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Abstract We consider a geometrically accurate model for a helically wound rope constructed from two inter-
twined elastic rods. The line of contact has an arbitrary smooth shape which is obtained under the action of
an arbitrary set of applied forces and moments. We discuss the general form the theory should take along with
an insight into the necessary geometric or constitutive laws which must be detailed in order for the system to
be complete. This includes a number of contact laws for the interaction of the two rods, in order to fit various
relevant physical scenarios. This discussion also extends to the boundary and how this composite system can
be acted upon by a single moment and force pair. A second strand of inquiry concerns the linear response of
an initially helical rope to an arbitrary set of forces and moments. In particular we show that if the rope has
the dimensions assumed of a rod in the Kirchhoff rod theory then it can be accurately treated as an isotropic
inextensible elastic rod. An important consideration in this demonstration is the possible effect of varying the
geometric boundary constraints; it is shown the effect of this choice becomes negligible in this limit in which the
rope has dimensions similar to those of a Kirchhoff rod. Finally we derive the bending and twisting coefficients
of this effective rod.
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1 Introduction

A common structure in both engineering applications and biology is the intertwined helical motif one would
associate with ropes (see Figure 1(a)). From an engineering perspective wire ropes are used to stabilise bridges
and oil platforms, as well as being used in mine-shafts for raising and lowering resources. As shown in Figure
1(b) the cross-sectional structure of these ropes can be highly elaborate, composed of multiple scales of inter-
wound structure. For example the third of Figure 1(b) is composed on its largest scale of six ropes surrounding
a single rope, but each of these ropes then has a further sub-structure, which in this case happens to have the
same form as the larger scale. In human biology perhaps the most widely recognised example would be the
DNA double helix. However, there are a myriad of fibrous proteins with similar or more complex inter-wound
cross-sectional structure such as keratins, collagens, elastins and intermediate filaments. Such structures form
a vital component of cytoskeletal structures and are used in a number of biological processes [36], including
forming parts of molecular motors [28]. Whilst recognising the inadequacy of a single word to cover the variety
of systems that exhibit this inter-wound structure, we shall use the term rope as a convenient short-hand.
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Fig. 1 Figures depicting examples of the type of rope structure we are interested in. Panel (a) depicts perhaps the simplest
example of what we term a rope in this note, composed of two helically inter-wound tubes, this figure was plotted using the
model we derive in this note and could be used as an elastic model for DNA molecule. In panel (b) we see examples of wire ropes
and their complex cross-sectional structure. We see there are a number of scales of structure.

There is significant interest in the mechanical properties of ropes in the engineering field. There are a number
of common modes of failure in ropes including snapping of individual strands, the unfolding of the contacting
structure commonly referred to as bird-caging and bucking, which occurs when the straightened rope structure
bends leading to a loss of the tautness required to provide stability. In biopolymers many vital functional
behaviours of rope biopolymers require that they be bent, folded and twisted, and there is significant interest in
their mechanical response under stress [22,23,35,38,40,42].

A popular modelling tool for such ropes has been to treat the individual elements as thin tubular continua,
namely (Cosserat) rods (e.g., [11,29,48]). By individual elements we mean the smallest scale of structure for
which there is no further macroscopic cross-sectional structure (i.e., in Figure 1(a) there are two such continua
composing the rope structure, in Figure 1(b) there would be many more). This as opposed to treating the
composite whole as a continuum [14,19,34], an approach that can greatly simplify the modelling but which
would omit vital aspects of a rope’s mechanical response. In particular, the finite volume of individual elements
of the rope leads to geometric constraints relating the fact that individual elements will often be in contact with
each other, and it must be ensured that they cannot overlap when deformed. In modelling terms this has the
dual purpose of preventing non-physical configurations of the rope and also to allow for the correct descriptions
of the mutual contact forces induced between the elements as a result of the deformation. For mechanical
ropes this interaction is an obvious function of the solid material structure of the individual rope elements. For
biopolymers this excluded volume effect is due to the mutual repulsion of the electron density composing the
individual elements of the rope composite. There is significant evidence to suggest that this approximate tube
model for biopolymers is a relevant one as it has been used with success in a number of studies (a few examples
amongst many are [4–8,39,49]).

A notable consequence of this finite volume effect is the fact it is physically impossible to tighten a rope
structure by increasing the helical pitch (rate of winding) indefinitely, as we would eventually encounter a self-
intersecting structure [29]. For the case in which we have two inter-wound tubular this phenomenon has been
termed lock-up [29,31]. It was demonstrated in [29,43,47] that this results in the mathematical divergence of the
mutual pressure exerted in individual rods as the rope is helically tightened towards this limit. This phenomenon
would not naturally be captured by a single continuum model.

