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1 Introduction

Since the discovery of apparent cosmic acceleration [1-4] there has been an explosion in the
number of dark energy [5, 6] and modified gravity theories [7] constructed in an attempt to de-
scribe these observations. The route model builders usually go down is to write a Lagrangian
at background order according to some phenomenological or physically motivated principles,
obtain constraints at background order on the theory, perturb it and obtain further con-
straints from the perturbations. This entire process is model dependent, with the results
and constraints obtained being limited to the theoretical prejudices which were imposed by
the functional form of the Lagrangian which was written down. The proliferation of models
has prompted recent interest in looking for ways to phenomenologically parameterize theo-
ries [8-29]. Constructing a good set of phenomenological tools and probes of perturbations in
the dark sector is particularly pertinent given the recent data releases from CFHTLensS [30],
Planck [31, 32] and in the future, the Dark Energy Survey [33], LSST [34], and Euclid [35].



The formalism we introduced in [36-40], and develop in the current paper, does not
require a Lagrangian for the theory to be presented for useful and consistent information
about the dark sector to be extracted from observations. Our formalism can be thought of as
a way to phenomenologically parameterize deviations of the gravity theory realized by nature
from General Relativity. This can be done with specific theories in mind, or by studying the
signatures of generic theories. The important point is that we obtain consistent cosmological
perturbations from a model independent formalism: we are able to remain agnostic about
the functional form of the Lagrangian.

The way in which the problem is tackled is caught between a tension of “theoretical
generality” and “experimental feasibility”. From a theorists perspective, generality is key;
however, this usually results in a system with more freedom than it is reasonable to expect
observations to be able to constrain. Our strategy is therefore to study general theories which
are imposed with (often well motivated) restrictions, whilst retaining important features of
the general theory.

The key aspect to our approach is how we “package” the parameterization. The new
“PPFEF” approach, outlined in [13, 20, 26], provides the general modifications to the gravita-
tional field equations. The free functions in the modifications are called the PPF functions.
There are a large number of “free” PPF functions for a general theory, but particular theo-
ries may severely restrict the form and freedom of the coefficients. In spirit, our approach is
similar since we identify all the PPF functions for modified gravity theories satisfying various
restrictions. Our additional contribution to this is to provide a useful way to package the
modifications, by characterizing equations of state for dark sector perturbations.

Our aim in this paper is to extend the formalism we introduced in [36-39] for parame-
terizing dark sector perturbations to encompass substantially broader classes of theories (see
also [41]). This paper also acts as companion to [39]: here we explain, justify, and prove the
claims made in that short paper. Our particular aims can be summarized as

Present general modifications to gravitational field equations that are relevant for “high
derivative” scalar field theories, in a model independent way.

Understand how to impose reparameterization invariance.

Obtain an understanding of how different field contents of theories affect observables,
via equations of state for dark sector perturbations.

Motivate these modifications from an action for perturbations. This action for pertur-
bations can be calculated from an explicit theory.

The idea is to modify the Einstein-Hilbert action with a term which contains all non-
standard gravitational physics; we call this term the dark Lagrangian. This modified action
is written as

S= [ d'x /- Lnatter — La |- 1.1
/ x |:16 G atte d ( )

Varying the action with respect to the metric g,, gives
G = 87G [T + Uy |. (1.2)

All contributions due to the dark Lagrangian L4 are contained within the dark energy-
momentum tensor U,,. We assume that the energy-momentum tensor that comes from



the matter Lagrangian is conserved, V,T"” = 0, which immediately implies that the dark
energy-momentum tensor is also conserved

v, U" =0. (1.3)
The field equations for perturbations are
6pGuy = 87G 05T, + 65U, (1.4)

where “0g” is the relevant perturbation operator (we will explain why it has the “E” subscript
later on). The perturbed conservation equation is

S(V,U™) =0, (1.5)

The goal of this paper is to elucidate how different field contents of the dark Lagrangian can
influence the gravitational field equations at perturbed order, whilst assuming an absolute
minimum of theoretical structure for the Lagrangian of the dark sector; this will tell us how
to construct the perturbed dark energy-momentum tensor dgU,,. We are able to obtain a
“usefully small” number of free functions which can be constrained with current observational
data.

Setup of the background and notation. We will assume that the geometry of the
background space-time is spatially homogeneous and isotropic, this is described by a spatially
flat FRW metric. This is written in conformal coordinates as g,, = CLQ(T)?]W,, where 7, =
diag(—1,1,1,1) is the Minkowski metric. The symmetry of the background enables us to use
a (3 + 1) decomposition: we foliate the space with 3D hypersurfaces whose metric is v, .
The 3D surfaces are peirced by a time-like unit vector u,. The metric is thus decomposed as
v = Yuv — Upty, Where u, and 7,, are subject to the conditions that

ufuy, = —1, w v =0, Vv = V() (1.6)

An orthogonal vector V), is a vector that satisfies vV, = 0. We will make use of the
transverse-traceless orthogonal projection operator,

1
J—a'g,ul/ = ,Ya#,yﬁy - g'Vaﬁ'Y;w- (1.7)

This operator satisfies
w18, =0, Aw1e8,, =0, 1P 1M, =1 (1.8)

The space-time covariant derivative of u, defines the extrinsic curvature tensor K, of the
3D sheets,

1
Ky =7",7" JKap = Ky = Vyu, = 3K K=K"', =v"K,,. (1.9)
We use an overdot to denote derivative along wu,, and an overline above the derivative to
denote spatial differentiation. That is, for some quantity X,,

X, =u'V, X, ?uX,, = vauVaXl,. (1.10)



2 Fluid language

Rather than follow the usual route and cast the parameterization in terms of “fields”, we
use the more physically intuitive “fluid” description. This is a useful way to collect all
modifications to each component of the gravitational field equations. For instance, only
certain derivatives and combinations of fields in the underlying dark sector theory will go
into modifying the sources of given components of the perturbed gravitational field equations.

This approach is already commonly used at the level of the cosmological background.
The dark energy momentum tensor U, has just two components: the density, p, and pressure,
P, of the dark fluid. These macroscopic fluid quantities contain the observationally relevant
parts of the microscopic dark sector Lagrangian (if the background spacetime is FRW). The
dark energy-momentum tensor is simply written as

U = pupuy + Py (2.1)

and satisfies the conservation equation V,U*, = 0, whose only component is p = —3H(p+P).
The system of background field equations is not yet closed, unless the pressure P is specified
in terms of field variables which have evolution equations. The most common way to do this is
to write the equation of state P = wp, where in general w = w(a). With this equation of state
the background field equations close. This is the only piece of freedom at the background
which a dark sector theory can modify.

At the level of linearized perturbations, the components of the (Eulerian) perturbed
dark energy-momentum tensor can be parameterized as

UM, = dputu, +2(p + P)v(”uy) + 6Py", + PII*,. (2.2)

The perturbation operator “0g” will be explained in the next section, but for now it should
just be understood to be the relevant perturbation for the perturbed gravitational field equa-
tions. The components dp,v*,dP and 11#, are the dark sector perturbed density, velocity,
perturbed pressure and anisotropic stress: these are the perturbed fluid variables of the dark
sector. Explicitly, each of the perturbed fluid variables can be found from a given expression
for dgU*, by applying projectors along various directions,

0p = uyu’ogUH,, 2.3a
m
(p+ P)v* = —u,y*,05U",, (2.3b)
1
6P = 05U, (2.3¢)
PP = 198 YspUH,,. (2.3d)

Most commonly, dgU*, will be computed or given in terms of perturbed field variables

(such as metric or scalar field perturbations); (2.3) can be used to determine how these field

variables combine to construct the fluid variables — we will give explicit examples later on.
The components of (2.2) are constrained by the perturbed conservation equation

o (V,U",) =0. (2.4)
This has two independent projections, which, using (2.2), respectively become
op+ K (6p+6P) + (p+ P)V,v' + pu®ogT*,, + u’U" 65T, = 0, (2.5a)

: L4 _ _
(p+ Poa+ |p+ P+ S K(p+ P)| va+ VadP + PAP VTP

+ Py 0pl” = AU oRl” =0, (2.5b)



where the perturbation to the Christoffel symbols is given by

o 1 o
opl®,, = 29 P (V168905 + ViOrGus — VR )- (2.6)

What we see, therefore, is that the perturbed conservation equation (2.4) provides evolution
equations for two of the perturbed fluid variables: the density perturbation dp and the
velocity field v® (the perturbed metric variables which will come out from the perturbed
Christoffel symbols (2.6) are evolved via the gravitational field equations). However, the set
of perturbed fluid equations (2.5) are not closed since there is no evolution equation for the
perturbed pressure § P or the anisotropic stress I1#,. This is highlighted much more clearly
in the synchronous gauge and Fourier space and for scalar perturbations only, since (2.5)

becomes
) == —h| — ——wll 2.
<1+w> [ k9+2h} Ttw (27a)
: dpP dP 2
1 0=—H(1 1-3—]0——0—wl+ —wll 2.7b
(14 w) H( +w)( 3dp> 1 wl + Zoll, (2.7b)
where the gauge invariant entropy perturbation
oP dP
r=(—-—1¢ 2.8
* <<5p dp) (28)

is used to package the pressure perturbation. We have defined the scalar velocity field, 6,
via @ = ik - v/k%. The scalar metric perturbations, h (and below we will use 1) are defined
as in [42]. Notice that this fluid is general, in the sense that we have allowed for non-zero
entropy perturbations, anisotropic stress, and w # 0.

