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Abstract: We consider (local) parametrizations of Teichmüller space Tg,n
(of genus g hyperbolic surfaces with n boundary components) by lengths of
6g − 6 + 3n geodesics. We find a large family of suitable sets of 6g − 6 + 3n
geodesics, each set forming a special structure called “admissible double pants
decomposition”. For admissible double pants decompositions containing no
double curves we show that the lengths of curves contained in the decomposi-
tion determine the point of Tg,n up to finitely many choices. Moreover, these
lengths provide a local coordinate in a neighborhood of all points of Tg,n \X
where X is a union of 3g − 3 + n hypersurfaces. Furthermore, there exists
a groupoid acting transitively on admissible double pants decompositions and
generated by transformations exchanging only one curve of the decomposition.
The local charts arising from different double pants decompositions compose
an atlas covering the Teichmüller space. The gluings of the adjacent charts are
coming from the elementary transformations of the decompositions, the gluing
functions are algebraic. The same charts provide an atlas for a large part of
the boundary strata in Deligne-Mumford compactification of the moduli space
Mg,n.
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Introduction

Consider a hyperbolic structure on a closed oriented surface Sg,n, 2g + n > 2, of genus
g with n boundary components. In [5], Fricke and Klein proved that in case n = 0 the
Teichmüller space T = Tg,n for such a surface is homeomorphic to (6g − 6)-dimensional
Euclidean space. Moreover, they specified a point of Teichmüller space by the lengths of
closed geodesics contained in some (rather large) set.

After Fricke and Klein many authors investigated various sets of global parameters on the
Teichmüller space. Fenchel and Nielsen [2] introduced “length-twists” coordinates which in
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case of closed surface consist of 3g − 3 lengths of mutually non-intersecting geodesics and
3g − 3 twist parameters along them. Natanzon [10] described a convenient set of parameters
(including both lengths of geodesics and parameters of other nature), allowing to recover the
Fuchsian group of the surface. A lot of efforts were spent on descriptions of purely length
global parameters, especially, for the question of minimal possible number of geodesics whose
lengths are sufficient to serve as a global coordinate on the Teichmüller space. First, it
was shown that 9g − 9 length of geodesics may serve as global parameters in Tg,0 (see [15]).
Later, Wolpert [16] used the construction of Fricke and Klein to show that 6g− 6 lengths are
sufficient for a local coordinate in Tg,0 (but not for a global one). It was natural to expect
that 6g−6 lengths of geodesics can serve as a global coordinate on Tg,0, however, Wolpert [17]
showed that Tg,0 can not be parametrized globally by lengths of 6g − 6 geodesics. Seppälä
and Sorvali [13] presented a global parameterization of Tg,0 by 6g − 4 length functions (as a
by-product they also gave an example of 6g − 6 length parameters defining the surface up
to at most 4 possibilities). Finally, in [12] Schmutz obtained a global parameterization by
6g − 5 lengths of geodesics, which is due to [17] is minimal possible. Another example of
such a minimal parameterization is given in [6] by Hamenstädt. In the case of surfaces with
cusps or holes the situation is easier: the (6g−6+2m+3n)-dimensional Teichmüller space of
surfaces with m cusps and n holes may be globally parametrized by (6g−6+2m+3n) length
parameters (see [13], [12] and [6]). Hamenstädt [7] also showed that such a parametrization
may be extended to the Thurston boundary of T .

In this paper, we consider the Teichmüller space T = Tg,n of marked hyperbolic structures
on an oriented surface S = Sg,n, 2g+n > 2 of genus g with n geodesic boundary components.
The dimension of this space is 6g−6+3n, so we are interested in sets of 6g−6+3n curves on S
whose lengths parametrize T . We build a large family of the sets of 6g−6+3n curves such that
the lengths of curves from each set determine a point of T up to finitely many possibilities and
provide a local coordinate in neighborhoods of most points of T , the local charts of this type
compose an atlas on T , the transition functions between the charts are algebraic. Moreover,
the same atlas works for regular points of the moduli the space M = T /Mod (where Mod
is a modular group) and covers also a large part of the Deligne-Mumford compactification of
M.

In more details, we build a large family of the sets of 6g − 6 + 3n curves on S satisfying
the following properties:

1. (Parametrizing property). The lengths of the curves of each set determine a point of
T up to finitely many choices; they provide a local coordinate in the neighborhoods
of almost all points of T .

2. (Double pants decomposition property). Each set compose an admissible double pants
decomposition defined and studied recently in [1]; it consists of two pants decompo-
sitions (where a pants decomposition is a set of curves decomposing the surface into
“pairs of pants”, i.e. into spheres with 3 holes). Each pants decomposition defines
a handlebody with S as the boundary, so, two pants decompositions define a Hee-
gaard splitting of some 3-manifold M3. The admissible double pants decompositions
are ones corresponding to Heegaard splittings of the 3-sphere (there exists also an
equivalent combinatorial definition which is used throughout the proofs).

3. (Groupoid action). There exists a groupoid acting on admissible double pants decom-
positions transitively and generated by simple transformations of two types (called
“flips” and “handle-twists”), each of the generating transformations changes exactly
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one curve of a double pants decomposition. The length of the new curve is an algebraic
function of the lengths of the initial curves.

4. (Atlas on T with algebraic transition functions). The charts arising from admissible
double pants decompositions compose an atlas on T ; the transition functions between
the charts are algebraic.

5. (Extension to most strata of Deligne-Mumford compactification). Let Mod be a
modular group of S and let M = T /Mod be the corresponding moduli space. Each
point of the Deligne-Mumford compactification M of M is a boundary point for some
chart coming from a double pants decomposition. Moreover, for most points of M
(including almost all points of the strata of minimal codimension) there exists a chart
coming from a double pants decomposition and covering a neighborhood of the point
in the corresponding stratum as well as covering almost all point in the neighborhood
of the point in M.

More precisely, let DP be an admissible double pants decomposition whose curves are
closed geodesics in S. In principle, two pants decompositions contained in DP may have a
common curve (called a double curve), we will be interested in double pants decompositions
containing no double curves. Let l(DP ) be the ordered set of lengths of curves composing
DP . Then we prove the following:

Theorem A. (see Theorem 4.11 below). Let DP be an admissible double pants decompo-
sition without double curves. Then DP together with the ordered set of lengths l(DP ) =
{l(ci)|ci ∈ DP} is a local coordinate in T \Z where Z is a union of finitely many codimension
1 subsurfaces in T (each homeomorphic to a codimension 1 disk).

Moreover, we show also

Theorem B. (see Theorem 5.1 below). Let DP be an admissible double pants decomposition
containing no double curves. Then l(DP ) determines a point of T up to finitely many choices.

Composing Theorems A and B with the fact (see [1]) that there exists a groupoid acting
on admissible double pants decompositions transitively, we derive the following

Theorem C. (see Theorem 6.8 below). (1) The charts with coordinates l(DP ), where DP
is an admissible double pants decomposition without double curves, provide an atlas on
Teichmüller space T .

(2) The elementary transition functions of these charts are induced by elementary trans-
formations of double pants decompositions, each elementary transition function change only
one coordinate. This unique non-trivial transition function is algebraic.

(3) The compositions of elementary transition functions act transitively on the charts.

The entire construction looks similar to one in the theory of cluster algebras arising from
triangulated surfaces ( [11], [3], [4]). In the latter, the hyperbolic metrics are encoded by
suitably defined lengths of the arcs of triangulations (called lambda lengths), the set of
lengths of arcs in one triangulation composing together Penner coordinates on the decorated
Teihmüller space. The groupoid generated by flips of triangulations acts transitively on the
triangulations, each of the flips changes exactly one of the arcs in the triangulation, so,
changing exactly one component of the coordinates. In addition, in case of cluster algebras
there are explicit formulas expressing changes in combinatorics of the triangulation (exchange
matrices) and transition functions between the charts (exchange relations). For the case of
pants decompositions explicit formulas are not known.
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It is worth to mention that a single set of 6g−6+3n length (local) coordinates on T may be
easily obtained from Fenchel-Nielsen coordinates in the following way: for each curve ci in a
pants decomposition one takes the lengths of ci and the length of c′i, where c

′ is obtained from
ci by a flip. However, the coordinates obtained are not symmetric (have distinct geometrical
origin), and the are not subject to transitive action of a groupoid.

The structure of double pants decomposition is convenient to work with Deligne-Mumford
compactification of the moduli space. Let C be a set of mutually disjoint simple curves on S.
Contracting the curves contained in C we obtain a point of the compactification, on the other
hand, we stay in any chart arising from a double pants decomposition DP such that C ∈ DP
(more precisely, the limit point belongs to the boundary of the chart), see Theorem 7.1 and
Corollary 7.2.