We make a point of highlighting this issue of the geometry of mutual contact of rope elements as it has
not always been fully addressed in the literature. There has been a significant body of work in the engineering
literature which concerns the development of models of wire ropes (see [13] for a brief review). In this approach the
individual strands of the rope are treated using rod theory. The individual strands are modelled by considering
an individual rod whose undeformed geometry is helical and using the equations of equilibrium to determine
the change in shape of the centreline of rotation under a set of applied forces and moments. In a well cited
study by Costello [10], a measurement of the effective bending stiffness of a helical rod was determined, i.e., a
measure of the moment required to turn the initially straight helical shape into that of a curve winding on a
section of a torus whose curvature is the measure of its bending. This measure is then assumed to apply to each
individual rod of a full wire structure, and some (incorrect) geometric assumptions based on the geometry of the
cross-sections of the rope’s individual elements are then used to build a composite model for the full structure
[11,48]. A significant downside to this approach was the lack of consideration of body forces imposed on the
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Fig. 2 A depiction of a pinning device used to apply a single torque to a rope constructed from two rods. By turning the pin
about the rope’s centre as shown in (a) a set of forces and moments will be applied to the individual rods causing their change
in shape depicted in (b).

individual rods by their contacting neighbours. In subsequent work [24,32,33], both contact forces and moments
were considered, though once again the studies only modelled an isolated helical rod, rather than considering
the whole system in a single model. A number of authors have proposed various extensions or variations on this
model [2,16,20,37] but they rely on the same geometric assumptions of elliptic cross-sections, which is not in
general correct even if the rope remains unbent (see e.g., [29]). Alternative models make ad hoc assumptions
regarding the kinematics of the constituent rods [12,46], but none of these works correctly treat the contact
problem.

On the applied mathematics side, various studies have addressed these issues by coupling the individual rod
equations of each strand by correctly treating the contact geometry of the structure [29,43,47]. These works
considered the case in which the rods were helical and did not consider bending of the structure. This approach
is shown to lead to the divergence of forces as lock up was approached. Neukirch and van der Heijden [29]
considered n intertwined helical rods, this approach has recently been extended to include a compressible rod
in the centre of the structure [27]. The natural extension of this approach would be to allow for the structure
to bend under the action of moments and forces, it is this problem which we shall begin to address in this work
and subsequent studies. The aim is to first treat the smallest scale of structure of the rope structure as a single
rod so that the next scale can then be treated in the same manner. In this particular study we limit ourselves
to the case of two rods which have initially a single line of contact, following [26] we call this a birod. Treating
this simpler case proves to be of significant difficultly in and of itself, however, many of the issues confronted in
this study will naturally carry over to the n rod case. In particular the framework for defining the interaction
mechanics of contacting rod elements which we develop.

A study by Moakher and Maddocks [26] considered a variant of this problem in the case for which the two
rods composing the birod were stuck together, forbidding relative motion of the two composing rods such as
the relative sliding an twisting of the two rods with respect to each other. Such a model would be relevant for
a system such as a DNA molecule where the base pairs of the two polypeptide strands are paired by covalent
bonds. On the other hand many coiled-coil structures interact relatively weakly through Van-Der-Waals forces
and hydrophilic interactions which would not greatly restrict such motions. Also, mechanical ropes are often
lubricated such that they are relatively free to slip without much fictional wear. Starostin and van der Heijden
[41] considered the equilibria of a birod model in which the rods are free to slide. Still more generally one might
also need to consider the presence of frictional forces in the rope interactions in dynamic studies. It is clear that
a more general model is necessary to allow for a significant range of possible interaction laws. In this note we
propose such a model and discuss the possible mathematical means for specifying the interactions law of the two
rope strands in section (3.2). This could be geometrically such as in [26] or through constitutive laws specifying
the mechanical interaction through contact of the two structures. By making explicit assumptions about the
shape and density of the constituent rods, namely that they are circular and unstretchable, we make this model
relatively simple and tractable.
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Fig. 3 Depiction of the bending asymmetry of a birod. Panel (a) depicts an un-bent birod, the tangent vector of their line of
contact and two vectors in its normal plane. The first points towards the centre of one of the rods the other is perpendicular.
In (b) we see the effect of applying a bending moment about the second direction, on this case the two rods are caused to press
against each other leading the pair to bend. In (c) we see the effect of applying a bending moment about the direction point
towards the rod’s centre. We see the two rods bend mutually without having to press against each other.

A second aspect of this study concerns the means by which we can apply forces and moments to a rope in
the same manner we do to individual rods; this functionality would be particularly useful for creating composite
models of a series of ropes (hierarchical models). For a single rod we apply a force/moment combination (a
wrench) to each end of the rod as the boundary conditions. In practice we can apply a single wrench force as
the ends of a birod if it is in some way glued or bound at its ends, as shown with an imagined pinning device
depicted in (Figure 2). Turning the pin will naturally impart individual forces on the two rods by restricting
their individual motions with respect to each other and we have a means of treating the system as a single rod.

A second consideration in the attempt to treat a rope as a rod would be to develop a simple constitutive
law for the rope with the same mathematical structure as that use for a single Cosserat rod, in particular the
linear constitutive law which relates the moments about the rod cross-sections to its local degree of bending and
twisting through constant values. For isotropic circular rods the moment required to bend about any particular
axis does not vary. However, even for birods composed of circular rods we might expect a pronounced asymmetry
as applying a moment about one direction could correspond to pressing the rods into each other (Figure 3(a))
or bending about the same direction without needing to press against each other, (Figure 3(b)). Studies by
Kehrbaum and Maddocks [21] , and Healey [19], found linear laws could be recovered for single birods which had
the assumed symmetry of helical birods. However, this work neglects the non linear effects one would expect to
result from the diverging pressure due to lock-up. Neukirch and van der Heijden [29] derived constants for the
torsional response of a birod which did take into account this divergence. The aim of this study is to extend this
work to more general geometries to obtain coefficients for the bending of the birod.