It should now be clear that all that needs to be specified is the entropy perturbation
wl" and the anisotropic stress II#, of the dark fluid: these are the two “physical” pieces of
freedom which a dark sector theory will end up specifying. Once these are provided in terms
of variables whose equations of motion are already specified, the system of equations closes
and can be solved. These will be key in the packaging of our parameterization, and will form
what we call the equations of state for perturbations. Schematically, these equations of state
for perturbations look like

wl = 416 + As0 + Ash + ..., I = B0+ B+ Bsn+ ..., (2.9)

where {A;, B;} represent the free functions which control the precise form of the equations
of state for perturbations. If the underlying theory is reparameterization invariant, these
functions must form a gauge invariant combination (since wI' and II are both gauge invariant
by definition).

The key point which will come out of our analysis is that wI" and I1*, are constructed
from dynamical fluid and metric components in different ways depending on the field content
and symmetries of the dark sector theory. The most pertinent question our approach is able
to answer is precisely which of these dynamical components are required to construct the
gauge invariant entropy perturbation and the anisotropic stress to describe broad classes of
modified gravity and dark energy theories.



3 Perturbed EMT from field content

We will now describe how knowing the field content of the dark sector is sufficient for obtaining
the perturbed dark energy-momentum tensor from the Lagrangian for perturbations. We
then discuss issues of reparameterization invariance and provide field equations.

3.1 The Lagrangian for perturbations

We will start off with a very general theory, where the field content of the dark sector includes
the metric g,,, and a scalar field ¢, as well as the partial derivatives of these fields. The dark
sector field content that we study is

L = ‘C(gullvaagullv(ba 8a¢78a86¢) (31)

Note that we have not included the second partial derivative of the metric: it is clear how
to extend the framework presented here to include such field contents. The Lagrangian for
perturbations in this theory is given by everything quadratic in the first perturbation to these
field variables, yielding

1
Loy = ASLG? + BUOL6V 0L + SCH V016V ,0L6 + DH LoV, V010

1
+ EMPY 61,0V oV 5L + ifﬂ”aﬂvuv,,amvavﬁém
+ Ip’va(ngw,(SL(ﬁ + jpuyavp(ngm/vadL¢

1 o
o+ NP 1516, V0V 5016 + 5 M 70V 1810, VL gas
1
T [VW5L¢5L9MV + VL9V 6L + ZH 761,905V 1V, LS
1
+ 5 WO G0 G0 + UMV 0Ly 01505 | (3.2)

The perturbation operator “0r” in (3.2) will be explained shortly, but for now it should
simply be taken as a perturbation operator. There are 15 tensors {.A, s, BH 0‘5} in the
Lagrangian for perturbations, each describing couplings between perturbed field variables.
For this reason, we call the tensors coupling tensors. The coupling tensors are functions of
background field variables only; in the cosmological background, this means that the coupling
tensors are functions of time and not position. In addition, they have a number of symmetries
which can be deduced from the objects that they are contracted with. For example, since
OLGur = OLG(u) and V,, V01,6 = V(, V61,6, one can deduce that

D — D(W), e — y(uv)(ef) — Waﬂul/7 zhvaB _ z(pw)(aB) (3.3)

This is not an exhaustive list, and symmetries of the other coupling tensors can be read off
from (3.2).
Providing the Lagrangian for perturbations is sufficient for calculating the linearized
field equations,
5LG/M/ = 87TG(5LTM,, + 5LUw/7 (3.4)

where the perturbed dark energy momentum tensor 6,U,,, is calculated from Loy via

A~

1 o
oL UM = —= |4~ £{2} + U“Vga’B(SLga/g . (3.5)

2 LYuv




Here, “6” denotes functional variation. Clearly, L9y contains more information than is
needed for the linearized gravitational field equations. The perturbed dark energy momentum
tensor of all theories with field content (3.1) can be constructed from (3.2) by using (3.5),
and subsequntly written as

o UM = Y“V(SL(;S + WﬂyaﬁéLgaﬁ, (36&)
where Y* and W8 are derivative operators that are given by

Y = AP 4 BV, + COPHY V5 + DPPHY V7, Vg, (3.6b)
Whveh = prred 4 perrefy , 4GP ely V., (3.6¢)

where we have defined
1

AW = - [V —av, 2o, (3.7a)
BOHY — _% [Yory — 4(T°" + V,T7)], (3.7b)
CoBu — _% :ZQBW —4 (jf”“”a + VN P*‘”aﬁ)] : (3.7¢)
DreBuy = g AfPval (3.7d)
EHves — _% :Wuvaﬁ Ly goB vpulmmﬁ} 7 (3.7¢)
Fravel — _% By _ g gpnvaB _ 4VEMEWPO‘5] , (3.71)
GPovaB — 9 Mp_uwaﬁ ) (3.7¢)

The expressions (3.7) provides us with an understanding as to how the coupling tensors in the
Lagrangian for perturbations combine to construct the perturbed energy-momentum tensor;
these relationships will prove to be crucial when it comes to understanding the structure of
its components.

In the subsequent analysis we will restrict ourselves to a subset of these theories: only
those which are linear in d,9,,,. This has the consequence of removing all quadratic couplings
of the derivative of the perturbed metric in the Lagrangian for perturbations. That is, it sets
M =0 in L5 and therefore G = 0 in 6,U*”. There is no reason in principle to prevent the
inclusion of such tensors, but this restriction significantly simplifies the algebra. Notice that a
corollary of this is that from (3.7f) we see that FPrvef — _FreBuv - Ap anti-symmetry of this
type could not have been realized without having the underlying structure of the Lagrangian
for perturbations from which the perturbed energy-momentum tensor was derived.

We call the bold-face tensors {A, ..., G} used in (3.6) the EMT expansion tensors. The
indices in the EMT expansion tensors in W are structured so that the last two are contracted
with 01,943 (and so are symmetric), the next two are the same indices on §,U*” (and are
still symmetric), and the first indices are contracted with covariant derivatives (and have no
symmetry). In general, the EMT expansion tensors have the following symmetries in their
indices:

AW = Aw) - o — galw) - cobwr — c(eB)(m) DBy — pelaB)(ww) (3.8a)
EoBuv — E(aﬁ)(u'/)’ FraBuy IE‘P(CY/G)(/W), GroaBuw — gpo(apf)(pv) (3.8D)



Note that E has the same symmetries as C, and F has the same symmetries as . In
backgrounds with “arbitrary” symmetry these tensors have a very large number of free com-
ponents; later on we will impose the background to be spatially isotropic, which substantially
reduces the number of independent components of these tensors.

To show that a given explicit theory (e.g. one written down from a background
Lagrangian) fits into a particular flavour of our formalism, it suffices to show that its
Lagrangian for perturbations is of the form (3.2), and that is guaranteed if its field con-
tent is given by (3.1). The theory (3.2) will contain Lorentz violating theories and theories
which do not satisfy reparameterization invariance. One of our aims is to identify the max-
imum possible freedom in theories of the type (3.2). We will then identify the freedom for
reasonable subsets of theories, since retaining too much generality yields a highly intractable
set of equations; we are constantly keeping in mind the desire to use observationally obtained
data to constrain the space of allowed theories. This will yield expressions from which we
can extract the “dark sources” to the linearized gravitational field equations.

3.2 Reparameterization invariance

As it stands, the perturbed dark energy-momentum tensor (3.6) will be able to describe
very wide classes of theories, including those which are usually deemed to be theoretically
unattractive. One of the properties we might like a theory to possess is an invariance under

reparameterization,
at — xh 4+ ¢r (3.9)

Linearized gravitational theories, of the types considered in this paper, are not a priori
reparameterization invariant (RI). For example, under (3.9) the metric perturbation g,
transforms as

0Guv — 0Guw + QV(“&,). (3.10)

One common tactic is to build gauge invariant cosmological perturbation theory by con-
structing the theory from gauge invariant perturbed field variables.