Furthermore, contraction of the curves of C turns a conveniently chosen double pants
decomposition DP into a double pants decomposition of the obtained surface with nodal
singularities (provided that C ∈ DP and each curve of C is intersected by a unique other
curve of DP ). There are some cases when such a convenient decomposition does not exist,
however, for the most configuration of curves C we show that it does exist. In this case we say
that the set C is good and the stratum SC ∈ M is good (here SC is the set of nodal surfaces
obtained by shrinking all curves of C, M is the moduli space and M is its Deligne-Mumford
compactification). In particular, all strata of minimal codimension (i.e. of codimension 2)
are good strata. For a good set of curves C we define another length-type coordinates as
l̃(DP,C) = {l(ci),

1
l(cj)

| ci ∈ C, cj ∈ DP \C}. We show that the functions l̃(DP,C) produce

almost charts covering the good strata of M, i.e. given a point τ ′ ∈ SC in a good stratum SC

there exists an admissible double pants decomposition DP and a neighborhood O(τ ′) ⊂ M
in a natural topology such that l̃(DP,C) produce a local coordinate in O(τ ′)∩SC and give a
local coordinate in some set O(τ ′) \Z ∈ M, where Z is a union of finitely many codimension
1 subsurfaces in M. More precisely, we prove the following

Theorem D. (see Theorem 7.13 below). Let S be a nodal surface, let M(S) be its moduli
space and let M(S) be Deligne-Mumford compactification of M. Let SM

good = Sgood/Mod be

the union of good strata in M. Let O be a locus of orbifold points of M, let O be the closure
of O in M. Then

(1) the charts with coordinates l̃(DP,C) provide an atlas on M \ O and on SM
good \ O,

(here C is a good set and DP is an admissible double pants decomposition without
double curves);

(2) each point τ ′ ∈ SM
good \O is covered by some almost chart (O′(τ ′), l̃(DP,C));

(3) the elementary transition functions of these charts (almost charts) change only one
coordinate, this unique non-trivial transition function is algebraic;

(4) the compositions of elementary transition functions act transitively on the union of
charts and almost charts.

The paper is organized as follows. In Section 1, we recall from [1] the definition of double
pants decompositions and their properties. In Sections 2 and 3, we discuss Fenchel-Nielsen
coordinates on T , and use them to prove some technical lemmas. In Section 4, we prove
Theorem A, i.e. we prove that double pants decompositions induce some local charts on T
(see Theorem 4.11). Section 5 is devoted to the proof of Theorem B (see Theorem 5.1). In
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Section 6, we collect the above mentioned local charts into an atlas on T , this leads to Theo-
rem C (see Theorem 6.8). Finally, in Section 7 we consider Deligne-Mumford compactification
of the moduli space and prove Theorem D (see Theorem 7.13).

1. Preliminaries I: double pants decompositions

In this section we recall from [1] the definition of double pants decompositions and their
properties.

1.1. Pants decompositions. Let S = Sg,n be an oriented closed surface of genus g ≥ 0
with n boundary components. We assume 2g+ n > 2, which excludes spheres with less than
3 holes and the torus. The surface S is fixed throughout the paper.

A curve c on S is an embedded closed non-contractible non-selfintersecting curve considered
up to a homotopy of S.

Given a set of curves we always assume that there are no “unnecessary intersections”, so
that if two curves of this set intersect each other in k points then there are no homotopy
equivalent pair of curves intersecting in less than k points.

For a pair of curves c1 and c2 we denote by |c1∩c2| the number of (geometric) intersections
of c1 with c2.

Definition 1.1 (Pants decomposition). A pants decomposition of S is a set of (non-oriented)
mutually disjoint curves P = {c1, . . . , ck} decomposing S into pairs of pants (i.e. into spheres
with 3 holes). In this paper, all boundary curves of S are considered as a part of each pants
decomposition of S.

It is easy to see that any pants decomposition of Sg,n consists of 3g−3+2n (where 3g−3+n
curves decompose S and n curves are boundary curves). Note, that we do allow self-folded
pants, two of whose boundary components are identified in S. A surface which consists of
one self-folded pair of pants will be called handle.

A curve c ∈ P , is regular if c /∈ ∂S and c is not a self-identified boundary curve of the
self-folded pair of pants (i.e. if it is not lying inside a handle cut out by a curve c′ ∈ P ).

Definition 1.2 (Flip). Let P = {c1, . . . , c3g−3+2n} be a pants decomposition. Define a flip
of P in a regular curve ci as a replacing of ci ⊂ P by any curve c′i satisfying the following
properties:

• c′i does not coincide with any of c1, . . . , c3g−3+2n;
• |c′i ∩ ci| = 2;
• c′i ∩ cj = ∅ for all j 6= i.

See Fig. 1.1 for an example of a flip. Clearly, an inverse operation to a flip is also a flip
(so that the set of flips compose a groupoid acting on pants decompositions).

Definition 1.3 (Standard decomposition). A decomposition P of Sg,n is standard if P con-
tains g curves c1, . . . , cg such that ci, i = 1, . . . , n, cuts out a handle.

1.2. Double pants decompositions. Let P = {c1, . . . , c3g−3+2n} be a pants decomposition.
A Lagrangian plane L(P ) ⊂ H1(S,Z) is a subspace spanned by the homology classes h(ci),
i = 1, . . . , 3g − 3 + 2n (here ci is taken with any orientation).

Two Lagrangian planes L(P1) and L(P2) are in general position if L1 ∩ L2 = 0 and
H1(S,Z) = 〈L1,L2〉 (where 〈L1,L2〉 denotes the sublattice of H1(S,Z) spanned by L1 and
L2).
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c′

c

Figure 1.1. Flips of pants decomposition.

Definition 1.4 (Double pants decomposition). A double pants decomposition DP = (Pa, Pb)
is a pair of pants decompositions Pa and Pb of the same surface such that the Lagrangian
planes La = L(Pa) and Lb = L(Pb) spanned by these pants decompositions are in general
position. Pa and Pb are called parts of DP .

See Fig. 1.2 for an example of a double pants decomposition.

Pa Pb

Figure 1.2. A double pants decomposition (Pa, Pb).

There are several natural transformations on the set of double pants decompositions:

• flips of Pa;
• flips of Pb;
• handle-twists (see Definition 1.5 below).

Definition 1.5 (Handle-twists). Given a double pants decomposition DP = (Pa, Pb) we
define an additional transformation which may be performed if both parts Pa and Pb contain
the same curve ai = bi separating the same handle h, see Fig. 1.3(a). Let a ∈ h and b ∈ h be
the only curves from Pa and Pb respectively. Then a handle-twist ta(b) (respectively, tb(a))
is a Dehn twist along a (respectively, b) in any of two directions (see Fig. 1.3(b)).

a b

a′
b′

(a) (b)

ai = bi

Figure 1.3. Handle-twists: (a) Double self-folded pair of pants; (b) The same
pair of pants after a handle-twist ta(b)
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Notice that both flips and handle-twists are reversible transformations, so that flips and
handle-twists generate a groupoid acting on the set of double pants decompositions.

Definition 1.6 (Double curve). A curve c ∈ (Pa, Pb) is double if c ∈ (Pa ∩ Pb) and c /∈ ∂S.

Definition 1.7 (Standard decomposition). A double pants decomposition (Pa, Pb) of Sg,n is
standard if there exist g double curves c1, . . . , cg ∈ (Pa, Pb) such that ci cuts out of S a handle
hi.

A standard double pants decomposition (Pa, Pb) is strictly standard if (Pa, Pb) contains
2g − 3 + n double curves (i.e. c ∈ {Pa ∪ Pb} \ {Pa ∩ Pb} if and only if c is contained inside
some handle).

See Fig. 1.4 for an example of a standard double pants decomposition (this decomposition
may be turned into a strictly standard one in one flip).

Pa Pb

Figure 1.4. A standard double pants decomposition (Pa, Pb).

Definition 1.8 (Admissible decomposition). A double pants decomposition (Pa, Pb) is admis-
sible if it is possible to transform (Pa, Pb) to a standard pants decomposition by a sequence
of flips.

For example, the decomposition shown in Fig. 1.2 is admissible.
The following theorem is the main result of [1].

Theorem 1.9 ([1]). A groupoid generated by flips and handle-twists acts transitively on
admissible double pants decompositions of S = Sg,n (for any (g, n) such that 2g + n > 2).

Remark 1.10 (Admissible double pants decompositions and Heegaard splitting of S3). A set of
admissible double pants decompositions have an invariant topological description in terms of
Heegaard splittings of 3-manifolds. For each pants decomposition P of S one may construct
a handlebody S+ such that S is the boundary of S+ and all curves of P are contractible
inside S+. A union of two pants decompositions of the same surface define two different
handlebodies bounded by S. Attaching this handlebodies along S one obtains a Heegaard
splitting of some 3-manifold M3(DP ). It is shown in [1] that a pants decomposition DP is
admissible if and only if M3(DP ) = S

3, where S
3 is a 3-sphere.

We will also use the following result proved in [1, Lemma 6.1].

Proposition 1.11 ([1]). Let S = Sg,n, 2g + n > 2, and Mod(S) be its modular group.
Let (Pa, Pb) be an admissible double pants decomposition without double curves. Then γ ∈
Mod(S) fixes (Pa, Pb) if and only if γ = id.



8 ANNA FELIKSON AND SERGEY NATANZON

2. Preliminaries II: coordinates on Teichmüller space

Let S = Sg,n be a hyperbolic surface of genus g with n boundary components. Each
boundary component is assumed to be a geodesic of finite length.

A Teichmüller space T = Tg,n is a parameter space of marked hyperbolic metrics on the
surface Sg,n. For the marking on S we will usually use admissible double pants decompositions
containing no double curves (this provides a correct marking since any elements γ 6= e of the
modular group Mod(Sg,n) acts non-trivially on the decomposition, see [1, Lemma 6.1]).

We will use Fenchel-Nielsen parameterization of the Teichmüller space. We shortly explain
the parametrization below and refer to [14] for the details.