In Section 2 we discuss the governing kinematics of the birod. In Section 2.4 we show how the kinematics of
the individual rods can be expressed in terms of the kinematic parameters of the contact line.

In Section 3 we discuss the balance equations of the birod structure (22-25). We discuss the five degrees of
kinematic freedom inherent to the birod structure, on which it is necessary to impose constraints in order to
complete the system. Finally we discuss the application of the boundary conditions through the imposition of
geometric constraints.

In Section 4 we derive and discuss the equilibrium state of a birod composed of helically intertwined rods
whose contact line is straight. In particular the state in which the composite birod force and moment are zero
so it will act as our undeformed effective rod.

In Section 5 we detail the linearisation procedure used to obtain the linear response of the birod. This is
based on the perturbation scheme of Goriely and Tabor [17].
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Fig. 4 Depictions of various aspects of the rod construct. In (a) we see a visualisation of the set of discs Dst which constitute
the rod body. Also shown is the director basis. In (b)(i) we see two example rods which have curvature but not torsion, they bend
in planes. The rod depicted in (ii) contorts out of plane due to the rotation of the Frenet frame, it has torsion. The red curve in
(c) depicts the additional twisting of the basis, which used to represent the degree of freedom offered by the relative rotation of
the material discs Ds under the action of a torque.

In section 6 we discuss the solutions of the system. In particular we focus the relationship between the birod’s
total force and moment and the curvatures of the contact line. We derive the linear bending coefficients and
twisting coefficients in the limit in which the ratio L/R, the length L and radius R of the birod, is large, as
well as discussing the suitability of these approximations. We show these results can be used to obtain previous
torsional and axial strain constitutive behaviour found in [29].

Finally in section 7 we review the results obtained.

2 Kinematics and Dynamics of the Model

2.1 Cosserat Rods

A birod is composed of a pair of unshearable, inextensible, elastic Cosserat rods. A Cosserat rod is defined by
a pair of vector fields [0, L]× R→ r(s, t),d1(s, t) ∈ E3. The position vector r represents the location of the rod
central axis in a Cartesian reference frame (x̂, ŷ, ẑ). It is required to be least three times differentiable on the
interval s ∈ [0, L] and twice differentiable with respect to t. A moving right-handed orthonormal basis of E3, the
director basis, is defined for the rod using the position vector’s unit tangent vector d3(s, t), ||d3|| = 1, and the
unit vector field d1(s, t) which lies in the normal plane of r (d1 ·d3 = 0, ||d1|| = 1, ∀s, t). The basis is completed
by the vector product d2 = d3×d1. Usually for Cosserat rod models the parameter s is chosen to be the arclength
of the curve r, for which || dr/ ds|| = 1 [25], however, in what follows we must use a parametrisation for the
rod which is not its arclength, so that || dr/ ds|| = λ(s, t), which slightly changes some of the usual kinematic
expressions.

The Cosserat theory is a one dimensional model of a thin three-dimensional body, composed from a set of
planar material cross-sections attached to the axis curve r (see e.g., [1]). Usually the specific geometry of the
cross-sections is not explicitly characterised, however, in this work the exact dimensions of the rod will form a
vital part of the birod inter-wound geometry. For this birod model we require the cross-sections to be circular
discs with constant radius R. At a specific parameter value s the pair (d1,d2) span the circular cross-section
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Dst whose material points p are specified by the pair (r, ξ) with

Ps,t(r, ξ) = r(s, t) + r(d1(s, t) cos(ξ) + d2(s, t) sin(ξ)),

and Dst =
{
Ps,t(r, ξ)|r ∈ [0, R], ξ ∈ S1

}
. The set of all Dst on the interval s ∈ [0, L] constitutes the rod body at

a time t, as depicted in Figure 4(a).

Particular configurations of the rod can be characterised by the evolution of the basis {di} with s and t via
the differential equations

d′j = λu(s)× dj(s), ḋi = w(s)× dj(s), j = 1, 2, 3, (1)

where the prime denotes partial differentiation w.r.t s, the dot partial differentiation w.r.t time t, and the axial
vectors u (the strain vector) and w (the spin vector) are defined using six differentiable scalar functions uj(s, t)
and wj(s, t), such that

u = u1d1 + u2d2 + u3d3, w = w1d1 + w2d2 + w3d3.

Hereafter the components of a vector v in the director basis will always be written in the Sans-Serif font
vj , j = 1, 2, 3. With this we have two linear systems of ordinary differential equationsd′1

d′2
d′3

 = λ

 0 u3 −u2

−u3 0 u1

u2 −u1 0

d1

d2

d3

 ,

 ḋ1

ḋ2

ḋ3

 =

 0 w3 −w2

−w3 0 w1

w2 −w1 0

d1

d2

d3

 . (2)

The requirement that the partial derivatives of dj commute in s and t lead to the following compatibility
conditions

w′ − u̇ = u×w. (3)

[17]. For given vectors u(s, t) and w(s, t), length L, radius R and function λ, a rod’s configuration is defined at
all t by the solutions of (2), up to a global translation and rotation determined by the initial conditions.

