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Dynamical energy analysis was recently introduced as a new method for determining the
distribution of mechanical and acoustic wave energy in complex built up structures. The
technique interpolates between standard statistical energy analysis and full ray tracing,
containing both of these methods as limiting cases. As such the applicability of the method
is wide ranging and additionally includes the numerical modelling of problems in optics
and more generally of linear wave problems in electromagnetics. In this work we consider
a new approach to the method with enhanced versatility, enabling three-dimensional
problems to be handled in a straightforward manner. The main challenge is the high
dimensionality of the problem: we determine the wave energy density both as a function
of the spatial coordinate and momentum (or direction) space. The momentum variables are
expressed in separable (polar) coordinates facilitating the use of products of univariate
basis expansions. However this is not the case for the spatial argument and so we propose
to make use of automated mesh generating routines to both localise the approximation,
allowing quadrature costs to be kept moderate, and give versatility in the code for different
geometric configurations.

� 2012 Elsevier Inc. Open access under CC BY license. 
1. Introduction

Predicting the wave energy distribution of the vibro-acoustic response of a complex mechanical system is a challenging
task, especially in the mid-to-high frequency regime. Standard numerical tools such as finite element methods become inef-
ficient, and ray or thermodynamic approaches are often employed to model the wave energy flow through the structure.
Popular methods are statistical energy analysis (SEA) [1–3], in which the mean energy flow between subsystems is assumed
to be proportional to the energy gradient, and the ray tracing technique, in which the wave intensity distribution is deter-
mined by summing over contributions of a potentially large number of ray paths [4–6].

SEA is in fact a low resolution ray tracing method [7,8] leading to small numerical models compared to ray tracing. This
efficiency saving comes at a price, however: SEA has no spatial resolution of the energy distribution within subsystems and
becomes unreliable whenever long range correlations in the ray dynamics are present. The recently developed dynamical en-
ergy analysis (DEA) [8,9] provides a tool which interpolates between SEA and a full ray tracing analysis and can overcome
some of the problems mentioned above at a relatively small computational overhead. DEA thus enhances the range of
applicability of standard SEA and gives bounds on the range of applicability of SEA. Related methods have been discussed
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previously in the context of wave chaos [10] and structural dynamics [11]. In particular Langley’s wave intensity analysis
(WIA) [12,13] and Le Bot’s thermodynamical high frequency boundary element method [14–16] include details of the under-
lying ray dynamics. The approach employed here differs from these methods by considering multiple reflections in terms of
linear operators. Representing these operators in terms of basis function expansions then leads to SEA-type equations.

In this work we develop a new approach to DEA suitable for modelling three-dimensional problems. The present DEA
methods rely on the fact that one can easily parametrise the boundary of the region being modelled, and then apply an
orthonormal basis approximation over the resulting boundary phase space coordinate system. In two dimensions this is sim-
ple as the boundary may be parametrised along its arc-length and the associated momentum (or direction) coordinate taken
tangential to the boundary. The basis can be any suitable (scaled) univariate basis in both position and momentum, such as a
Fourier basis [8] or Chebyshev polynomials [9]. Defining a suitable parametrisation for the spatial coordinate in three-
dimensions becomes much more difficult. In momentum space spherical polar coordinates may be employed and so these
problems do not arise.

In order to develop a flexible code we employ automated mesh generating routines to provide a widely applicable para-
metrisation of the boundary surface for general three-dimensional structures via triangulation. The precision of the spatial
approximation may then be improved by refining the mesh, avoiding the issue of finding a suitable basis. One avenue for
potential future study stems from the fact that it is possible to define an orthogonal basis on a general triangle which reduces
to Legendre polynomials along one edge of the domain triangle [17]. However, in this work we restrict to a piecewise con-
stant approximation on each element of the mesh for reasons of both simplicity and to keep the associated quadrature costs
moderate for the three dimensional case.

For the choice of momentum basis we may take a product univariate basis as mentioned above. It is preferable if this basis
is orthogonal with respect to the standard L2 inner product for consistency with both the piecewise constant spatial approx-
imation, and the SEA limit when the lowest order momentum basis is applied and continuity is enforced across the mesh.
The main choices are either a Fourier basis or Legendre polynomials. In this work we choose Legendre polynomials due
to better convergence properties in the absence of periodic boundary conditions [18] and for consistency with the approach
in [17] should we wish to include a spatial basis in future work.

