MODULI VIA DOUBLE PANTS DECOMPOSITIONS

Anna Felikson ${ }^{1}$, Sergey Natanzon ${ }^{2}$

Abstract

We consider (local) parametrizations of Teichmüller space $\mathcal{T}_{g, n}$ (of genus g hyperbolic surfaces with n boundary components) by lengths of $6 g-6+3 n$ geodesics. We find a large family of suitable sets of $6 g-6+3 n$ geodesics, each set forming a special structure called "admissible double pants decomposition". For admissible double pants decompositions containing no double curves we show that the lengths of curves contained in the decomposition determine the point of $\mathcal{T}_{g, n}$ up to finitely many choices. Moreover, these lengths provide a local coordinate in a neighborhood of all points of $\mathcal{T}_{g, n} \backslash X$ where X is a union of $3 g-3+n$ hypersurfaces. Furthermore, there exists a groupoid acting transitively on admissible double pants decompositions and generated by transformations exchanging only one curve of the decomposition. The local charts arising from different double pants decompositions compose an atlas covering the Teichmüller space. The gluings of the adjacent charts are coming from the elementary transformations of the decompositions, the gluing functions are algebraic. The same charts provide an atlas for a large part of the boundary strata in Deligne-Mumford compactification of the moduli space $\mathcal{M}_{g, n}$.

Keywords: Moduli spaces, Hyperbolic surfaces, Pants decompositions
MSC: 32G15, 57M50

Introduction

Consider a hyperbolic structure on a closed oriented surface $S_{g, n}, 2 g+n>2$, of genus g with n boundary components. In [5], Fricke and Klein proved that in case $n=0$ the Teichmüller space $\mathcal{T}=\mathcal{T}_{g, n}$ for such a surface is homeomorphic to ($6 g-6$)-dimensional Euclidean space. Moreover, they specified a point of Teichmüller space by the lengths of closed geodesics contained in some (rather large) set.

After Fricke and Klein many authors investigated various sets of global parameters on the Teichmüller space. Fenchel and Nielsen [2] introduced "length-twists" coordinates which in

The work is partially supported by RFBR grant 11-01-00289-a. Research of the first author is supported by DFG grant FE-1241/2-1. Research of the second author is partially supported by grants RFBR 10-01-00678, NSh 8462.2010.1, the Russian Federation Government Grant No. 2010-220-01-077.
${ }^{1}$ Independent University of Moscow, Current address:Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany E-mail: a.felikson@jacobs-university.de
${ }^{2}$ Corresponding author, National Research University Higher School of Economics, 7 Vavilova Str. Moscow, +74954566183 ,
second address: Belozersky Institute of Physico-Chemical Biology, Moscow State University, third address: Institute Theoretical and Experimental Physics
E-mail: natanzons@mail.ru
case of closed surface consist of $3 g-3$ lengths of mutually non-intersecting geodesics and $3 g-3$ twist parameters along them. Natanzon [10] described a convenient set of parameters (including both lengths of geodesics and parameters of other nature), allowing to recover the Fuchsian group of the surface. A lot of efforts were spent on descriptions of purely length global parameters, especially, for the question of minimal possible number of geodesics whose lengths are sufficient to serve as a global coordinate on the Teichmüller space. First, it was shown that $9 g-9$ length of geodesics may serve as global parameters in $\mathcal{T}_{g, 0}$ (see [15]). Later, Wolpert [16] used the construction of Fricke and Klein to show that $6 g-6$ lengths are sufficient for a local coordinate in $\mathcal{T}_{g, 0}$ (but not for a global one). It was natural to expect that $6 g-6$ lengths of geodesics can serve as a global coordinate on $\mathcal{T}_{g, 0}$, however, Wolpert [17] showed that $\mathcal{T}_{g, 0}$ can not be parametrized globally by lengths of $6 g-6$ geodesics. Seppälä and Sorvali [13] presented a global parameterization of $\mathcal{T}_{g, 0}$ by $6 g-4$ length functions (as a by-product they also gave an example of $6 g-6$ length parameters defining the surface up to at most 4 possibilities). Finally, in [12] Schmutz obtained a global parameterization by $6 g-5$ lengths of geodesics, which is due to [17] is minimal possible. Another example of such a minimal parameterization is given in [6] by Hamenstädt. In the case of surfaces with cusps or holes the situation is easier: the $(6 g-6+2 m+3 n)$-dimensional Teichmüller space of surfaces with m cusps and n holes may be globally parametrized by $(6 g-6+2 m+3 n)$ length parameters (see [13], [12] and [6]). Hamenstädt [7] also showed that such a parametrization may be extended to the Thurston boundary of \mathcal{T}.

In this paper, we consider the Teichmüller space $\mathcal{T}=\mathcal{T}_{g, n}$ of marked hyperbolic structures on an oriented surface $S=S_{g, n}, 2 g+n>2$ of genus g with n geodesic boundary components. The dimension of this space is $6 g-6+3 n$, so we are interested in sets of $6 g-6+3 n$ curves on S whose lengths parametrize \mathcal{T}. We build a large family of the sets of $6 g-6+3 n$ curves such that the lengths of curves from each set determine a point of \mathcal{T} up to finitely many possibilities and provide a local coordinate in neighborhoods of most points of \mathcal{T}, the local charts of this type compose an atlas on \mathcal{T}, the transition functions between the charts are algebraic. Moreover, the same atlas works for regular points of the moduli the space $\mathcal{M}=\mathcal{T} / \operatorname{Mod}$ (where Mod is a modular group) and covers also a large part of the Deligne-Mumford compactification of \mathcal{M}.

In more details, we build a large family of the sets of $6 g-6+3 n$ curves on S satisfying the following properties:

1. (Parametrizing property). The lengths of the curves of each set determine a point of \mathcal{T} up to finitely many choices; they provide a local coordinate in the neighborhoods of almost all points of \mathcal{T}.
2. (Double pants decomposition property). Each set compose an admissible double pants decomposition defined and studied recently in [1]; it consists of two pants decompositions (where a pants decomposition is a set of curves decomposing the surface into "pairs of pants", i.e. into spheres with 3 holes). Each pants decomposition defines a handlebody with S as the boundary, so, two pants decompositions define a Heegaard splitting of some 3-manifold M^{3}. The admissible double pants decompositions are ones corresponding to Heegaard splittings of the 3 -sphere (there exists also an equivalent combinatorial definition which is used throughout the proofs).
3. (Groupoid action). There exists a groupoid acting on admissible double pants decompositions transitively and generated by simple transformations of two types (called "flips" and "handle-twists"), each of the generating transformations changes exactly
one curve of a double pants decomposition. The length of the new curve is an algebraic function of the lengths of the initial curves.
4. (Atlas on \mathcal{T} with algebraic transition functions). The charts arising from admissible double pants decompositions compose an atlas on \mathcal{T}; the transition functions between the charts are algebraic.
5. (Extension to most strata of Deligne-Mumford compactification). Let Mod be a modular group of S and let $\mathcal{M}=\mathcal{T} / \operatorname{Mod}$ be the corresponding moduli space. Each point of the Deligne-Mumford compactification $\overline{\mathcal{M}}$ of \mathcal{M} is a boundary point for some chart coming from a double pants decomposition. Moreover, for most points of $\overline{\mathcal{M}}$ (including almost all points of the strata of minimal codimension) there exists a chart coming from a double pants decomposition and covering a neighborhood of the point in the corresponding stratum as well as covering almost all point in the neighborhood of the point in $\overline{\mathcal{M}}$.
More precisely, let $D P$ be an admissible double pants decomposition whose curves are closed geodesics in S. In principle, two pants decompositions contained in $D P$ may have a common curve (called a double curve), we will be interested in double pants decompositions containing no double curves. Let $l(D P)$ be the ordered set of lengths of curves composing $D P$. Then we prove the following:

Theorem A. (see Theorem 4.11 below). Let $D P$ be an admissible double pants decomposition without double curves. Then $D P$ together with the ordered set of lengths $l(D P)=$ $\left\{l\left(c_{i}\right) \mid c_{i} \in D P\right\}$ is a local coordinate in $\mathcal{T} \backslash Z$ where Z is a union of finitely many codimension 1 subsurfaces in \mathcal{T} (each homeomorphic to a codimension 1 disk).

Moreover, we show also
Theorem B. (see Theorem 5.1 below). Let $D P$ be an admissible double pants decomposition containing no double curves. Then $l(D P)$ determines a point of \mathcal{T} up to finitely many choices.

Composing Theorems A and B with the fact (see [1]) that there exists a groupoid acting on admissible double pants decompositions transitively, we derive the following

Theorem C. (see Theorem 6.8 below). (1) The charts with coordinates $l(D P)$, where $D P$ is an admissible double pants decomposition without double curves, provide an atlas on Teichmüller space \mathcal{T}.
(2) The elementary transition functions of these charts are induced by elementary transformations of double pants decompositions, each elementary transition function change only one coordinate. This unique non-trivial transition function is algebraic.
(3) The compositions of elementary transition functions act transitively on the charts.

The entire construction looks similar to one in the theory of cluster algebras arising from triangulated surfaces ([11], [3], [4]). In the latter, the hyperbolic metrics are encoded by suitably defined lengths of the arcs of triangulations (called lambda lengths), the set of lengths of arcs in one triangulation composing together Penner coordinates on the decorated Teihmüller space. The groupoid generated by flips of triangulations acts transitively on the triangulations, each of the flips changes exactly one of the arcs in the triangulation, so, changing exactly one component of the coordinates. In addition, in case of cluster algebras there are explicit formulas expressing changes in combinatorics of the triangulation (exchange matrices) and transition functions between the charts (exchange relations). For the case of pants decompositions explicit formulas are not known.

It is worth to mention that a single set of $6 g-6+3 n$ length (local) coordinates on \mathcal{T} may be easily obtained from Fenchel-Nielsen coordinates in the following way: for each curve c_{i} in a pants decomposition one takes the lengths of c_{i} and the length of c_{i}^{\prime}, where c^{\prime} is obtained from c_{i} by a flip. However, the coordinates obtained are not symmetric (have distinct geometrical origin), and the are not subject to transitive action of a groupoid.

The structure of double pants decomposition is convenient to work with Deligne-Mumford compactification of the moduli space. Let C be a set of mutually disjoint simple curves on S. Contracting the curves contained in C we obtain a point of the compactification, on the other hand, we stay in any chart arising from a double pants decomposition $D P$ such that $C \in D P$ (more precisely, the limit point belongs to the boundary of the chart), see Theorem 7.1 and Corollary 7.2.

Furthermore, contraction of the curves of C turns a conveniently chosen double pants decomposition $D P$ into a double pants decomposition of the obtained surface with nodal singularities (provided that $C \in D P$ and each curve of C is intersected by a unique other curve of $D P$). There are some cases when such a convenient decomposition does not exist, however, for the most configuration of curves C we show that it does exist. In this case we say that the set C is good and the stratum $\mathcal{S}_{C} \in \overline{\mathcal{M}}$ is good (here S_{C} is the set of nodal surfaces obtained by shrinking all curves of C, \mathcal{M} is the moduli space and $\overline{\mathcal{M}}$ is its Deligne-Mumford compactification). In particular, all strata of minimal codimension (i.e. of codimension 2) are good strata. For a good set of curves C we define another length-type coordinates as $\tilde{l}(D P, C)=\left\{l\left(c_{i}\right), \left.\frac{1}{l\left(c_{j}\right)} \right\rvert\, c_{i} \in C, c_{j} \in D P \backslash C\right\}$. We show that the functions $\tilde{l}(D P, C)$ produce almost charts covering the good strata of $\overline{\mathcal{M}}$, i.e. given a point $\tau^{\prime} \in \mathcal{S}_{C}$ in a good stratum $\frac{\mathcal{S}_{C}}{\mathcal{M}}$ there exists an admissible double pants decomposition $D P$ and a neighborhood $O\left(\tau^{\prime}\right) \subset \overline{\mathcal{M}}$ in a natural topology such that $\tilde{l}(D P, C)$ produce a local coordinate in $O\left(\tau^{\prime}\right) \cap \mathcal{S}_{C}$ and give a local coordinate in some set $O\left(\tau^{\prime}\right) \backslash Z \in \overline{\mathcal{M}}$, where Z is a union of finitely many codimension 1 subsurfaces in \mathcal{M}. More precisely, we prove the following

Theorem D. (see Theorem 7.13 below). Let S be a nodal surface, let $\mathcal{M}(S)$ be its moduli space and let $\overline{\mathcal{M}}(S)$ be Deligne-Mumford compactification of \mathcal{M}. Let $\mathcal{S}_{\text {good }}^{\mathcal{M}}=\mathcal{S}_{\text {good }} / \operatorname{Mod}$ be the union of good strata in \mathcal{M}. Let O be a locus of orbifold points of \mathcal{M}, let \bar{O} be the closure of O in $\overline{\mathcal{M}}$. Then
(1) the charts with coordinates $\tilde{l}(D P, C)$ provide an atlas on $\mathcal{M} \backslash O$ and on $\mathcal{S}_{\text {good }}^{\mathcal{M}} \backslash \bar{O}$, (here C is a good set and $D P$ is an admissible double pants decomposition without double curves);
(2) each point $\tau^{\prime} \in S_{\text {good }}^{\mathcal{M}} \backslash \bar{O}$ is covered by some almost chart $\left(O^{\prime}\left(\tau^{\prime}\right), \tilde{l}(D P, C)\right)$;
(3) the elementary transition functions of these charts (almost charts) change only one coordinate, this unique non-trivial transition function is algebraic;
(4) the compositions of elementary transition functions act transitively on the union of charts and almost charts.