We are able to impose reparameterization invariance on the theory, which corresponds
to imposing constraints and relationships between the components of the EMT expansion
tensors (3.8). To do this we need to understand the role that the reparameterization-field
&F plays in the system. This is done by writing all expressions in their “reparameterized”
form which involves relating the perturbation operators é;, and dg. These correspond to
perturbations in Lagrangian and Fulerian coordinate systems respectively. For a field variable
X say, these perturbations are linked via

oL X =X + £§X, (3.11)

where £¢ is the Lie derivative along &* (the vector which generates coordinate reparameter-
izations). For the current purposes it is useful to think of £¢* as being a Stuckelberg field,
whose role is to restore reparameterization invariance, and therefore to think of dr,g,, as
being the Stuckelberg-completed (and thus RI) metric perturbation. For the scalar field and
metric perturbations, and the perturbed dark energy-momentum tensor one has

oLp = 0pg + Lo, (3.12a)
5Lguu = 5Eguu + ££guua (312b)
5LUMV:5EU“V+££UMV, (3.12C)



where the Lie derivatives are

Letp = €MV .0, (3.12d)
£5g;w — 2V(M§u)7 (3.126)
££Uuu —_ gavaUlﬂ/ _ QUQ(“VOJ;W). (3.12f)

Putting these expressions together, and using (3.6a) to provide the Lagrangian perturbed
dark energy-momentum tensor, the Eulerian perturbed dark energy-momentum tensor which
sources the gravitational field equation is

opUM = Y“V(SE(Z) + W“”aﬁéEgag + A{é}(SEUuy, (313)
where the contribution due to the Stuckelberg field & is
A{E}(;EU‘UV = Y#V£§¢ +Wuuaﬁ££gaﬂ — £§U‘LW. (3.14)

Applying the projectors (2.3) onto (3.13) provides expressions for the perturbed fluid variables
in terms of perturbed field variables. Explicitly, one obtains

0p = uyu, ogUM — putu”dgg,., (3.15a)

(p+ P)v® = —u,y* 0gU" + py*Hu”Sgg,u, (3.15b)
oP = é’yu,ﬁEU’“’ + %P’}/HVCSEQ/W, (3.15¢)

PII%F = 198 SpUM + P15y, (3.15d)

The extra terms on the right-hand-side are due to the fact that the variation operator does
not commute with index raising and lowering.

A priori all components of the Stuckelberg field £# are dynamical and couple to the
perturbed gravitational field equations via Are1opU*”. We will shortly provide their equa-
tions of motion. Only when A dgU"” is independent of a given component of & is the
theory invariant under reparameterizations of that relevant space-time coordinate. That is,
if €0 does not appear in any components of Ay 0gUH then the theory is SO(1,0) invariant
(i.e. under time reparameterizations), and if £* does not appear then the theory is SO(0, 3)
invariant (i.e. under spatial reparameterizations). Finally, if neither ¢ nor ¢ appear in
Agy6UH, then the theory is fully SO(1, 3) reparameterization invariant. Later on we will
show precisely how the components of the EMT expansion tensors can be arranged to make
each of these invariances manifest.

3.3 Perturbed conservation equation

Providing the perturbed dark energy-momentum tensor is only part of the story. We also
require that dJgU"” satisfies a conservation equation,

Sp(V,UM) =0, (3.16)

Using (3.13) for 0gU*, this can be written schematically to show the contributions to (3.16)
from the perturbed scalar field, F”, from the perturbed metric, J¥, and from the {-field, E¥,

F” = J" + E, (3.17)



where

Y=V, (YW&W) , (3.184)
JV = — {vu (W“W&Egaﬂ> n 2U“<“5EFV>W} , (3.18b)
BY =V, (£eU") = Vi (Y4 £¢0) =V, (WP L£egas) (3.18¢)

We now see that (3.16) constitutes the equation of motion of the Stuckelberg fields. It should
be clear that constraints must be placed on the components of Y and W (and therefore on
the EMT expansion tensors) to keep these equations of motion at most of second order.

4 The perturbed fluid variables

In this section we provide the perturbed fluid variables as functions of the perturbed field
variables for a “generic” theory. This will tell us exactly how time and space derivatives of
field variables combine to construct the fluid variables; remembering that it is actually the
fluid variables which source the gravitational field equations governing the evolution of the
perturbed metric variables.

In the appendix we provide detailed descriptions of the calculations performed to obtain
the perturbed fluid variables for a subset of the theories described by (3.6). The subset is
the set of theories which

(a) have second order field equations,
(b) are at most linear in 0ng,., and
(c) are reparameterization invariant.

Whilst condition (a) is not likely to be relaxed, conditions (b) and (c) can be relaxed, but
we won'’t explicitly do so in this paper (for the sake of “simplicity”). Condition (b) means
that the perturbed dark energy-momentum tensor is given by (3.6) where the W tensor is
expanded to

Vel — prvaB y peaves v,. (4.1)

Demanding reparameterization invariance translates into the requirement that the gauge
fields contribution to the perturbed fluid variables vanishes, that is,

’LLHUZ,A{E}5EU’W =0, uu’yaVA{E}(;EUW’ =0, (4.2a)
YurBieydsU™ =0, L% A 6pU =0, (4.2b)

where Ay pUH” is given by (3.14).

To resolve these conditions to such an extent that the perturbed fluid variables can be
written down as known functions of the perturbed field variables requires very dense and
involved calculations and is presented in appendix A. The calculation is formulated entirely
in tensorial notation, and so one can obtain a clear and unambiguous understanding of the
geometrical meaning of reparameterization invariance and precisely how to impose second
order field equations.

,10,



The result of the calculation is that the perturbed fluid variables for the subset of the
theories described by (3.6) which satisfy conditions (a—c) above, are given by

5 — Aph A Ap 0 3¢
0 = | Ay Ay 0 (5¢ , (4.3)
oP Az1 Aszz Assz d¢
and all have zero scalar anisotropic stress, II° = 0 (in addition, the vector and tensor

anisotropic stresses vanish). One finds that all Ay are scale independent (that is, they
just depend on time and not scale k). The matrix [Ayy] is called the activation matriz. We
reiterate that we have not specified the functional form of the background Lagrangian: only
its field content and various symmetry requirements.

There are other classes of theories which have non-vanishing II5, 1TV and II" that are
constructed in this model independent way, notably the elastic dark energy theory [41].

5 Equations of state for dark sector perturbations

At the level of the cosmological background, despite their complexity, all dark theories boil
down to specifying the time dependence of a single function, which is commonly thought of
as the equation of state parameter, w(a). Clearly, different theories predict different values
and functional forms of w(a), but that is all they do: there is nothing else to be measured
at the background that will tell us about the nature of the dark sector. An obvious question
then arises: how many functions need to be measured to characterize perturbations in the
dark sector?

In [36] we showed that the cosmological perturbations of all reparameterization invariant
single derivative scalar field theories (i.e. scalar field theories of the type £ = L(¢, X'), where

= —% gV .V, ¢ is the kinetic scalar) are encoded by a single function, which we called
a (this function is, in general, time-dependent). This function arose as a single parameter in
an equation of state for dark sector perturbations (similar “closure relations” have also since
been given in [43]). In analogue to w(a) at background order, wide varieties of theories may
well give rise to the same values of «, in which case these theories will be indistinguishable
at the level of linearized perturbations. The point is that observationally all we can hope to
do is constrain the values of « (at the level of linearized perturbations). A series of questions
naturally arise. For instance: what do the equations of state for dark sector perturbations
look like for more general theories? Which fluid and metric variables appear in the equations
of state? Specifically, those theories containing more than one derivative of the scalar field
and/or derivatives of the metric.

The contributions to the fluid variables (4.3) from d¢, 8¢ and ¢ in 6P will introduce
terms which a priori require another equation of motion and are thus not-closed. To remove
these non-closed terms we derive equations of state. We will now show how to compute the
equation of state for perturbations from the activation matrix (4.3).