The remainder of the paper is structured as follows. In Section 2, the ray tracing approximation is discussed and related to
the Green function using short wavelength asymptotics. In Section 3, the concept of phase-space operators is introduced in
order to represent the propagation of ray densities in terms of boundary integrals. The discretization of the method using
spatial meshing procedures and basis function approximations in direction space is then detailed. Decomposition of the
method for problems with multiple subsystems is then discussed along with links between the method and SEA. In Section
4 the application of boundary element DEA to two-dimensional examples is discussed and verified against previous work.
Finally some three-dimensional examples are considered.

2. Wave equations and asymptotics

It is assumed that the system as a whole is characterized by a linear wave equation describing the overall wave dynamics
including damping and radiation in a finite domain X � Rd; d ¼ 2 or 3. In this work only stationary problems with contin-
uous, monochromatic energy sources are considered. We split the system into NX subsystems and consider the scalar wave
equation for acoustic pressure waves in each homogeneous sub-domain Xi, with local wave velocity ci; i ¼ 1; . . . ;NX and
X ¼

SNX
i¼1Xi. Extensions to more complicated systems with different wave operators in different parts of the system can

be treated with the same techniques as long as the underlying wave equations are linear, see the discussion in Ref. [8].
The general problem of determining the response of a system to external forcing with angular frequency x at a source

point r0 2 X0 can then be reduced to solving
ðk2
i � ĤÞGðr; r0;xÞ ¼ �F0dðr � r0Þ; i ¼ 1; . . . ;NX; ð1Þ
with Ĥ ¼ �D. The Green function G represents an acoustic pressure wave where F0 is a unit amplitude forcing term with
units kg s�2. The solution point is denoted r 2 Xi and d is the Dirac delta distribution. Furthermore, ki ¼ x=ci þ ili=2 is a com-
plex valued wavenumber, where the imaginary part represents a subsystem dependent damping coefficient li. Throughout
this work we take i ¼

ffiffiffiffiffiffiffi
�1
p

unless used as a subscript, in which case it is an index over the number of subsystems. The wave
energy density induced by the source is then given as
eðr; r0;xÞ ¼ jGðr; r0;xÞj2

.ic
2
i

; ð2Þ
for r 2 Xi where .i is the density of the medium in Xi. The linear wave operator Ĥ can naturally be associated with the under-
lying ray dynamics via the Eikonal approximation; for a more detailed derivation, see Ref. [8,19,20]. Using small wavelength
asymptotics, the Green function in Eq. (1) may be written as a sum over all classical rays from r0 to r for fixed kinetic energy
of the hypothetical ray particle. One obtains [20,21]
Gðr; r0;xÞ � p
ð2piÞðdþ1Þ=2

X
j:r0!r

AjeiðkiLj�imjp=2Þ; ð3Þ
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where Lj is the length of the ray trajectory between r0 and r including possible reflections on boundaries. The amplitudes Aj

may be written as a product of three terms as in Ref. [8] due to damping, mode conversion and reflection/transmission coef-
ficients, and geometrical factors. The phase index mj contains contributions from the reflection/transmission coefficients at
interfaces between subsystems and from caustics along the ray path. Eq. (3) captures the interference patterns due to wave
propagation along different ’ray’ paths, but does not incorporate diffractive effects and fails at focal points (or caustics of ray
manifolds in phase space) [21].1

Analogous representations to (3) have been considered in detail in quantum mechanics [21] and are also valid for general
wave equations in elasticity, see Ref. [10] for an overview. In the latter case G becomes matrix valued. Note that the sum-
mation in Eq. (3) is typically over infinitely many terms, where the number of contributing rays increases (in general) expo-
nentially with the length of the trajectories included. This gives rise to convergence issues, especially in the case of low or no
damping [10].

The wave energy density (2) can now be expressed as a double sum over classical trajectories and hence
1 The
approxi
eðr; r0;xÞ � C
X

j;j0 :r0!r

AjAj0e
iki ½Lj�Lj0 ��i mj�mj0½ �p=2 ¼ C½qðr; r0;xÞ þ off � diagonal terms�; ð4Þ
with C ¼ p2= .ic
2
i ð2pÞðdþ1Þ

� �
. The dominant contributions to the double sum arise from terms in which the phases cancel ex-

actly; one thus splits the calculation into a diagonal part
qðr; r0;xÞ ¼
X

j:r0!r

jAjj2; ð5Þ
where j ¼ j0, and an off-diagonal part. The diagonal contribution gives a smooth background signal and the off-diagonal
terms describe interference effects leading to fluctuations on the scale of the wavelength. The phases related to different tra-
jectories are (largely) uncorrelated and the resulting net contributions to the off-diagonal part are in general small compared
to the smooth part, especially when averaging over frequency intervals of a few wavenumbers.