The paper is organized as follows. In Section 1, we recall from [1] the definition of double pants decompositions and their properties. In Sections 2 and 3, we discuss Fenchel-Nielsen coordinates on \mathcal{T}, and use them to prove some technical lemmas. In Section 4, we prove Theorem A, i.e. we prove that double pants decompositions induce some local charts on \mathcal{T} (see Theorem 4.11). Section 5 is devoted to the proof of Theorem B (see Theorem 5.1). In

Section 6, we collect the above mentioned local charts into an atlas on \mathcal{T}, this leads to Theorem C (see Theorem 6.8). Finally, in Section 7 we consider Deligne-Mumford compactification of the moduli space and prove Theorem D (see Theorem 7.13).

1. Preliminaries I: double pants decompositions

In this section we recall from [1] the definition of double pants decompositions and their properties.
1.1. Pants decompositions. Let $S=S_{g, n}$ be an oriented closed surface of genus $g \geq 0$ with n boundary components. We assume $2 g+n>2$, which excludes spheres with less than 3 holes and the torus. The surface S is fixed throughout the paper.

A curve con S is an embedded closed non-contractible non-selfintersecting curve considered up to a homotopy of S.

Given a set of curves we always assume that there are no "unnecessary intersections", so that if two curves of this set intersect each other in k points then there are no homotopy equivalent pair of curves intersecting in less than k points.

For a pair of curves c_{1} and c_{2} we denote by $\left|c_{1} \cap c_{2}\right|$ the number of (geometric) intersections of c_{1} with c_{2}.
Definition 1.1 (Pants decomposition). A pants decomposition of S is a set of (non-oriented) mutually disjoint curves $P=\left\{c_{1}, \ldots, c_{k}\right\}$ decomposing S into pairs of pants (i.e. into spheres with 3 holes). In this paper, all boundary curves of S are considered as a part of each pants decomposition of S.

It is easy to see that any pants decomposition of $S_{g, n}$ consists of $3 g-3+2 n$ (where $3 g-3+n$ curves decompose S and n curves are boundary curves). Note, that we do allow self-folded pants, two of whose boundary components are identified in S. A surface which consists of one self-folded pair of pants will be called handle.

A curve $c \in P$, is regular if $c \notin \partial S$ and c is not a self-identified boundary curve of the self-folded pair of pants (i.e. if it is not lying inside a handle cut out by a curve $c^{\prime} \in P$).
Definition 1.2 (Flip). Let $P=\left\{c_{1}, \ldots, c_{3 g-3+2 n}\right\}$ be a pants decomposition. Define a flip of P in a regular curve c_{i} as a replacing of $c_{i} \subset P$ by any curve c_{i}^{\prime} satisfying the following properties:

- c_{i}^{\prime} does not coincide with any of $c_{1}, \ldots, c_{3 g-3+2 n}$;
- $\left|c_{i}^{\prime} \cap c_{i}\right|=2$;
- $c_{i}^{\prime} \cap c_{j}=\emptyset$ for all $j \neq i$.

See Fig. 1.1 for an example of a flip. Clearly, an inverse operation to a flip is also a flip (so that the set of flips compose a groupoid acting on pants decompositions).
Definition 1.3 (Standard decomposition). A decomposition P of $S_{g, n}$ is standard if P contains g curves c_{1}, \ldots, c_{g} such that $c_{i}, i=1, \ldots, n$, cuts out a handle.
1.2. Double pants decompositions. Let $P=\left\{c_{1}, \ldots, c_{3 g-3+2 n}\right\}$ be a pants decomposition. A Lagrangian plane $\mathcal{L}(P) \subset H_{1}(S, \mathbb{Z})$ is a subspace spanned by the homology classes $h\left(c_{i}\right)$, $i=1, \ldots, 3 g-3+2 n$ (here c_{i} is taken with any orientation).

Two Lagrangian planes $\mathcal{L}\left(P_{1}\right)$ and $\mathcal{L}\left(P_{2}\right)$ are in general position if $\mathcal{L}_{1} \cap \mathcal{L}_{2}=0$ and $H_{1}(S, \mathbb{Z})=\left\langle\mathcal{L}_{1}, \mathcal{L}_{2}\right\rangle$ (where $\left\langle\mathcal{L}_{1}, \mathcal{L}_{2}\right\rangle$ denotes the sublattice of $H_{1}(S, \mathbb{Z})$ spanned by \mathcal{L}_{1} and $\left.\mathcal{L}_{2}\right)$.

Figure 1.1. Flips of pants decomposition.

Definition 1.4 (Double pants decomposition). A double pants decomposition DP $=\left(P_{a}, P_{b}\right)$ is a pair of pants decompositions P_{a} and P_{b} of the same surface such that the Lagrangian planes $\mathcal{L}_{a}=\mathcal{L}\left(P_{a}\right)$ and $\mathcal{L}_{b}=\mathcal{L}\left(P_{b}\right)$ spanned by these pants decompositions are in general position. P_{a} and P_{b} are called parts of $D P$.

See Fig. 1.2 for an example of a double pants decomposition.

Figure 1.2. A double pants decomposition $\left(P_{a}, P_{b}\right)$.

There are several natural transformations on the set of double pants decompositions:

- flips of P_{a};
- flips of P_{b};
- handle-twists (see Definition 1.5 below).

Definition 1.5 (Handle-twists). Given a double pants decomposition $D P=\left(P_{a}, P_{b}\right)$ we define an additional transformation which may be performed if both parts P_{a} and P_{b} contain the same curve $a_{i}=b_{i}$ separating the same handle \mathfrak{h}, see Fig. 1.3(a). Let $a \in \mathfrak{h}$ and $b \in \mathfrak{h}$ be the only curves from P_{a} and P_{b} respectively. Then a handle-twist $t_{a}(b)$ (respectively, $t_{b}(a)$) is a Dehn twist along a (respectively, b) in any of two directions (see Fig. 1.3(b)).

Figure 1.3. Handle-twists: (a) Double self-folded pair of pants; (b) The same pair of pants after a handle-twist $t_{a}(b)$

Notice that both flips and handle-twists are reversible transformations, so that flips and handle-twists generate a groupoid acting on the set of double pants decompositions.
Definition 1.6 (Double curve). A curve $c \in\left(P_{a}, P_{b}\right)$ is double if $c \in\left(P_{a} \cap P_{b}\right)$ and $c \notin \partial S$.
Definition 1.7 (Standard decomposition). A double pants decomposition (P_{a}, P_{b}) of $S_{g, n}$ is standard if there exist g double curves $c_{1}, \ldots, c_{g} \in\left(P_{a}, P_{b}\right)$ such that c_{i} cuts out of S a handle \mathfrak{h}_{i}.

A standard double pants decomposition $\left(P_{a}, P_{b}\right)$ is strictly standard if $\left(P_{a}, P_{b}\right)$ contains $2 g-3+n$ double curves (i.e. $c \in\left\{P_{a} \cup P_{b}\right\} \backslash\left\{P_{a} \cap P_{b}\right\}$ if and only if c is contained inside some handle).

See Fig. 1.4 for an example of a standard double pants decomposition (this decomposition may be turned into a strictly standard one in one flip).

Figure 1.4. A standard double pants decomposition $\left(P_{a}, P_{b}\right)$.

Definition 1.8 (Admissible decomposition). A double pants decomposition $\left(P_{a}, P_{b}\right)$ is admissible if it is possible to transform $\left(P_{a}, P_{b}\right)$ to a standard pants decomposition by a sequence of flips.

For example, the decomposition shown in Fig. 1.2 is admissible.
The following theorem is the main result of [1].
Theorem 1.9 ([1]). A groupoid generated by fips and handle-twists acts transitively on admissible double pants decompositions of $S=S_{g, n}$ (for any (g, n) such that $2 g+n>2$).

Remark 1.10 (Admissible double pants decompositions and Heegaard splitting of \mathbb{S}^{3}). A set of admissible double pants decompositions have an invariant topological description in terms of Heegaard splittings of 3 -manifolds. For each pants decomposition P of S one may construct a handlebody S_{+}such that S is the boundary of S_{+}and all curves of P are contractible inside S_{+}. A union of two pants decompositions of the same surface define two different handlebodies bounded by S. Attaching this handlebodies along S one obtains a Heegaard splitting of some 3 -manifold $M^{3}(D P)$. It is shown in [1] that a pants decomposition $D P$ is admissible if and only if $M^{3}(D P)=\mathbb{S}^{3}$, where \mathbb{S}^{3} is a 3 -sphere.

We will also use the following result proved in [1, Lemma 6.1].
Proposition 1.11 ([1]). Let $S=S_{g, n}, 2 g+n>2$, and $\operatorname{Mod}(S)$ be its modular group. Let $\left(P_{a}, P_{b}\right)$ be an admissible double pants decomposition without double curves. Then $\gamma \in$ $\operatorname{Mod}(S)$ fixes $\left(P_{a}, P_{b}\right)$ if and only if $\gamma=i d$.

2. Preliminaries II: coordinates on Teichmüller space

Let $S=S_{g, n}$ be a hyperbolic surface of genus g with n boundary components. Each boundary component is assumed to be a geodesic of finite length.

A Teichmüller space $\mathcal{T}=\mathcal{T}_{g, n}$ is a parameter space of marked hyperbolic metrics on the surface $S_{g, n}$. For the marking on S we will usually use admissible double pants decompositions containing no double curves (this provides a correct marking since any elements $\gamma \neq e$ of the modular group $\operatorname{Mod}\left(S_{g, n}\right)$ acts non-trivially on the decomposition, see [1, Lemma 6.1]).

We will use Fenchel-Nielsen parameterization of the Teichmüller space. We shortly explain the parametrization below and refer to [14] for the details.

To build the parameterization one chooses a pants decomposition P of S. Each pair of pants is uniquely determined by the lengths of its boundary curves. To encode the concrete hyperbolic structure one need also to now how the adjacent pairs of pants a sewed together: one can choose an arbitrary way to attach them, and then rotate one piece along another by any real angle. More precisely, to determine the angle of the rotation one does the following:

1) for each pair of pants $p^{k} \in P$ one chooses three disjoint segments $s_{i j}^{k}, i, j \in\{1,2,3\}$ orthogonal to the boundary components b_{i}^{k} and b_{j}^{k} of p^{k} (so that p^{k} is decomposed into two right-angled hexagons);
2) then one fixes some way to attach the adjacent pairs of pants p^{k} and $p^{k^{\prime}}$ so that the segments $s_{i j}^{k}$ and $s_{i^{\prime} j^{\prime}}^{k^{\prime}}$ intersect the curve $p^{k} \cap p^{k^{\prime}}$ at the same points, this will produce some special gluing of pairs of pants, all other gluings (with other angles of rotation of p^{k} with respect to $p^{k^{\prime}}$) will be compared with this special gluing;
3) for arbitrary gluing the angles of rotation are compared with the chosen special gluing, when the angle is changed by 2π one obtains the same hyperbolic structure on the surface, but the different point of the Teihmüller space.
So, the Fenchel-Nielsen coordinates on \mathcal{T} build from the pants decomposition P consist of $3 g-3+2 n$ length parameters $l\left(c_{i}\right)$ (lengths of all the curves $c_{i} \in P$ including the boundary curves of S) and $3 g-3+n$ angle parameters $\alpha\left(c_{j}\right)$ (angles along all non-boundary curves $\left.c_{j} \in P, c_{j} \notin \partial S\right)$. We denote

$$
F N(P)=\left\{l\left(c_{i}\right), \alpha\left(c_{j}\right) \mid c_{i} \in P ; \quad c_{j} \in P, c_{j} \notin \partial S\right\}
$$

We will also assume that the Dehn twist along c_{j} changes $\alpha\left(c_{j}\right)$ by 2π.
The construction establishes the homeomorphism between \mathcal{T} and $\mathbb{R}_{>0}^{3 g-3+2 n} \times \mathbb{R}^{3 g-3+n}$ (where $\mathbb{R}_{>0}$ stays for positive real numbers).