We start off by writing down the following part of the activation matrix which contains
the known fluid variables:
6 — Aysh 5
1uh) _ (An A ¢ . (5.1)
9 Agy Aga ) \0¢
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We obtain expressions for d¢, &{5 and d¢ by inverting and differentiating (5.1) and isolating
the combination 6 — 3H (1 + w)@. This process yields

5 = % [y (5~ Awah) — Asaf)] (5.22)
5o = % [Ana ~ Ay (5 - AMhﬂ : (5.2b)
5p = g (6= 8H(1 + w)d — Auh — Avih — Fop — G59) (5.2¢)

where we defined the denominators as
D= A1 Agy — A1p Ao, (5.3a)
£ = A — 3H(1 + w)Ag, (5.3b)

and the numerators as

F=Aj —3H( +w)As, (5.4a)
G= A+ A — 3H(1 +w) (Am + AQQ) . (5.4b)

We now insert (5.2) into dP’s row of the activation matrix (4.3) to obtain the following
schematic form of the pressure perturbation:

5P = A16 + Asf + Agh + Agh + As [5 ~3H(1 +w)e‘}. (5.5)
The A; are defined in terms of the Ajjy as
17 F g
Al = ) _A22 <A31 - 5A33> — Aoy <A32 - 6A33>} : (5.6a)
17 g F
Az = ) _A11 <A32 - 5A33> — A <A31 - 51433)} , (5.6b)
1] g F D .
Az = ) _A21A14 <A32 - 5A33> — A14 A2 <A31 - 5A33> — €A33A14], (5.6¢)
1
Ay = _EA?’BAM’ (5.6d)
1
.A5 = EAgg. (5.66)

We then use the perturbed fluid equations (2.7) to replace the “6 — 3H(1 4+ w)d” combi-
nation in (5.5). After doing this, one obtains the following schematic form of the entropy
perturbation

wl' = B16 + Bof + Bsh + Byh, (5.7)
where the B; are given by
dpP
pB1 = A1 + 3HwAs — d—pp, (5.8a)
_ 2 dr 2
pBy = A+ (1+w) |3H" (1 — 3d—p + k| As, (5.8b)
1
pBs = Az — 5(1 + w)As, (5.8¢)
pBy = Ay. (5.8d)
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We now see that the only B; with scale dependence is Bs, and that can be written as By =
Bél)(t) + Bém (t)k%. The entropy perturbation (5.7) now needs to take on gauge invariant
form. In order to impose this, we recall that the fluid and metric variables transform from
the synchronous to the conformal Newtonian gauge, defined as ds® = a?(7)[ — (14 2W¥)dr? +
(1 —2®)dx?], via

§ =06+ 3H(1 +w)C, (5.9a)
0=0+¢, (5.9b)
n=o+HC, (5.9¢)
h=—6 (oi) + H\I/) + [2%2 —6 (7—[ - HQ)} . (5.9d)

Here, ( is the gauge transformation parameter and all gauge independent quantities need to
be independent of ¢. Additional transformations can be computed, making use of { = U—H(.

We have a function, wI', constructed in the synchronous gauge in (5.7), which we wish
to put into gauge invariant form. To do this, we use (5.9), to write wI' in the conformal
Newtonian gauge:

wl = B1§ + Bofl — 683 (cb + pr) + By [—6 (c‘Is + H\P) +2k2 — 1291 + 612
+¢ [3%(1 +w)By + By + 285 (K - 3 [H - %2})
+By (—ﬁsil +1SHH — 6H3 — 2k2H)} : (5.10)

The last term in brackets multiplying (¢ is required to vanish for wI' to be gauge invariant.
We will pick particular forms of B; which will satisfy this requirement and will yield a useful
form of wI'. From the outset we will define

Bi=a— —. (5.11a)

Suppose we had B3 = By = 0, then the choice By = —3H(1 + w)B; would yield a gauge
invariant function wI'. This motivates us to define for the general case B3 # By # 0,

By = *37‘[(1 -+ w)Blﬁl. (5.11b)

Similarly, from working out the required value of B3 in the case By = 0, we are motivated

to define
3H(1 4+ w)Bif2

2k~ 6 (H - 1)
In the full case where all terms are present, the only value of B4 which yields a gauge invariant

combination is
~ 3H( +w)Bi(1 — pr — B2)

835—

(5.11c)

= . . (5.11d)
6H + 6H3 — I8HH + 2k*H
Using (5.11), the entropy perturbation (5.7) becomes
P 1 .
Wl = <a _ d) 5 3H( +w)po— L EwB
dp 22 — 6 (H - 1)

6H + 6H3 — 18HH + 2k2H
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In the conformal Newtonian gauge, (5.12) becomes

dP\ |« ;. 9H({+w)p -
wl = <a - dp) 5 — 3H(1 + w)Bi0 + E— (;rﬁ ;2) (CI>—|—’H\IJ>
3(<I'>+H\P) + (6%—3%2—k2) v
—37‘[(1 + w) (1 — 51 — 52) . (513)

3H + 3H3 — OHH + k2H

Equation (5.12) is the gauge-invariant entropy perturbation which closes the perturbed fluid
equations (written in the synchronous gauge). There are three free dimensionless functions:
{a, 51, P2}. In a future paper [44] we will confront the parameters in the equations of state
with observational data.

One should note that the combinations (5.11) end up imposing

3H(1+w)A; + As + (%2 6 [H - H2]> As — (6}'1 F6HE — 18HH + 2k27-[> A

' 2|, 4P _ ar
+3(1 + w) <7—[—|—3H [w dp]>A5—3”H(1+w) dpp (5.14)

on the A4; (5.6), and

3H(1 + w)B1 + By + (2/<:2 6 [7{ - 7—[2]> B;
By = = : (5.15)
6H + 6H3 — ISHH + 2k2H

on the B; (5.8). This corresponds to non-trivial relationships between the Ary (4.3). In the
simple case where A4 = As3 = 0, the condition (5.15) becomes By = —3H (1 + w)B;, which
can be verified to hold precisely for k-essence theories.

The important thing we have done is to compute the equations of state for perturba-
tions without specifying the functional form of the dark sector Lagrangian. The equation of
state (5.12) truly is model independent. It does depend, however, on the assumptions (a)-(c)
outlined at the beginning of section 4.

We will conclude this section with a short example which does not satisfy reparame-
terization invariance. In previous work [38, 41] we studied the elastic dark energy theory,
or equivalently a time-dependent massive gravity theory. In that theory, the dark sector
Lagrangian is composed of the metric only, and spatial reparameterization invariance is ex-
plicitly broken since they correspond to the deformations of an elastic medium. The equations
of state for perturbations are given by wl' = 0 and

3 (6 —3(1 4 w)n) synchronous gauge
S_ 2 2 )
wil” = 2 ( ) % { |6 —3(1 +w)®]  conformal Newtonian gauge. (5.16)

The (gauge invariant) combination “§ — 3(1 4+ w)n” arose naturally from the theory, even
though spatial reparameterization invariance is explicitly broken, and ¢2 is the sound speed
of the elastic medium. More general theories could lead to the inclusion of higher time-
derivatives of n.
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6 Examples

The results we presented in the previous sections were for “general” Lagrangians, where we
only imposed the field content and reparameterization invariance and we never proposed a
functional form of the Lagrangian. This yields expressions which hold for a very broad range
of theories — this could be percieved as a weakness. What we can do, however, is to start
from a more familiar standpoint, and write down the functional form of the Lagrangian.

In this section we show that there is a relatively quick and easy way to compute the
equation of state for perturbations for a theory with a specified Lagrangian, and indeed these
are included within the general case (5.12).

6.1 Minimally coupled scalar field theories

As the first and simplest example, we will take the dark sector Lagrangian to be that for
minimally coupled scalar fields:

L=L()X), (6.1)
where X = f%wwm. The energy density and pressure are given by

p=2LxX - L, P="CL, (6.2)
which are functions with the following dependancies:
p=p(6,X), P=P(6,X). (6.3)
The first variations of these functions is then given by
0p=p,p0p+ pxoX, 0P = Pyop+ PxoX. (6.4)

For this theory it is simple to obtain # = byd¢ (where by = —(2X)~/?) and IIS = 0. The
activation matrix is thus
op P P.X
S 5
o | =| b 0 ( ¢>. (6.5)

5P Py Py ) 0%

)

The perturbed field variables d¢,dX can be eliminated in favour of the perturbed fluid
variables dp, 0 to give

1 1 P
op = —0, O0X = —46p — ——40. 6.6
¢ by p.x P bipx (6.:6)
The perturbed pressure can then be written in terms of “known” perturbed fluid variables,
P P P
(5P:7X(5p—|—p’¢[’¢—x]9. (6.7)
p.x bi Lpp px
It is simple to show that the gauge invariant entropy perturbation is
dP
wl’ = (a - d) [6 —3H(1+ w)d], (6.8)
P
with .
Py ( 2XL xvx ) B
a=—"—=|1+—2""F . 6.9
Py Ca (6.9)

This has provided us with a well known result: the perturbed fluid equations for minimally
coupled dark energy models close with a single parameter, a.
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6.2 Kinetic gravity braiding
The second example we consider forms the first three terms of Horndeski’s theory [45-47],
and is called the Kinetic Gravity Braiding (KGB) theory [48-51]. This theory represents

a useful example of theories which end up introducing perturbed metric variables into the
equation of state. The KGB Lagrangian is

L= A, X)06 + B(4, X), (6.10)
where X = —%g“” V.oV, ¢ as usual, and U¢ = VHV,¢. The energy-momentum tensor
(EMT) is given by

Uw=LxVu 0V, 0+ 2V, AV yd + Py,  P=B—-VH'oV, A (6.11)