It has been shown in Ref. [8] that calculating the smooth diagonal part (5) is equivalent to a ray tracing treatment. That is,
the smooth part of the energy density can be described in terms of the flow of fictitious non-interacting particles emerging
from the source point r0 uniformly in all directions and propagating along ray trajectories. This makes it possible to relate
wave energy transport with classical flow equations and thus thermodynamical concepts, which are at the heart of an SEA
treatment. In DEA the classical flow is expressed in terms of linear phase space operators as detailed in the next section.
3. Boundary integral formulation

3.1. Phase space boundary integral formulation

Following a purely kinetic viewpoint based on the interpretation that rays are trajectories of particles following
Hamiltonian dynamics as detailed in Section 2 of Ref. [19], the time dependence of a density of ray trajectories (or particles)
~q is known to satisfy the Liouville equation
@~q
@s
ðX; sÞ þ dX

ds
� rXð~qðX; sÞÞ ¼ 0; ð6Þ
where X ¼ ðr; pÞ denotes the phase space coordinate with position r and momentum p. The propagator for the Liouville equa-
tion is given by KsðX;YÞ ¼ dðX �usðYÞÞ and is the kernel of a linear phase space operator known as a Perron-Frobenius oper-
ator in dynamical systems theory [20,23]. The phase space flow usðYÞ gives the position of the particle after time s starting at
Y ¼ ðr0; p0Þ when s ¼ 0. Hence we may write
~qðX; sÞ ¼
Z

P

KsðX;YÞ~q0ðYÞdY ; ð7Þ
where ~q0 denotes the initial ray density at time s ¼ 0. The domain of integration is over the whole of phase space P ¼ X� Rd,
where the integration over Rd takes care of the momentum coordinates p. Note that the flow satisfies the Hamilton equations
of motion given by the system of ordinary differential equations (ODEs)
dX
ds
¼

0 1
�1 0

� �
rXH; ð8Þ
where H ¼ jpj2 is the Hamilton function for the wave operator Ĥ in (1). That is to say, substituting usðYÞ for XðsÞ in (8) sat-
isfies the system of ODEs with Xð0Þ ¼ Y .
short wavelength approximation can, however, be continued through focal points, giving a contribution to the phase factor mj; an improved
mation near focal points in possible, but in general not necessary [22].
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Consider a source localized at a point r0 emitting waves continuously at a fixed angular frequency x. Standard ray tracing
techniques estimate the wave energy at a receiver point r by determining the density of rays starting at r0 and reaching r
after some unspecified time. This may be written in the form
qðr; r0;xÞ ¼
Z 1

0

Z
Rd

Z
P

wðY; sÞKsðX;YÞq0ðY ;xÞdY dp ds; ð9Þ
with initial density q0ðY ;xÞ ¼ dðr0 � r0Þdðk2
0 � HðYÞÞ, where k0 is the wave number at the source point as defined in Eq. (1). It

can be shown that Eq. (9) is equivalent to the diagonal approximation (5) [8]. A weight function w is included to incorporate
damping and reflection/transmission coefficients. It is assumed that w is multiplicative, that is, (wðus1 ðXÞ; s2ÞwðX; s1Þ ¼
wðX; s1 þ s2Þ), which holds for standard absorbtion mechanism and reflection processes [20].

In order to solve the stationary flow problem we may rewrite Eq. (9) in boundary integral form using a boundary mapping
technique. For the time being let us consider a problem with a single (sub-) system X ¼ X1 with boundary C. The Hamilton
function H ¼ jpj2 is constant in this (sub-) system, that is, jpj is constant. The boundary mapping procedure involves first
mapping the ray density emanating continuously from the source onto the boundary C. The resulting boundary layer density
qð0ÞC is equivalent to a source density on the boundary producing the same ray field in the interior as the original source field
after one reflection. Secondly, densities on the boundary are mapped back onto the boundary by a boundary integral oper-
ator B defined by
BuðXsÞ :¼
Z
@P

KCðXs;Ys;xÞuðYsÞdYs
; ð10Þ
with
KCðXs;Ys;xÞ ¼ wðYsÞdðXs � /xðYsÞÞ; ð11Þ
where Xs ¼ ðs; psÞ and Ys ¼ ðs0; p0sÞ represent phase-space coordinates on the boundary. For Xs (and analogously for Ys) this
means that s parameterizes C and ps 2 Bd�1

jpj denotes the momentum component tangential to C at s for fixed HðXÞ ¼ jpj2,
where Bd�1

jpj is an open ball in Rd�1 of radius jpj. Hence @P ¼ C� Bd�1
jpj denotes the phase space on the boundary. Also, /x is

the invertible boundary map which takes a boundary phase space coordinate along its straight line trajectory (for homoge-
neous media) until it intersects the boundary again. Note that convexity is assumed to ensure /x is well defined; non-convex
regions can be handled by introducing a cut-off function in the shadow zone as in Ref. [15] or by subdividing the regions
further.