To build the parameterization one chooses a pants decomposition P of S. Each pair of
pants is uniquely determined by the lengths of its boundary curves. To encode the concrete
hyperbolic structure one need also to now how the adjacent pairs of pants a sewed together:
one can choose an arbitrary way to attach them, and then rotate one piece along another by
any real angle. More precisely, to determine the angle of the rotation one does the following:

1) for each pair of pants pk ∈ P one chooses three disjoint segments skij, i, j ∈ {1, 2, 3}

orthogonal to the boundary components bki and bkj of pk (so that pk is decomposed

into two right-angled hexagons);

2) then one fixes some way to attach the adjacent pairs of pants pk and pk
′

so that the

segments skij and s
k′

i′j′ intersect the curve p
k∩pk

′

at the same points, this will produce

some special gluing of pairs of pants, all other gluings (with other angles of rotation

of pk with respect to pk
′

) will be compared with this special gluing;
3) for arbitrary gluing the angles of rotation are compared with the chosen special gluing,

when the angle is changed by 2π one obtains the same hyperbolic structure on the
surface, but the different point of the Teihmüller space.

So, the Fenchel-Nielsen coordinates on T build from the pants decomposition P consist of
3g − 3 + 2n length parameters l(ci) (lengths of all the curves ci ∈ P including the boundary
curves of S) and 3g − 3 + n angle parameters α(cj) (angles along all non-boundary curves
cj ∈ P , cj /∈ ∂S). We denote

FN(P ) = {l(ci), α(cj) | ci ∈ P ; cj ∈ P, cj /∈ ∂S}.

We will also assume that the Dehn twist along cj changes α(cj) by 2π.

The construction establishes the homeomorphism between T and R
3g−3+2n
>0 × R

3g−3+n

(where R>0 stays for positive real numbers).

Remark 2.1. After the Teichmüller space T is introduced using any given pants decomposition
P0 (or even using a marking of other type), one can choose any pants decomposition P to
introduce the coordinates FN(P ) on the same space T .

Our aim is to transform Fenchel-Nielsen coordinates to coordinates containing only length
parameters.

Definition 2.2 (Locally parametrizing decomposition). We say that a double pants decompo-
sition DP is locally parametrizing at the point τ ∈ T if the functions l(DP ) = {l(c) | c ∈ DP}
provide a local homeomorphism from a neighborhood of τ to a neighborhood of some point
in R

6g−6+3n. By a chart C(DP ) we mean a pair (X, l(DP )) where X is the set of points
τ ∈ T such that DP is locally parametrizing at τ .
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Our first aim is to prove that admissible double pants decompositions are locally parametriz-
ing. As an intermediate technical step in the proof we will use mixed coordinates, containing
some angle-parameters (but less than Fenchel-Nielsen coordinates).

Definition 2.3 (Mixed coordinates). Let DP = (Pa, Pb) be a double pants decomposition,
possibly with some double curves. Let FN(Pb) be some Fenchel-Nielsen coordinates build
from Pb. Denote by mix(DP,FN(Pb)) the following set of functions:

mix(DP,FN(Pb)) = {l(c), α(c′) | c ∈ DP, c′ ∈ Pa ∩ Pb},

where α(c′) is the corresponding angle coordinate in FN(Pb).

3. Some properties of length functions

In this section we prove several facts from hyperbolic geometry. In particular, Lemmas 3.4
and 3.6 will be crucial for the construction of locally parametrizing double pants decomposi-
tions. Lemmas 3.1–3.3 are preparatory. We will denote the hyperbolic plane by H

2.

Lemma 3.1. Let S = S0,4, let c, d ∈ S be two closed curves |d ∩ c| = 2. Let P be a pants
decomposition of S, c ∈ P . Suppose that d′ ∈ S is a curve obtained from c by a flip of P .
Then d′ = tkc (d) for some integer k, where tc is a Dehn twist along c.

The lemma follows immediately from [1, Lemma 1.16].

Lemma 3.2. Let p ∈ H
2 be a line separating points O and O′. Given the distances from p

to O and O′, the distance OO′ is a monotonic function on the distance PP ′, where P and
P ′ are the orthogonal projections of points O and O′ to p.

Proof. Suppose that the points P and O are fixed, and the point P ′ (together with O′) glide
away from P , see Fig. 3.1.b. Then the point X = OO′ ∩ p glide away from P which implies
that the distance OX grows monotonically when PP ′ increases. By the similar reason O′X
grows, and hence, OO′ grows monotonically.

�

(a) (b)

PP

P ′

P ′

O O

O′
O′

X X
p p

Figure 3.1. To the proof of Lemma 3.2

Lemma 3.3. Let S = S0,3 be a three-holed sphere with a boundary ∂S = c1 ∪ c2 ∪ c3, and
let sij be a segment orthogonal to ci and cj , for i 6= j, i, j ∈ {1, 2, 3}. Then the segments
s12, s13, s2,3 decompose S into two congruent right-angled hexagons.

Proof. It is clear that the segments sij decompose S into two right-angled hexagons. Since a
right-angled hexagon is determined (up to an isometry) by the lengths of three non-adjacent
sides (the lengths of s12, s13, s2,3), the hexagons are congruent.

�
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If the curves a, b ∈ S are orthogonal to each other we will write “a ⊥ b”.

Lemma 3.4. Let S = S1,1 be a handle with a boundary curve c, let a, b ⊂ S be two curves
|a∩ b| = 1. Then the set of functions x̄ = (l(a), l(b), l(c)) is a local coordinate on T \X where
X = {τ ∈ T |a ⊥ b}. Moreover, x̄ determines the point τ ∈ T up to at most two possibilities.

Proof. Shortly speaking, the coordinates x̄ = (l(a), l(b), l(c)) will be produced from Fenchel-
Nielsen coordinates. More precisely, we fix Fenchel-Nielsen coordinates FN(P ) = (l(a), α(a), l(c))
arising from pants decomposition P = {a, c}. We fix some values of l(a) and l(c) and de-
note by α0 the value of α(a) at the point where l(a) and l(c) have the chosen values and
a is orthogonal to b. We will show that l(b) is a monotonic function on the absolute value
|α(a) − α0|, which will imply all statements of the lemma. Below we explain this in more
details.

First, we cut S along a and obtain a pair of pants S′ with three boundary components
c, a and a′. For each of the three pairs of boundary components of S′ we draw a segment
orthogonal to both of these two components. Denote these segments by sc,a, sc,a′, sa,a′ , see
Fig. 3.2.a. The three segments decompose S′ into two right-angled hexagons H1 and H2.
Similarly, together with the curve a the three segments decompose the initial handle S into
two hexagons.

Consider the covering of S by hyperbolic plane. We are interested in the tiling of the plane
by the images of H1 and H2. Notice that the copies of H1 and H2 adjacent along the image
of sa,a′ (or sc,a or sc,a′) have this side in common, while the gluing along the images of a
and a′ depends on the angle parameter α(a) ∈ FN(P ). More precisely, when α(a) = α0 the
adjacent along a hexagons have a common side, otherwise the hexagons are shifted one along
another as in Fig. 3.2.b. With growth of α(a) the hexagons in one row glide monotonically
along the hexagons of the other row. We denote by p and p′ the lines separating the rows.

Now, consider the curve b ∈ S, |b ∩ a| = 1. First, suppose that b ⊥ a, i.e. the image b̂ of
b in the hyperbolic plane coincide with the image AA′ of sa,a′ . Now, we increase α(a) and

look at the image b̂ ∈ H
2 of b: since b is a closed geodesic on S, b̂ is a line forming the same

angles with p and p′. This implies that b̂ passes through the midpoint O of AA′. Hence,
AY = A′Y ′, where Y = b̂ ∩ p and Y ′ = b̂ ∩ p′. Furthermore, the hexagon H ′

2 is shifted with

respect to the hexagon H2 to the distance ρ = l(a) (α(a)−α0)
2π . Denote by T the vertex of H ′

2

projecting to the same point of S as A′ (as in Fig. 3.2.b), then TY = AY = A′Y ′. Hence,

AY = 1/2ρ = l(a) (α(a)−α0)
4π . The same formula holds for any positive value of (α(a) − α0)

as well as for any negative one (in the latter case the point Y ∈ l lies on the other side with
respect to A).

This implies that the distance Y Y ′ = l(b) grows monotonically with the growth of |α(a)−
α0|:

cosh
Y Y ′

2
= coshOY = coshOA coshAY = coshOA cosh(l(a)

α(a) − α0

4π
)

Hence, |α(a) − α0| may be recovered from l(b). So, given the lengths (l(a), l(b), l(c)) one
may find the Fenchel-Nielsen coordinates FN(P ) up to two possibilities. In particular, in
the neighborhood of a point τ ∈ T where a is not orthogonal to b, the sign of (α(a) − α0)
does not changes, which implies that the functions (l(a), l(b), l(c)) form a local coordinate in
T \X, X = {τ ∈ T |a ⊥ b}.

�
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b

(a) (b)

c
cc

a

a

a′

a′

saa′

sca′

sca′

H1 H2

H′

1

H′

2

A

A′

O

Y

Y ′

p

p′

T

Figure 3.2. Length coordinates on a handle

Remark 3.5. Given Fenchel-Nielsen coordinates (l(a), α(a), l(c)) on the handle, for each pair
of lengths l0(a) and l0(c) there exists a unique angle α0(a) such that a is orthogonal to b.

