (XY YV)AX =B, 1 (V).
M (FY)

From these observations we conclude that fo  (27) = fo, (7). Now we

also remark that the invariance of € follows from its very definition (see
[40, page 95}). Hence we have that

z7 ey Z pey (@zT)e(ax”)™* = Z Mew/(awilx)e(a'yilx)_s.
acA acA
But since v induces an automorphism of A we have that the last summa-
tion is equal to E(z,e’). That is, we conclude that E((a'",b'"),ey) =
E((a',b),ey") and hence also the proposition. O

An immediate corollary of this proposition is,

COROLLARY 7.8. — Assume that ¢’ is a locally constant function with
¢'7 = ¢. Then we have that

ESY (Agr x Ay, gt x j3) = B )

B! P!’ (A’Y XA[,H.]I X]Q)
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where we also note that A}, = Ag~ and similarly A), = Ay~. In particular,

since the Hypothesis implies that f'(a'") = f'(a’) and f'(b'7) = f'(V') we

have that

ES )Y (Ag x Ay, g1 x 35) F'0) f/(a') = BS )0 (AL x A, 31 % 35 F' (6 £/ (@),
LEMMA 7.9. — We have the congruences

Jodur
0, (v, S

<f.f>

 Saseny BSB (Aa x Ay i x j2)f(0)f(a) (0,(Y,5)F)
<f7f> Qp(xz)pk+2z X QP(Y’E)k

Proof. — Since ¢¥» =4 mod p and v = v mod p (both take values in
Z,') we have that

<fF> D ELY(Aa x Av,ji x j2) f(b) f(a)

a,beBg

<FF> Y0 ES)Y(Aax Ab, i X j2) f(b) f(a) mod m,

a,beEBK

where m is the maximal ideal in J,, which of course contains p. Dividing by

the unit Q,(Y,¥)* and observing that (Qgi)(/f )Z’;fp = (?{p(();}?)?p mod m

we get the congruences

<f.f>

G 2 B (e x Ay x ) f)f (@)

a,beEBKk

(Qp (Y, %)*)*

d m.
Q,(v,mr el

<f f> @) .
W Z E;w)p (Aa X As, j1 x j2) f(b) f(a) x
a,beEBK
Since both sides belong to Z, we have that the congruences are modulo

mNZ, =p. O
THEOREM 7.10. — For ¢ a locally constant Z,-valued function on G’
such that ¢'7 = ¢’ we have that

<9pGCEW” ’ Jo drr o o @ ne

£
QAKE)) <hI>q s =< 5> oy sy

where ¢ := ¢/ over. In particular if < f, f >€ Z, then we have that

(ﬂp(xm)% Jabur [ & e
Q

= d p.
0,(Y,%) (Y, D)F20 = (v, Dtz OGP

mod p,

Proof. — The fact that @ : Bx < B, is a bijection and corollary 7.8
imply that

2p
<f. > ¢um= (<ff> ST OB (Aa x z%,j1ij)f(b)f(a)) mod p,
Gl

a,beEBK
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where we have used the fact that < f, f >¢ Z,, and under our assumptions
< f,f >=< f,f' > mod p. Dividing by the unit Q,(Y,2)P*+26) and
recall that by lemma 5.9 we have Q,(Y,X)? = Q,(Y’,¥’) we get

3 a),v . L\ x P
N Q, (Y, Z)pk+2£ <f,f> Za,bEBK E;w)p p(ﬁ X Ap, j1 X j2) f(b) f(a) b
Q, (Y, X)pk+20) IACE Q, (Y, Z)pk+2¢
/

_ a7 fGl ¢

=<f,f> (Y, 5)pt 20 mod p
But ) )

< F > Caseny Poi” (Ao x Avj1 X 2)[®)f (@)
QP(Yy 2)pk+2€ € L

Hence

< f/a.f/ > fgl ¢/HF’ _
Q (v, Z)pte0 =
(Y, 220 % \ < f,F > 5, e Bois” (Aa X Av, j1 % j2) F(b) ()
Q, (Y, Z)pk+20) Q, (Y, Z)pk+2¢ (p)
But by our assumption on the reflex field K* and the values of ¢ we have

P
(QES(/YZ)E? ) = QS%S(/YE;F‘ mod p (see [12, page 66]) hence we obtain

<S> Jod pe _
0, (¥, D420

(a),v?