Remark 2.1. After the Teichmüller space \mathcal{T} is introduced using any given pants decomposition P_{0} (or even using a marking of other type), one can choose any pants decomposition P to introduce the coordinates $F N(P)$ on the same space \mathcal{T}.

Our aim is to transform Fenchel-Nielsen coordinates to coordinates containing only length parameters.

Definition 2.2 (Locally parametrizing decomposition). We say that a double pants decomposition $D P$ is locally parametrizing at the point $\tau \in \mathcal{T}$ if the functions $l(D P)=\{l(c) \mid c \in D P\}$ provide a local homeomorphism from a neighborhood of τ to a neighborhood of some point in $\mathbb{R}^{6 g-6+3 n}$. By a chart $\mathfrak{C}(D P)$ we mean a pair $(X, l(D P))$ where X is the set of points $\tau \in \mathcal{T}$ such that $D P$ is locally parametrizing at τ.

Our first aim is to prove that admissible double pants decompositions are locally parametrizing. As an intermediate technical step in the proof we will use mixed coordinates, containing some angle-parameters (but less than Fenchel-Nielsen coordinates).

Definition 2.3 (Mixed coordinates). Let $D P=\left(P_{a}, P_{b}\right)$ be a double pants decomposition, possibly with some double curves. Let $F N\left(P_{b}\right)$ be some Fenchel-Nielsen coordinates build from P_{b}. Denote by mix $\left(D P, F N\left(P_{b}\right)\right)$ the following set of functions:

$$
\operatorname{mix}\left(D P, F N\left(P_{b}\right)\right)=\left\{l(c), \alpha\left(c^{\prime}\right) \mid c \in D P, c^{\prime} \in P_{a} \cap P_{b}\right\}
$$

where $\alpha\left(c^{\prime}\right)$ is the corresponding angle coordinate in $F N\left(P_{b}\right)$.

3. Some properties of length functions

In this section we prove several facts from hyperbolic geometry. In particular, Lemmas 3.4 and 3.6 will be crucial for the construction of locally parametrizing double pants decompositions. Lemmas 3.1-3.3 are preparatory. We will denote the hyperbolic plane by \mathbb{H}^{2}.
Lemma 3.1. Let $S=S_{0,4}$, let $c, d \in S$ be two closed curves $|d \cap c|=2$. Let P be a pants decomposition of $S, c \in P$. Suppose that $d^{\prime} \in S$ is a curve obtained from c by a flip of P. Then $d^{\prime}=t_{c}^{k}(d)$ for some integer k, where t_{c} is a Dehn twist along c.

The lemma follows immediately from [1, Lemma 1.16].
Lemma 3.2. Let $p \in \mathbb{H}^{2}$ be a line separating points O and O^{\prime}. Given the distances from p to O and O^{\prime}, the distance $O O^{\prime}$ is a monotonic function on the distance $P P^{\prime}$, where P and P^{\prime} are the orthogonal projections of points O and O^{\prime} to p.
Proof. Suppose that the points P and O are fixed, and the point P^{\prime} (together with O^{\prime}) glide away from P, see Fig. 3.1.b. Then the point $X=O O^{\prime} \cap p$ glide away from P which implies that the distance $O X$ grows monotonically when $P P^{\prime}$ increases. By the similar reason $O^{\prime} X$ grows, and hence, $O O^{\prime}$ grows monotonically.

Figure 3.1. To the proof of Lemma 3.2

Lemma 3.3. Let $S=S_{0,3}$ be a three-holed sphere with a boundary $\partial S=c_{1} \cup c_{2} \cup c_{3}$, and let $s_{i j}$ be a segment orthogonal to c_{i} and c_{j}, for $i \neq j, i, j \in\{1,2,3\}$. Then the segments $s_{12}, s_{13}, s_{2,3}$ decompose S into two congruent right-angled hexagons.
Proof. It is clear that the segments $s_{i j}$ decompose S into two right-angled hexagons. Since a right-angled hexagon is determined (up to an isometry) by the lengths of three non-adjacent sides (the lengths of $s_{12}, s_{13}, s_{2,3}$), the hexagons are congruent.

If the curves $a, b \in S$ are orthogonal to each other we will write " $a \perp b$ ".
Lemma 3.4. Let $S=S_{1,1}$ be a handle with a boundary curve c, let $a, b \subset S$ be two curves $|a \cap b|=1$. Then the set of functions $\bar{x}=(l(a), l(b), l(c))$ is a local coordinate on $\mathcal{T} \backslash X$ where $X=\{\tau \in \mathcal{T} \mid a \perp b\}$. Moreover, \bar{x} determines the point $\tau \in \mathcal{T}$ up to at most two possibilities.

Proof. Shortly speaking, the coordinates $\bar{x}=(l(a), l(b), l(c))$ will be produced from FenchelNielsen coordinates. More precisely, we fix Fenchel-Nielsen coordinates $F N(P)=(l(a), \alpha(a), l(c))$ arising from pants decomposition $P=\{a, c\}$. We fix some values of $l(a)$ and $l(c)$ and denote by α_{0} the value of $\alpha(a)$ at the point where $l(a)$ and $l(c)$ have the chosen values and a is orthogonal to b. We will show that $l(b)$ is a monotonic function on the absolute value $\left|\alpha(a)-\alpha_{0}\right|$, which will imply all statements of the lemma. Below we explain this in more details.

First, we cut S along a and obtain a pair of pants S^{\prime} with three boundary components c, a and a^{\prime}. For each of the three pairs of boundary components of $S^{\prime \prime}$ we draw a segment orthogonal to both of these two components. Denote these segments by $s_{c, a}, s_{c, a^{\prime}}, s_{a, a^{\prime}}$, see Fig. 3.2.a. The three segments decompose S^{\prime} into two right-angled hexagons H_{1} and H_{2}. Similarly, together with the curve a the three segments decompose the initial handle S into two hexagons.

Consider the covering of S by hyperbolic plane. We are interested in the tiling of the plane by the images of H_{1} and H_{2}. Notice that the copies of H_{1} and H_{2} adjacent along the image of $s_{a, a^{\prime}}$ (or $s_{c, a}$ or $s_{c, a^{\prime}}$) have this side in common, while the gluing along the images of a and a^{\prime} depends on the angle parameter $\alpha(a) \in F N(P)$. More precisely, when $\alpha(a)=\alpha_{0}$ the adjacent along a hexagons have a common side, otherwise the hexagons are shifted one along another as in Fig. 3.2.b. With growth of $\alpha(a)$ the hexagons in one row glide monotonically along the hexagons of the other row. We denote by p and p^{\prime} the lines separating the rows.

Now, consider the curve $b \in S,|b \cap a|=1$. First, suppose that $b \perp a$, i.e. the image \hat{b} of b in the hyperbolic plane coincide with the image $A A^{\prime}$ of $s_{a, a^{\prime}}$. Now, we increase $\alpha(a)$ and look at the image $\hat{b} \in \mathbb{H}^{2}$ of b : since b is a closed geodesic on S, \hat{b} is a line forming the same angles with p and p^{\prime}. This implies that \hat{b} passes through the midpoint O of $A A^{\prime}$. Hence, $A Y=A^{\prime} Y^{\prime}$, where $Y=\hat{b} \cap p$ and $Y^{\prime}=\hat{b} \cap p^{\prime}$. Furthermore, the hexagon H_{2}^{\prime} is shifted with respect to the hexagon H_{2} to the distance $\rho=l(a) \frac{\left(\alpha(a)-\alpha_{0}\right)}{2 \pi}$. Denote by T the vertex of H_{2}^{\prime} projecting to the same point of S as A^{\prime} (as in Fig. 3.2.b), then $T Y=A Y=A^{\prime} Y^{\prime}$. Hence, $A Y=1 / 2 \rho=l(a) \frac{\left(\alpha(a)-\alpha_{0}\right)}{4 \pi}$. The same formula holds for any positive value of $\left(\alpha(a)-\alpha_{0}\right)$ as well as for any negative one (in the latter case the point $Y \in l$ lies on the other side with respect to A).

This implies that the distance $Y Y^{\prime}=l(b)$ grows monotonically with the growth of $\mid \alpha(a)-$ $\alpha_{0} \mid$:

$$
\cosh \frac{Y Y^{\prime}}{2}=\cosh O Y=\cosh O A \cosh A Y=\cosh O A \cosh \left(l(a) \frac{\alpha(a)-\alpha_{0}}{4 \pi}\right)
$$

Hence, $\left|\alpha(a)-\alpha_{0}\right|$ may be recovered from $l(b)$. So, given the lengths $(l(a), l(b), l(c))$ one may find the Fenchel-Nielsen coordinates $F N(P)$ up to two possibilities. In particular, in the neighborhood of a point $\tau \in \mathcal{T}$ where a is not orthogonal to b, the sign of $\left(\alpha(a)-\alpha_{0}\right)$ does not changes, which implies that the functions $(l(a), l(b), l(c))$ form a local coordinate in $\mathcal{T} \backslash X, X=\{\tau \in \mathcal{T} \mid a \perp b\}$.

Figure 3.2. Length coordinates on a handle

Remark 3.5. Given Fenchel-Nielsen coordinates $(l(a), \alpha(a), l(c))$ on the handle, for each pair of lengths $l_{0}(a)$ and $l_{0}(c)$ there exists a unique angle $\alpha_{0}(a)$ such that a is orthogonal to b.

Lemma 3.6. Let $S=S_{0,4}$ be a sphere with four holes, with boundary curves $c_{1}, c_{2}, c_{3}, c_{4}$. Let $a \in S$ be a closed geodesic and let $b \in S$ be a closed geodesic obtained from the curve a by a flip. Then
(1) the angle formed by a and b is of the same size for both intersections of a and b;
(2) the set of functions $\bar{x}=\left(l(a), l(b), l\left(c_{1}\right), l\left(c_{2}\right), l\left(c_{3}\right), l\left(c_{4}\right)\right)$ is a local coordinate on $\mathcal{T} \backslash X$ where $X=\{\tau \in \mathcal{T} \mid a \perp b\} ;$
(3) \bar{x} determines the point $\tau \in \mathcal{T}$ up two at most two possibilities.

Proof. The idea of the proof is the same as in the proof of Lemma 3.4: the coordinate \bar{x} is obtained from Fenchel-Nielsen coordinates $F N(P)$ built from pants decomposition $P=$ $\left\{a, c_{1}, c_{2}, c_{3}, c_{4}\right\}$. We show that given the values of $\left(l(a), l\left(c_{1}\right), l\left(c_{2}\right), l\left(c_{3}\right), l\left(c_{4}\right)\right)$ the length $l(b)$ is a monotonic function on the absolute value $\left|\alpha(a)-\alpha_{0}\right|$, where α_{0} is the value of $\alpha(a) \in$ $F N(P)$ at the point of \mathcal{T} such that a is orthogonal to b (and the values of $\left(l(a), l\left(c_{1}\right), l\left(c_{2}\right), l\left(c_{3}\right), l\left(c_{4}\right)\right)$ are the chosen ones). Hence, $l(b)$ determines $\alpha(a)$ up to 2 possibilities. Moreover, in the neighborhood of a point $\tau \in \mathcal{T}$ where $\left|\alpha(a)-\alpha_{0}\right| \neq 0$, the sign of $\left(\alpha(a)-\alpha_{0}\right)$ is determined uniquely by the sign at τ.