The stationary density on the boundary induced by the initial boundary distribution q0
CðX

s;xÞ can then be obtained using
qCðX
s;xÞ ¼

X1
n¼0

BnðxÞq0
CðX

s;xÞ ¼ ðI � BðxÞÞ�1q0
CðX

s;xÞ; ð12Þ
where Bn contains trajectories undergoing n reflections at the boundary. The resulting density distribution on the boundary
qCðX

s;xÞ can then be mapped back into the interior region. One obtains the density (9) after projecting down onto coordi-
nate space.

3.2. Discretization and basis representation

The long term dynamics are thus contained in the operator ðI � BÞ�1 and standard properties of Perron-Frobenius oper-
ators ensure that the sum over n in Eq. (12) converges for non-vanishing dissipation, or in open systems. In order to evaluate
ðI � BÞ�1 a finite dimensional approximation of the operator B must be constructed. In Ref. [8,9] basis expansions have been
applied in both position and momentum coordinates, which is straightforward to implement using univariate expansions in
each argument for X � R2. However, it is not straightforward to construct a general orthogonal basis with independent spa-
tial arguments when X � R3. For this reason we employ a boundary element triangulation of C, with a zero order basis
approximation on each element for any L2�orthonormal basis, which essentially results in a scaled piecewise constant
boundary element approximation. This type of approximation is also often referred to as Ulam’s method [23], although here
such an approximation would be performed in full phase space, rather than just in its spatial component.

For the approximation in the momentum argument we choose a basis orthogonal in L2 for consistency with the spatial
approximation. We choose a Legendre polynomial basis for this purpose due to good convergence properties without requir-
ing periodic boundary conditions [18]. Note that for X � R2, then ps 2 ð�jpj; jpjÞ, and for X � R3 then in polar coordinates
ps 2 ½0; jpjÞ � ½�p;pÞ. Denote by ~ps a re-scaling of ps to ð�1;1Þ or ½�1;1Þ � ½�1;1Þ for the two and three-dimensional cases,
respectively. Let us also denote
ePbðpsÞ ¼
1ffiffiffiffiffiffi
jpj

p Pbð~psÞ; ð13Þ
for X � R2, where Pb is the Legendre polynomial of order b. For X � R3; b ¼ ðb1; b2Þ is a multi-index of non-negative integers.
Let us write ps ¼ ðpk; phÞ and likewise ~ps ¼ ð~pk; ~phÞ. Denote
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ePbðpsÞ ¼
2

jpj
ffiffiffiffi
p
p Pb1 ð~pkÞPb2 ð~phÞ: ð14Þ
Explicitly the overall approximation is then of the form
qCðX
s;xÞ �

Xn

a¼1

XN

b¼0

qða;bÞbaðsÞePbðpsÞ; ð15Þ
where N is the order of the basis expansion, n is the number of elements and ba denotes the scaled (for orthonormality in an
L2 inner product) piecewise constant boundary element basis function baðsÞ ¼ 2ð1�dÞ=2=

ffiffiffiffiffiffi
Aa
p

for s in element a, and zero else-
where. Here Aa is the surface area of element a in the three-dimensional case and the length of element a in the two dimen-
sional case for a ¼ 1; . . . ;n. The coefficient vector qða;bÞ in (15) is labelled in terms of the multi-index ða; bÞ. Note that in the
three-dimensional case b is itself a multi-index and the sum over b in (15) is a double sum.

The matrix approximation B of BðxÞ for the case X � R2 is computed in variational form using the basis approximations
outlined above as follows
Bðl;mÞ;ða;bÞ ¼
2mþ 1