Lemma 3.6. Let S = S0,4 be a sphere with four holes, with boundary curves c1, c2, c3, c4. Let
a ∈ S be a closed geodesic and let b ∈ S be a closed geodesic obtained from the curve a by a
flip. Then

(1) the angle formed by a and b is of the same size for both intersections of a and b;
(2) the set of functions x̄ = (l(a), l(b), l(c1), l(c2), l(c3), l(c4)) is a local coordinate on T \X

where X = {τ ∈ T |a ⊥ b};
(3) x̄ determines the point τ ∈ T up two at most two possibilities.

Proof. The idea of the proof is the same as in the proof of Lemma 3.4: the coordinate x̄
is obtained from Fenchel-Nielsen coordinates FN(P ) built from pants decomposition P =
{a, c1, c2, c3, c4}. We show that given the values of (l(a), l(c1), l(c2), l(c3), l(c4)) the length
l(b) is a monotonic function on the absolute value |α(a)−α0|, where α0 is the value of α(a) ∈
FN(P ) at the point of T such that a is orthogonal to b (and the values of (l(a), l(c1), l(c2), l(c3), l(c4))
are the chosen ones). Hence, l(b) determines α(a) up to 2 possibilities. Moreover, in the neigh-
borhood of a point τ ∈ T where |α(a)−α0| 6= 0, the sign of (α(a)−α0) is determined uniquely
by the sign at τ .

In more details, the curve a decompose S into two pairs of pants, and each pair of pants
is decomposed into two right-angled hexagons (respectively, by the segments sac1 , sc1c2 , sc2a
and sa′c3 , sc3c4 , sc4a′ orthogonal to a pair of boundary components), Fig. 3.3.a. The images
of four right-angled hexagons tile the covering hyperbolic plane: two hexagons adjacent by

the image of the side a are shifted by the distance ρ = l(a)α(a)−α0

2π along the line containing
the images of a, see Fig. 3.3.b.

Denote by O and O′ the midpoints of images of sc1,c2 and sc3,c4 . Notice that the symme-
try in the point O preserves the tiling of the hyperbolic plane by hexagons (compare with
Lemma 3.3). The same holds for the symmetry in O′. Consider a line OO′ and its inter-
section with the images of the curve a. It is easy to see that all angles made by OO′ and
images of a are equal. Furthermore, OO′ intersects the images of sc1,c2 and sc3,c4 always in
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midpoints (to see that consider an image O′′ of O with respect to the symmetry in O′: it
lies on OO′ and in the midpoint of some image of sc1c2 , then consider the image of O′ with
respect to a symmetry in O′′ and so on). This implies that the line OO′ is the union of
images of some closed geodesic c ∈ S, |c ∩ a| = 2. Hence, c may be obtained from a by a
flip. Notice that c intersects a in two points, forming two angles of the same size. The length
l(c) = 2 · OO′ increases as |α(a) − α0| increases (the distances from the points O and O′ to
the line p remain constant, but one point glide along p with respect to the other, so that we
may apply Lemma 3.2).

Increasing the angle α(a), we increase the shift between the adjacent hexagons. Increasing
α(a) by 2π we obtain the initial tiling of the plane by hexagons, but the line OO′ in the new
picture is moved, so that it is an image of another closed curve c′ ∈ S which may be obtained
from a by a flip. Increasing (or decreasing) α(a) by 2πk we run through all curves on S which
may be obtained by a flip from a (compare with Lemma 3.1). In particular, for some value
of k we obtain the curve b. This implies statement (1). So, the length l(b) increases with
growth of |α(a)− α0|. Hence l(b) determines α(a) up to two possibilities, which implies that
the set of functions x̄ determines Fenchel-Nielsen coordinates FN(P ) up to two possibilities.
This proves statement (3). If b is not orthogonal to a at τ ∈ T then in the neighborhood of
τ the function l(b) (together with the chosen value of α(a) at τ) determines completely the
function α(a), which implies that x̄ is a set of local coordinates, and statement (2) is also
proved.

�

(a) (b)

c1 c2

c3c4

aa

a
a

sac1
sc1c2

sc1c2
sc2a

sa′c3 sc3c4
sc3c4

sc4a′

A
B

C
D

O

O′

p

Figure 3.3. Length coordinates on a four-holed sphere

Remark 3.7. Given Fenchel-Nielsen coordinates on S0,4, for each lengths l0(a) together with
fixed lengths of the boundary components of S0,4 there exists a unique angle α0(a) such that
a is orthogonal to b.

4. Locally parametrizing double pants decompositions

In this section we prove Theorem 4.11 which states that for an admissible double pants
decomposition DP the functions l(DP ) provide a local parameter in neighborhoods of almost
all points τ ∈ T .

The proof of the theorem is inductive. In Section 4.1, we build some examples of locally
parametrizing double pants decompositions. These examples called special decompositions
will be the base of the induction. In section 4.2, we show that any admissible double pants de-
composition may be obtained from a special one by a sequence of flips. Finally, in Section 4.3
we show that flips preserve the parametrizing properties of double pants decompositions.
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4.1. Examples of locally parametrizing double pants decompositions. In this section
we present an example of a locally parametrizing double pants decomposition for each surface
Sg,n. This will provide a base for the inductive proof of Theorem 4.11. The construction is
obtained as a modification of Fenchel-Nielsen coordinates.

Definition 4.1 (Special decomposition, conjugate curves). A double pants decomposition
DP = (Pa, Pb) is special with the standard part Pb if the following holds:

(1) DP contains no double curves;
(2) the part Pb is standard;
(3) DP may be obtained from a strictly standard double pants decomposition DP0 via

a sequence of m = 3g − 3 + n flips f1, . . . , fm of the Pa-part.

For a special decomposition DP = (Pa, Pb) we will say that a curve ai ∈ Pa is conjugate
to a curve bi ∈ Pb if either ai is obtained by a flip fi from bi or ai and bi belong to the same
handle in the standard decomposition Pb. In the former case (ai, bi) will called a flip-conjugate
pair, in the latter case (ai, bi) will called a handle-conjugate pair.

See Fig. 4.1 for an example of a special decomposition. Notice, that any special double
pants decomposition is admissible.

1

2

34

5678

Figure 4.1. Example of a special double pants decomposition. The black
nodes show the intersections of the conjugate curves. The number near the
nodes show the sequence of flips taking the strictly standard decomposition
to the special one.

Lemma 4.2. For each standard pants decomposition Pb there exists a special double pants
decomposition DP = (Pa, Pb).

Proof. To build the required decomposition we consider a strictly standard double pants
decomposition DP ′ = (P ′

a, Pb) containing Pb and apply a flip of the Pa-part to each of the
double curves.

�

Notation 4.3. Let DP = (Pa, Pb) be a special double pants decomposition. Denote by
Z(DP ) ∈ T the locus of points where ai is orthogonal to bi for at least one pair of conjugate
curves (ai, bi) ∈ DP .
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Remark 4.4. Let (ai, bi) be a pair of conjugate curves in a special double pants decomposition.
Remarks 3.5 and 3.7 imply that the locus of points where ai is orthogonal to bi is homeomor-
phic to a hyperplane in T = R

3g−3+2n
>0 × R

3g−3+n (here Remarks 3.5 and 3.7 work for cases
of handle-conjugate and flip-conjugate pairs respectively). Therefore, the set Z(DP ) ∈ T is

homeomorphic to a union of 3g − 3 + n hyperplanes in T = R
3g−3+2n
>0 × R

3g−3+n.

Lemma 4.5. Let DP = (Pa, Pb) be a special double pants decomposition. Then

(1) l(DP ) is a local coordinate in T \ Z(DP );
(2) l(DP ) determine the point in T up to at most 23g−3+n choices.

Proof. Suppose that Pb is a standard part of DP . Choose Fenchel-Nielsen coordinates
FN(Pb) based on the pants decomposition Pb. It is a global coordinate on T . We will
substitute angle coordinates of FN(Pb) by length coordinates one by one.

Let f1, . . . , fm be the sequence of flips described in the Definition 4.2, let b1, . . . , bm be the
curves of Pb such that fi is a flip applied to bi. Let DPi = fi ◦· · · ◦f1(DP0), where DP0 is the
corresponding strictly standard double pants decomposition. Applying Lemma 3.4 sufficiently
to all handle-conjugate pairs of curves ai, bi ∈ DP we see that mix(DP0, FN(Pb)) is a local
coordinate away from Z(DP0) and defines the coordinate FN(Pb) up to 2g choices. Then,
applying Lemma 3.6 to each pair of flip-conjugate curves successively (more precisely, to
the subsurface S0,4 obtained by a union of two pairs of pants adjacent to bi in Pa-part of
DPi), we see that mix(DPi, FN(Pb)) is a local coordinate away from Z(DPi) and defines
mix(DPi−1, FN(Pb)) up to 2 choices. This implies the lemma.

�

4.2. Induction step: reduction to flips.

Lemma 4.6. Let DP be an admissible double pants decomposition. Then there exists a
sequence of flips f1, . . . , fk such that DP0 = fk ◦ · · · ◦ f1(DP ) is a strictly standard double
pants decomposition.

Proof. Since DP is an admissible decomposition, there exists a sequence of flips taking DP
to a standard double pants decomposition. It is known that flips act transitively on pants
decompositions of S0,k (see [8]), which implies that any strictly standard double pants de-
composition may be transformed to a strictly standard ones by flips.