From (6.11), the density p and pressure P for a spatially isotropic and homogeneous back-
ground are given by

p=-—B+2As+Bx)X -2AxXV2XK, (6.12a)
P=B+2A4,X+ AxV2XY, (6.12b)

where K = K", = 3H,Y = X.! From (6.12) we see that p and P have the following
dependancies:

p=p(o, X, K), P=P(o,X,)). (6.13)
Since the fluid equation is p = —K (p+P), p can only be constructed from first time derivatives
of fields and so there is nothing else that p could be a function of, while remaining at most
of first order in time derivatives. The fluid equation is thus

p7x.)( +p7¢qf)+K (er P+ KQK) =0. (6.14)

We now want to derive the perturbed fluid variables. It is simple to use (6.13) to obtain dp
and 6P in terms of §¢,0X,§K and §). In the synchronous gauge,

5K — %h, SX = 355, 5V = 466+ 6. (6.15)

The perturbed velocity 6 and anisotropic stress IS must be computed from direct perturba-
tion of the EMT. One finds that TIS = 0, and we can write the perturbed fluid variables in
the form of an activation matrix,

Lok j ) px

) : 2 0 5
0" =0 om0 (o). (6.16)
oP Py (Px¢+ Pyo) Pyo/ \0¢

where we defined the coefficients in 6’s row as
(p+ P)by = —V2X (B,X oA, — K\/QXA,X) . (p+ Py =—AxV2X.  (6.17)

All components of this activation matrix are scale independent. We have now shown that the
KGB theory has an activation matrix which is of precisely the same form as that we derived
from a model independent approach in (4.3). This means that the gauge invariant entropy
perturbation is given by (5.12).

!These expressions correct two typos which are present in equations (12a) and (12b) of [39)].
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7 Discussion

In this paper we completed our goal of proving the claims made in our previous paper regard-
ing the form of the equation of state for perturbations. We did this in a model independent
way, using the geometrically enlightening tensorial notation. We also showed how models
with a given functional form of the Lagrangian fall into our category.

One of the clear advantages of our approach is that we are able to compute consistent
cosmological perturbations in a model independent manner. Our approach provides complete
transparency as to how to relax the restrictions of reparameterization invariance or how
to include more fields and/or their derivatives. However, this generality leads to a highly
complicated set of equations (which we presented in the appendices of this paper).

The result of the calculations — equations of state for perturbations — yields a set
of modifications to the gravitational field equations which are very easy to incorporate into
numerical codes, such as CAMB [52]. The modifications hold physical significance, and, for the
broad class of theories we presented in this paper, yield a small enough number of parameters
that we are able to meaningfully constrain their values with current observations. This is the
subject of future work.

Acknowledgments

We have benefited from conversations with Tessa Baker, Alex Barreira, Jolyon Bloom-
field, Pedro Ferreira, Ruth Gregory, Baojiu Li, Adam Moss, lan Moss, Levon Pogosian,
Ignacy Sawicki, and Costas Skordis. JAP is supported by the STFC Consolidated Grant
ST/J000426/1.

A Calculation of the perturbed fluid variables

Here we present details of the calculation leading up to the activation matrix (4.3) for a
general reparameterization invariant scalar-tensor theory with second order field equations.
We begin by introducing some useful technology, before moving on to the explicit calculations
and results.

A.1 The Fourier decomposition

There are a number of spatial derivatives within the energy-momentum tensor (EMT): we
find that working in Fourier space significantly simplifies calculations, and allows tensorial
notation to be maintained throughout. The advantage of this approach is that all con-
straints and conditions can be formulated via geometrical projections of the “free” tensors
in the theory.

Let us begin with a space-time vector field A,,, whose time-like and space-like compo-
nents can be explicitly isolated via A, = —aw, + b,, where u*b, = 0. Then, the covariant
derivative of A, is given by

VA, = —u,Vya —aKyy + 9%, V,bo + b K%, (A1)
Similarly for a symmetric orthogonal space-time tensor field B, = v u’yﬁ vBag,

v)\B;w = PYauPyﬁyv/\Baﬁ + QKQ)\VB(MUV)BOAB' (AQ)
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Since this will be useful later on, the second covariant derivative of the vector field is given by
VsV, Ay = —u, VgV a + WQVV5VMba — QKV(MVE)CL —aVgK,,
+ 2K gu, ) Vuba + uy K, Vgba + bau, VK, + K, Ky gba. (A.3)

We now move to Fourier space, by expanding each space-time field in Fourier modes,

By, = [ &k By,e*?, b, = [ kb e, a= | &3kag e, A4
2 (k) 1 (k) (k)

where kx = k#x, and ku, = 0. We will always leave out the integral sign to avoid clutter.
The Fourier modes are only time-dependent, and the complex exponential e** only has
space-like derivatives,

Ve = ikueikr. (A.5)
For example, using an obvious notation for a scalar field /" and its Fourier mode Fy), we have
VuF =V, (Fye)
= {—F(k,)u# + ik#F(k)} ek (A.6)
while for a vector field we obtain
VA, = —u,V, (a(k)eikx) — a(k)eikaw, +v%,V, (b(k)aeikx) + b(k)aKO‘#uyeikx (A.7)
= [uuuu%) — 1 ubgya = ik (uvagy = 1%,0ma) = ag) K + breK au”'f] e,
and for the orthogonal tensor field,
VaBu =4%,7%, V) (B(k)aﬁei’m) +2K°37° 1) Blryage™ (A.8)
= [—’yauyﬂuB(kz)aﬂuA + ik?)\’yau’)/’BVB(k)alg + 2Ka)\'yﬁ(uuy)B(k)a5} ek,

We now proceed by evaluating some useful examples.

First, we will evaluate the Lie derivative of the metric g,,, along the vector field &, given
by £egu = 2V (,6,). We parameterize the components of §,, as §, = (—qu + ’y”uw,,) ek
where x and w,, are the Fourier modes, and we find
. . 1 « 1 : . « ikx
Legu =2 | Xupty — | Wa — nga Y () — gKX%w — 1k(MUV)X + lk(;ﬂ yyWa | €7
A second useful example is evaluating the covariant derivative of the (Eulerian) perturbed
metric in the synchronous gauge; the tensor field here is of the symmetric orthogonal type.
Writing the Fourier mode as 0gg,, = Hw,elkx, we find that

VOB = |:— Huy +ikyH,, + 3KH>\(MUV):| ek, (A.9)

Finally, the Lie derivative of the spatially isotropic energy-momentum tensor U*" = putu” +
P~# along & is given by £LUHY = OV UM — 2U*1V &Y, and evaluates to

1
LU = [[Zp)'( — px] utu” + 2 [ikaa —p <d}a — SKwa>] OB )

_ [P — gPK} XY = 2iPkew,\75(”’YV)’\] ek, (A.10)
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For reference, the covariant derivative of £¢g,,, is

VeLegu =2 [—uguuul,jg + ugu(ufyo‘y)d}a + (Km,zw + 2K, uy) + ikguyu, + iu5k(uuy))x
- <“ﬁK ) + Ky + iughn®y) + i’fma(u“m)%
— <V5KW — kgkgu,y +ikg Ky + iKg(uk,j)>X (A.11)

1 1 |
i (K @B + ks K ) — kay® ) + 5unVaKTy + 5u Vg Ka“) wa] o

A.2 Perturbed EMT

Here we lay out the Fourier decomposition of the perturbed EMT. This is performed by
writing

SeU", = dputu, + (p + P)vlu,y + 6Py*, + PII,,. (A.12)
Note that the mixed EMT is obtained from the contravariant EMT via
(5EU'u1/ = gaV(SEUMOé + Ua'uaEgua- (A'l?’)

The perturbed fluid variables can be obtained from JogU*” by application of various
“projectors”,

dp = uyu, opUM, (A.14a)
1
v = P PuM'yVO‘(SEU”’”, (A.14Db)
1

OP = g'}/,uV(sEU'uua (A14C)
PII*P = 198 spUM. (A.14d)
We made use of the transverse-traceless orthogonal projection operator, 1? v, defined

in (1.7).