In more details, the curve a decompose S into two pairs of pants, and each pair of pants is decomposed into two right-angled hexagons (respectively, by the segments $s_{a c_{1}}, s_{c_{1} c_{2}}, s_{c_{2} a}$ and $s_{a^{\prime} c_{3}}, s_{c_{3} c_{4}}, s_{c_{4} a^{\prime}}$ orthogonal to a pair of boundary components), Fig. 3.3.a. The images of four right-angled hexagons tile the covering hyperbolic plane: two hexagons adjacent by the image of the side a are shifted by the distance $\rho=l(a) \frac{\alpha(a)-\alpha_{0}}{2 \pi}$ along the line containing the images of a, see Fig. 3.3.b.

Denote by O and O^{\prime} the midpoints of images of $s_{c_{1}, c_{2}}$ and $s_{c_{3}, c_{4}}$. Notice that the symmetry in the point O preserves the tiling of the hyperbolic plane by hexagons (compare with Lemma 3.3). The same holds for the symmetry in O^{\prime}. Consider a line $O O^{\prime}$ and its intersection with the images of the curve a. It is easy to see that all angles made by $O O^{\prime}$ and images of a are equal. Furthermore, $O O^{\prime}$ intersects the images of $s_{c_{1}, c_{2}}$ and $s_{c_{3}, c_{4}}$ always in
midpoints (to see that consider an image $O^{\prime \prime}$ of O with respect to the symmetry in O^{\prime} : it lies on $O O^{\prime}$ and in the midpoint of some image of $s_{c_{1} c_{2}}$, then consider the image of O^{\prime} with respect to a symmetry in $O^{\prime \prime}$ and so on). This implies that the line $O O^{\prime}$ is the union of images of some closed geodesic $c \in S,|c \cap a|=2$. Hence, c may be obtained from a by a flip. Notice that c intersects a in two points, forming two angles of the same size. The length $l(c)=2 \cdot O O^{\prime}$ increases as $\left|\alpha(a)-\alpha_{0}\right|$ increases (the distances from the points O and O^{\prime} to the line p remain constant, but one point glide along p with respect to the other, so that we may apply Lemma 3.2).

Increasing the angle $\alpha(a)$, we increase the shift between the adjacent hexagons. Increasing $\alpha(a)$ by 2π we obtain the initial tiling of the plane by hexagons, but the line $O O^{\prime}$ in the new picture is moved, so that it is an image of another closed curve $c^{\prime} \in S$ which may be obtained from a by a flip. Increasing (or decreasing) $\alpha(a)$ by $2 \pi k$ we run through all curves on S which may be obtained by a flip from a (compare with Lemma 3.1). In particular, for some value of k we obtain the curve b. This implies statement (1). So, the length $l(b)$ increases with growth of $\left|\alpha(a)-\alpha_{0}\right|$. Hence $l(b)$ determines $\alpha(a)$ up to two possibilities, which implies that the set of functions \bar{x} determines Fenchel-Nielsen coordinates $F N(P)$ up to two possibilities. This proves statement (3). If b is not orthogonal to a at $\tau \in \mathcal{T}$ then in the neighborhood of τ the function $l(b)$ (together with the chosen value of $\alpha(a)$ at τ) determines completely the function $\alpha(a)$, which implies that \bar{x} is a set of local coordinates, and statement (2) is also proved.

Figure 3.3. Length coordinates on a four-holed sphere

Remark 3.7. Given Fenchel-Nielsen coordinates on $S_{0,4}$, for each lengths $l_{0}(a)$ together with fixed lengths of the boundary components of $S_{0,4}$ there exists a unique angle $\alpha_{0}(a)$ such that a is orthogonal to b.

4. Locally parametrizing double pants decompositions

In this section we prove Theorem 4.11 which states that for an admissible double pants decomposition $D P$ the functions $l(D P)$ provide a local parameter in neighborhoods of almost all points $\tau \in \mathcal{T}$.

The proof of the theorem is inductive. In Section 4.1, we build some examples of locally parametrizing double pants decompositions. These examples called special decompositions will be the base of the induction. In section 4.2 , we show that any admissible double pants decomposition may be obtained from a special one by a sequence of flips. Finally, in Section 4.3 we show that flips preserve the parametrizing properties of double pants decompositions.
4.1. Examples of locally parametrizing double pants decompositions. In this section we present an example of a locally parametrizing double pants decomposition for each surface $S_{g, n}$. This will provide a base for the inductive proof of Theorem 4.11. The construction is obtained as a modification of Fenchel-Nielsen coordinates.

Definition 4.1 (Special decomposition, conjugate curves). A double pants decomposition $D P=\left(P_{a}, P_{b}\right)$ is special with the standard part P_{b} if the following holds:
(1) $D P$ contains no double curves;
(2) the part P_{b} is standard;
(3) $D P$ may be obtained from a strictly standard double pants decomposition $D P_{0}$ via a sequence of $m=3 g-3+n$ flips f_{1}, \ldots, f_{m} of the P_{a}-part.
For a special decomposition $D P=\left(P_{a}, P_{b}\right)$ we will say that a curve $a_{i} \in P_{a}$ is conjugate to a curve $b_{i} \in P_{b}$ if either a_{i} is obtained by a flip f_{i} from b_{i} or a_{i} and b_{i} belong to the same handle in the standard decomposition P_{b}. In the former case (a_{i}, b_{i}) will called a flip-conjugate pair, in the latter case (a_{i}, b_{i}) will called a handle-conjugate pair.

See Fig. 4.1 for an example of a special decomposition. Notice, that any special double pants decomposition is admissible.

Figure 4.1. Example of a special double pants decomposition. The black nodes show the intersections of the conjugate curves. The number near the nodes show the sequence of flips taking the strictly standard decomposition to the special one.

Lemma 4.2. For each standard pants decomposition P_{b} there exists a special double pants decomposition $D P=\left(P_{a}, P_{b}\right)$.

Proof. To build the required decomposition we consider a strictly standard double pants decomposition $D P^{\prime}=\left(P_{a}^{\prime}, P_{b}\right)$ containing P_{b} and apply a flip of the P_{a}-part to each of the double curves.

Notation 4.3. Let $D P=\left(P_{a}, P_{b}\right)$ be a special double pants decomposition. Denote by $Z(D P) \in \mathcal{T}$ the locus of points where a_{i} is orthogonal to b_{i} for at least one pair of conjugate curves $\left(a_{i}, b_{i}\right) \in D P$.

Remark 4.4. Let $\left(a_{i}, b_{i}\right)$ be a pair of conjugate curves in a special double pants decomposition. Remarks 3.5 and 3.7 imply that the locus of points where a_{i} is orthogonal to b_{i} is homeomorphic to a hyperplane in $\mathcal{T}=\mathbb{R}_{>0}^{3 g-3+2 n} \times \mathbb{R}^{3 g-3+n}$ (here Remarks 3.5 and 3.7 work for cases of handle-conjugate and flip-conjugate pairs respectively). Therefore, the set $Z(D P) \in \mathcal{T}$ is homeomorphic to a union of $3 g-3+n$ hyperplanes in $\mathcal{T}=\mathbb{R}_{>0}^{3 g-3+2 n} \times \mathbb{R}^{3 g-3+n}$.
Lemma 4.5. Let $D P=\left(P_{a}, P_{b}\right)$ be a special double pants decomposition. Then
(1) $l(D P)$ is a local coordinate in $\mathcal{T} \backslash Z(D P)$;
(2) $l(D P)$ determine the point in \mathcal{T} up to at most $2^{3 g-3+n}$ choices.

Proof. Suppose that P_{b} is a standard part of $D P$. Choose Fenchel-Nielsen coordinates $F N\left(P_{b}\right)$ based on the pants decomposition P_{b}. It is a global coordinate on \mathcal{T}. We will substitute angle coordinates of $F N\left(P_{b}\right)$ by length coordinates one by one.

Let f_{1}, \ldots, f_{m} be the sequence of flips described in the Definition 4.2 , let b_{1}, \ldots, b_{m} be the curves of P_{b} such that f_{i} is a flip applied to b_{i}. Let $D P_{i}=f_{i} \circ \cdots \circ f_{1}\left(D P_{0}\right)$, where $D P_{0}$ is the corresponding strictly standard double pants decomposition. Applying Lemma 3.4 sufficiently to all handle-conjugate pairs of curves $a_{i}, b_{i} \in D P$ we see that $\operatorname{mix}\left(D P_{0}, F N\left(P_{b}\right)\right)$ is a local coordinate away from $Z\left(D P_{0}\right)$ and defines the coordinate $F N\left(P_{b}\right)$ up to 2^{g} choices. Then, applying Lemma 3.6 to each pair of flip-conjugate curves successively (more precisely, to the subsurface $S_{0,4}$ obtained by a union of two pairs of pants adjacent to b_{i} in P_{a}-part of $\left.D P_{i}\right)$, we see that $\operatorname{mix}\left(D P_{i}, F N\left(P_{b}\right)\right)$ is a local coordinate away from $Z\left(D P_{i}\right)$ and defines $\operatorname{mix}\left(D P_{i-1}, F N\left(P_{b}\right)\right)$ up to 2 choices. This implies the lemma.

4.2. Induction step: reduction to flips.

Lemma 4.6. Let $D P$ be an admissible double pants decomposition. Then there exists a sequence of flips f_{1}, \ldots, f_{k} such that $D P_{0}=f_{k} \circ \cdots \circ f_{1}(D P)$ is a strictly standard double pants decomposition.

Proof. Since $D P$ is an admissible decomposition, there exists a sequence of flips taking $D P$ to a standard double pants decomposition. It is known that flips act transitively on pants decompositions of $S_{0, k}$ (see [8]), which implies that any strictly standard double pants decomposition may be transformed to a strictly standard ones by flips.

Lemma 4.7. Let DP be a double pants decomposition containing no double curves. Suppose that $D P^{\prime}=f_{k} \circ \cdots \circ f_{1}(D P)$, where $f_{i}, i=1, \ldots, k$, is a flip. If $D P^{\prime}$ contains no double curves then there exists a sequence of flips g_{1}, \ldots, g_{r} such that $D P^{\prime}=g_{r} \circ \cdots \circ g_{1}(D P)$ and no of the decompositions $g_{i} \circ \cdots \circ g_{1}(D P), i=1, \ldots, r$ contains double curves.

Proof. Denote $D P=\left(P_{a}, P_{b}\right)$ and $D P^{\prime}=\left(P_{a}^{\prime}, P_{b}^{\prime}\right)$ We will use the fact that flips of the P_{a}-part commute with flips of the P_{b}-part.

Let $C=\left\{c \mid c \in D P_{i}=f_{i} \circ \cdots \circ f_{1}(D P), 0 \leq i \leq k\right\}$ be a set of all curves appearing during the transformation from $D P$ to $D P^{\prime}=f_{k} \circ \cdots \circ f_{1}(D P)$.

First, for each of the curves $a_{i} \in P_{a}$ we apply a flip g_{i} so that $g_{i}\left(a_{i}\right) \notin C$: this is possible, since C is a finite set, while a set of flips for a given curve a_{i} in a given pants decomposition is either infinite or empty (in the later case, a_{i} lies in a handle bounded by some other curve a_{j}, so we can first destroy the handle applying a flip to a_{j}, and then apply a flip to a_{i}). Denote by $P_{a}^{\prime \prime}$ the obtained P_{a}-part of the decomposition.

Second, we transform P_{b} to P_{b}^{\prime} by the same sequence of flips as in f_{1}, \ldots, f_{k}.
Third, there exists a sequence $f_{1}^{\prime}, \ldots, f_{l}^{\prime}$ of flips taking $P_{a}^{\prime \prime}$ to P_{a}^{\prime}. Denote $\xi=f_{l}^{\prime} \circ \cdots \circ f_{1}^{\prime}$. Denote $C^{\prime}=\left\{c \mid c \in D P^{\prime \prime}=f_{i}^{\prime} \circ \cdots \circ f_{1}^{\prime}(D P), 0 \leq i \leq l\right\}$. For each of the curves $b_{i} \in P_{b}^{\prime}$ we apply a flip g_{i}^{\prime} so that $g_{i}^{\prime}\left(b_{i}\right) \notin C^{\prime}$.

Next, we transform P_{b} to P_{b}^{\prime} by the same sequence of flips as in f_{1}, \ldots, f_{k}.
Finally, we apply the inverse sequence ξ^{-1} to take the P_{b}-part back to the state P_{b}^{\prime}.
Clearly, we can not obtain double curves at any stage of the transformation, so the lemma is proved.