For our birod model we will know the functions r of each rod as a function of the kinematic variables of the line
of their mutual line of contact (defined in Section 2.2). The aim is to express the kinematics of the individual
rods in terms of these variables through the expression for r. The functions uj and wj can be expressed as
functions of r via the Frenet framing, which is defined through the Normal vector ν = d′3/||d3|| and Binormal
vector β = d3 × ν, with

ν =
r′ × (r

′′
× r′)

||r′|| ||r′i × r
′′
i ||
, β =

r′ × r
′′

||r′ × r′′ || , (4)

[25]. The Frenet frame satisfies the differential equation ν′

β′

d′3

 = λ

 0 τ −κ
−τ 0 0
κ 0 0

 ν
β
d3

 . (5)

with the curvature κ and torsion τ given by

κ =
||r′ × r′′||
||r′||3 , τ =

(r′ × r′′) · r′′′

||r′ × r′′||2 . (6)

In order to properly represent the independent degree of freedom of axial rotation of the material discs about
d3 we define a function φ(s, t), which parametrises an additional rotation of the pair (ν,β) about d3 to obtain
the director basis, i.e,

(d1,d2) = (cos(φ)ν + sin(φ)β,− sin(φ)ν + cos(φ)β) . (7)

Taking partial derivatives of dj with respect to s, using (5) and comparing to (2) we have

u1 = κ sin(φ), u2 = κ cos(φ), u3 = τ +
φ′

λ
. (8)

Finally, by differentiating (7) with respect to t and using the relations

w1 = d3 · ḋ2, w2 = −d3 · ḋ1, w3 = d2 · ḋ1, (9)

we can obtain the components of the spin vector in terms of partial derivatives of r.
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Fig. 5 (a) two intertwined Cosserat rods with centre lines r1 and r2 and a mutual line of contact R. The vectors D1 and D2

which are used to characterise the rod geometry in terms of the contact line geometry are shown. (b) the various framing’s used
to characterise the birod’s kinematics (in this case we see the kinematics of rod r1). The contact frame (D3,D1,D2) is shown.
Also shown is the Frenet framing (d31, ν1,β1) and the angle φ1 between the vector d11 and ν . Note that the normal vector
and D1 overlap. This is not generally true but is its true for the un-deformed double helix state we use in Section 4. (c) a birod
configuration which is not allowed by our definition as one of the rods has sections with no contact.

2.2 Birod Kinematics and Dynamics

We consider two intertwined Cosserat rods with the same cross-sectional radius R and whom share a mutual line
of contact which we label R(s, t) (Figure 5(a)). This contact line R(s, t) inherits its differentiability from the rod
centrelines. In what follows all vectors positioned on the contact line will be capitalised, as will their components.
We do not make any assumptions about the particular form of the kinematic parametrisation s used for the
contact line at this stage, but will discuss some of the possible choices in due course. It is the parameter s which
we now identify as that used in the previous section and we now explain how it can be used to parametrise the
individual constituent rods, irrespective of the specific choice of kinematic parametrisation. We label the rods
1, 2 with subscripts (r1, r2). The rods may have differing arc lengths L1 and L2 but we require there is no section
of either rod which is not in contact with the other (ruling out configurations such as shown in Figure 5(c)).
To be more precise, each point R(s) will be in contact with of two unique material discs D1(s1(s, t)), of rod 1
and D2(s2(s, t)) of rod 2, with the functions s1(s, t) and s2(s, t) the arc lengths of rods 1 and 2 respectively.
Note that even if the rods have the same length the requirement that the rods are in continual contact does
not imply s1(s, t) = s2(s, t), ∀s. We also do not necessarily require that two discs in contact at a time t are
in contact with each other at any other time, except the end disc pairs (D1(s1(smin, t)),D2(s2(smin, t)) and
(D1(s1(smax, t)),D2(s2(smax, t)), which remain paired for all t.

We now define two vectors Ci(s, t) which join the centrelines of the rods r1 and r2 to the contact curve R as

ri(s, t) = Ci(s, t) + R(s, t).

The vectors, depicted in Figure 5(a), are always anti-parallel i.e., C1 = −C2.

Indeed we are considering the contact to two convex shapes (sections of a tube which are locally cylindrical)
so their tangent planes at the point of contact are parallel and align. The vectors r1−R and r2−R are normal to
this plane and hence must be aligned. Thus we need only to define a single vector C1 to determine the locations
of the two centrelines associated with s.

This fact allows us to define a single framing whose curvatures can be used to rebuild both rods (see Section
2.4). In this sense the birod structure can be seen as a Cosserat rod, discussed in section 2.1, with the vector
fields R and C1/||C1|| playing the roles of r and d1, and the problem is to determine the mechanics of this
composite rod.

In assuming that the cross-sections are always circular we imply that the length of the vector field C1 is
constant. This also implies that we have restricted the cross-sections from deforming transversely, both assump-
tions are not always uniformly made in rope modelling (see e.g. [2]), and we briefly discuss the possibility of
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relaxing these assumptions in Section 3.4. That said, unless the rods are significantly prone to such transverse
deformations, our assumption does not seem unreasonable and significantly simplifies the following kinematic
description of the individual rods, particularly in the cases where the curve R adopts a non-trivial (straight)
configuration.