We note that the Lie derivatives are given by

Lep =0V, Legu =2V (46, LU = OV UM — 2007 &Y. (A.15)

The Fourier decompositions of the scalar field dg¢, gauge field £# and metric perturba-
tion are given by

opd = el € =Cue™, g = Huwe®, (A.16a)

Uy = Vuei’ma HMV = Fuuei’m' (A16b)

where it is to be understood that {0¢, (., Hyw, Vy, Ty} are the Fourier modes (and as such,
only have time-like derivatives). In the synchronous gauge, the metric perturbation is only

space-like, and so satisifies
Huw =~°,7°  Hop. (A.17)

We isolate the time-like and space-like parts of the Fourier mode ¢, of the gauge field &,
by writing
Cu = —upX + Wy, (A.18)
where
wp =7 Wa- (A.19)
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We will decompose the space-like vector k, into a scalar £ multiplying a unit space-like vector
k, via
k, = ikk,, ky =" kv, E'k, = 1. (A.20)

When needed, we will decompose the Fourier modes H,,,,wq, V, and 7, into scalars via

Hup = é’yagHL + kyky 177 s Hr, (A.21a)
Wy = Wky, (A.21b)
V, = —kbk,, (A.21c)

Tap = kpke LP7 5115 . (A.21d)

We reiterate that we are interested in scalar perturbations in this paper.
We will relate the longitudinal, Hy,, and transverse, Ht, modes of the metric perturba-
tion to the synchronous gauge variables h and 7. Note that

k(p+ P)0 = k,u, 65U, (A.22a)
’YaﬁHaﬁ = Hy, J—WaBHW = ]%pkaipoaﬂHT' (A.22b)
By using (A.13), in the synchronous gauge the mixed EMT is deduced via
opU", = U"*6pgva + guadpU"™
= %PWVHL + Phpky LP7H, Hy + g0 05U . (A.23)

A.3 Evaluating the perturbed EMT

We now use this technology to derive the activation matrix for the scalar field theory described
in section 4. Using geometric projectors we will be able to isolate the tensors and their scale
dependence which multiply the field variables that are used to construct the perturbed fluid
variables; we will also be able to impose reparameterization invariance at the tensorial level.

From the Lagrangian for perturbations, the Eulerian perturbed EMT is computed via

SEUM = Y o¢ + WH P dpgag + Y £e¢p + WHP £egag — LU (A.24)

Note that we have included the gauge field &, explicitly: when the parameters in the theory
are arranged to make it deouple, the theory is reparameterization invariant.
For the Eulerian perturbed EMT (A.24), we take the derivative operators to be

YWI — AM + Ea,ul/va + Caﬁul/vavﬁ + Dﬂaﬁlﬂ/vpvav//j, (A25a)
Wuuaﬁ — EHvaB + IE‘PMVaﬁVp; (A.25b)

that is, we have set G = 0. We will write the Eulerian perturbed scalar field and the Eulerian
perturbed metric as in (A.16). After using the Fourier decompositions, the EMT is given by

e ks = YO s 4 YD 5h 4 Y sg 4y B s
+ W(O),uua,BHaﬁ + W(l),uuaBHaﬁ + e_ikmA{g}(SEUuy, (A.26)

where A1 dpUH” is the contribution to the EMT from the gauge field, given by

A{é}(SEUlW prauyfgguy—i-ypai)g(ﬁ— ngwj. (A.27)
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The coefficients of each time derivative of 6¢ and H,, in (A.26) are given by
YO — AWV ik B — ko kgCOPHY — ik ko kgDPOPHY (A.28a)
Y(l)MV = —u B — Kaﬁcaﬂuu
_ ik’e [2ve(au6)(cozﬂp,u + KpaDpae;w + Ka,@ (Daeﬁuu _|_]D)eoz,8;w):|
+ upk kDA (A.28b)

1
Y@ — UQUB(CO‘BW + gK (up’yag + 2’yp(au5)) DroBrv

+ ik (uau5D€a5“V + 2up’ye(au5)Dpaﬁ“”> , (A.28c)
YO — i uqugDPoPH, (A.28d)
2
WOmap — o | 3K V7 (e T+ ik BP0 (A.28¢)
W(l)uuaﬁ _ _upIFPMVaﬁ_ (A28f)

Before we proceed any further, notice that (A.28d) represents the contribution of third time
derivatives of d¢ to the perturbed energy-momentum tensor (A.26). These terms are clearly
problematic, but can be remedied by setting upuauL;]D)paB“” = 0. Thus, we take Y& = 0 in
everything that follows. We have written these in such a way that the individual terms are
grouped in order of scale, k,. We now use (A.20) to explicitly isolate the scale dependence,
yielding

YOy — 00w 4 OV g | \O2pr g2 | \(0.3)ur g3 (A.29a)
yOwr — y @0 (D o (2 g2 (A.29D)
Y@ur — y @0 4 @Dy (A.29¢)
WOrvasd _ \y(0,0)pvaB | W(Oul)ﬁwaﬁk’ (A.29d)
wWDnras _ \y(1,0)uvas (A.29¢)

A glance at (A.29¢e) shows that any coefficient of h or 1) which may be present will always be
scale independent. Also, there is no k% dependence of any coefficients of §¢ (this is evident
from the lack of a Y22 _term). The time-dependent coefficients of each term in (A.29) are
given by

Y00 — puv (A.30a)
yO.pur — —I%QBO‘“V, (A.30b)
v (0.2)pr — ]%a;%ﬁ(caﬂW’ (A.30¢)
YOI = |k JogDPesm (A.30d)
YOO =y B K GCOI (VK ) DI, (A.300)
YD = 29 gy COPH 4 K poDPOHY 4 K, gDPPH 4 K g DRk ”] , (A30f)
y (12 — _u)\lgglgp]l)/\epuv7 (A.30g)
v (0% 174 1 (0% 174
Y0 = uqugC v 4 §K (upVas + 27p(atip)) D’ dad (A.30h)
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Y@ = _j (uau DY 4 2 5)Dpa5uu) , (A.301)

WO0uras — gurap | %K,yozp,yﬁ(WUE)FWVWE7 (A.305)
WODmas — _J penval (A.30k)
WLOmas = gonval (A.301)

Just to explain the labels on these objects (we will be introducing another set later on
when we look at the gauge fields influence on the system): YXY)uv ig the coefficient of the
X*_time derivative and Y multiple of k infront of §¢; these coefficients explicitly only have
time dependence. An obvious extension to the WY)rvef a5 time dependent coefficients of
H,g. There is also a nice structure which emerges:

v (N Z y N o N=0,1,2, (A.31a)
1-N

W(N JuvafS Z W(N H)MV‘XB]{;H N=0,1. (A31b)
n=0

The upper limits in these sums are set by the number of derivatives we used in the operator
expansions of Y, WHvaB,

In a similar fashion, the gauge field contribution (A.27) can be written as

e_isz{g}éEUpo — @(O)PUX + @(1)PU>'< + @(Q)MX
+ =2Opoay, | =Wpoay, | =@poag, (A.32)

where the coefficient of each time derivative is
00)ps = _y(O)ﬂUq; _ Y(l)ptf('z; _ y(2)po'¢' + pulu’ + [p _ 2PK} ad
3

1
—2 [VBKWIF'B"”W S Ky B = highu, B

+ ik (P’ye(pua) + K, FPoH 4 KQ(MVEB)FQPUW + 76(5uu)E’M“ﬁ>] ) (A.33a)
eMpe — _Y(l)PU¢ _ 2y(2)P0¢ +2 [—KWW(DPOW + QKﬁ(Muy)FBPUMV

+uyu, EPTHY 4 ikg (uuuyﬂ?ﬁ”““” - 'yﬁwuy)W(l)p"“”)} — 2pufu’, (A.33b)
0rr = QUMUVW(U"U“” —Y@pog (A.33¢)

1 1
E0poa = 9 [31{ (—ma(f)u‘ﬂ + 'ya(uul,)IEp"“”> + (K“(MK,,)B + 2uuv5wy> Fheor
+ike (Ko‘(uul,)IFGp"“”+v€(ﬂ°‘l,)EpU“”+P7€(’)7”)°‘) —kﬁkwfyo‘y)]}?ﬂp”"”} . (A.33d)
E(l)poa =_9 [_pva(pua) + ’Ya(uuy)]EpUMV + Kﬁ(ﬂ,yall)Fﬁpauu - Ka(uuy)w(l)pauy

+ikg <’y°‘(uu,,)ng"“” — ’yﬁ(ufyaV)W(l)pU“”ﬂ , (A.33e)
B = 9y, y*, WP, (A.33f)
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Explicitly isolating the scale dependence of these expressions yields

Qs — gO0)pe 4 gODpoy | §(O02)pr 2 | (03)po )3 (A.34a)
oWre — gL0)pe 4 gLhpoy | g(12)po 2 (A.34b)
O@re — g20)pr 4 g2Dpo (A.34c)
Opoe — Z(00)poa | =(0.1)poag | =(0.2)poar2 (A.344)
gWpoa — =(L0)poa | =(11)poag, (A.34e)
=@)poa _ =(2,0)poa (A.34f)
The time-dependent coefficients in (A.34) are
Q00 — _y(00)p0 (10000 _y 2000y | e [p_pK} NPT

+ 2 Ky, W0pom _ ( I g 2[( IF‘BP‘”“’)} (A.35a)

3 | B T 3 T8k

@(O,I)pa = _Y(O,l)paqz'b - Y(l,l)pag'z; + @(Q,I)poz _9 <(P + P)/%Ef(pua)