�

Lemma 4.7. Let DP be a double pants decomposition containing no double curves. Suppose
that DP ′ = fk ◦ · · · ◦ f1(DP ), where fi, i = 1, . . . , k, is a flip. If DP ′ contains no double
curves then there exists a sequence of flips g1, . . . , gr such that DP ′ = gr ◦ · · · ◦ g1(DP ) and
no of the decompositions gi ◦ · · · ◦ g1(DP ), i = 1, . . . , r contains double curves.

Proof. Denote DP = (Pa, Pb) and DP ′ = (P ′
a, P

′
b) We will use the fact that flips of the

Pa-part commute with flips of the Pb-part.
Let C = {c | c ∈ DPi = fi ◦ · · · ◦f1(DP ), 0 ≤ i ≤ k} be a set of all curves appearing during

the transformation from DP to DP ′ = fk ◦ · · · ◦ f1(DP ).
First, for each of the curves ai ∈ Pa we apply a flip gi so that gi(ai) /∈ C: this is possible,

since C is a finite set, while a set of flips for a given curve ai in a given pants decomposition is
either infinite or empty (in the later case, ai lies in a handle bounded by some other curve aj ,
so we can first destroy the handle applying a flip to aj, and then apply a flip to ai). Denote
by P ′′

a the obtained Pa-part of the decomposition.
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Second, we transform Pb to P
′
b by the same sequence of flips as in f1, . . . , fk.

Third, there exists a sequence f ′1, . . . , f
′
l of flips taking P

′′
a to P ′

a. Denote ξ = f ′l ◦ · · · ◦ f
′
1.

Denote C ′ = {c | c ∈ DP ′′ = f ′i ◦ · · · ◦ f
′
1(DP ), 0 ≤ i ≤ l}. For each of the curves bi ∈ P ′

b we
apply a flip g′i so that g′i(bi) /∈ C ′.

Next, we transform Pb to P
′
b by the same sequence of flips as in f1, . . . , fk.

Finally, we apply the inverse sequence ξ−1 to take the Pb-part back to the state P ′
b.

Clearly, we can not obtain double curves at any stage of the transformation, so the lemma
is proved.

�

Lemma 4.6 together with Lemma 4.7 imply the following lemma.

Lemma 4.8. Let DP be an admissible double pants decomposition without double curves.
Then there exists a special double pants decomposition DP ′ and a sequence of flips f1, . . . , fk
such that DP0 = fk ◦· · · ◦f1(DP ) and no of the decompositions fi ◦· · · ◦f1(DP ), i = 1, . . . , k,
contains double curves.

4.3. Induction step: flips. In this section we show that flips take locally parametrizing
double pants decompositions to locally parametrizing ones.

In the next lemma we show this property for almost all flips.

Lemma 4.9. Let DP be a parametrizing double pants decomposition at τ ∈ T . Let f ′ and
f ′′ be two different flips of the same curve c ∈ DP , such that neither DP ′ = f ′(DP ) nor
DP ′′ = f ′′(DP ) contain double curves. If DP ′ is not parametrizing at τ ∈ T then DP ′′ is
parametrizing at τ .

Proof. Let DP = (Pa, Pb), c ∈ Pa. Let DP
′ = (P ′

a, Pb), DP
′′ = (P ′′

a , Pb). Denote by c′ and c′′

the curves of P ′
a and P ′′

a obtained from c by flips f ′ and f ′′ respectively. In addition, denote
by S∗ a subsurface of S composed of two pairs of pants in Pa adjacent to the curve c.

Suppose that DP ′ is not a parametrizing double pants decomposition at τ ∈ T . By defini-
tion, this means that there exists a non-trivial deformation ξ(τ) of the hyperbolic structure,
where ξ preserves all lengths of curves contained in (P ′

a, Pb). This deformation may be de-
scribed as a set of simultaneous small twists along the curves of P ′

a (the rates of the twists
need not coincide or to be constant).

Suppose that ξ contains no twist along c′ (i.e. the twist along this curve is trivial, zero).
Then the subsurface S∗ is not changed, and the length of the curve c is preserved by ξ.
Hence, ξ preserves the lengths of all curves in (Pa, Pb) = DP . By assumption, these lengths
provide a local coordinate at τ , so the deformation ξ is trivial (does not change the point of
Teichmüller space). The contradiction shows that ξ contains a non-trivial twist along c′.

On the other hand, consider another deformation η of the initial hyperbolic structure
τ ∈ T , where η preserves all lengths of curves from (Pa, Pb) except the length of c. A locus
of points of T obtained by η from τ is a 1-dimensional curve in a neighborhood of τ . This
implies that η = ξ.

Suppose now that DP ′′ also is not parametrizing at τ . Similarly to the case of DP ′,
this implies that there exists a deformation ψ preserving all lengths of curves from P ′′

a and
containing a non-trivial twist along the curve c′′ ∈ Pa. Similarly to ξ, the deformation ψ
should coincide with η, so, ξ = ψ. However, these two transformations do not coincide in the
subsurface S∗: one twists along c′, another along c′′ 6= c′. The contradiction shows that the
double pants decomposition DP ′′ is parametrizing at τ .

�
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Lemma 4.10. Let DP be a locally parametrizing double pants decomposition at τ ∈ T . Let
f0 be a flip of DP such that the double pants decomposition DP (0) = f0(DP ) contains no

double curves. Then DP (0) is a parametrizing double pants decomposition at τ ∈ T .

Proof. Let DP = (Pa, Pb) be a parametrizing double pants decomposition at τ ∈ T . Let
c ∈ DP be a curve flipped by f0. Without loss of generality we may assume that c ∈ Pa.
Denote m = 3g − 3 + n.

Consider an m-dimensional surface Ca through τ ∈ T such that the lengths of all curves
contained in Pa \ Pb are constant in Ca. Let Cb be a similar surface for Pb. Denote by
Πa and Πb the tangent planes to Ca and Cb in τ . Let C∂S be an n-dimensional surface
through τ such that all curves contained in ∂S have constant lengths in C∂S , let Π∂S be the
corresponding tangent plane. Since DP = (Pa, Pb) is parametrizing at τ , the planes Πa, Πb

and Π∂S intersect each other in τ only (and span the whole tangent space at τ).
Let ψi, i = 1, . . . ,m, be the curves in T on which all lengths of curves of DP are preserved

except for the length of one curve bi ∈ Pb \ Pa. Let b̄1, . . . , b̄m be the tangent vectors to
ψ1, . . . , ψm at τ . Clearly, the plane Πa is spanned by the vectors b̄1, . . . , b̄m.

Now, consider a series of flips fi of the curve c ∈ Pa (including the flip f0 described in the
lemma): we will assume that the flip fi takes c to the curves ci of the same homology class;
moreover, we assume that ci+1 may be obtained from ci by a Dehn twist along c. For each of

the flips fi we denote P
(i)
a = fi(Pa). Denote by Π

(i)
a the tangent planes at τ to the surfaces

of the constant lengths of curves from P
(i)
a \ Pb.

If the double pants decomposition DP (0) = (P
(0)
a , Pb) is parametrizing at τ , then there

is nothing to prove. So, suppose that DP (0) is not parametrizing at τ . By Lemma 4.9,

this implies that all other double pants decompositions DP (i) = (P
(i)
a , Pb) are parametrizing

at τ (with possible exclusion of at most one decomposition DP (j): at most one of these
decompositions may contain a double curve ci). Reasoning as above with Πa, we show that

the plane Π
(i)
a is spanned by b1, . . . , bm. This implies that for i /∈ {0, j} all planes Π

(i)
a coincide

with Πa.

Now, our aim is to show that Π
(0)
a = Πa. Let tc be a Dehn twist along c. The twist tc

takes ci to ci+1. On the other hand, tc acts on T and takes Πi
a to Πi+1

a . Since Πi
a = Πa for

i /∈ {0, j}, tc preserves Πa. Hence, Π
i
a = Πa for all i ∈ Z.

Since Π
(0)
a = Πa, the planes Π

(0)
a , Πb and Π∂S span the tangent space at τ , which implies

that DP (0) = (P
(0)
a , Pb) is a parametrizing double pants decomposition at τ .

�

Theorem 4.11. Let DP be an admissible double pants decomposition without double curves.
Then DP together with the ordered set of lengths l(DP ) = {l(ci)|ci ∈ DP} is a local coordinate
in T \ Z(DP ′) for some special double pants decomposition DP ′.

Proof. By Lemma 4.8 there exists a special double pants decomposition DP ′ = (P ′
a, P

′
b),

and a sequence ψ of flips taking DP to DP ′ and producing no double curves on its way. By
Lemma 4.5 the lengths l(DP ′) form a local coordinates in T \Z(DP ′). By Lemma 4.10 each of
the flips in the sequence ψ preserve the parametrizing property of double pants decomposition
(i.e. the obtained decomposition provides a local parameter in T \ Z(DP ′)). Hence, DP is
parametrizing in T \ Z(DP ′).

�
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5. Finite number of choices

In Section 4, we proved that the set of functions l(DP ) is a local parameter in almost all
points of T . In this section, we prove that the functions l(DP ) determine the point of T up
to finitely many choices.

Consider an universal covering π of S by a hyperbolic plane H
2, so that S = H

2/G where
G ∈ SL2(R) is some finitely generated discrete group. Let M1, . . . ,Ms be a finite set of
matrices generating G. Let r1(M1, . . . ,Ms) = · · · = rn(M1, . . . ,Ms) = E be the defining
relations, where ri is a word in the alphabet A = {M1,M

−1
1 , . . . ,Ms,M

−1
s }.