(Qp(V, D)2 % < £, >3, eny Bopi (Aa X Ab, j1 % j2) f(b) f(a)
Qp (Y, Z)k+2 Qp (Y, Z)pht2t
But we have already shown that

(Y, )% < f, ] > D, e, Boos’ (Ao x Ay, 51 % j2)f(0) f(a)

mod p.

Qp (Y, X))k Qp (Y, X)pk+2t
. Jaour
<hI> gy medp,
which concludes the proof of the theorem. O

Using this last theorem and the Theorem 9.1 of the Appendix I we con-
clude the torsion congruences of theorems 7.2 and 7.3.

The congruences using the assumption on the existence of the
form fp: Now we turn to prove the theorem assuming the existence of the
the form fg. We now write E;Z)),;Vp (Aq X A, j1 X j2) for the Eisenstein series
as above but now defined with pf instead of £ as the extra data. Notice that
the congruences between the Eisenstein series still hold, as we have already
indicated at the end of section 5. Then as in the proof above we have the
lemma; the reader should note here the difference on the powers of the
periods.
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LEMMA 7.11. — We have the congruences

. Joour
<hI> g e =

D abeBy Eé?}p”(ﬂ Ay, j1 % j2) fr (b) frr(a) (Q, (Y, 5)k+26) %

( ) p(k+2£) Qp(}/, E)k+2€

< fu, fu > mod p.

Proof. — Since ¥? = ¢ mod p, v» = v mod p and fyg = f mod p (all
take values in Z)') we have that

<fF> D0 BN (Aa x Av, i x j2) F(b) f(a)

a,beEBK

<fu, fu> Y ES)Y(Aa x Ab, i X j2) fu(b) fu(a) mod m,

a,beEBK
where m is the maximal ideal in J,, which of course contains p. Dividing by
Q, (V,5)k+26)%p Q. (V.5 k+20yp
the unit Q,(Y,¥)*+2¢ and observing that (82 (Y)E)k+2)f = (Qpp((ﬁ},z))k“f)
mod m we get the congruences
<ff>

S B (Aa x Au, i x j2) f(b)(a)

a,beBk

Qp (Y, X)k+2e

(Qp (Y, 2)F26)%r

< fH7 fH > (a),v . N F
W beZB Eqwp (Aax Ay, j1%xj2) fu(b) fr(a)x Q, (Y, )72 mod m.
a K
Since both sides belong to Z, we have that the congruences are modulo
mnNZ, =p. O
THEOREM 7.12. — For ¢ a locally constant Z,-valued function on G’
such that ¢'" = ¢' we have that
r fG ¢MF F fG/ ¢/ HE
<hI> g =< 1> o Grsnieas d p,
5 f O, (Y, D)k2l 5 f (Q, (Y, D)k 20y mod p

where ¢ := ¢’ over. In particular if < f, f >¢ Z, then we have that

/
fG O 1E = fG' O 1r mod p.

Qp (Y, )20 (Y, B)p(h20

Proof. — As before we have the congruences modulo p

Py
<f.f> /G ¢ pp = (< fru fu > 0 BS(Aa x Ay sz)fH(b)fH(a)>

a,beEBK

where we have used the fact that < f, f >¢ Z,, and under our assumptions
< fu,fa >=< f'.f > mod p. Dividing by the unit Q,(Y,X)P(-+2)
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and recall that by lemma 5.9 we have Q,(Y,X)? = Q,(Y’,X’) we get the
congruences modulo p,

fG/ ¢/ 1202

1 F —
< f af > QP(Y,Z)p(k+2Z) =

k3 a),v . . r3 q)
(Q (Y, 2)p(k+20 <fH fH>X a0 veBy Efpd?p " (Aax Ay, X]Z)fH(b)fH(a)> ’
VAN

Qp (v, 2)P(k+26)

Qp(y7 z)p(k+2é>
But
~ a V}) . . ~
< fu > Doen B (Aa x Ay, g1 % 52) fu (b) fu ()
Q, (Y, D)pE+20

€ Z,.