2.3 The Contact Frame

We define an orthonormal basis at the point of contact in order to describe the forces and moments acting there.
In our case we define a moving framing (D1,D2,D3) with unit vectors

D3 =
R′

||R′|| , D1 =
C1

||C1||
, D2 = D3 ×D1. (10)

This frame is associated with a strain vector U = U1D1 + U2D2 + U3D3 and spin vector W = W1D1 + W2D2 +
W3D3 such that D′i = U ×Di and Ḋi = W ×Di. As with any rod frame, given U and W we can solve the
system D′1

D′2
D′3

 =

 0 U3 −U2

−U3 0 U1

U2 −U1 0

D1

D2

D3

 ,

 Ḋ1

Ḋ2

Ḋ3

 =

 0 W3 −W2

−W3 0 W1

W2 −W1 0

D1

D2

D3

 , (11)

subject to the compatibility condition

W′ − U̇ = U×W, (12)

to obtain the well-defined frame of the contact line at all t. Of interest in Sections 4-6 are straight-axis birod
states characterised by functions U1 = U2 = 0, and a general function U3 = Φ′ yielding the following rod
centrelines

r1(s) =

 R sin(Φ(s) + c)
−R cos(Φ(s) + c)

s

 , r2 = (s)

−R sin(Φ(s) + c)
R cos(Φ(s) + c)

s

 . (13)

If Φ′ is constant this curve is a helix. A varying function Φ′ yields a helix with varying pitch. In this particular
case the parameter s is the arclength of the contact line.

2.4 Rod Geometry in the Contact Frame

Next we characterise the geometry of the two rods in terms of the geometry of the contact line. To do so we recast
the rod kinematics in terms of the contact frame {Dj}. The rods are defined by the function pairs (r1,d11) and
(r2,d12), where we have used the notation dji, with j = 1, 2, 3 labelling the particular vector of the basis of rod
i = 1, 2 (i.e., d32 is the tangent vector of rod 2).

The vectors ri are defined by

ri(s, t) = R(s, t) + (−)i+1RD1(s, t). (14)

with R = ||C1|| the (fixed) radius if the rods. Differentiating (14) w.r.t. s we have

r′i = D3 + (−)i+1RD′1

=
(

1 + (−)iRU2

)
D3 + (−)i+1RU3D2. (15)

where we have used (11). In general this is not a unit vector. Indeed we have

λ2i =
∂ri
∂s
· ∂ri
∂s

=
∂ri
∂si
· ∂ri
∂si

(
∂si
∂s

)2

=

(
∂si
∂s

)2

=
(

1 + (−)iRU2

)2
+R2U2

3.

Hence,

λi(s, t) =

((
1 + (−)iRU2(s, t)

)2
+R2U3(s, t)2

)1/2

. (16)
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The specific choice of parametrisation s places constraints on the functions λi. One possibility would be to choose
s to be the arclength of rod 1, i.e., s1 = s. With this choice we would require λ1(s, t) = 1,∀s, t and the integral
constraint ∫ L1

0

λ2(s, t) ds = L2, ∀t,

hold for the second rod. For a general parametrisation s ∈ [smin, smax] we require the following two integral
constraints are satisfied, ∫ smax

smin

λ1(s, t) ds = L1,

∫ smax

smin

λ2(s, t) ds = L2, ∀t. (17)

Equations (4) and (6) give expressions for κi and τi of rod ri in terms of the curvatures (U1,U2,U3) and R, as
functions of s. We define the pair (d1i,d2i) as

d1i = cos(φi)νi + sin(φi)βi, (18)

d2i = − sin(φi)νi + cos(φi)βi,

(see Figure 5(b)). It is important to remember that the functions φi are functions of s not si. With this labelling
the form taken by the curvatures uji are

u1i = κi sin(φi), u2i = κi cos(φi), u3i =
φ′i
λi

+ τi. (19)

The kinematics of the rods are completely defined in terms of the functions (U1,U2,U3), the radius R, and the
functions φi. The dynamics can be obtained from expressions for the time derivatives ∂r/∂sn∂t using (14) in
conjunction with (11). Using (6) and (4) we can obtain time derivatives of the Frenet pairs (νi,βi) and through
(18) time derivatives ḋ1i and ḋ2i. Using d3i = λir

′
i we can obtain the time derivatives ḋ3i and through

w1i = d3i · ḋ2i, w2i = −d3i · ḋ1i, w3 = d2i · ḋ1i. (20)

the components of the spin vectors wji for each rod.

Finally, it is necessary to show that the individual compatibility conditions of the two rods are satisfied if
(12) is satisfied. Indeed we can write the arclength derivative r′i as a linear combination of the basis (D1,D2,D3)
through (15). If (12) is satisfied then the vector fields Dj have commuting partial derivatives, so the vectors r′i
must also have commuting partial derivatives, as must d3i = λir

′. The same is also true of any further s partial
derivatives of ri as they are always linear combinations of the basis (D1,D2,D3). With this we can conclude
from (4) that the vectors (νi,βi) satisfy.

∂ν

∂s∂t
=

∂ν

∂t∂s
, and

∂β

∂s∂t
=

∂β

∂t∂s
, (21)

and from (18) so do the linear combinations d1i and d2i. Finally, as we have shown all of dji, j = 1, 2, 3, i = 1, 2
have commuting partial derivatives, the individual rod compatibility conditions will automatically be satisfied.