4

Z
@P

Z
@P

ePmðpsÞblðsÞKCðXs; Ys;xÞePbðp0sÞbaðs0ÞdYsdXs

¼ 2mþ 1
4

Z
@P

wðYsÞePmð/x
p ðY

sÞÞblð/x
s ðY

sÞÞePbðp0sÞbaðs0ÞdYs
; ð16Þ
where KC is the boundary operator kernel, Eq. (11). Here we write /x ¼ ð/x
s ;/

x
p Þ, to denote the splitting of the position and

momentum parts of the boundary map. Recall also that Xs ¼ ðs; psÞ and Ys ¼ ðs0; p0sÞ. The only changes for the three-dimen-
sional case are that the indexing is slightly more complicated due to m and b becoming multi-indices and the definitions

of ePb changes from Eq. (13) to Eq. (14). The prefactor changes from ð2mþ 1Þ=4 to ð2m1 þ 1Þð2m2 þ 1Þ=16. Note that the addi-
tional division by 2 from the standard orthonormal inner product prefactor for Legendre polynomials comes from the fact
that the spatial basis function is treated as a Legendre polynomial of order 0. Obtaining the boundary map /x is not always
straightforward, particularly for general three-dimensional geometries, and hence we write the operator in terms of trajec-
tories with fixed start and end points, s0 and s, as follows
Bðl;mÞ;ða;bÞ ¼
2mþ 1

4

Z
C

Z
C

wðYsÞePmðpsðs; s0ÞÞblðsÞePbðp0sðs; s0ÞÞbaðs0Þ
@p0s
@s

����
����ds0ds: ð17Þ
The resulting boundary integral formulation containing a pair of integrals over boundary coordinates bears a resemblance to
standard variational Galerkin boundary integral formulations such as in [24]. Note the momenta psðs; s0Þ and p0sðs; s0Þ are now
considered to be functions of the boundary position coordinates. In particular for the two-dimensional case
psðs; s0Þ ¼ jpĵt � ðr � r0Þ=L and p0sðs; s0Þ ¼ jp0 ĵt0 � ðr � r0Þ=L, where t̂; t̂0 are unit tangent vectors to C at s; s0, respectively. Also, L
is the trajectory length from s0 to s and r; r0 are the cartesian coordinates corresponding to the parameter values s; s0, respec-
tively. In the three-dimensional case one can define momenta tangential to the boundary with respect to the local tangential
coordinate system ð̂t1; t̂2Þ in any boundary element, that is, ps1ðs; s0Þ ¼ jpĵt1 � ðr � r0Þ=L and ps2ðs; s0Þ ¼ jpĵt2 � ðr � r0Þ=L (with t̂1

and t̂2, unit vectors as before). In order to obtain the momenta in the polar coordinate system ps ¼ ðpk; phÞ used in (14) we
define pk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

s1 þ p2
s2

q
and ph ¼ arctanðps2=ps1Þ. Analogous definitions hold for p0s ¼ ðp0k; p0hÞ.

Once the matrix B has been computed the values of qða;bÞ in (15) may be evaluated using Eq. (12) by solving
q ¼ ðI � BÞ�1q0; ð18Þ
where q has components qða;bÞ and
q0
ða;bÞ ¼

2bþ 1
4

< q0
CðX

s;xÞ; ePbðpsÞbaðsÞ >;
where < �; � > is the standard L2 inner product.
After solving Eq. (18) one has an approximation for the density distribution on the boundary qC given by (15). This dis-

tribution is then mapped back into the interior region by projecting onto position space, that is for Xi � R2; i ¼ 1; . . . ;NX,
qðr;xÞ ¼
Z

qðr;pÞdp;¼
ZZ

qCðXs;xÞdðjpj2 � jkij2ÞjpjdjpjdH; ð19Þ
where ðjpj;HÞ is a polar coordinate system for p, see [25] for details. The only difference in R3 is that one integrates over a
sphere of radius jpj, rather than a circle.

3.3. Subsystems and links to SEA

Recall the splitting into subsystems Xi; i ¼ 1; . . . ;NX introduced earlier. The dynamics in each subsystem are considered
separately so that both variability in the wave velocity ci and non-convex domains may be handled easily. Coupling between
sub-elements can then be treated as losses in one subsystem and source terms in another. Typical subsystem interfaces are
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surfaces of reflection/transmission due to sudden changes in material parameters or local boundary conditions. We describe
the full dynamics in terms of subsystem boundary operators Bij; flow between Xj and Xi is only possible if subsystem i and j
have a common boundary. One obtains Bij by replacing KC in the definition (10) with
KijðXs
i ;X

s
j Þ ¼ wijðXs

i Þd Xs
i � /x

ij ðX
s
j Þ

� �
; ð20Þ
where /x
ij is the boundary map in subsystem j mapped onto the boundary of the adjacent subsystem i and Xs

i are the bound-
ary coordinates of Xi. Note that the domain of integration in (10) now becomes @P ¼ @Xj � Bd�1

jpj , where jpj ¼ kj. The weight
wij contains reflection and transmission coefficients characterizing the coupling at the interface between Xj and Xi. It also
contains a damping factor of the form expð�liLÞ where li is the damping coefficient in Xi as before and L is the length of
the trajectory from s0 to s as before.