Hence 3
< f,af, > fG’ ¢/MF’ _
0, (Y, Z)pi20 =

(@p(K ) ) < i fi > Copeny BS (Aa X Ay, ji X j2) fu (b) fu ()

Q, (Y, D)k+2¢ Q, (Y, 2)r(k+20) mod p
But by our assumption on the reflex field K* and the values of ¥ we have
Q)™ \P _ Q,(v,5)% .
6.5 = 4.5 modp (see [12, page 66]) hence we obtain
P ’ P 9
< f,a.f, > fGl ¢/NF/ _
Q. Dt -
(@, )20 % < fr, Ju > Caven, Bovs (Ao X Ay 1 X j2) fr () fr (a) mod p

O, (Y, 52t~ Q, (Y, 2)p(e+20
But we have already shown that

(a),v?

(Q(V, D) 2% < fu, fu >3, en, Boi (Aa X Av, 1 X j2) fr (b) frr(a)
O, (Y, 52t~ Q, (Y, 2)p(e+20
5 Jodpr
<HIE v
which concludes the proof of the theorem. O

mod p,

8. The “Average Torsion-Congruences”.

We start by fixing an orthogonal basis B = {f;} of Sx(D(¢) where the
fi’s are Hecke eigenforms for all the Hecke operators away from ¢ (see
[40, Proposition 20.4 (1)]). Note that in (loc. cit.) the Hecke algebra is
taken trivial for v|c (see equation (11.10.7) in (loc. cit.)). This justifies our
consideration of only the “good” Hecke operators. Moreover thanks to [41,
paragraph 28.1] we have that we may pick this basis to be in Si(D(c), Q).
For every element 0 € G, and f in the basis we define f7(z) := (f(x))”.
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We note that if f is an eigenfuction for all the “good” Hecke operators
so is also f?, and f can ba associated to an automorphic representation m
then f? can be associated to the automorphic representation 77, the action
being on the coefficients of the finite part m; of 7. We can pick the basis B
such that f7 € B if f; € B for 0 € Gg,. The same considerations apply for
the situation of F’. We write B’ for this basis. However here we will need to
consider yet another action, that of the Galois group I' = Gal(F’/F). For
an element v € I' and f’ € B’ we may consider also the form 7f’ := f' o~y
defined by the composition of the action of I', induced form the action
on A/ and the function f’. We note here that if f’ corresponds to an
automorphic representation 7’ then 7f’ to the representation "’ := 7’ 0 .
We pick the basis B’ so that if f' € B’ then also 7f' € B'.

We introduce the notation Q,(k, Y, ¥) := Q,(Y, £)* and similarly for the

other p-adic and archimedean periods. For an element a € B F we define the

modular forms J, on pairs (A, j2) by Ja((As, j2)) := Froby (B ) (Aa x A1 x32)

Q, (pk+20,Y,%)
and hence

a),v . . @
O, (pk + 20,Y, 2)‘%) (E;Jp "(Ag X Ay, j1 x 32)) ’

Ja((Ap, j2)) = ( Qu(pk 1 20,Y, %) Q, (pk +20,Y, %)

and similarly for an element o’ € By the function

[COR% , Ll ./
J//((A , /)) — E¢/¢/ (Aa X Afbvjl X .72)
o\ 28, ] Q,k+20,Y,5)

and we aslo recall that Q,(Y",¥") = Q, (Y, X)P.