L e WD Li c0pea L @oypoa (A.35D)
37 2 6 ’
002pr = _y(02)p0j @(1,2)/)02 — o 2(20)poar (A.35¢)
QO3 = _y(0:3)p0 (A.35d)
e1,0)ps — _y(1,0)p<7¢; _ Qy(2,0)poq'5 — 2puPu’
1 2
+2 —gKnyW(l’O)p”“” + qufﬁ(Huy)FﬂpU“” + uuu,,EpU“”] , (A.35e)
ehre = _y(Lhpog 4 QUMUVW(OJ)PUHV — k=20)poa | 2@(271)p027 (A.35f)
O2pr = _y(1.2)p0 4 (A.35g)
O20re = 9y, WPy _y (20)p0 g (A.35h)
@(2,1)P0' = _Y(271)p0¢7 (A351)
— lege? 2 « g (03 T UV 1 (0% logvn7e
=(0,0)poa — gK (—p7 Py )+7 (MUV)Ep H gK’Y (;ﬂu)ﬂFﬂp . >
1 . 1.1 .
+ GECOR SR oK (7™ 5 PP 4 B ) | (A.35))
~ (1
=0Droe = of, <3K Y () FLTH 4 EPTH + P’Y“'”W”‘) : (A.35k)
=(0,2)poa — _2];,676(M,yay)w(0,1)ﬁaw, (A.351)
E(l,O)poa =_9 |:_ p,yoz(puo) + ,ya('uuy)Epcr,uu
1 e Bpouv 1 —=(2,0)poa
—|—§K'yﬁ(u'y ) FPPTHY + EK: e (A.35m)
slhroe = 9 (»ya(uuww(ovl)ﬂ““” + l%nf(ﬂay)W“’o)p"“”> , (A.35n)
=(2,0)poa — _Qu(uvay)w(lvo)paw. (A.350)
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These satisfy the structure

3—N

OMre = " gNmpogn, N=0,1,2, (A.36a)
N=0
2—-N

Moo = N " gNmpeogn - N=0,1,2. (A.36b)
N=0

We have now obtained all the “basic” equations required. To recap what we have done:
we have used purely geometrical projectors to isolate the scale and time dependence of the
extra fields d¢, H,,, (these are the Fourier modes of the scalar field perturbation dg¢ and
metric perturbation dgg,, ) which appear in a dark sector theory. We have also isolated how
the gauge field components x ~ €° and w’ ~ ¢ (where “~” denotes that the field is the
Fourier mode) enter into the perturbed energy-momentum tensor, again, isolating how each
time and space derivative enters.

It is worth pointing out again that all tensors in the EMT can be traced back to an
effective Lagrangian for perturbation.

We now show how to impose two important theoretical priors upon the theory: (i)
second order field equations and (ii) reparameterization invariance. Between (i) and (ii) we
will show how the “naive” activation matrix can be obtained — it is naive in the sense that
reparamterization invariance has not yet been imposed on the components of the matrix.

A.4 Second order field equation constraints

The conditions for second order field equations are obtained by removing time derivatives of
all fields of order 2 and above from expressions for dp and ¢. This amounts to requiring

uuu,,Y(Q)‘“’ =0, uH'yaVY@)“V =0. (A.37)

A.5 Naive fluid variables

Here we show which projections of the tensors (A.26) give rise to which elements of the naive
activation matrix. We use the term “naive” since we have not imposed reparameterization
invariance at this stage; doing so is a rather complicated process which we consign to its
own section, but the net effect is to remove some components of the naive activation matrix
components. We have already imposed the second order field equation conditions (A.37).

Using (A.21a) to decompose the Fourier mode H,, into its longitudinal Hy, and trans-
verse Hp scalar modes, the Eulerian perturbed energy-momentum tensor (A.26) is given by

e kTS UMY = Y(O)Hl’(sqg + y(l)w’&b + y(2)xw5'¢
1 I
+ g’Ya,BW(O)WaﬂHL + kpkngaaﬁw(o)WaﬂHT

1 ) . )
+ 5 Yap WO Iy 4 kiphg LP7 g W7 Hiy
+ e_ikxA{g}(gEU‘Lw. (A.38)
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Using the projectors (A.14), the naive set of fluid variables will be given by

0p = K110¢ + K120¢ + k14 Hy, + k15 Hy, + rigHr + ri7Hr, (A.39a)

k(p+ P)0 = ko106 + koadd + koaHy, + kos Hy, + rog Hr + kop Hr, (A.39Db)
36P = k3100 + k3200 + k3300

+ kaa Hy, + kas Hy, + kag Hr + K7 Hr, (A.39¢)
15 = k4100 + Ka200 + K300

+ kga Hy, + kas Hy, + kagHr + rar Hr, (A.39d)

where the time and space dependant naive activation coefficients krj are given by

K11 = u#uyY(O)"”, (A.40a)

K19 = uuul,Y(l)’W, (A.40b)

K14 = éu#uyya/gw(o)“mﬁ, (A.40c)

s = %uuum sWhmas, (A.40d)

K16 = uuul,/%pl%gJ_’wa,gW(O)Waﬁ, (A.40e)

K17 = uuul,/;:pl%gj_paagw(l)“”aﬁ, (A.40f)

Kol = ];:E'yeuu,,Y(O)“”, (A.40g)

Kog = l%efyeuul,Y(l)’“’, (A.40h)

Ko4 = Eeveuuyvaﬁw(o)“mﬁ, (A.40i1)

Ko = /%Efyeuuyfyagw(l)“”aﬁ, (A.405)

s = et ey L1 WO (A40K)

Ko7 = ]E:E'yeuuyl;:pl;:UJ_paaﬁw(l)“mﬁ, (A.401)

ka1 = Y Y O, (A.40m)

Kz = Y Y, (A.40n)

ka3 = Y Y DM, (A.400)

k34 = P+ %W%BW(OWW, (A.40p)

s — %'Y/w%z SW(kvas, (A.40q)

k3g = P + ’}/w,];‘p/%aJ_pgalgW(O)uyaﬁ, (A.40r)

K37 = %Vl%pl%,,ﬂ”aﬁw(”“mﬂ. (A.40s)

Note that k13 and k23 are not present (these would made the equations of motion higher-
order). There is a clear reason we have called the sy the naive fluid variables: since we
have not yet imposed reparameterization invariance, there should be contributions due to
the components of the ¢#-field appearing in (A.39).

We deliberatly have not written out the k4;: they will vanish in the reparameterization
invariant theories we consider in this paper. The factors of P appearing in k34 and k3g are
due to (A.23). We have used (A.37) to ensure that the field equations are at most of second
order. The scale dependence of the kry can be explicitly isolated by inspecting (A.29) to read
off the scale dependence of the Y and WX)mab tengors.
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A.6 Reparamerization invariance: decoupling conditions

In order to impose reparameterization invariance, we require that the gauge field does not
enter into the perturbed fluid variables. This requires

u#ul,A{g}(SEU’uV =0, uu'yO‘VA{g}(SEU“” =0, (A.41a)
YDy ogU" =0, L% A 65U = 0. (A.41b)

These must hold at each order in k,, and so

w1, @Y — u, v, 0%V — () (A.42a)
Y@V — o o @& Y — (A.42b)
uuuyE(X’Y)‘“’” =0, uuvaUE(X’Y)‘“’U =0, (A.42¢)
N EEOe =g, 108 52XV — o (A.42d)

where the @ Y)# and 2XY)mre are defined in (A.35). We call (A.42) the decoupling condi-
tions; requiring that they hold is equivalent to requiring the theory to be reparameterization
invariance. Enforcing (A.42) upon the naive fluid variables leads to various simplifications,
which we now derive in detail.

A.6.1 Scale dependencies

We will pick a few of (A.35) to study in detail, each of which are significant. To begin with,
we look at the set of coefficients,
0020 9(0:3)p0 e1.2)p0 e@lpr, z(0.2)poa (A.43)

) )

Applying (A.42) to (A.43) reveals that the following tensors have no non-zero components:

Y(U,Q)pa7 Y(O,S)pa’ Y(l,?)po‘7 Y(2,1)p0'7 ’YG(M’YQV)W(O’DPU/W- (A44)

These tensors are the coefficients of k256, k3¢, k25¢, k5¢ and kh, kn, respectively, in all
fluid variables (we reiterate that there was never any coefficients of k286, kh, kn); and so all
terms of this form vanish from all fluid variables.