For each closed geodesic c ⊂ S each connected component of the preimage π−1c is a line
(denote it by Li(c), where integer index stays to emphasize that there are countably many of
these preimages). The group G contains a hyperbolic transformation γ(c) shifting H

2 along
Li(c) for the distance equal to l(c). So, we have

(5.1) tr(γ(c)) = 2 cosh(l(c)/2).

Notice that γ(c) = w(M1, . . . ,Ms) for some word w in the same alphabet A. So, the
Formula 5.1 may be considered as a finite set of polynomials in matrix elements ofM1, . . . ,Ms

with coefficients
l̂(c) = 2 cosh(l(c)/2).

Theorem 5.1. Let DP be an admissible double pants decomposition containing no double
curves. Then l(DP ) determines a point of T up to finitely many choices.

Proof. For each of the curves ci ∈ DP we consider one of its preimages on H
2 together with

the hyperbolic transformation γ(ci). Taking in account Formula 5.1, we obtain a system of
polynomial equations in elements of Mi: the system consists of the equations arising from
the following three sources:

(1) Mi ∈ SL2(R);
(2) rj(M1, . . . ,Ms) = E, where rk is one of the defining relations;

(3) tr(γ(c)) = l̂(c).

The matrix equations of the second type are considered as four scalar equations in matrix
elements. Notice, that the equations of all three types are polynomial (here we use the fact
that Mi ∈ SL2(R), and hence, all elements of M−1

i are also elements of Mi). So, the three
types compose a system of finitely many polynomial equations in matrix elements of Mi with

integer coefficients and constant terms in Z ∪ {l̂(c1)), . . . , l̂(cm)}. Suppose in addition that

the values of (l̂(c1)), . . . , l̂(cm)) correspond to at least one hyperbolic structure τ ∈ T on S.
Then the system of equations is solvable. On the other hand, Theorem 4.11 implies that the
system is non-generate. Thus, there are finitely many solutions of this system.

In other words, for each set of values l(DP ) we can write a unique set of values l̂(DP ) =

{l̂(c1)), . . . , l̂(cm)}; for this set l̂(DP ) there are finitely many possible values of matrix ele-
ments of Mi. So, for each value of l(DP ) there are finitely many distinct points in T .

�

Corollary 5.2. Let DP be an admissible double pants decomposition of S without double
curves. Let c ∈ S be a closed curve. Then l̂(c) is an algebraic function of l̂(DP ).

Proof. By Theorem 5.1 the value of l(DP ) determines the point of T up to finitely many
choices. Each of these choices correspond to a unique (modulo conjugation) discrete subgroup
G ∈ SL2(R) acting on H

2. Consider the group G for one of these possibilities.
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Following the proof of Theorem 5.1 consider a preimage L(c) of c in H
2 and a hyperbolic

transformation γ(c) which shifts along L(c) by the distance l(c). Then γ(c) = w(M1, . . . ,Ms)

where w is a word in the alphabet {Mi,M
−1
i |i = 1, . . . , s}. So, l̂(c) = trγ(c) is a polynomial

in the matrix elements of M1, . . . ,MS . Since the elements of matrices Mi are the solution
of a system of polynomial equations, these elements are algebraic functions of l̂(DP ). This

implies, that l̂(c) is an algebraic function of l̂(DP ) either.
�

6. An atlas on the Teichmüller space

In Section 4.3, we proved that for each admissible double pants decomposition DP the
function l(DP ) provides a local coordinate in neighborhoods of almost all points in T (more
precisely, away from a set of measure 0 formed by a finite union of hypersurfaces). In this
section, we show that the coordinate charts with coordinates l(DP ) compose an atlas on T .
Moreover, the transition functions between the adjacent chart change exactly one coordinate
(and correspond to flips and handle twists of double pants decompositions).

Lemma 6.1. Let S be a surface with a fixed hyperbolic structure. Let DP = (Pa, Pb) be
a special double pants decomposition with a standard part Pb. Let ai, bi ∈ DP be a pair of
conjugate curves in DP . Let bj ∈ Pb be a curve such that bj ∩ ai 6= ∅ and let tbj be a Dehn

twist along bj . If ai is orthogonal to bi then t
k
bj
(ai) is not orthogonal to bi for all k ∈ Z \ 0.

Proof. First, notice that if i = j than there is nothing to prove (the statement follows than
from Lemma 3.4 in case of handle-conjugate curves and from Lemma 3.6 in case of flip-
conjugate curves). From now on we assume i 6= j.

Notice that by construction of special decompositions, the condition bj∩ai 6= 0 implies that
(ai, bi) can not be a pair of handle-conjugate curves. So, (ai, bi) is a pair of flip-conjugate
curves, and the curve bi is homologically trivial. Suppose bi is orthogonal to ai as well
as to tkbj (ai), where k 6= 0. Since bi is homologically trivial, bi cuts S into two connected

components S1 and S2. Let S1 be the component containing the curve bj. Denote s = ai∩S2
and s′ = tkbj (ai) ∩ S2. In view of Lemma 3.6 all ends of s and s′ are orthogonal to bi.

Since bj ∈ S1, and bj∩bi = ∅, the topology of the decomposition of S2 is not changed by tbj
(however, geometrically s 6= s′). This implies that there exists an isotopy γx of s to s′ (where
x ∈ [0, 1], γ0 = s, γ1 = s′) such that the ends of the segment γx(s) belong to bi. Notice that s
can not intersect s′, otherwise the segments s, s′ and a part of bj bound a hyperbolic triangle
with two right angles bjs and bjs

′, which is impossible. On the other hand, if s∩ s′ = ∅ then
two parts of bj , s and s′ bound a hyperbolic quadrilateral with four right angles, which is
also impossible. The contradiction shows the lemma.

�

Lemma 6.2. For each point τ ∈ T there exists a double pants decomposition DPτ such that
l(DPτ ) is a local coordinate in a neighborhood of τ .

Proof. Consider an arbitrary special double pants decomposition DP = (Pa, Pb) with a stan-
dard part Pb. By Theorem 4.11, l(DP ) is a local coordinate in T \Z(DP ). So, if τ /∈ Z(DP )
then there is nothing to prove. Suppose that τ ∈ Z(DP ), i.e. there exists an orthogonal
conjugate pair of curves ai, bi ∈ DP , (a pair of conjugate curves such that ai is orthogonal
to bi in τ). We will apply to DP a twist tbj in some of the curves bj ∈ DP in order to reduce
the number of orthogonal conjugate pairs.
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To see that it is always possible, suppose that ai, bi ∈ DP is an orthogonal conjugate pair.
In this case there exists an integer k such that the special decomposition tkbi(DP ) contains

less orthogonal conjugate pairs than DP has (the pair ai, bi of this twisted decomposition is
not orthogonal for each k 6= 0, Lemma 6.1 implies that for all but finitely many values of k
the k-th degree of the twist will not produce new orthogonalities for other conjugate pairs).

�

Lemma 6.2 shows that the charts with coordinates l(DP ) cover the space T . Now, we
consider the transition functions between the charts. In view of Theorem 1.9, it is natural
to choose these transition functions as ones induced by flips and handle-twists of admissible
double pants decompositions.

The case of flip is considered in Lemma 4.10: it is shown that as long as a flip f produces
no double curves, f preserves the locus of points where the set of functions l(DP ) is a local
coordinate. We have also shown in Lemma 4.8 that if DP and DP ′ are two double pants
decompositions containing no double curves and DP can be turned into DP ′ by a sequence
of flips, than one can choose this sequence of flips so that no double curves are produced on
the way.

It is impossible to treat handle-twists directly in the same way: by definition no handle-
twist can be applied to a double pants decomposition containing no double curves. To
overcome this obstacle, we introduce the notion of a quasi-handle-twist.

Definition 6.3 (Quasi-handle-twist). Let DP be a double pants decomposition without
double curves. Let c ∈ DP be a curve such that there exists a flip f(c) producing a handle h
in the decomposition f(DP ) (so that f(c) is a double curve which cuts out the handle). Let
a ∈ DP ∩ f(DP ) be a curve contained in the handle h. By a quasi-handle-twist ta of DP we
mean a Dehn twist along a.

Remark 6.4. The quasi-handle-twist ta may be written as ta = f−1 ◦ t̂a ◦ f , where f is a flip
as in Definition 6.3 and t̂a is a handle twist in the handle h.

Remark 6.5. Since ta is a Dehn twist, ta acts on the Teichmüller space T . We denote by
ta(τ) the point of T obtained from τ by the Dehn twist ta.

Now, we will prove the counterparts to the Lemmas 4.10 and 4.8 for the case of quasi-
handle-twists.

The next Lemma follows immediately from Definition 6.3 and Remarks 6.4 and 6.5.

Lemma 6.6. Let DP be an admissible double pants decomposition without double curves.
Let τ ∈ T be a point such that l(DP ) is a local coordinate in τ . Let t be a quasi-handle-twist
along the curve c ∈ DP . Then l(t(DP )) is a local coordinate in τ ′ = t(τ).

Lemma 6.7. Let DP and DP ′ be two admissible double pants decompositions containing no
double curves. Then there exists a sequence of flips and quasi-handle-twists which takes DP
to DP ′ and produces no double curves on its way.