PROPOSITION 8.1. — The modular forms J, and J!, are Z,-valued when
¢ and ¢’ are Z, valued locally constant functions. Moreover we have that

(A ) — (S22 ) B (Ag x Ay, 1 % j2)
ST T, (k1 26, YY) Q,(pk +20,Y, %)

Proof. — It is enough to prove that

¢>W)
QO (pk +20,Y,%) O, (k+20,Y", %)

B (Ag x Ay i % j2) - ES)Y (Aw x Ay, i % 55)

€ ZLp,

®
% € Z,. We prove the

former, the later can be proved similarly. As we have already seen we have

, since by our assumptions we have that

B (Aa X Ay i % j2) BN (Aa X Ap,weo(Aa) X woo(Ar))

Q,(pk +20,Y,%) Qoo (pk +20,Y, %)
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E“p"p(A X Ap,woo (Ag) Xwoo (Ap))

L% N T ) as a modular form on the variable b

Viewing
we have that

ES7 (Ag X Ap, woo(Aa) X woo(Ab))
. PP a 1b, Woo oo _
9a(b) := Qoo (pk + 20, Y, %) ch

), Vb € Br,

where we note that m = fl(b) In order to conclude the proposition
it is now enough to show that if for any o € Gg, and ¢ an index of B
we define the index o(i) by the equation f{ = f,(;), then we have that
cf(a) = co@iy(a).

Indeed we first note that since the f;’s form an orthogonal basis we have

that ¢;(a) = ((}qi ’f)}i)) = <<J?ff’> But by definition we have

B (Aa % Ap,woo(Aa) X woo(Ab))
(ga7f'i): Z Qoo(pk+2£,y,2) fl(b)

bEBR

But we have already computed this quantity (see also [40, (22.11.3)], but
note the difference on the normalization of the weights). Indeed if we write
¢ = Zx ¢y X for x finite order characters then we have that

Ls(BO(m:), x?, ¢ s
(9as fi) = Z C x S( pk(I)%"ix))Zs(m,m,xw7fq>)fi(a),

for some constant C that does not depend on f;. Here one should remark
that for the local integrals at the places above p since we are taking (¢, p) =
1 we have that the corresponding automorphic representations is spherical
at every v|p. In particular we have that the section fg in the definition of
the Eisenstein series is independent of the various 7’s. Hence

) _ (gaafz LS BC(Wz) X¥?, 6) ey P o
ei(a) = (fi, f1) fz,fz Z Xk +20,Y.5) Zolmio oo XU7, fo) € Qe

Since we assume that ¢ is Z,, valued we have that 3 ¢, x = (32, exx)7 =
Zx ceX? for all o € Gg,. Here x? denotes the character obtained from x
by applying o on its values. Since the characters x form a basis for the lo-
cally constant functions we have that c,- = ¢J. Hence in order to establish
our claim it is enough to show that the algebraic L-values have the wishing
reciprocity law under the action of Gg,. That is to show (note that ¢ is
taken Z,-valued)

Ls(BC(m:), x¢", £) 5 7
( Qo (pk +20,Y,3) Zs(m’m’wp’féo -
LS(BC(TF?)?XUd)paE) o ~o o o
Qoo (ph + 20,Y,5) 25 m7 X0 1),
This is in general not the case if x has an anticyclotomic part, due to the

“wrong” local periods at the primes above p. But in our case x is always cy-
clotomic and hence the above quantity has the right reciprocity properties.
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Indeed this follows from the results in [21, Corollary 3.5.9] after noticing
that for x cyclotomic the periods there corresponding to the character y
are the epsilon factors that appear in the formula above. Of course if x
had an anticyclotomic part, then this is not always the case (see [6] for a
similar discussion).

|

Now we are ready to prove the last theorem of this work. We recall it
here.

THEOREM 8.2 (Average Torsion Congruences). — Let n = 2, then for

all a,b € Bk we have

(1) Let € be a Z, valued locally constant function on Gp: with €7 = ¢
for all v € T'. Then we have the congruences,

Q,(20,Y, %)% ) /
—_ eover dup ap E/ € ditpr (qp) mod p,
( QZD(2€7Y’E) Gr ( ) GF’ ( )

where it is implicitly assume in the statement above that both sides
are p-adically integral.