Repeating the steps in the previous subsection but instead using the operator above results in a basis function represen-
tation spanning all subsystems, see [8,9] for more details. Here we employ a boundary mesh ensuring that the boundary of
an interface between two subsystems only intersects element boundaries and not their interiors. An SEA treatment emerges
when approximating the individual operators Bij in terms of constant functions only [8]. Here this corresponds to an approx-
imation in terms of the lowest order basis functions in momentum space only, together with a coarse spatial mesh consisting
of only one element per subsystem, or more typically a piecewise constant approximation on a mesh with continuity en-
forced within each subsystem. In this case the matrix B can be reduced to one element per subsystem. The matrix entry
Bij gives the mean transmission rate from subsystem j to subsystem i. It is thus equivalent to the coupling loss factor used
in standard SEA equations [2]. The resulting full NX-dimensional B matrix yields a set of SEA equations using the relation (12)
after mapping the boundary densities back into the interior.
4. Numerical results

4.1. Verification in 2D for coupled two-cavity problems

In this section we consider two-dimensional polygonal domains whose boundaries are meshed by subdividing each side
into equidistant sections governed by a mesh parameter Dx. The number of elements on any given side is computed using
the integer part of the side length divided by Dx. The Jacobian from (17) is written in the form
@p0s
@s

����
���� ¼ kjðn � ðr � r0ÞÞðn0 � ðr � r0ÞÞ

L
; ð21Þ
where n and n0 are the internal unit normal vectors to C at r and r0, respectively. In order to treat the corner singularities in
(21), Gaussian quadrature is employed where end-points are not included as quadrature points. The convergence of the
quadrature rules is still slow due to the peak in the integrand at corners. Telles’ transformation techniques are employed
to speed up the convergence [26].

A number of two-cavity systems are considered as shown in Fig. 1. Configuration A features irregular shaped, well sep-
arated pentagonal subsystems. In configuration B the size of the interface between the subsystems is increased reducing
their dynamical separation. Configuration C includes a rectangular left-hand subsystem channelling rays out of the subsys-
tem and introducing long-range correlations in the dynamics. In addition, the source is further from the intersection of the
two subsystems. Note that SEA results are in general insensitive to the position of the source, whereas actual trajectory cal-
culations may well depend on the exact position.

In [8,9] it is demonstrated, as expected, that SEA works well for configuration A, but not so well for configurations B and C.
In this communication we seek to verify our new approach against results from previous work. In particular we discuss the
relative computational efficiency of the new and old approaches and how they scale as the level of precision in the model is
increased. Energy distributions have been studied as a function of the frequency with a hysteretic damping factor g ¼ 0:01,
where li ¼ xg=ð2ciÞ for i ¼ 1;2. Here and in the remainder of this section the subsystems are numbered 1,2 from left to
y

xSource

y

x
Source

y

x

Source

Fig. 1. Coupled two-domain systems: configurations A, B and C respectively.
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right. The other parameters are set to unity for simplicity, that is .i ¼ ci ¼ 1 for i ¼ 1;2. For this reason the subsystem inter-
face reflection and transmission coefficients appearing in the weight term in (20) are simply 0 and 1, respectively.

Fig. 2 shows the the boundary element DEA results for configurations A, B and C together with solutions of the wave Eq.
(1) with Dirichlet boundary conditions obtained using a discontinuous Galerkin finite element method; for details of the
method, see [9]. Explicitly we compute the energy ratios between the two subsystems R ¼ jjG1jj2=jjG2jj2 where
Fig. 2.
problem
jjGijj2 :¼
Z

Xi

jGðr; r0; xÞj2dr; i ¼ 1;2: ð22Þ
The dotted lines each represent a simulation at a different frequency in the range �5 Hz of the frequencies used for the
boundary element DEA calculations. In all three cases good convergence of the method is demonstrated. For configuration
B, shown in the central subplot, the results converge with a slightly lower order of approximation. This may be due to the
irregular geometry and the wide opening linking the subsystems meaning that the energy is very evenly distributed
throughout the whole domain. Hence lower order spatial approximations will be reasonably good. Note that the results
do not necessarily improve with increasing frequency, since the damping is frequency dependent. For configuration C this
actually means that relatively high order computations are required to capture the rapid decay of the solution along the rect-
angular channel; similar observations were also made in [9].