3 Mechanics

We couple the balance equations of the individual rods with their interaction at the contact line. These equations
were originally derived in [26] independent of the strict contact line kinematics the authors then enforced. They
are

n′i + Fi + fi = ρr̈i, (22)

m′i + r′i × ni + (−1)iRD1 × Fi + Li + li = ρI
(
d1i × d̈1i + d2i × d̈2i

)
, (23)

F1 = −F2, (24)

L1 = −L2. (25)

With ρ the density of the rods (assumed to be the same) and I the second moment of inertia of the bodies, which
for circular cross-sections is πR4/4. The fields n and m are the force and moment respectively acting across a
cross-section of the rod. The vector field F represents a body force per unit contact length due to contact. In
this case F1 represents the force exerted on rod 1 by rod 2. This force vanishes when there is a loss of contact.
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Equations (22) represent the internal balance of linear momentum in the rod and the forces fi represent any
other body forces acting at the rod centrelines. Equations (23) represent the balance of angular momentum in
the individual rods. The contact force Fi produces a moment in (23) as it is applied at the contact line on
the rod’s surface. The body moment L1 is the contact moment per unit length of R imposed on r1 by rod r2,
acting at the contact line, and similar for L2. The couples li represent any other body couples acting at the rod
centrelines. Finally (24) and (25) are Newton’s third law at the line of contact.

For unstretchable-unsherable Cosserat rods a constitutive moment is supplied to complete the individual rod
equations by specifying functions mji of the form

mji = mji(uj1, uj2, uj3, si).

We have shown how to re-write any such kinematic relationship in terms of the contact curvatures Ui, the
functions φi and the contact parameter s (the curvatures Ui are also invariant to the group of Euclidean trans-
formations [26]). Our birod model is applicable given any suitable choice of constitutive relationship (see e.g.,
Antman Chapter 8 [1]). In sections 4-6 we derive an approximate linear constitutive law for a birod by assigning
the rods the linear constitutive relationship of a transversely isotopic rod whose reference state (with zero applied
forces and moments) is straight. In dimensionless form this is

mi = κi sin(φi)d1i + κi cos(φi)d2i + γ

(
τi +

φ′i
λi

)
d3i. (26)

see [18] for details of the appropriate length/time/mass scalings. The dimensionless constant γ is the ratio of
the twisting moment of inertia to the bending moment of inertia, its takes values on the domain γ ∈ [23 , 1], with
1 corresponding to a hyper-elastic material and 2/3 an incompressible material. The choice (26) is generally
referred to as the Kirchhoff rod model and assumes the dimensionless quantity

max
∀s,t

{√
u2
1i + u2

2i + u2
3iR,

R

Li

}
, (27)

is small [17]. In solving the equations we will use equations (4), (18) and (6) to express the moments mi in terms
of the contact basis. Whatever the choice of constitutive law for m, the forces ni are expressed directly in the
contact basis

ni = n1iD1 + n2iD2 + n3iD3, (28)

Note we do not denote the components of the vectors ni in capitals, even though they are expressed in the
contact basis, as they are forces acting at the rod centrelines not the contact line.

3.1 Composite Mechanics of the Birod

The net force acting at R(s) is

N = n1 + n2. (29)

The net moment acting about the contact line R(s) is,

M = m1 + m2 +RD1 ×Nd, Nd = n1 − n2. (30)

3.2 Solving the System

Taking into account (24) and (25) there are 32 unknowns (n1,n2,F,L, f1, f2, l1, l2,U1,U2,U3,W1,W2,W3, φ1, φ2)
and 15 equations from (22), (23) and the compatibility constraints (12). If we assume body forces/moments have
been specified using constitutive laws, additional equations, or are absent, we are still five equations short of a
complete system. Of course this imbalance can also be removed by specifying constitutive laws for five of the
components of F and L, as we shall discuss. Alternatively there are five independent degrees of freedom of rod
geometry, relative to the contact basis, on which geometric constraints can be applied in order to complete the
system.
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Fig. 6 Figures depicting the relative motions of the birod which may lead to contact forces/moments. Panel (a) represents the
internal twisting of the rod. Panel (b)(i) depicts the wrapping of one rod about the other (the translucent disc is its original
position), leading into a change of point of contact of the two discs as shown in (b)(ii). Panel (c) represents a screwing motion
which would be associated with changes in curvature of the rods. Panel (d) depicts the sliding of the two rods past each other

3.2.1 Relative Rod Geometry

Firstly the vector D1 can be written as a linear combination of the pairs (d1i,d2i) spanning the rod cross-sections,

D1 = cos(α1)d11 + sin(α1)d21 = cos(α2)d12 + sin(α2)d22. (31)

The angles αi will in part result from the internal rotation of the material discs composing the rod, as charac-
terised by the twist functions u3i (Figure 6(a)), but also motions due to the relative rotation of two rods, as
depicted in Figure 6(b)(i)-(ii).

Secondly the vectors d3i are perpendicular to D1 and must be representable as a linear combination of the
pair (D2,D3),

d31 = cos(β1)D3 + sin(β1)D2, d32 = cos(β2)D3 + sin(β2)D2. (32)

The angles βi can be used to quantify the screwing motion depicted in (Figure 6(c)). As an example for helical
birods β1 = −β2 and both are constant with respect to s. In this case β is equal to the helical angle made by
d3 and ẑ. Increasing/decreasing β corresponds to an increasing/decreasing helical pitch.