(2) If we assume that F'/F is unramified at p then there exists a con-
stant c(a,b) € Z, such that

c(a,b) (QP(Y?ZD)<I>p
0,7, %)
that is the torsion congruences hold for all twisted normalized mea-
sures c(a,b)pi(F,(a,p)) and c(a,b)p(rr (ap)), a,b € Br. The constant
c(a,b), which also depends on the choice of the basis { f}}, is defined
as the smallest power of p so that

20
) ver (1 ab))) = cla,b)ppr (ap)) mod T,

A*(fi)(a)A*(f;)(b)

<[ fi>
is integral for all these f] which do not belong to a representation
7, that comes from base change from F.

c(a,b)

Proof. — Now we fix an a € Bp and define o’ = 1(a) € Bp:. Then from
the congruences that we proved for the Eisenstein series and introducing
again the notation g,(b) = Jo((As,j2)) and g (V') = J., (A, J5)) we
have g,(b) = g/, (2(b)) mod p, for all b € Br. However, after writing ¢ := eo

(0,20, )%\ B (Aax Ay, ji X j2)
ver we also observe that ¢,(b) = ( 51(2@7;/7)2) ) Mﬂp(?—%%?g) 2 mod p
since
Qu(k, Y, 2)" \ By (Aa x A, ji X j2) _ Eg)" (Aa x As,j1 X ja) o
(k. Y, %) ik +20Y,S) Q(k+20Y,%) P
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as all the above values are in Z, and the property of the p-adic periods
with respect to Frobenius. Equivalently we can write the above equation
as

Q(ph, Y, 5)" ) B (Ao X Av, i X J2) _ Bl (Aa X Av, 1 % J2)
Qp(pkay72) Qp(pk+2£7 Y? Z) N Qp(k+2£7 Y7 Z)

mod p,

from which we conclude our claim. After writing g, = >, ¢;(a)f; and ¢, =
> ¢j(a’) f; we have that for any b € Bk

Y ci@fib) = ci(a)fi(b)) mod p.
i j
The coefficients ¢;(a) and ¢j(a’) have been computed above. In particular,

. . !/
if we write e = 3 ¢,vXx” and hence eover =37, ¢, X’ o ver we have that

X

ela) = Y ey S0 o Ls(BO(m), X over 07, )

- / . 2P
LN YT ekt 2y,y)  2s(memnxover vt fo),

Xl
and hence
e [(20(20,Y,5)% /
;C'L(a)fz(b) o < Qp(20,Y,%) Gr €over dur (o).

Similarly,

&) = ey (ﬂ (@) oLs(BC(m),x'v', 1)

_ VA AN
- I Qeo(k+20,Y7, YY) s(mj, 7, x v fa),

X

and hence 3, ¢j(a’) f;(2(b)) = [, € dprr (ar)-

Hence we conclude the first statement of the theorem. For the second
statement we start by splitting the basis Bp/ in two parts. We write B%C,
consisting of eigenforms that are coming from base change from F and B¢
for the rest. Our assumption that the extension F'/F is unramified at p
implies that if 7’ € Rep(G’,¢) and "' = 7’ for all v € T then we have
that there exists 7 € Rep(G, ¢) such that ' is the base change of 7 from F'
to F'. Here of course the notation 7’7 means 7’ o . Then from the above
consideration we need to show that if we define the measure

nbe A* V,L'/ a A* ,L/ b /
() = E c(a,b) (o) ,) ,(f ) )ufﬁt?w/) € Zy[[GF/]).
<[ fi>
fl~m'€Repnpc(Gy¢)

Here we sum over all f/ that are not base changed from F. Here we write
fI ~ ! to indicate that f! is associated to w,. Then we need to show that
u’;fff(a,b) € T. Hence it is enough to show that for all 7/ that are not base
changed and for all v € I we have

A*(f) (@) A" (£7)(b) PR s A*(”f{)(a)A*("*f{)(b)M(wfi/)
<f > (i) < fiof s Pome
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Indeed this will imply that the sum
> A*(f{)(a)A*(fi’)(b)( R o A* () (@)A*CFH®b) s

H roap! 7 Vil !
oS <fhfi> T =S A TR

is an element of the trace ideal T'. We first observe that

A*CF)(@A*CF)(b) _ A (f) (@A (f)(b)

< fLf > <fifi>
since 7f!(x) := f/(«7). Hence we need to show that (ugﬁ?w,))fl = ugzﬁ?w,).