Proof. By Theorem 1.9 there exists a sequence ψ of flips and handle-twists taking DP to
DP ′. In view of Lemma 4.7, each subsequence containing no handle-twist may be realized
without producing double curves. It is sufficient to prove the lemma for the case when ψ
contains one handle-twist only (and then apply inductional reasoning). Suppose that this
unique handle-twist t̂c is a twist in a curve c ∈ DP st where DP st is a standard double pants
decomposition flip-equivalent to DP (it is shown in [1, Lemma 4.1] that handle-twists in
standard decompositions are sufficient for obtaining the transitivity theorem).
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Let DP st = (P st
a , P

st
b ) be the two parts, suppose that c ∈ P st

a . Let DP sp = (P sp
a , P sp

b )
be a special decomposition with the standard part P sp

b = P st
b . By Lemma 4.7, there exists

a sequence of flips taking DP to DP sp without producing double curves. Then we apply a
quasi-handle-twist tc in c, so that we obtain another special decomposition DP sp

∗ . In view
of Remark 6.4, DP sp

∗ is flip-equivalent to DP ′. The sequence of flips taking DP sp
∗ to DP ′

without producing double curves does exist in view of Lemma 4.7.
�

Summarizing results of Lemmas 6.2, 6.7 and Corollary 5.2 we obtain the following theorem.

Theorem 6.8. (1) The charts C(DP ) with coordinates l(DP ), where DP is an admissible
double pants decomposition without double curves, provide an atlas on Teichmüller space T .

(2) The elementary transition functions of these charts are induced by flips and quasi-
handle-twists of double pants decompositions, each elementary transition function changes
only one coordinate. This unique non-trivial transition function is algebraic.

(3) The compositions of elementary transition functions act transitively on the charts.

7. Deligne-Mumford compactification of moduli space

In Section 6, we showed that the Teichmüller space is covered by coordinate charts arising
from admissible double pants decompositions. Since local coordinates on Teichmüller space
are also local coordinates on the moduli space, the charts with coordinate l(DP ) also compose
an atlas on the moduli space. In this section, we show that this atlas works also for most
strata in Deligne-Mumford compactification of the moduli space.

Consider some Fenchel-Nielsen coordinates FN(P ) on the Teichmüller space

T = {l(ci) > 0, α(cj) ∈ R | ci, cj ∈ P, cj /∈ ∂S}.

Given a pants decomposition P denote

TP = {l(ci) ≥ 0, α(cj) ∈ R | ci, cj ∈ P, cj /∈ ∂S}.

The augmented Teichmüller space T is the following closure of T :

T = ∪PTP

where the union is taken by all pants decompositions of the surface. The points of T \ T
correspond to nodal surfaces, i.e. to the surfaces with nodal singularities: a nodal singularity
arises when a non-trivial closed curve c in S is degenerated to a point (i.e. l(c) → 0). A nodal
surface is not a surface: a neighborhood of a nodal point is not homeomorphic to a disk. We
denote by N the set of all nodal points on the nodal surface. It is known that T /Mod = M,
where Mod is the modular group and M is the Deligne-Mumford compactification of the
modular space M = T /Mod.

The space T inherits topology from ∪PTp = ∪P (R
3g−3+2n
≥0 × R

3g−3+n).
Given an admissible double pants decomposition DP without double curves, we say that

the boundary of the chart C(DP ) is the locus of points τ ′ ∈ T where l(c) = 0 for at least one
c ∈ DP .

Theorem 7.1. For each point τ ′ ∈ T there exists an admissible double pants decomposition
DP containing no double curves and such that τ ′ belongs to the boundary of the chart C(DP )
with coordinates l(DP ).
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Proof. If τ ′ ∈ T , then there is nothing to prove in view of Theorem 6.8. Suppose that
τ ′ ∈ (T \T ). Then there exists a set of mutually disjoint curves C on S such that the surface
S′ corresponding to τ ′ is obtained by contracting all curves ci ∈ C. It is sufficient to show
that there exists an admissible double pants decomposition DP containing no double curves
and such that C ∈ DP .

Consider any pants decomposition Pa containing the set C. We will build the required de-
composition DP = (Pa, Pb) in the following four steps: first, we transform Pa by a sequence
of flips to a standard decomposition P ′

a; second, we build a standard double pants decom-
position (P ′

a, P
′
b); next, we transform P ′

a back to Pa by flips; finally, we apply (if necessary)
several flips to P ′

b to avoid double curves.
�

Factorizing by the modular group Mod we obtain the charts on the Deligne-Mumford
compactification of the modular space (with the natural notion of the boundary of the chart
on M defined as the boundary of the same chart on T factorized by Mod). Applying the
same reasoning as in Theorem 7.1 we obtain the following corollary.

Corollary 7.2. For each point τ ′ ∈ M there exists an admissible double pants decomposition
DP containing no double curves and such that τ ′ belongs to the boundary of the chart C(DP )
with coordinates l(DP ).

Remark 7.3. For many of the points τ ′ ∈ ∂T the coordinates l(DP ) provide also a chart in
a neighborhood O′(τ ′) = O(τ ′)∩ ∂T (where O(τ ′) is some neighborhood of τ ′ in T . It would
be natural to try to cover ∂T (resp. the whole boundary of M) by these charts. However,
in general it turns to be impossible (see Remark 7.14).

Below, we define a large subset of “good” points in the boundary and show that all points
of this subset are covered by the charts C(DP ).

The boundary ∂T is stratified: given a set C of mutually non-intersecting curves in S, a
stratum SC is a locus {l(ci) = 0 | ci ∈ C}. All nodal surfaces (of genus g with n boundary
parts) with k nodal singularities compose a union S2k of codimension 2k strata.

By a pants decomposition of a surface S with punctures we mean a decomposition into
generalized pairs of pants (where a generalized pair of pants is either a sphere with three
holes, or a sphere with two holes and a puncture, or a sphere with a hole and two punctures,
or a sphere with three punctures).

By a pants decomposition (respectively, double pants decomposition) of a nodal surface
S we mean a set of curves P composing a pants decomposition (respectively double pants
decomposition) in all components of S (connected components of S \N). The nodal points
are not considered as curves of the pants decomposition.

A (double) pants decomposition of S is standard if the decompositions of all components
are standard. Similarly, a double pants decomposition is special if decompositions of all
components are special.

Let DP = (Pa, Pb) be a double pants decomposition of S containing no double curves.
Let c ∈ DP . Denote by S′ the nodal surface obtained from S by collapsing c to a nodal
singularity. Consider a set DP ′ of curves on S′ obtained as a union of images of curves of
DP which do not intersect c. Notice that DP ′ is not necessarily a double pants decomposition
of S′; however, if c ∈ Pb intersects only one other curve of DP then DP ′ is.
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Lemma 7.4 ((Collar Lemma, [9])). Let c ∈ S be a simple closed geodesic on hyperbolic
surface S of lengths l = l(c). Define w by the relation

sinh l sinhw = 1.

Then S contains a collar Col(c) of width w defined by Col(c) = {x ∈ S | ρS(x, c) < w/2},
where ρS(A,B) is the distance in S from the set A to the set B.

It follows immediately from the Collar Lemma that if a, b ∈ S are closed geodesics b∩a 6= ∅
then contracting a so that l(a) → 0 implies l(b) → ∞.

The Collar Lemma implies that the local coordinates l(DP ) degenerate while the curves
ci are collapsing: if ai ∩ ci 6= ∅ then l(ai) → ∞ while ci → 0 (the curve ai intersecting ci do
exists since ci /∈ Pa and Pa is a maximal set of disjoint curves in S). For the case C ⊂ DP

we define the new set of functions l̃(DP,C) as follows:

l̃(DP,C) = {l(ci),
1

l(cj)
| ci ∈ C, cj ∈ DP \ C}.

Clearly, l̃(DP,C) is a local coordinate in all points of T , where l(DP ) is a local coordinate.
Moreover, this set of functions remains correctly defined while the curves of the set C are
collapsed.

Definition 7.5 (Inversion). An inversion of a k-th function of l̃(DP,C) is an exchange of
l(ck) or

1
l(ck)

(where ck ∈ DP ) by 1
l(ck)

or l(ck) respectively.

It is clear the transformation from a set of functions l̃(DP,C) to any other set of functions

l̃(DP ′, C ′) may be obtained as a composition of inversions and transformations induced by
flips and quasi-handle-twists of double pants decompositions (here DP and DP ′ are admis-
sible double pants decompositions containing no double curves, C and C ′ are sets of disjoint
curves).

Definition 7.6 (Strong and weak curves). Let C = {c1, . . . , ck} be a set of mutually disjoint
curves on S. Each curve c ∈ C appears two times in the boundary of S \C. We say that c is
a strong curve of C if two copies of c appear in two different connected components of S \C.
Otherwise, we say that c is weak.

We denote by Cstrong ⊂ C the subset of all strong curves.

We denote by S1, . . . , Sl the connected components of S\C. By Ŝi we denote the connected

component of S \ Cstrong corresponding to the component Si of S \ C (Ŝi is obtained from
Si by gluing along the pairs of boundary components arising from the weak curves).

Definition 7.7 (Good set of curves). We say that a set C = {c1, . . . , ck} of mutually disjoint

curves on S is good if each connected component Ŝi of S \Cstrong is either a surface of positive
genus or has at least two boundary components contained in ∂S.

Let Sgood be a union of all strata SC where C is a good set.

Remark 7.8. It is easy to see that S2 ⊂ Sgood, where S2 is a union of all codimension 2 strata.