The final degree of freedom concerns relative sliding motions of the two rods along the contact line (Figure
6(d)). To quantify this effect we must first define a reference configuration with parametrisation sr ∈ [sminr , smaxr ]
for which we can assign functions sr1(sr) and sr2(sr), specifying the arclengths of points on the rod axes r1 and
r2 whose material discs are in contact in this reference configuration. The sliding can then be defined for all
admissible configurations by defining a function ∆s(sr), which specifies the separation, in terms of the reference
contact parameter sr, of the two points which were initially contacting. Using the integral relationships

s1(sr, t) =

∫ sr

smin
r

λ1(s, t) ds, s2(s) =

∫ sr

smin
r

λ2(s, t) ds, (33)

the function ∆s is given by the sum

∆s(sr, t) = (s1(sr, t)− sr1(sr)) + (s2(sr, t)− sr2(sr)). (34)

The choice ∆s = 0, ∀sr, t corresponds to forbidding sliding motions.
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3.2.2 Completing the System - Geometric Constraints

The most straight-forward example of geometric constraints would be what we refer to as the ”perfect glue” corre-
sponding to fixing the rod geometry with respect to the contact frame for all admissible configurations. We denote

P0 as the set of initial birod variables P0 =
{

n
(0)
1 ,n

(0)
2 ,F(0),L(0),U

(0)
1 ,U

(0)
2 ,U

(0)
3 ,W

(0)
1 ,W

(0)
2 ,W

(0)
3 , φ

(0)
1 , φ

(0)
2

}
,

and some other admissible set of these variables P. We define the functional ∆f , for some function f dependent
on the parameter sets

{
P,P0, s

}
, as

∆f(P,P0, s) = f(P,P0, s)− f(P0, s), (35)

and the perfect glue would require the following hold for all s

∆α1(P,P0, s) = 0, ∆α2(P,P0, s) = 0,

∆β1(P,P0, s) = 0, ∆β2(P,P0, s) = 0,

∆s(P,P0, s) = 0,

for for all admissible configurations. More generally we require a system of equations Ck, such that

Ck (α1, α2, β1, β2,∆s,P,P0, s) = 0, k = 1, 2, 3, 4, 5,

The solutions of the system comprising these equations, (22)-(25) and (12) will determine the functions∆αi,∆βi,∆s
(subject to the application of boundary conditions).

3.2.3 Constitutive Laws

Alternatively we can provide constitutive laws for the contact moments through equations Gk, that is

F2 = G1(P0,P, s), F3 = G2(P0,P, s), (36)

L1 = G3(P0,P, s), L2 = G4(P0,P, s), L3 = G5(P0,P, s).

with F1, the mutual pressure which is exerted by the rods on each other, determined by solving the system (22)-
(25) and (12) with the laws (36) inserted. Solving the complete system will determine the functions ∆αi,∆βi,∆s.

A particular case of applying force/moment constraints which has been treated in the literature on several
occasions is to set all the functions Gk = 0, ∀s ∈ (smin, smax) (i.e., on the birod’s interior) [44,43,29,47,41].
This assumes the other contact force/moments restricting sliding/twisting motions are negligible by comparison
to the normal contact pressure F1. For well-lubricated wire ropes and weakly bonded coiled-coil structures this
assumption is probably valid. It is this choice which we make in Sections 4-6. In this case we require alternative
and far more restrictive constraints on the boundary in order to keep the structure self-contacting, we use
geometric constraints in Sections 4-6.

3.3 Boundary Geometric Constraints

By applying only a set (N1, N2, N3,M1,M2,M3) at a boundary we would appear to be six short of the number
of required constants required to specify the set m1,m2,n1,n2. However, the 6 moments functions mi, i = 1, 2,
are actually functions of 5 kinematic variables (U1,U2,U3, φ1, φ2). So by providing 5 rules which constrain the
set (∆α1,∆α2,∆β1,∆β2,∆s) at the boundaries we can remove this ill-definition.

We denote the upper and lower boundary s-values B+ and B−. Firstly have demanded that the rods are in
contact for their whole lengths so the end points of the two rods must always coincide, i.e., ∆s(B±) = 0 for all
admissible deformations. Secondly, upon solving the balance equations on the birod’s interior s ∈ (B−, B+) it will
be possible to specify the angles αi and βi in terms of the applied force/momentsM±1 ,M

±
2 ,M

±
3 , N

±
1 , N

±
2 , N

±
3 and

the rod lengths (L1, L2) (required to apply the boundary conditions in conjunction with the length constraints
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(17)). We refer to this parameter set as Pb,and have the set Pb0 be the case in which all forces and moments are
zero. The boundary constraints for the perfect glue we have discussed above would be

∆α1(Pb,Pb0 , B±) = 0, (37)

∆α2(Pb,Pb0 , B±) = 0,

∆β1(Pb,Pb0 , B±) = 0,

∆β2(Pb,Pb0 , B±) = 0,

∆s(Pb,Pb0 , B±) = 0,

for all admissible configurations.