This last can be seen easily from the interpolation properties of the mea-
sures. Indeed we have

L / o CLS(BC(TFQ),X“W’,E)

e 7 ') N7
b+ 20Y,%) Jo, XM e Qb+ 20y 5y) 2s(muml X0 fa),

where Y7 as an ideal character is given by 7 (a) = x(a? ). In partic-
ular we see that this operation of 7 simply permutes the various factors.
Hence we see easily that Lg(BC(w!),x?  ',¢) = Ls(BC(x!), x', ) and
similarly for the rest of the factors. |

9. Appendix

We introduce the following general setting. Let p be an odd prime num-
ber. We write F' for a totally real field and F’ for a totally real Galois
extension with I' := Gal(F'/F) of order p. We assume that the extension
is unramified outside p. We write G := Gal(F (p*°)/F') where F(p*°) is the
maximal abelian extension of F' unramified outside p (may be ramified at
infinity). We make the similar definition for F’. Our assumption on the ram-
ification of F’/F implies that there exist a transfer map ver : Gp — G
which induces also a map ver : Z,[[Gr]] = Z,[[GF']], between the Iwasawa
algebras of Gr and Gp, both of them taken with coefficients in Z,. Let
us now consider a motive M/F (by which we really mean the usual real-
izations of it and their compatibilities) defined over F' such that its p-adic
realization has coefficients in Z,. Then under some assumptions on the crit-
ical values of M and some ordinarity assumptions at p (to be made more
specific later) it is conjectured that there exists an element pp € Z,[[Gr]]
that interpolates the critical values of M/F twisted by characters of Gp.
Similarly we write pps for the element in Z,[[G ]| associated to M/F’, the
base change of M/F to F’. Then the so-called torsion congruences read

ver(pup) = ppr mod T,
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where T is the trace ideal in Z,[[G’]]" generated by the elements Y yer @
with a € Z,[[G%]]. We now sketch the proof of the following theorem
following a similar proof given by Ritter and Weiss [38] for the case M is
the Tate motive.

THEOREM 9.1. — A necessary and sufficient condition for the “torsion
congruences” to hold is the following:

For every locally constant Z,-valued function € of G/ satisfying €7 = €
for all v € T the following congruences hold

/ eover(z)pr(z) = / e(z)pr (x) mod pZy.
Gr GFI

We start by recalling some notations of [38]. For a coset x of an open
subgroup U of G we set

" 1 € x;
(x) — y 9 ;
7 9) { 0, otherwise.

We define for the given motive M the partial L-function L(M,§®), s) =
2.5 ¢ L(M, x;,s), where x; are finite order characters of Gp/U such that
5@ (g) = > ¢ix;(g) and L(M, x;, s) is the standard twisted L-function of
M by x;. We call an open subgroup of G admissible if Np(U) C 1+ pZ,.
We define mp(U) > 1 by Np(U) = 1 —i—me(U)Zp. Here Ny : Gr — Z,
stands for the cyclotomic character. The following lemma is proved in [38].

LEMMA 9.2. — Z,[[GF]] = lim Z,[Gr /U] /p"F 7, [GR /U] with U
running over the cofinal system of admissible open subgroups of G .

We now assume that the motive is critical and satisfy the usual ordi-
narity assumption at p. Moreover we assume that its p-adic realization has
coefficients in Z,. Then conjecturally there exits a measure pp € Zy[[Gp]]
such that for any finite order character y of Gr we have

/G x(@)ur(g) = L*(M, x) € Z,[x],

where L*(M,x,) involves the critical value L(M,x,0) of M twisted by
the finite order character y, some archimedean periods related to M, a
modification of the Euler factors above p, L,(M,x,s), and finally some
epsilon factors above p of the corresponding representation M, ® x.