Now consider ©(:177 and apply (A.42),

upug@(o’l)pg = —upuUY(O’l)pUg{) — upugY(l’l)p”éﬁ. =0, (A.45a)
kry O O =~k /T YOV G — oy YV G 4 (p 4 P)ky™ =0, (A45D)
7pa@(o,l)pa = e YOUPT G (Do — g, (A.45c¢)

(A.45a) and (A.45¢) removes both kd¢ and kd¢ from dp and 6 P. If we write ko; = 3 K21(n) k"
and Koz = ) Koo(n)k™, then (A.45Db) tells us that koy(;) and rgy(p) satisfy

521(1)95 + /622@@5 =p+ P (A.46)
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A.6.2 Occurences of h and 1
Inspecting (A.35k) and applying (A.42) reveals that

~ (1
upuJE(O’l)p‘m = 2u,pUq ke <3K'y°‘(uu,,)lﬁ‘€p”“” + ’ye(ufyo‘y)Ep”“”) , (A.47a)
~ (1
up " E OV = oy AT ke <3K'ya(#uy)lﬁ'€pa’w + 76(u70‘l,)E””“”> , (A.47D)
~ (1
’YpaE(O’l)pm = 27poke <3K'ya(uul,)F5p”“” + Y EFTH + P’yﬁ(p'y”)a) , (A.47¢)

1

J_QerE(O,l)paa _ QLCﬂ-pUI%G <3

Kfya(uul,)lﬁ'ep”“” + fye(ufyo‘,,)Ep"“” + Pfye(pfy”)a) . (A474d)
Inside the brackets of each term is the coefficient of h and 1 in dp, 8,5 P and II respectively,
and so, by insisting that the decoupling conditions are respected, we find that h and 7 are
not present in any fluid variables. This means that all x1j of the form k;4 and k6 vanish.

A.6.3 Occurences of h and 1)

We now resolve the reparameterization-invariance conditions with respect to occurences of h
and 7. To illustrate what we will be looking for, we take a simple example where the EMT
given by

SUM — FP“”QBVp(Sgaﬂ, FrrveB _ pe(pv)(aB) (A.48)

We will refer to the last two indices “(cv, 3)” on FPH®P as the “metric indices” and the
penultimate two indices “(u, )" as the “EMT-indices”. For this discussion it is not necessary
to know whether these perturbations are Eulerian or Lagrangian. As usual, we study metric
perturbations in the synchronous gauge, dg,, = v* lﬂﬂ ,09ap. Using (A.9), the EMT becomes

. 2 )
SUM = | —u,FPHOP L g 4 ik PP g+ gKHp(auﬁ)IFpWaﬁ e, (A.49)

It is clear that the coefficients of h and 7 in all fluid variables are given by the spatial
projection of F on the metric indices,

Upye Y5 FPHYB, (A.50)

The coefficients of h and 1 in the perturbed density, velocity, perturbed pressure and stress
are found from application of the projectors defined in (A.14) on the EMT-indices. We will
now explicitly study the appearances of h and 7 in each of the perturbed fluid variables.

Appearance of h and 7 in 6. First, we will prove that neither h nor 7) contribute to 6.
The projector of interest here is that for the scalar velocity field, 0,

k(p+ P)0 = ko u, 60U (A.51)

Hence, the coefficients of i and 71 in 0 are given by the time-space projection on the EMT
indices and the space-space projection on the metric indices,

up’yeuuyva”mgcﬁp‘”o‘ﬁ. (A.52)
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We will now prove that this vanishes, meaning that there are no occurences of h nor 7in 6. We
first use W(L0mves — W0 )(eB)  which is the coefficient of i and 7 in all fluid variables,

and is defined in (A.301). We refer to the last two indices of W08 a5 the metric-indices
and the first two as the EMT-indices. We will perform an explicit (3 + 1) decomposition
of the tensor W(L:O# a8 thig tensor is only a function of background quantities and so is
decomposed entirely into the time-like unit-vector u* and the space-like orthogonal metric
Vv Via
wL0mval — \W@L0 ) (@h) — Ayt u®u® + By u’ P + Cwy" u®uP

+ 4DWu(“’y”)(o‘uB) + Ewy"y8 4 ZFW'y“(a'yB)”, (A.53)
where the six coefficients {Ayy, ..., Fw} are background-dependant quantities. There are
no components of WL0#e8 which have time-space like EMT indices and space-space like

metric indices. That is,
Uy Yoy WO — 0, (A.54)

This completes the proof that neither h nor 7 appear in 6: this means that ko5 = Koy = 0.
The key feature of the tensor W()#@# which allowed us to do the proof in this way is that
it was formed from only background tensors — there were no occurences of the space-like
vector k,. This observation is also true of (A.30a), (A.30e), (A.30h), so that

va#u,,Y(O’O)“” =0, VO‘HUVY(I’O)“” =0. (A.55)

These expressions would have been the coefficients of d¢, 8¢ in 6 (both without preceeding
factors of k). Projecting these tensors (and Y20y with 198, also yields zero, so that
0¢,0¢,0¢ do not appear in I1#,,.

Appearance of h in 6P. We now look at the occurence of h in 6P, elucidated by the
naive activation matrix component (A.40q), and which we see is controlled by

FYMV’Ya,BW(l)MVaﬂ = up’)/,uu’)’aﬁmpuyaﬁ- (A.56)

The F-tensor is constructed from coupling tensors in the associated Lagrangian for pertur-
bations via (3.7f), given by

Fpuuoa,@ — _% [upaﬁuv _ Z/[PNVCY/B} , (A57)

where we have also set M#P*% = () since there is no G-term in the expansion of W (A.25).
Using (A.57), (A.56) becomes

1
up’YuuVaﬁFpl‘VOé,B = —5'}’#1/7046 {upupaﬁ“” — upup"”o‘ﬁ} =0. (A.58)

Therefore, we conclude that i does not appear in 0 P, and so k35 = 0.

Appearance of 71 elsewhere. We now proceed to study the occurences of 7 in the rest

of the EMT. We will start off by providing the (3 4+ 1)-decomposition of the tensor FPHef —
Frlu)(aB)

FPrvel — ApuPuuPutu? + BFupu“u”'yo‘B + C’Fupuauﬁfy‘“’ + QDFWP(”u”)uO‘uB
+ 2Epy"CuP it + AFpuPu P ) 4 Gruly By 4 2 HpyP M) 48
+ 20y Uty 1 2 Jpul BB L 4 KPP y) 4 ALy P )@y B) (A L59)
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The coefficient of 7 in all fluid variables will be found from the transverse-traceless projection
on the metric indices of FPH®8 | giving

LT gFPeB — g T g [JFUP’YQ(“’YV)B + 2 KpyPlan Py )| | (A.60)

Notice that there will be no occurences of 7 in dp (i.e. there are no time-time projections on
the EMT indices, which are “uv” of the above), and Ky is the coefficient of 7 in 6, which we
showed was zero in the proof leading up to (A.54). So, 7 can now only appear in 6P or II,
and will only do so if Jr # 0; we will now show that reparameterization invariance enforces
Jr = 0. Earlier on, we wrote down (A.35n), (A.351), which we repeat here, that indicate how
the gauge field entered into the EMT,

E(l,l)paa -9 (,ya('uuy)w(ovl)ﬂal“/ + ]%675(‘“70‘”)W(170)'DU“V) , (Aﬁla)
E(O,2)paa _ ZI%E’YGHUVEWFWPU“Va (A.61b)

where, repeating (A.30k), (A.301),
WODed = _j powval  \yOL0wal = ) pemvas (A.61c)

All projections of Z(11roe and =(0:2)pa on their first two indices must vanish for reparameter-
ization invariance to be manifest. We now write (A.61) using the (3+1)-decomposition (A.59),
yielding

S0 — _2k, [(Br + Be) v uu” + (Gr + Ie) 79" + 2(Js + Le)y" 9|, (A.62a)
=029 — 9o {E]Fl;:pvﬁu“u” + I]Fl%p'yp)‘y“” + 2L]Fl;:p’yp("7”)>‘] . (A.62b)

So, for reparameterization invariance we require, among other things,
176, B0 — o e mLDmA — o (A.63)

which implies that Ly = 0, Jr + Ly = 0, and so clearly, Jr = 0.

This, in conjunction with (A.60), that told us the coefficients of all occurances of 7 in
the EMT, enables us to state that 7/ does not appear in any components of the EMT. This
means that all k1y of the form x;7 vanish.

A.6.4 The activation matrix

After imposing (i) second order field equations and (ii) reparameterization invariance the
naive activation matrix components k1 simplify. In some instances, some of the x; vanish
and some lose all or part of their scale dependence. After applying all the restrictions imposed
by requiring reparameterization invariance, the naive perturbed fluid variables (A.39) become

op — kisHy, = r£110¢ + K120, (A.64a)
(p+ P)0 = K210 + k2200, (A.64b)
30P = k3100 + K320 + k3300, (A.64c)

I° = 0, (A.64d)
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where all k1j are scale independent. In the main body of the paper we write the components
of the activation matrix as Ary, we identify

A1l = k1, A1g = K12, A4 = K15, (A.65a)

A21 = K21, A22 = K29, (A65b)
1 1 1

Azl = 3hs1, Azg = 3752; Azz = 3hs3- (A.65¢)

These are precisely the same expressions as we presented in (4.3).
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