Lemma 4.6 together with Lemma 4.7 imply the following lemma.
Lemma 4.8. Let DP be an admissible double pants decomposition without double curves. Then there exists a special double pants decomposition $D P^{\prime}$ and a sequence of flips f_{1}, \ldots, f_{k} such that $D P_{0}=f_{k} \circ \cdots \circ f_{1}(D P)$ and no of the decompositions $f_{i} \circ \cdots \circ f_{1}(D P), i=1, \ldots, k$, contains double curves.
4.3. Induction step: flips. In this section we show that flips take locally parametrizing double pants decompositions to locally parametrizing ones.

In the next lemma we show this property for almost all flips.
Lemma 4.9. Let $D P$ be a parametrizing double pants decomposition at $\tau \in \mathcal{T}$. Let f^{\prime} and $f^{\prime \prime}$ be two different flips of the same curve $c \in D P$, such that neither $D P^{\prime}=f^{\prime}(D P)$ nor $D P^{\prime \prime}=f^{\prime \prime}(D P)$ contain double curves. If $D P^{\prime}$ is not parametrizing at $\tau \in \mathcal{T}$ then $D P^{\prime \prime}$ is parametrizing at τ.
Proof. Let $D P=\left(P_{a}, P_{b}\right), c \in P_{a}$. Let $D P^{\prime}=\left(P_{a}^{\prime}, P_{b}\right), D P^{\prime \prime}=\left(P_{a}^{\prime \prime}, P_{b}\right)$. Denote by c^{\prime} and $c^{\prime \prime}$ the curves of P_{a}^{\prime} and $P_{a}^{\prime \prime}$ obtained from c by flips f^{\prime} and $f^{\prime \prime}$ respectively. In addition, denote by S_{*} a subsurface of S composed of two pairs of pants in P_{a} adjacent to the curve c.

Suppose that $D P^{\prime}$ is not a parametrizing double pants decomposition at $\tau \in \mathcal{T}$. By definition, this means that there exists a non-trivial deformation $\xi(\tau)$ of the hyperbolic structure, where ξ preserves all lengths of curves contained in $\left(P_{a}^{\prime}, P_{b}\right)$. This deformation may be described as a set of simultaneous small twists along the curves of P_{a}^{\prime} (the rates of the twists need not coincide or to be constant).

Suppose that ξ contains no twist along c^{\prime} (i.e. the twist along this curve is trivial, zero). Then the subsurface S_{*} is not changed, and the length of the curve c is preserved by ξ. Hence, ξ preserves the lengths of all curves in $\left(P_{a}, P_{b}\right)=D P$. By assumption, these lengths provide a local coordinate at τ, so the deformation ξ is trivial (does not change the point of Teichmüller space). The contradiction shows that ξ contains a non-trivial twist along c^{\prime}.

On the other hand, consider another deformation η of the initial hyperbolic structure $\tau \in \mathcal{T}$, where η preserves all lengths of curves from $\left(P_{a}, P_{b}\right)$ except the length of c. A locus of points of \mathcal{T} obtained by η from τ is a 1-dimensional curve in a neighborhood of τ. This implies that $\eta=\xi$.

Suppose now that $D P^{\prime \prime}$ also is not parametrizing at τ. Similarly to the case of $D P^{\prime}$, this implies that there exists a deformation ψ preserving all lengths of curves from $P_{a}^{\prime \prime}$ and containing a non-trivial twist along the curve $c^{\prime \prime} \in P_{a}$. Similarly to ξ, the deformation ψ should coincide with η, so, $\xi=\psi$. However, these two transformations do not coincide in the subsurface S_{*} : one twists along c^{\prime}, another along $c^{\prime \prime} \neq c^{\prime}$. The contradiction shows that the double pants decomposition $D P^{\prime \prime}$ is parametrizing at τ.

Lemma 4.10. Let $D P$ be a locally parametrizing double pants decomposition at $\tau \in \mathcal{T}$. Let f_{0} be a flip of $D P$ such that the double pants decomposition $D P^{(0)}=f_{0}(D P)$ contains no double curves. Then $D P^{(0)}$ is a parametrizing double pants decomposition at $\tau \in \mathcal{T}$.

Proof. Let $D P=\left(P_{a}, P_{b}\right)$ be a parametrizing double pants decomposition at $\tau \in \mathcal{T}$. Let $c \in D P$ be a curve flipped by f_{0}. Without loss of generality we may assume that $c \in P_{a}$. Denote $m=3 g-3+n$.

Consider an m-dimensional surface C_{a} through $\tau \in \mathcal{T}$ such that the lengths of all curves contained in $P_{a} \backslash P_{b}$ are constant in C_{a}. Let C_{b} be a similar surface for P_{b}. Denote by Π_{a} and Π_{b} the tangent planes to C_{a} and C_{b} in τ. Let $C_{\partial S}$ be an n-dimensional surface through τ such that all curves contained in ∂S have constant lengths in $C_{\partial S}$, let $\Pi_{\partial S}$ be the corresponding tangent plane. Since $D P=\left(P_{a}, P_{b}\right)$ is parametrizing at τ, the planes Π_{a}, Π_{b} and $\Pi_{\partial S}$ intersect each other in τ only (and span the whole tangent space at τ).

Let $\psi_{i}, i=1, \ldots, m$, be the curves in \mathcal{T} on which all lengths of curves of $D P$ are preserved except for the length of one curve $b_{i} \in P_{b} \backslash P_{a}$. Let $\bar{b}_{1}, \ldots, \bar{b}_{m}$ be the tangent vectors to $\psi_{1}, \ldots, \psi_{m}$ at τ. Clearly, the plane Π_{a} is spanned by the vectors $\bar{b}_{1}, \ldots, \bar{b}_{m}$.

Now, consider a series of flips f_{i} of the curve $c \in P_{a}$ (including the flip f_{0} described in the lemma): we will assume that the flip f_{i} takes c to the curves c_{i} of the same homology class; moreover, we assume that c_{i+1} may be obtained from c_{i} by a Dehn twist along c. For each of the flips f_{i} we denote $P_{a}^{(i)}=f_{i}\left(P_{a}\right)$. Denote by $\Pi_{a}^{(i)}$ the tangent planes at τ to the surfaces of the constant lengths of curves from $P_{a}^{(i)} \backslash P_{b}$.

If the double pants decomposition $D P^{(0)}=\left(P_{a}^{(0)}, P_{b}\right)$ is parametrizing at τ, then there is nothing to prove. So, suppose that $D P^{(0)}$ is not parametrizing at τ. By Lemma 4.9, this implies that all other double pants decompositions $D P^{(i)}=\left(P_{a}^{(i)}, P_{b}\right)$ are parametrizing at τ (with possible exclusion of at most one decomposition $D P^{(j)}$: at most one of these decompositions may contain a double curve c_{i}). Reasoning as above with Π_{a}, we show that the plane $\Pi_{a}^{(i)}$ is spanned by b_{1}, \ldots, b_{m}. This implies that for $i \notin\{0, j\}$ all planes $\Pi_{a}^{(i)}$ coincide with Π_{a}.

Now, our aim is to show that $\Pi_{a}^{(0)}=\Pi_{a}$. Let t_{c} be a Dehn twist along c. The twist t_{c} takes c_{i} to c_{i+1}. On the other hand, t_{c} acts on \mathcal{T} and takes Π_{a}^{i} to Π_{a}^{i+1}. Since $\Pi_{a}^{i}=\Pi_{a}$ for $i \notin\{0, j\}, t_{c}$ preserves Π_{a}. Hence, $\Pi_{a}^{i}=\Pi_{a}$ for all $i \in \mathbb{Z}$.

Since $\Pi_{a}^{(0)}=\Pi_{a}$, the planes $\Pi_{a}^{(0)}, \Pi_{b}$ and $\Pi_{\partial S}$ span the tangent space at τ, which implies that $D P^{(0)}=\left(P_{a}^{(0)}, P_{b}\right)$ is a parametrizing double pants decomposition at τ.

Theorem 4.11. Let $D P$ be an admissible double pants decomposition without double curves. Then $D P$ together with the ordered set of lengths $l(D P)=\left\{l\left(c_{i}\right) \mid c_{i} \in D P\right\}$ is a local coordinate in $\mathcal{T} \backslash Z\left(D P^{\prime}\right)$ for some special double pants decomposition $D P^{\prime}$.

Proof. By Lemma 4.8 there exists a special double pants decomposition $D P^{\prime}=\left(P_{a}^{\prime}, P_{b}^{\prime}\right)$, and a sequence ψ of flips taking $D P$ to $D P^{\prime}$ and producing no double curves on its way. By Lemma 4.5 the lengths $l\left(D P^{\prime}\right)$ form a local coordinates in $\mathcal{T} \backslash Z\left(D P^{\prime}\right)$. By Lemma 4.10 each of the flips in the sequence ψ preserve the parametrizing property of double pants decomposition (i.e. the obtained decomposition provides a local parameter in $\mathcal{T} \backslash Z\left(D P^{\prime}\right)$). Hence, $D P$ is parametrizing in $\mathcal{T} \backslash Z\left(D P^{\prime}\right)$.

5. Finite number of Choices

In Section 4, we proved that the set of functions $l(D P)$ is a local parameter in almost all points of \mathcal{T}. In this section, we prove that the functions $l(D P)$ determine the point of \mathcal{T} up to finitely many choices.

Consider an universal covering π of S by a hyperbolic plane \mathbb{H}^{2}, so that $S=\mathbb{H}^{2} / G$ where $G \in S L_{2}(\mathbb{R})$ is some finitely generated discrete group. Let M_{1}, \ldots, M_{s} be a finite set of matrices generating G. Let $r_{1}\left(M_{1}, \ldots, M_{s}\right)=\cdots=r_{n}\left(M_{1}, \ldots, M_{s}\right)=E$ be the defining relations, where r_{i} is a word in the alphabet $A=\left\{M_{1}, M_{1}^{-1}, \ldots, M_{s}, M_{s}^{-1}\right\}$.

For each closed geodesic $c \subset S$ each connected component of the preimage $\pi^{-1} c$ is a line (denote it by $L_{i}(c)$, where integer index stays to emphasize that there are countably many of these preimages). The group G contains a hyperbolic transformation $\gamma(c)$ shifting \mathbb{H}^{2} along $L_{i}(c)$ for the distance equal to $l(c)$. So, we have

$$
\begin{equation*}
\operatorname{tr}(\gamma(c))=2 \cosh (l(c) / 2) \tag{5.1}
\end{equation*}
$$

Notice that $\gamma(c)=w\left(M_{1}, \ldots, M_{s}\right)$ for some word w in the same alphabet A. So, the Formula 5.1 may be considered as a finite set of polynomials in matrix elements of M_{1}, \ldots, M_{s} with coefficients

$$
\hat{l}(c)=2 \cosh (l(c) / 2) .
$$

Theorem 5.1. Let $D P$ be an admissible double pants decomposition containing no double curves. Then $l(D P)$ determines a point of \mathcal{T} up to finitely many choices.

Proof. For each of the curves $c_{i} \in D P$ we consider one of its preimages on \mathbb{H}^{2} together with the hyperbolic transformation $\gamma\left(c_{i}\right)$. Taking in account Formula 5.1, we obtain a system of polynomial equations in elements of M_{i} : the system consists of the equations arising from the following three sources:
(1) $M_{i} \in S L_{2}(\mathbb{R})$;
(2) $r_{j}\left(M_{1}, \ldots, M_{s}\right)=E$, where r_{k} is one of the defining relations;
(3) $\operatorname{tr}(\gamma(c))=\hat{l}(c)$.

The matrix equations of the second type are considered as four scalar equations in matrix elements. Notice, that the equations of all three types are polynomial (here we use the fact that $M_{i} \in S L_{2}(\mathbb{R})$, and hence, all elements of M_{i}^{-1} are also elements of M_{i}). So, the three types compose a system of finitely many polynomial equations in matrix elements of M_{i} with integer coefficients and constant terms in $\left.\mathbb{Z} \cup\left\{\hat{l}\left(c_{1}\right)\right), \ldots, \hat{l}\left(c_{m}\right)\right\}$. Suppose in addition that the values of $\left.\left(\hat{l}\left(c_{1}\right)\right), \ldots, \hat{l}\left(c_{m}\right)\right)$ correspond to at least one hyperbolic structure $\tau \in \mathcal{T}$ on S. Then the system of equations is solvable. On the other hand, Theorem 4.11 implies that the system is non-generate. Thus, there are finitely many solutions of this system.