Table 1 shows the total computational times for the 10 Hz calculation in Fig. 2 using both boundary element DEA and
comparing with a previous approach where a Chebyshev basis is employed in full phase space [9]. That is to say n has no
meaning for the Chebyshev case and N is the order of Chebyshev basis approximation in both the position and momentum
arguments. The computations were performed using a desktop PC with a 2.83 GHz dual core processor, although the code
was not parallelized. The total computational expense is considerably reduced using the current boundary element DEA ap-
proach. In addition the computational cost of boundary element DEA is growing more slowly as the precision of the model is
increased. This will be very important for the three-dimensional case where the number of degrees of freedom in the model
Ratio of total energies R ¼ jjG1jj2=jjG2jj2 in configurations A, B and C respectively. The dotted lines correspond to FEM calculations of the full wave
.



Table 1
Computational times for Configuration A with f ¼ 10Hz

n N Total computational times (s):

Boundary element Chebyshev

32 4 140 590
68 6 280 3910

138 8 850 31,290
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will increase more quickly. The main reason for the time saving stems from the fact that in the boundary element approach
the integrals in the definition of the transfer matrix B (16) are computed in smaller regions and the approximation functions
in the integrands are generally simpler. As such these integrals may be evaluated using far fewer quadrature points than in
the Chebyshev approach. When we consider that the Chebyshev algorithm was already a considerable saving on the original
DEA methods discussed in [8] one can see how far we have come. Since the parameters for configurations B and C are similar
to those for configuration A, the computational times are roughly the same for the same orders of approximation.

4.2. Applications in 3D

In this section we consider some three-dimensional domains whose boundaries have been triangulated using the Tetgen
freeware automated mesh generating package (‘‘http: tetgen.berlios.de’’). The Jacobian from (17) may be computed using
standard formulae for global, local and polar coordinate transformations along with several applications of the chain rule.
As before the Jacobian introduces singularities in the integrals along edges and at vertices of the domain. Again Gaussian
quadrature and a carefully chosen application of Telles’ transformation techniques are employed to ensure fast convergence
of the numerical integration procedures.

The first example we consider is that of a cuboid ðx; y; zÞ 2 ð�1;1Þ � ð�0:5;0:5Þ � ð�0:5;0:5Þwith Dirichlet boundary con-
ditions (all distances are given in meters). The source point is taken as ð�0:9;0:1;0:1Þ and the same frequency and damping
correspondence is used as in the two-dimensional examples with . ¼ c ¼ 1 (with units kg/m3 and m/s, respectively). Fig. 3
shows the computed energy distributions inside the cuboid along the x-axis. The method is compared against discontinuous
Galerkin finite element method (FEM) computations, which are averaged over 17 frequencies within �2 Hz of the (central)
frequency used for the boundary element DEA computation. Further details of the FEM techniques employed here can be
found in [9] and references therein. The reverberation time T60 for this cavity may be computed as a function of the damping
level, at 10 Hz we have approximately cT60 ¼ 112:9 m. At 20 Hz the corresponding figure is cT60 ¼ 56:4 m. Using standard
formulae from, for example [27], one may now evaluate the corresponding Schröder frequencies and critical distances.
The modal densities may be computed as approximately 2529 Hz�1 at 10 Hz and 10085 Hz�1 at 20 Hz which leads to esti-
mates of the modal overlap factor [27] of approximately 50 and 390, respectively. We are thus well into the regime where
SEA is usually considered valid.

The dashed line in Fig. 3 shows an approximation with a coarse mesh and where the energy density is assumed constant
over all possible directions of rays approaching the boundary from the interior. The computation time for such an
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Fig. 3. Energy distribution along the x-axis in the cuboid example.
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approximation is typically a few seconds per frequency. The dash-dot line shows a higher order approximation where we
have refined the mesh until the solution appears reasonably converged by eye, in this case 344 elements were employed.
Also due to the relatively low dissipation levels in these plots a low order approximation in momentum (quadratic) was suf-
ficient to give reasonably converged results. The computation time for this plot was approximately 16 h, and this cost is
heavily dominated by the time taken to set up the linear system. Solving the linear system directly and post-processing
the data forms only a very minor part of the total computational expense. The cost of the setup procedure scales approxi-
mately as Oðn2ðN þ 1Þ4Þ, although quadrature costs can distort this. Increasing N generally increases the quadrature costs,
whereas increasing n reduces them. The rapid increase in expense as N is increased can be offset by the fact that in general
we expect a relatively low value of N to be sufficient [8], and that the degrees of freedom introduced by increasing N can be
computed independently and thus are extremely suitable for parallelisation.