Lemma 7.9. Let C = {c1, . . . , ck} be a good set of curves. Then there exists a special double
pants decomposition DP of S such that C ⊂ DP and each curve ci ∈ C is intersected by a
unique curve of DP \ c. Moreover, collapsing any curve ci ∈ C to a nodal singularity leads
to a special double pants decomposition of the obtained nodal surface.
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Proof. We build a special double pants decomposition DP = (Pa, Pb) with a standard part
Pb such that Pb contains all strong curves of C and Pa contains all weak curves of C. We
construct the decomposition DP separately for each connected component Ŝi of S \ Cstrong.

If Ŝi is a sphere with holes, then we build the decomposition DP as shown in Fig. 7.1:
since C is a good set of curves, at least two boundary components of Ŝi do not belong to C
(the two bottom boundary components in the figure). In Fig. 7.1.a we show the part Pa of
DP , in Fig. 7.1.b we show the whole decomposition DP = (Pa, Pb), notice that each curve
of C is intersected by a unique curve of Pb.

1

2

3

4

56 7 8 9 10 11

(a)

(b)

Figure 7.1. Special double pants decomposition containing C: case Ŝi =
S0,r. The curves of C are bold, each intersects a unique other curve of DP .
The figure shows only the front part of the surface, the decomposition of the
back part is the same. The black nodes show the intersections of the conjugate
curves.

Now, suppose that Si contains at least one handle.
First, we build a standard pants decomposition P containing the set C. To do this for the

component Ŝi, we build a standard decomposition with a linear structure as in Fig. 7.2.a:
first come all handles than come all holes. Moreover, for each strong curve cj ∈ Ŝi the curve
cj is contained inside one of the handles (more precisely, first we build the curves c̃j ∈ Si

which together with both copies of cj bounds a pair of pants in Si, then in Ŝi the curve c̃j
cuts out a handle hj containing cj).

Next, we build the standard part Pb of the special decomposition DP = (Pa, Pb): we take
the standard decomposition P and for each handle hj of P we substitute the curve cj ∈ P ∩C
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by any other curve c′j ∈ hj such that |cj ∩ c
′
j | = 1 (in the handles containing no curves of C

we do nothing).
Now, we build the part Pa of the special decomposition DP = (Pa, Pb). We build the

restriction of Pa to Ŝi as it is shown in Fig. 7.2.b: namely, each of the weak curves cj ∈ C is
intersected only by a unique curve of Pa lying in the same handle as cj; each of the strong
curves is intersected only by a curve passing through the handle hi0.

The obtained decomposition DP is special: it may be transformed to a standard decom-
position by a sequence of flips as shown in Fig. 7.1 and Fig. 7.2 (we show the order of flips by
numbering the intersection points of conjugate curves). It is easy to see that collapsing any
curve ci ∈ C to a point we get a special double pants decompositions DP ′ of the obtained
nodal surface: the sequence of flips taking DP ′ to a standard decomposition almost coincide
with the corresponding sequence for DP (the only difference is that in case of strong curve
ci one needs to omit the flip in the curve conjugated to ci).

�

1
2

3 4

5

6
7

8

(a)

(b)

Figure 7.2. Special double pants decomposition containing C (the curves of
C are bold, each intersects a unique other curve of DP ). The figure shows
only the front part of the surface, the decomposition of the back part is the
same. The black nodes show the intersections of the conjugate curves.

Let DP be a special double pants decomposition of S, let C ∈ DP be a good set of curves.
Denote by Z(DP,C) the locus in T where at least one of the conjugate pairs of DP \ C is
an orthogonal pair.

Remark 7.10. Let (ai, bi) be a conjugate pair of DP and let bi ∈ C. It is easy to see that
while bi is collapsed, the angle formed up by ai and bi tends to the right angle (if lengths of
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other curves of Pb remain fixed). This implies that SC belongs to the closure of Z(DP ) in T .

Therefore, we can not hope that the set of functions l̃(DP ) will provide a local coordinate in
the whole neighborhood of a given point τ ′ ∈ SC .

Instead, we will show that for any point τ ′ ∈ SC there exists a suitable special double
pants decomposition DP such that l̃(DP ) is a local coordinate in the neighborhood of τ ′ in
SC as well as a local coordinate in almost all points of the neighborhood of τ ′ in T (more

precisely, l̃(DP ) is a local coordinate in O(τ ′) \ Z(DP ) where O(τ ′) is a neighborhood of τ ′

in T .

This motivates the following definition:

Definition 7.11 (Almost chart). Let C be a good set of curves, let SC ⊂ T be the cor-
responding stratum and let τ ′ ∈ SC be a point. An almost chart centered at τ ′ is a pair
(O(τ ′), f) where O(τ ′) ⊂ T is a neighborhood of τ ′ and f = (f1, . . . , fk) is a set of k func-
tions, k = dim T = 6g − 6 + 3n satisfying the following conditions:

1) the functions f are defined and continuous in O(τ ′);
2) f is a local coordinate in a neighborhood O′(τ ′) = O(τ ′) ∩ SC ;
3) there exists a finite set X of codimension 1 surfaces in T such that f is a local

coordinate in a neighborhood of each point τ ∈ O(τ ′) ∩ (T \X).

Lemma 7.12. Let S be a marked hyperbolic surface considered as a point of T = T (S). Let
Sgood ⊂ T be a union of the good strata. Let S′ be a nodal surface with nodal singularities,
such that the marked hyperbolic structure τ ′ of S′ belongs to Sgood.

Then there exists an admissible double pants decomposition DP of S which degenerates to
an admissible double pants decomposition DP ′ of S′ such that l̃(DP ′, C) provides an almost
chart centered in τ ′.

Proof. Since S′ belongs to Sgood, the nodal surface S′ is obtained from S by collapsing the
curves contained in some good set C.

By Lemma 7.9 there exists a special double pants decomposition DP = (Pa, Pb) with
standard part Pb, such that

(1) ci ∈ Pb for all strong curves ci of C;
(2) ci ∈ Pa for all weak curves ci of C;
(3) for each ci ∈ C the decomposition (Pa, Pb) contains a unique curve di intersecting ci.

By Lemma 7.9 by collapsing a curve ci ∈ C one obtains a special double pants decomposi-
tion of the obtained nodal surface, and, after collapsing all curves ci ∈ C, we obtain a special
double pants decomposition DP ′ of S′. Clearly, the set of functions l̃(DP,C) is defined and
continuous in a neighborhood O′ of τ ′.

Using Lemma 6.1 (as in the proof of Lemma 6.2) we may apply to DP several twists
(along the curves of Pb) so that the resulting special decomposition DP∗ = tkmcm ◦· · · ◦ tk1c1 (DP )

satisfies τ ′ /∈ Z(DP ′
∗).

Suppose that some of the twists tcj changes a curve c ∈ C. Then c ∈ Pa, so c is a
weak curve of C. The curve cj then is the curve conjugated to c in DP . Clearly, we may
substitute a degree of the twist tcj by a degree of the twist tc so that in the resulting double
pants decomposition the images of curves c and cj are not orthogonal to each other. So,
after several substitutions we transform DP∗ to a special decomposition DP∗∗ such that
τ ′ /∈ Z(DP ′

∗∗) and C ∈ DP∗∗. This implies the conditions 2) and 3) of Definition 7.11. The
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condition 1) of the same definition holds for l̃(DP∗∗, C) in some neighborhood O′(τ ′) ⊂ T
trivially. Hence, the pair (O′(τ ′), l̃(DP∗∗, C)) provides an almost chart centered at τ ′.

�

Now, consider the moduli space M = T /Mod. A local chart in a neighborhood of τ ∈ T
projects to a local chart in a neighborhood of π(τ) ∈ M (where π is a factorization by Mod)
unless τ is a hyperbolic structure with non-trivial automorphism group, or, equivalently,
unless π(τ) is an orbifold point of M. Composing this with Lemma 7.12 and Theorem 6.8
we obtain the following theorem:

Theorem 7.13. Let S be a nodal surface, let M(S) be its moduli space and let M(S) be the
Deligne-Mumford compactification of M. Let SM

good = Sgood/Mod be the union of good strata

in M. Let O be a locus of orbifold points of M, let O be the closure of O in M. Then

(1) the charts with coordinates l̃(DP,C) provide an atlas on M \ O and on SM
good \ O,

(here C is a good set and DP is an admissible double pants decomposition without
double curves);

(2) each point τ ′ ∈ SM
good \O is covered by some almost chart (O′(τ ′), l̃(DP,C));

(3) the elementary transition functions of these charts (almost charts) are inversions and
transformations induced by flips and quasi-handle-twists of double pants decomposi-
tions; each elementary transition function change only one coordinate; this unique
non-trivial transition function is algebraic;

(4) the compositions of elementary transition functions act transitively on the union of
charts and almost charts.

Remark 7.14. We do not claim that the Definition 7.7 of the good strata exhaust all the points
of ∂T (resp. ∂M) covered by the almost charts of our atlas. However, some restrictions for
the “good” points covered by the atlas are indispensable. For example, if S = S3,0 and C
is a set of three curves cutting a pair of pants out of C (see Fig. 7.3) then it is possible to
prove that in each admissible double pants decomposition DP such that C ∈ DP the set of
curves {ci ∈ DP \ C, ci ∩ C 6= ∅} contains more than three curves. Hence, after retracting
the curves of C, any decomposition DP contains less curves (of finite non-zero length) than
required. This implies that the points τ ′ ∈ SC can not be covered by any chart of our atlas.

c1 c2 c3

Figure 7.3. Example of the stratum not covered by the atlas: S = S3,0, C = {c1, c2, c3}.
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