In the same spirit as above, if §(*) is the characteristic function of a
coset of an open subgroup U we define L*(M,§®)) := > ¢ L (M, ;).
Then by the very definition of the element prp we have that its image
in Z,[Gr/U]/p™Y) is given by D reGr/U L*(M,5@) -z mod p™U). We
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finally need the following lemma, which is the analogues to Lemma 3 (2)
of [38].

LEMMA 9.3. — Let y be a coset of a I'-stable admissible open subgroup
2l
of Gp/. Then L*(M/F’,ég’,)) = L*(M/F/,égi )), for all v € T'. In particular
we have that up € Zp|[Gp/]]".

Proof. — The key observation is that M/F’ is the base-change of M/F.
Obviously it suffices to show the statement for finite order characters. That
is to show L*(M/F’,x) = L*(M/F’,x"), for x a finite order character of
Gr. We recall that
L(S,P) (M/F/’ X 0)

Qoo (M) ’

where Lg ) (M/F’,x,0) is the critical value at s = 0 of the L-function
L(M/F’,x,s) with the Euler factors at S and those above p removed,
where S a finite I-invariant set of places of F’. Moreover L,(M,x) :=
Hv‘p L, (M, x) is a modification of the Euler factor at places above p and
ep(M, x) := [1,, €s(M, x), the local epsilon factors above p. We now ob-
serve that we have that L(g ) (M/F',x,s) = L(s ) (M/F’,x",s) since by
the inductive properties of the L-functions we have that Lg ) (M/F’, x, s)
equals

Lisp)(M/F,ind% x,8) = Lispy (M/F,inds x7,8) = Lisp) (M/F', X", 5).

Similarly one shows that £, (M, x) = L£,(M, x") and e, (M, x) = e, (M, x7)
as the right sides of the equations are nothing more than permutations of
the left sides of the equation (again the fact that M/F” is the base change
of M/F is needed). O

The following lemma has been shown by Ritter and Weiss.

L*(M/F',x) = ep(M, x) Ly (M, x)

LEMMA 9.4. — If V is an admissible open subgroup of Gg: and U an
admissible open subgroup of G in ver=1(V), then mp(U) = mp/(V) — 1

In particular, as it is explained in [38], one can conclude from this lemma
that the map ver : Z,[[GF]] = Z,[[GF]] induces a map
ImZ,[Gr/Ul/p" ) = lm Zy (G V™ V7
U V,I'—stable
Now we are ready to prove Theorem 9.1 following the strategy of Ritter
and Weiss in [38].
Proof. — (of Theorem 9.1) We consider the components of up/ and
ver(ur) in Z,[Gp /V]p™r (V)1 for a I-stable admissible open subgroup
V of Gp,. We note that ver(up) is the image under the transfer map
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of the U- component of upr where U := ver~1(V) C G which contains
N := ker(ver). These components are the images of

(1) ZyEGF//V L*(M/F',6®)y,
(2) Xsegpu L (M/F, s@ver(z)
in (Z,[Gr /V]/p"e V)=HT We now show that the sums in (1) and (2) are
congruent modulo 7'(V'), the image of the trace ideal in (Z,[Gx /V]/p™# (V)=1)L,
We consider the following two case
y is fixed by I': Then 5%’,) is a locally constant function as in the
Theorem 9.1, hence we have L*(M/F’, 6%’,)) = L*(M/F, 6;3’) over) mod p.
If y = ver(z) then 65,‘7’,) over = 5?). Then the corresponding summands

in (i) and (ii) cancel out modulo T'(V') since pa is a T' trace whenever «
(v)
F/

is D-invariant. If y ¢ im(ver) then ;7 o ver = 0 and then again by the

theorem we have L*(M/F’,él(é’,)) = 0 modulo p, hence the corresponding
summand vanishes modulo T'(V').

y is not fixed by I':Then we have by Lemma 9.3 that L*(M/F”, 6%’,)) =
L*(M/F’, (5;3’,7)), for all ¥ € I'. That means that the I" orbit of y yields the
sum L*(M/F',6¥)) S, cpy”, which is in T(V). 0
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