It has been demonstrated that in the low damping regime SEA can provide good approximations even in regular struc-
tures [9], which explains why the coarse approximation here is still reasonably good. However, one notices an improvement
in the match with the FEM data at both the peak and tail of the plot for both frequencies considered when the higher order
approximation method is employed. There is, however, a significant computational cost associated with this increased
precision.

As a second example, we consider an open car cavity as discussed in [28] and shown in Fig. 4. The source point is located
on the base of the cavity at (0.6,0.0,0.4), with distances in meters as before. Here we consider Dirichlet boundary conditions
except along the roof, which is assumed to be non-reflecting along the subsection shown in black in Fig. 4, between x = 1.0 m
and x = 1.8 m. Physically this corresponds to an opening in the cavity with identical media in both the interior and exterior.
The reverberation time T60 for this cavity may be evaluated using Sabine’s formula, see for example [10], and we obtain
cT60 ¼ 265:3 m showing that the car cavity is more reverberant than the cuboid example. Here the DEA computation is fre-
quency independent, but to leading order we have the correspondence f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:47Mc3

p
, where M is the modal overlap factor,

so one can judge a valid frequency range for the plot from this data. For example with c ¼ 340 ms�1 and if we require M > 1,
then f > 7601 Hz.

Fig. 5 shows the amplitude jGj plotted in the interior of the cavity along the midplane z ¼ 0:85 m. The jagged diagonal
edge shown in Fig. 5 is merely an artifact of the plotting and interpolation of the amplitude at discrete points, and is actually
smooth in the model as shown in Fig. 4. In three dimensions the amplitude of Green’s function for the Helmholtz equation is
independent of frequency, and thus the only frequency dependence in the cuboid example was due to the damping being
frequency dependent. No damping is incorporated in this example and energy losses only occur through the open roof,
meaning that the plots here are now frequency and wavenumber independent. The three subplots show successively higher
order approximations from upper to lower and convergence in the plots is evident due to the increased similarity between
the lower two plots. Directivity in the wave field plays a much stronger role in this example due to the localised dissipation
at the opening of the cavity. For this reason it was necessary to employ a higher order momentum basis approximation than
in the previous example; the plot is reasonably converged choosing N ¼ 4. The computational times were a few seconds for
the upper subplot, eleven hours for the central subplot and three days for the lower plot. The scaling of the computing time
mirrors the ðN þ 1Þ4 scaling of the matrix dimensions. The computational overhead thus becomes significant if higher order
momentum basis functions become necessary making the method slow at present; our 3D study thus gives a proof-of-prin-
ciple, but further improvements need to be found to yield a competitive 3D method.

The upper plot in Fig. 5 has a markedly different appearance to the other subplots showing that the most coarse approx-
imation is not good in this case. One reason for this is the much stronger directivity of the wave field compared with the
Fig. 4. The car cavity showing the source point and the open roof (black) acting as absorbing boundary.



Fig. 5. Amplitude jGj along the plane z = 0.85 for the car cavity example.

6190 D.J. Chappell et al. / Journal of Computational Physics 231 (2012) 6181–6191
previous example. One can clearly see how in the upper plot the solution is more slowly varying and distributed more uni-
formly as you move away from the source point. In the lower plot one sees a noticeable dip in the amplitude close to the non-
reflecting boundary. Also the increased intensity around the source point stretches more in the horizontal direction than the
vertical direction in the lower plot, but is more evenly distributed in the other plots. In all three subplots the wave amplitude
is greater in the region to the left of the opening (for x < 1 m) since in this region there are many possible ray trajectories that
remain trapped in the cavity for a long time before exiting through the opening. This is also true for the region y < 0:8 m and
hence the greatest intensities are observed in the intersection of these two regions. In billiard dynamics these trajectories are
known as near-bouncing-ball orbits, see for example [29].

5. Conclusions

A new approach to determining the distribution of mechanical and acoustic wave energy in complex built up structures
has been discussed. The methodology has been carefully chosen to permit application to two or three dimensional problems.
Using boundary element meshes for three dimensional problems renders the method applicable to general domains and re-
moves the need to determine an orthogonal spatial basis for each geometrically different example. The application of the
method to some well studied two-dimensional examples has shown it to be efficient and scale favourably as the number
of degrees of freedom in the model is increased compared with previous DEA approaches. Examples in three dimensions
were also considered showing both the applicability and versatility of the method, but also its high computational cost as
the number of degrees of freedom is increased. We have also seen however that in some cases a low order and fast compu-
tation yields reasonably good results. The suitability of the method for parallel processing means that with greater comput-
ing resources it has the potential to be employed in larger and more complicated configurations than those considered here.
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