In other words, for each set of values $l(D P)$ we can write a unique set of values $\hat{l}(D P)=$ $\left.\left\{\hat{l}\left(c_{1}\right)\right), \ldots, \hat{l}\left(c_{m}\right)\right\}$; for this set $\hat{l}(D P)$ there are finitely many possible values of matrix elements of M_{i}. So, for each value of $l(D P)$ there are finitely many distinct points in \mathcal{T}.

Corollary 5.2. Let $D P$ be an admissible double pants decomposition of S without double curves. Let $c \in S$ be a closed curve. Then $\hat{l}(c)$ is an algebraic function of $\hat{l}(D P)$.
Proof. By Theorem 5.1 the value of $l(D P)$ determines the point of \mathcal{T} up to finitely many choices. Each of these choices correspond to a unique (modulo conjugation) discrete subgroup $G \in S L_{2}(\mathbb{R})$ acting on \mathbb{H}^{2}. Consider the group G for one of these possibilities.

Following the proof of Theorem 5.1 consider a preimage $L(c)$ of c in \mathbb{H}^{2} and a hyperbolic transformation $\gamma(c)$ which shifts along $L(c)$ by the distance $l(c)$. Then $\gamma(c)=w\left(M_{1}, \ldots, M_{s}\right)$ where w is a word in the alphabet $\left\{M_{i}, M_{i}^{-1} \mid i=1, \ldots, s\right\}$. So, $\hat{l}(c)=\operatorname{tr} \gamma(c)$ is a polynomial in the matrix elements of M_{1}, \ldots, M_{S}. Since the elements of matrices M_{i} are the solution of a system of polynomial equations, these elements are algebraic functions of $\hat{l}(D P)$. This implies, that $\hat{l}(c)$ is an algebraic function of $\hat{l}(D P)$ either.

6. An atlas on the Teichmüller space

In Section 4.3, we proved that for each admissible double pants decomposition $D P$ the function $l(D P)$ provides a local coordinate in neighborhoods of almost all points in \mathcal{T} (more precisely, away from a set of measure 0 formed by a finite union of hypersurfaces). In this section, we show that the coordinate charts with coordinates $l(D P)$ compose an atlas on \mathcal{T}. Moreover, the transition functions between the adjacent chart change exactly one coordinate (and correspond to flips and handle twists of double pants decompositions).

Lemma 6.1. Let S be a surface with a fixed hyperbolic structure. Let $D P=\left(P_{a}, P_{b}\right)$ be a special double pants decomposition with a standard part P_{b}. Let $a_{i}, b_{i} \in D P$ be a pair of conjugate curves in DP. Let $b_{j} \in P_{b}$ be a curve such that $b_{j} \cap a_{i} \neq \emptyset$ and let $t_{b_{j}}$ be a Dehn twist along b_{j}. If a_{i} is orthogonal to b_{i} then $t_{b_{j}}^{k}\left(a_{i}\right)$ is not orthogonal to b_{i} for all $k \in \mathbb{Z} \backslash 0$.

Proof. First, notice that if $i=j$ than there is nothing to prove (the statement follows than from Lemma 3.4 in case of handle-conjugate curves and from Lemma 3.6 in case of flipconjugate curves). From now on we assume $i \neq j$.

Notice that by construction of special decompositions, the condition $b_{j} \cap a_{i} \neq 0$ implies that $\left(a_{i}, b_{i}\right)$ can not be a pair of handle-conjugate curves. So, $\left(a_{i}, b_{i}\right)$ is a pair of flip-conjugate curves, and the curve b_{i} is homologically trivial. Suppose b_{i} is orthogonal to a_{i} as well as to $t_{b_{j}}^{k}\left(a_{i}\right)$, where $k \neq 0$. Since b_{i} is homologically trivial, b_{i} cuts S into two connected components S_{1} and S_{2}. Let S_{1} be the component containing the curve b_{j}. Denote $s=a_{i} \cap S_{2}$ and $s^{\prime}=t_{b_{j}}^{k}\left(a_{i}\right) \cap S_{2}$. In view of Lemma 3.6 all ends of s and s^{\prime} are orthogonal to b_{i}.

Since $b_{j} \in S_{1}$, and $b_{j} \cap b_{i}=\emptyset$, the topology of the decomposition of S_{2} is not changed by $t_{b_{j}}$ (however, geometrically $s \neq s^{\prime}$). This implies that there exists an isotopy γ_{x} of s to s^{\prime} (where $\left.x \in[0,1], \gamma_{0}=s, \gamma_{1}=s^{\prime}\right)$ such that the ends of the segment $\gamma_{x}(s)$ belong to b_{i}. Notice that s can not intersect s^{\prime}, otherwise the segments s, s^{\prime} and a part of b_{j} bound a hyperbolic triangle with two right angles $b_{j} s$ and $b_{j} s^{\prime}$, which is impossible. On the other hand, if $s \cap s^{\prime}=\emptyset$ then two parts of b_{j}, s and s^{\prime} bound a hyperbolic quadrilateral with four right angles, which is also impossible. The contradiction shows the lemma.

Lemma 6.2. For each point $\tau \in \mathcal{T}$ there exists a double pants decomposition $D P_{\tau}$ such that $l\left(D P_{\tau}\right)$ is a local coordinate in a neighborhood of τ.

Proof. Consider an arbitrary special double pants decomposition $D P=\left(P_{a}, P_{b}\right)$ with a standard part P_{b}. By Theorem 4.11, $l(D P)$ is a local coordinate in $\mathcal{T} \backslash Z(D P)$. So, if $\tau \notin Z(D P)$ then there is nothing to prove. Suppose that $\tau \in Z(D P)$, i.e. there exists an orthogonal conjugate pair of curves $a_{i}, b_{i} \in D P$, (a pair of conjugate curves such that a_{i} is orthogonal to b_{i} in τ). We will apply to $D P$ a twist $t_{b_{j}}$ in some of the curves $b_{j} \in D P$ in order to reduce the number of orthogonal conjugate pairs.

To see that it is always possible, suppose that $a_{i}, b_{i} \in D P$ is an orthogonal conjugate pair. In this case there exists an integer k such that the special decomposition $t_{b_{i}}^{k}(D P)$ contains less orthogonal conjugate pairs than $D P$ has (the pair a_{i}, b_{i} of this twisted decomposition is not orthogonal for each $k \neq 0$, Lemma 6.1 implies that for all but finitely many values of k the k-th degree of the twist will not produce new orthogonalities for other conjugate pairs).

Lemma 6.2 shows that the charts with coordinates $l(D P)$ cover the space \mathcal{T}. Now, we consider the transition functions between the charts. In view of Theorem 1.9, it is natural to choose these transition functions as ones induced by flips and handle-twists of admissible double pants decompositions.

The case of flip is considered in Lemma 4.10: it is shown that as long as a flip f produces no double curves, f preserves the locus of points where the set of functions $l(D P)$ is a local coordinate. We have also shown in Lemma 4.8 that if $D P$ and $D P^{\prime}$ are two double pants decompositions containing no double curves and $D P$ can be turned into $D P^{\prime}$ by a sequence of flips, than one can choose this sequence of flips so that no double curves are produced on the way.

It is impossible to treat handle-twists directly in the same way: by definition no handletwist can be applied to a double pants decomposition containing no double curves. To overcome this obstacle, we introduce the notion of a quasi-handle-twist.

Definition 6.3 (Quasi-handle-twist). Let $D P$ be a double pants decomposition without double curves. Let $c \in D P$ be a curve such that there exists a flip $f(c)$ producing a handle \mathfrak{h} in the decomposition $f(D P)$ (so that $f(c)$ is a double curve which cuts out the handle). Let $a \in D P \cap f(D P)$ be a curve contained in the handle \mathfrak{h}. By a quasi-handle-twist t_{a} of $D P$ we mean a Dehn twist along a.
Remark 6.4. The quasi-handle-twist t_{a} may be written as $t_{a}=f^{-1} \circ \hat{t}_{a} \circ f$, where f is a flip as in Definition 6.3 and \hat{t}_{a} is a handle twist in the handle \mathfrak{h}.
Remark 6.5. Since t_{a} is a Dehn twist, t_{a} acts on the Teichmüller space \mathcal{T}. We denote by $t_{a}(\tau)$ the point of \mathcal{T} obtained from τ by the Dehn twist t_{a}.

Now, we will prove the counterparts to the Lemmas 4.10 and 4.8 for the case of quasi-handle-twists.

The next Lemma follows immediately from Definition 6.3 and Remarks 6.4 and 6.5.
Lemma 6.6. Let $D P$ be an admissible double pants decomposition without double curves. Let $\tau \in \mathcal{T}$ be a point such that $l(D P)$ is a local coordinate in τ. Let t be a quasi-handle-twist along the curve $c \in D P$. Then $l(t(D P))$ is a local coordinate in $\tau^{\prime}=t(\tau)$.
Lemma 6.7. Let $D P$ and $D P^{\prime}$ be two admissible double pants decompositions containing no double curves. Then there exists a sequence of flips and quasi-handle-twists which takes DP to $D P^{\prime}$ and produces no double curves on its way.
Proof. By Theorem 1.9 there exists a sequence ψ of flips and handle-twists taking $D P$ to $D P^{\prime}$. In view of Lemma 4.7, each subsequence containing no handle-twist may be realized without producing double curves. It is sufficient to prove the lemma for the case when ψ contains one handle-twist only (and then apply inductional reasoning). Suppose that this unique handle-twist \hat{t}_{c} is a twist in a curve $c \in D P^{s t}$ where $D P^{s t}$ is a standard double pants decomposition flip-equivalent to $D P$ (it is shown in [1, Lemma 4.1] that handle-twists in standard decompositions are sufficient for obtaining the transitivity theorem).

Let $D P^{s t}=\left(P_{a}^{s t}, P_{b}^{s t}\right)$ be the two parts, suppose that $c \in P_{a}^{s t}$. Let $D P^{s p}=\left(P_{a}^{s p}, P_{b}^{s p}\right)$ be a special decomposition with the standard part $P_{b}^{s p}=P_{b}^{s t}$. By Lemma 4.7, there exists a sequence of flips taking $D P$ to $D P^{s p}$ without producing double curves. Then we apply a quasi-handle-twist t_{c} in c, so that we obtain another special decomposition $D P_{*}^{s p}$. In view of Remark 6.4, $D P_{*}^{s p}$ is flip-equivalent to $D P^{\prime}$. The sequence of flips taking $D P_{*}^{s p}$ to $D P^{\prime}$ without producing double curves does exist in view of Lemma 4.7.

Summarizing results of Lemmas 6.2, 6.7 and Corollary 5.2 we obtain the following theorem.
Theorem 6.8. (1) The charts $\mathfrak{C}(D P)$ with coordinates $l(D P)$, where $D P$ is an admissible double pants decomposition without double curves, provide an atlas on Teichmüller space \mathcal{T}.
(2) The elementary transition functions of these charts are induced by flips and quasi-handle-twists of double pants decompositions, each elementary transition function changes only one coordinate. This unique non-trivial transition function is algebraic.
(3) The compositions of elementary transition functions act transitively on the charts.

7. Deligne-Mumford compactification of moduli space

In Section 6, we showed that the Teichmüller space is covered by coordinate charts arising from admissible double pants decompositions. Since local coordinates on Teichmüller space are also local coordinates on the moduli space, the charts with coordinate $l(D P)$ also compose an atlas on the moduli space. In this section, we show that this atlas works also for most strata in Deligne-Mumford compactification of the moduli space.

Consider some Fenchel-Nielsen coordinates $F N(P)$ on the Teichmüller space

$$
\mathcal{T}=\left\{l\left(c_{i}\right)>0, \alpha\left(c_{j}\right) \in \mathbb{R} \mid c_{i}, c_{j} \in P, c_{j} \notin \partial S\right\} .
$$

Given a pants decomposition P denote

$$
\mathcal{T}_{P}=\left\{l\left(c_{i}\right) \geq 0, \alpha\left(c_{j}\right) \in \mathbb{R} \mid c_{i}, c_{j} \in P, c_{j} \notin \partial S\right\} .
$$

The augmented Teichmüller space $\overline{\mathcal{T}}$ is the following closure of \mathcal{T} :

$$
\overline{\mathcal{T}}=\cup_{P} \mathcal{T}_{P}
$$

where the union is taken by all pants decompositions of the surface. The points of $\overline{\mathcal{T}} \backslash \mathcal{T}$ correspond to nodal surfaces, i.e. to the surfaces with nodal singularities: a nodal singularity arises when a non-trivial closed curve c in S is degenerated to a point (i.e. $l(c) \rightarrow 0$). A nodal surface is not a surface: a neighborhood of a nodal point is not homeomorphic to a disk. We denote by N the set of all nodal points on the nodal surface. It is known that $\overline{\mathcal{T}} / \operatorname{Mod}=\overline{\mathcal{M}}$, where Mod is the modular group and $\overline{\mathcal{M}}$ is the Deligne-Mumford compactification of the modular space $\mathcal{M}=\mathcal{T} /$ Mod .

The space $\overline{\mathcal{T}}$ inherits topology from $\cup_{P} T_{p}=\cup_{P}\left(\mathbb{R}_{\geq 0}^{3 g-3+2 n} \times \mathbb{R}^{3 g-3+n}\right)$.
Given an admissible double pants decomposition $\bar{D} P$ without double curves, we say that the boundary of the chart $\mathfrak{C}(D P)$ is the locus of points $\tau^{\prime} \in \overline{\mathcal{T}}$ where $l(c)=0$ for at least one $c \in D P$.

Theorem 7.1. For each point $\tau^{\prime} \in \overline{\mathcal{T}}$ there exists an admissible double pants decomposition $D P$ containing no double curves and such that τ^{\prime} belongs to the boundary of the chart $\mathfrak{C}(D P)$ with coordinates $l(D P)$.

Proof. If $\tau^{\prime} \in \mathcal{T}$, then there is nothing to prove in view of Theorem 6.8. Suppose that $\tau^{\prime} \in(\overline{\mathcal{T}} \backslash \mathcal{T})$. Then there exists a set of mutually disjoint curves C on S such that the surface S^{\prime} corresponding to τ^{\prime} is obtained by contracting all curves $c_{i} \in C$. It is sufficient to show that there exists an admissible double pants decomposition $D P$ containing no double curves and such that $C \in D P$.

Consider any pants decomposition P_{a} containing the set C. We will build the required decomposition $D P=\left(P_{a}, P_{b}\right)$ in the following four steps: first, we transform P_{a} by a sequence of flips to a standard decomposition P_{a}^{\prime}; second, we build a standard double pants decomposition $\left(P_{a}^{\prime}, P_{b}^{\prime}\right)$; next, we transform P_{a}^{\prime} back to P_{a} by flips; finally, we apply (if necessary) several flips to P_{b}^{\prime} to avoid double curves.

Factorizing by the modular group Mod we obtain the charts on the Deligne-Mumford compactification of the modular space (with the natural notion of the boundary of the chart on $\overline{\mathcal{M}}$ defined as the boundary of the same chart on $\overline{\mathcal{T}}$ factorized by Mod). Applying the same reasoning as in Theorem 7.1 we obtain the following corollary.

Corollary 7.2. For each point $\tau^{\prime} \in \overline{\mathcal{M}}$ there exists an admissible double pants decomposition $D P$ containing no double curves and such that τ^{\prime} belongs to the boundary of the chart $\mathfrak{C}(D P)$ with coordinates $l(D P)$.

Remark 7.3. For many of the points $\tau^{\prime} \in \partial \overline{\mathcal{T}}$ the coordinates $l(D P)$ provide also a chart in a neighborhood $O^{\prime}\left(\tau^{\prime}\right)=O\left(\tau^{\prime}\right) \cap \partial \overline{\mathcal{T}}$ (where $O\left(\tau^{\prime}\right)$ is some neighborhood of τ^{\prime} in $\overline{\mathcal{T}}$. It would be natural to try to cover $\partial \overline{\mathcal{T}}$ (resp. the whole boundary of $\overline{\mathcal{M}}$) by these charts. However, in general it turns to be impossible (see Remark 7.14).

Below, we define a large subset of "good" points in the boundary and show that all points of this subset are covered by the charts $\mathfrak{C}(D P)$.

The boundary $\partial \overline{\mathcal{T}}$ is stratified: given a set C of mutually non-intersecting curves in S, a stratum \mathcal{S}_{C} is a locus $\left\{l\left(c_{i}\right)=0 \mid c_{i} \in C\right\}$. All nodal surfaces (of genus g with n boundary parts) with k nodal singularities compose a union $\mathcal{S}_{2 k}$ of codimension $2 k$ strata.

By a pants decomposition of a surface S with punctures we mean a decomposition into generalized pairs of pants (where a generalized pair of pants is either a sphere with three holes, or a sphere with two holes and a puncture, or a sphere with a hole and two punctures, or a sphere with three punctures).

By a pants decomposition (respectively, double pants decomposition) of a nodal surface S we mean a set of curves P composing a pants decomposition (respectively double pants decomposition) in all components of S (connected components of $S \backslash N$). The nodal points are not considered as curves of the pants decomposition.

A (double) pants decomposition of S is standard if the decompositions of all components are standard. Similarly, a double pants decomposition is special if decompositions of all components are special.

Let $D P=\left(P_{a}, P_{b}\right)$ be a double pants decomposition of S containing no double curves. Let $c \in D P$. Denote by S^{\prime} the nodal surface obtained from S by collapsing c to a nodal singularity. Consider a set $D P^{\prime}$ of curves on S^{\prime} obtained as a union of images of curves of $D P$ which do not intersect c. Notice that $D P^{\prime}$ is not necessarily a double pants decomposition of S^{\prime}; however, if $c \in P_{b}$ intersects only one other curve of $D P$ then $D P^{\prime}$ is.

Lemma 7.4 ((Collar Lemma, [9])). Let $c \in S$ be a simple closed geodesic on hyperbolic surface S of lengths $l=l(c)$. Define w by the relation

$$
\sinh l \sinh w=1
$$

Then S contains a collar $\operatorname{Col}(c)$ of width w defined by $\operatorname{Col}(c)=\left\{x \in S \mid \rho_{S}(x, c)<w / 2\right\}$, where $\rho_{S}(A, B)$ is the distance in S from the set A to the set B.

It follows immediately from the Collar Lemma that if $a, b \in S$ are closed geodesics $b \cap a \neq \emptyset$ then contracting a so that $l(a) \rightarrow 0$ implies $l(b) \rightarrow \infty$.

The Collar Lemma implies that the local coordinates $l(D P)$ degenerate while the curves c_{i} are collapsing: if $a_{i} \cap c_{i} \neq \emptyset$ then $l\left(a_{i}\right) \rightarrow \infty$ while $c_{i} \rightarrow 0$ (the curve a_{i} intersecting c_{i} do exists since $c_{i} \notin P_{a}$ and P_{a} is a maximal set of disjoint curves in $\left.S\right)$. For the case $C \subset D P$ we define the new set of functions $\tilde{l}(D P, C)$ as follows:

$$
\tilde{l}(D P, C)=\left\{l\left(c_{i}\right), \left.\frac{1}{l\left(c_{j}\right)} \right\rvert\, c_{i} \in C, c_{j} \in D P \backslash C\right\} .
$$

Clearly, $\tilde{l}(D P, C)$ is a local coordinate in all points of \mathcal{T}, where $l(D P)$ is a local coordinate. Moreover, this set of functions remains correctly defined while the curves of the set C are collapsed.

Definition 7.5 (Inversion). An inversion of a k-th function of $\tilde{l}(D P, C)$ is an exchange of $l\left(c_{k}\right)$ or $\frac{1}{l\left(c_{k}\right)}$ (where $\left.c_{k} \in D P\right)$ by $\frac{1}{l\left(c_{k}\right)}$ or $l\left(c_{k}\right)$ respectively.

It is clear the transformation from a set of functions $\tilde{l}(D P, C)$ to any other set of functions $\tilde{l}\left(D P^{\prime}, C^{\prime}\right)$ may be obtained as a composition of inversions and transformations induced by flips and quasi-handle-twists of double pants decompositions (here $D P$ and $D P^{\prime}$ are admissible double pants decompositions containing no double curves, C and C^{\prime} are sets of disjoint curves).

Definition 7.6 (Strong and weak curves). Let $C=\left\{c_{1}, \ldots, c_{k}\right\}$ be a set of mutually disjoint curves on S. Each curve $c \in C$ appears two times in the boundary of $S \backslash C$. We say that c is a strong curve of C if two copies of c appear in two different connected components of $S \backslash C$. Otherwise, we say that c is weak.

We denote by $C_{\text {strong }} \subset C$ the subset of all strong curves.
We denote by S^{1}, \ldots, S^{l} the connected components of $S \backslash C$. By \hat{S}^{i} we denote the connected component of $S \backslash C_{\text {strong }}$ corresponding to the component S^{i} of $S \backslash C$ (\hat{S}^{i} is obtained from S^{i} by gluing along the pairs of boundary components arising from the weak curves).

Definition 7.7 (Good set of curves). We say that a set $C=\left\{c_{1}, \ldots, c_{k}\right\}$ of mutually disjoint curves on S is good if each connected component \hat{S}^{i} of $S \backslash C_{\text {strong }}$ is either a surface of positive genus or has at least two boundary components contained in ∂S.

Let $\mathcal{S}_{\text {good }}$ be a union of all strata \mathcal{S}_{C} where C is a good set.
Remark 7.8. It is easy to see that $\mathcal{S}_{2} \subset \mathcal{S}_{\text {good }}$, where \mathcal{S}_{2} is a union of all codimension 2 strata.
Lemma 7.9. Let $C=\left\{c_{1}, \ldots, c_{k}\right\}$ be a good set of curves. Then there exists a special double pants decomposition $D P$ of S such that $C \subset D P$ and each curve $c_{i} \in C$ is intersected by a unique curve of $D P \backslash c$. Moreover, collapsing any curve $c_{i} \in C$ to a nodal singularity leads to a special double pants decomposition of the obtained nodal surface.

Proof. We build a special double pants decomposition $D P=\left(P_{a}, P_{b}\right)$ with a standard part P_{b} such that P_{b} contains all strong curves of C and P_{a} contains all weak curves of C. We construct the decomposition $D P$ separately for each connected component \hat{S}^{i} of $S \backslash C_{\text {strong }}$.

If \hat{S}^{i} is a sphere with holes, then we build the decomposition $D P$ as shown in Fig. 7.1: since C is a good set of curves, at least two boundary components of \hat{S}^{i} do not belong to C (the two bottom boundary components in the figure). In Fig. 7.1.a we show the part P_{a} of $D P$, in Fig. 7.1.b we show the whole decomposition $D P=\left(P_{a}, P_{b}\right)$, notice that each curve of C is intersected by a unique curve of P_{b}.

Figure 7.1. Special double pants decomposition containing C : case $\hat{S}^{i}=$ $S_{0, r}$. The curves of C are bold, each intersects a unique other curve of $D P$. The figure shows only the front part of the surface, the decomposition of the back part is the same. The black nodes show the intersections of the conjugate curves.

Now, suppose that S^{i} contains at least one handle.
First, we build a standard pants decomposition P containing the set C. To do this for the component \hat{S}^{i}, we build a standard decomposition with a linear structure as in Fig. 7.2.a: first come all handles than come all holes. Moreover, for each strong curve $c_{j} \in \hat{S}^{i}$ the curve c_{j} is contained inside one of the handles (more precisely, first we build the curves $\tilde{c}_{j} \in S^{i}$ which together with both copies of c_{j} bounds a pair of pants in S^{i}, then in \hat{S}_{i} the curve \tilde{c}_{j} cuts out a handle \mathfrak{h}_{j} containing c_{j}).

Next, we build the standard part P_{b} of the special decomposition $D P=\left(P_{a}, P_{b}\right)$: we take the standard decomposition P and for each handle \mathfrak{h}_{j} of P we substitute the curve $c_{j} \in P \cap C$
by any other curve $c_{j}^{\prime} \in \mathfrak{h}_{j}$ such that $\left|c_{j} \cap c_{j}^{\prime}\right|=1$ (in the handles containing no curves of C we do nothing).

Now, we build the part P_{a} of the special decomposition $D P=\left(P_{a}, P_{b}\right)$. We build the restriction of P_{a} to \hat{S}^{i} as it is shown in Fig. 7.2.b: namely, each of the weak curves $c_{j} \in C$ is intersected only by a unique curve of P_{a} lying in the same handle as c_{j}; each of the strong curves is intersected only by a curve passing through the handle \mathfrak{h}_{0}^{i}.

The obtained decomposition $D P$ is special: it may be transformed to a standard decomposition by a sequence of flips as shown in Fig. 7.1 and Fig. 7.2 (we show the order of flips by numbering the intersection points of conjugate curves). It is easy to see that collapsing any curve $c_{i} \in C$ to a point we get a special double pants decompositions $D P^{\prime}$ of the obtained nodal surface: the sequence of flips taking $D P^{\prime}$ to a standard decomposition almost coincide with the corresponding sequence for $D P$ (the only difference is that in case of strong curve c_{i} one needs to omit the flip in the curve conjugated to c_{i}).

(a)

(b)

Figure 7.2. Special double pants decomposition containing C (the curves of C are bold, each intersects a unique other curve of $D P$). The figure shows only the front part of the surface, the decomposition of the back part is the same. The black nodes show the intersections of the conjugate curves.

Let $D P$ be a special double pants decomposition of S, let $C \in D P$ be a good set of curves. Denote by $\bar{Z}(D P, C)$ the locus in $\overline{\mathcal{T}}$ where at least one of the conjugate pairs of $D P \backslash C$ is an orthogonal pair.
Remark 7.10. Let $\left(a_{i}, b_{i}\right)$ be a conjugate pair of $D P$ and let $b_{i} \in C$. It is easy to see that while b_{i} is collapsed, the angle formed up by a_{i} and b_{i} tends to the right angle (if lengths of
other curves of P_{b} remain fixed). This implies that \mathcal{S}_{C} belongs to the closure of $Z(D P)$ in $\overline{\mathcal{T}}$. Therefore, we can not hope that the set of functions $\tilde{l}(D P)$ will provide a local coordinate in the whole neighborhood of a given point $\tau^{\prime} \in \mathcal{S}_{C}$.

Instead, we will show that for any point $\tau^{\prime} \in \mathcal{S}_{C}$ there exists a suitable special double pants decomposition $D P$ such that $\tilde{l}(D P)$ is a local coordinate in the neighborhood of τ^{\prime} in \mathcal{S}_{C} as well as a local coordinate in almost all points of the neighborhood of τ^{\prime} in $\overline{\mathcal{T}}$ (more precisely, $\tilde{l}(D P)$ is a local coordinate in $O\left(\tau^{\prime}\right) \backslash Z(D P)$ where $O\left(\tau^{\prime}\right)$ is a neighborhood of τ^{\prime} in \bar{T}.

This motivates the following definition:
Definition 7.11 (Almost chart). Let C be a good set of curves, let $\mathcal{S}_{C} \subset \overline{\mathcal{T}}$ be the corresponding stratum and let $\tau^{\prime} \in \mathcal{S}_{C}$ be a point. An almost chart centered at τ^{\prime} is a pair ($O\left(\tau^{\prime}\right), f$) where $O\left(\tau^{\prime}\right) \subset \overline{\mathcal{T}}$ is a neighborhood of τ^{\prime} and $f=\left(f_{1}, \ldots, f_{k}\right)$ is a set of k functions, $k=\operatorname{dim} \mathcal{T}=6 g-6+3 n$ satisfying the following conditions:

1) the functions f are defined and continuous in $O\left(\tau^{\prime}\right)$;
2) f is a local coordinate in a neighborhood $O^{\prime}\left(\tau^{\prime}\right)=O\left(\tau^{\prime}\right) \cap S_{C}$;
3) there exists a finite set X of codimension 1 surfaces in $\overline{\mathcal{T}}$ such that f is a local coordinate in a neighborhood of each point $\tau \in O\left(\tau^{\prime}\right) \cap(\overline{\mathcal{T}} \backslash X)$.

Lemma 7.12. Let S be a marked hyperbolic surface considered as a point of $\mathcal{T}=\mathcal{T}(S)$. Let $S_{\text {good }} \subset \overline{\mathcal{T}}$ be a union of the good strata. Let S^{\prime} be a nodal surface with nodal singularities, such that the marked hyperbolic structure τ^{\prime} of S^{\prime} belongs to $\mathcal{S}_{\text {good }}$.

Then there exists an admissible double pants decomposition DP of S which degenerates to an admissible double pants decomposition $D P^{\prime}$ of S^{\prime} such that $\tilde{l}\left(D P^{\prime}, C\right)$ provides an almost chart centered in τ^{\prime}.

Proof. Since S^{\prime} belongs to $S_{\text {good }}$, the nodal surface S^{\prime} is obtained from S by collapsing the curves contained in some good set C.

By Lemma 7.9 there exists a special double pants decomposition $D P=\left(P_{a}, P_{b}\right)$ with standard part P_{b}, such that
(1) $c_{i} \in P_{b}$ for all strong curves c_{i} of C;
(2) $c_{i} \in P_{a}$ for all weak curves c_{i} of C;
(3) for each $c_{i} \in C$ the decomposition (P_{a}, P_{b}) contains a unique curve d_{i} intersecting c_{i}.

By Lemma 7.9 by collapsing a curve $c_{i} \in C$ one obtains a special double pants decomposition of the obtained nodal surface, and, after collapsing all curves $c_{i} \in C$, we obtain a special double pants decomposition $D P^{\prime}$ of S^{\prime}. Clearly, the set of functions $\tilde{l}(D P, C)$ is defined and continuous in a neighborhood O^{\prime} of τ^{\prime}.

Using Lemma 6.1 (as in the proof of Lemma 6.2) we may apply to $D P$ several twists (along the curves of P_{b}) so that the resulting special decomposition $D P_{*}=t_{c_{m}}^{k_{m}} \circ \cdots \circ t_{c_{1}}^{k_{1}}(D P)$ satisfies $\tau^{\prime} \notin \bar{Z}\left(D P_{*}^{\prime}\right)$.

Suppose that some of the twists $t_{c_{j}}$ changes a curve $c \in C$. Then $c \in P_{a}$, so c is a weak curve of C. The curve c_{j} then is the curve conjugated to c in $D P$. Clearly, we may substitute a degree of the twist $t_{c_{j}}$ by a degree of the twist t_{c} so that in the resulting double pants decomposition the images of curves c and c_{j} are not orthogonal to each other. So, after several substitutions we transform $D P_{*}$ to a special decomposition $D P_{* *}$ such that $\tau^{\prime} \notin \bar{Z}\left(D P_{* *}^{\prime}\right)$ and $C \in D P_{* *}$. This implies the conditions 2) and 3) of Definition 7.11. The
condition 1) of the same definition holds for $\tilde{l}\left(D P_{* *}, C\right)$ in some neighborhood $O^{\prime}\left(\tau^{\prime}\right) \subset \overline{\mathcal{T}}$ trivially. Hence, the pair $\left(O^{\prime}\left(\tau^{\prime}\right), \tilde{l}\left(D P_{* *}, C\right)\right)$ provides an almost chart centered at τ^{\prime}.

Now, consider the moduli space $\mathcal{M}=\mathcal{T} /$ Mod. A local chart in a neighborhood of $\tau \in \mathcal{T}$ projects to a local chart in a neighborhood of $\pi(\tau) \in \mathcal{M}$ (where π is a factorization by Mod) unless τ is a hyperbolic structure with non-trivial automorphism group, or, equivalently, unless $\pi(\tau)$ is an orbifold point of \mathcal{M}. Composing this with Lemma 7.12 and Theorem 6.8 we obtain the following theorem:
Theorem 7.13. Let S be a nodal surface, let $\mathcal{M}(S)$ be its moduli space and let $\overline{\mathcal{M}}(S)$ be the Deligne-Mumford compactification of \mathcal{M}. Let $\mathcal{S}_{\text {good }}^{\mathcal{M}}=\mathcal{S}_{\text {good }} /$ Mod be the union of good strata in \mathcal{M}. Let O be a locus of orbifold points of \mathcal{M}, let \bar{O} be the closure of O in $\overline{\mathcal{M}}$. Then
(1) the charts with coordinates $\tilde{l}(D P, C)$ provide an atlas on $\mathcal{M} \backslash O$ and on $\mathcal{S}_{\text {good }}^{\mathcal{M}} \backslash \bar{O}$, (here C is a good set and DP is an admissible double pants decomposition without double curves);
(2) each point $\tau^{\prime} \in S_{\text {good }}^{\mathcal{M}} \backslash \bar{O}$ is covered by some almost chart $\left(O^{\prime}\left(\tau^{\prime}\right), \tilde{l}(D P, C)\right)$;
(3) the elementary transition functions of these charts (almost charts) are inversions and transformations induced by flips and quasi-handle-twists of double pants decompositions; each elementary transition function change only one coordinate; this unique non-trivial transition function is algebraic;
(4) the compositions of elementary transition functions act transitively on the union of charts and almost charts.

Remark 7.14. We do not claim that the Definition 7.7 of the good strata exhaust all the points of $\partial \overline{\mathcal{T}}$ (resp. $\partial \overline{\mathcal{M}}$) covered by the almost charts of our atlas. However, some restrictions for the "good" points covered by the atlas are indispensable. For example, if $S=S_{3,0}$ and C is a set of three curves cutting a pair of pants out of C (see Fig. 7.3) then it is possible to prove that in each admissible double pants decomposition $D P$ such that $C \in D P$ the set of curves $\left\{c_{i} \in D P \backslash C, c_{i} \cap C \neq \emptyset\right\}$ contains more than three curves. Hence, after retracting the curves of C, any decomposition $D P$ contains less curves (of finite non-zero length) than required. This implies that the points $\tau^{\prime} \in \mathcal{S}_{C}$ can not be covered by any chart of our atlas.

Figure 7.3. Example of the stratum not covered by the atlas: $S=S_{3,0}, C=\left\{c_{1}, c_{2}, c_{3}\right\}$.

Acknowledgments. We are grateful to Antonio Costa, Dan Margalit and Saul Schleimer for helpful discussions. The work was partially written during the authors stay at Max Planck

Institute for Mathematics in Bonn. We are grateful to the Institute for hospitality, support and a nice working atmosphere.

References

[1] A. Felikson, S. M. Natanzon, Double pants decompositions of 2-surfaces, Moscow Math. J. 11 (2011), 231-258.
[2] W. Fenchel, J. Nielsen, Discontinuous groups of non-Euclidean motions, manuscript, Univ. California, Berkeley, CA (1959).
[3] V. V. Fock, A. B. Goncharov, Dual Teichmüller and lamination spaces, Handbook of Teichmüller theory, vol. I, 647684, Eur. Math. Soc., Zurich, 2007.
[4] S. Fomin, D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda lengths,
[5] R. Fricke, F. Klein, Vorlesungen über die Theorie der automorphen Funktionen, Vols I, II, B. G. Teubner, Leipzig (1897, 1912).
[6] U. Hamenstädt, Length functions and parametrizations of Teichmüller space for surfaces with cusps, Annales Acad. Scient. Fenn. 28 (2003), 75-88.
[7] U. Hamenstädt, Parametrizations of Teichmüller space and its Thurston boundary, in "Geometric analysis and nonlinear partial differential equations" (S. Hildebrandt, H. Karcher, eds.), Springer, Berlin 2003, 81-88. J. Geom. Anal. 14 (2004), 281-290.
[8] A. Hatcher, W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), 221-237.
[9] L. Keen, Collars on Riemann surfaces, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Stud., 79, Princeton Univ. Press, Princeton, NJ,1974, 263-268.
[10] S. Natanzon, Moduli of Riemann surfaces, real algebraic curves, and their superanalogs, Translated from the 2003 Russian edition by Sergey Lando, Translations of Mathematical Monographs, 225. American Mathematical Society, Providence, RI, 2004.
[11] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), 299-339.
[12] P. Schmutz, Die Parametrisierung des Teichmüller Raumes durch geodätische Längenfunctionen, Comment. Math. Helvetici 68 (1993) 278-288.
[13] M. Seppälä; T. Sorvali, Geometry of Riemann surfaces and Teichmüller spaces, North-Holland Amsterdam, London New York Tokyo 1992.
[14] W. P. Thurston, The geometry and topology of three-manifolds, lecture notes, Princeton Univ., Princeton, NJ (1979).
[15] Travaux de Thurston sur les surfaces, Seminaire Orsay, Astrisque, 66-67, Soc. Math. France, Paris, 1979.
[16] S. Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. of Math., 109 (1979), 323-351.
[17] S. Wolpert, Geodesic length function and the Nielsen problem, J. Diff. Geom. 25 (1987), 275-296.