3.3.1 Helical Birods

In general we may not require such rigid conditions. For example it was demonstrated in [29] that it is possible to
gradually tighten a helical birod under the action of an applied load and moment, such that its remains uniformly
helical and satisfies the birod equilibrium equations. This would not be possible under the set of conditions (37)
as it requires the angles β1 and β2 change when the vectors d3i of (13) rotate about N1 to obtain a lower pitch.
In fact it was shown in using variational analysis of a straight axis birod in [47] that the required boundary
constraints for this uniform tightening would be

∆
∂βi
∂s

(Pb,Pb0 , B±) = 0. (38)

for all admissible equilibrium configurations. (c.f. [47] θ = β1 = −β2, ψ = u3 and the same symbol is used for
φ) and, as shown in Section A of the Appendix, the equivalent conditions on the angles αi would be either

∆αi(Pb,Pb0 , B±) = 0, or ∆
∂αi
∂s

(Pb,Pb0 , B±) = 0. (39)

for all admissible configurations.

3.3.2 Sufficiently Pinned Conditions

In sections 4-6 we do not consider specific boundary constraints, rather we restrict the motion of the individual
rods with respect to the contact frame at the boundaries, such that the change in the angles (αi, βi) with
changing shape of the birod are bounded,

|∆α1(Pb,Pb0 , B±)| ≤ α1m, (40)

|∆α2(Pb,Pb0 , B±)| ≤ α2m,

|∆β1(Pb,Pb0 , B±)| ≤ β1m,

|∆β2(Pb,Pb0 , B±)| ≤ β2m,

∆s(Pb,Pb0 , B±) = 0

If the upper bounds αim, βim are small this corresponds to boundary laws similar to the perfect glue (37), in
that they restrict the motion of the individual rods relative to the contact basis on the boundary. We show in
Section (6) that if the upper bounds are small with respect to the length L of the birod and of the same order
(or smaller) as its radius R then the birod’s averaged mechanical response is independent of the particular choice
of boundary constraints, assuming the individual rods have the dimensions required by the Kirchhoff model.
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Fig. 7 Depictions of non-circular cross sections. Panel (a) depicts a convex, non-circular, cross-section. The vectors v1 and v2

joining R to the curves r1 and r2 are shown. Panel (b) depicts the consequence of rotating the rod r1, we see the vector v1 is
now significantly longer than it was in panel (a).

3.4 Relaxing Various Model Assumptions

The model makes a number of assumptions regarding the birod’s kinematics, namely:

1. Circular cross-sections
2. Continual contact of the rods
3. The number of rods composing the structure

We briefly discuss the possibility of relaxing these constraints as an insight to possible elaborations on the birod
model. It is impossible to conduct an exhaustive discussion of these issues here so we keep the discussion brief.
What follows is not required for Sections 4-6.

Rods with convex cross-sections can form a birod structure. Their surface tangent spaces must still be parallel
at contact so we can define the vector C1 as in Section 2.3, and hence the contact frame {Di}. The point ri(s)
can then be written in the form R + vi, with vi some linear combination of the frame vectors {Di} (see Figure
7(a)). With this assumption equations (14)-(16) would need to altered, but equations (17)-(20), in conjunction
with (4) and (6), can still be used to define the curvatures uij of the individual rods. Additionally equations (31)
and (32), (33) and (34) would still apply, so we can completely define the kinematic description of the rods in
terms of the contact line R, the angles βi and αi, and the function ∆s. However, the description could be heavily
dependent on the potential deformation of the rod. For example rotation of non circular cross-sections would
cause the distance of the point r(s) to the line of contact to change as in Figure 7(b). So the equation ri = vi+R
could depend on the parameters α, β and ∆s, whilst the circular cross-section relations ri = R +RD1 do not.

We could also include the possibility of transverse deformations of the cross-sections under the mutual applied
pressure F1. This possibility and its affect on the pressure is considered by Argatov [2], who treats the local
contact problem using matched asymptotic expansions and uses this result to modify the pressure obtained by
solving the equilibrium equations of helical rope model composed of Kirchhoff rods.

If the rods loose contact for some sub-section of their length then the mechanical equations must decouple
and the forces/couple pair (F,L) vanish. Similarly the rod kinematics would also decouple. It would be sensible
to treat the rods individually on non-contacting domains and as birods on the domain of mutual contact; unless
specific assumptions could be made of the individual rod geometries on the non-contacting s-domain. Part of
the problem would then be to determine the size of each domain. One must also consider the continuity of the
balance equations at the point where contact is lost/retained, Coleman and Swigon [9] detail this condition
explicitly for the self-contact of an individual rod and the same considerations would apply for the contact of
two different rods.

Rather than contacting rods, one might consider two rods which are connected by some set of rigid vectors.
For example this could mimic the strong covalent bonds holding a DNA molecule together. The centre of these
vectors would play the role of the curve R and the joining vectors the role of the vectors C1 and C2. The
kinematic expressions of Sections 2.2 and 2.4 would then be applicable, though the distance R would no longer
play the role of the rod radii. As the rods are no longer contacting the forces acting on the rod surfaces (Fi,Li)
do not necessarily have to satisfy (24) and (25). Instead they would need to be determined by the manner in
which the joining vectors interact with the rods and/or some appropriate long-range interaction laws.
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Neukirch and van der Heijden [29] considered n inter-twined helical rods surrounding and empty core and
Morimoto and Iizuka [27] extended this work to include a compressible filled core. One could further extend
the work of [27] to consider more general geometries of the central curve of the system, which is the centre of
the filled core. This curve would play the role of the contact line R and the geometry of the individual rods
could be expressed as functions of the curvature of R. The system would then have n rod equations of the
form (22) and (23) and a requisite number of interaction couplings of the form (24) and (25). For example a
rod contacts two others in [29] and three, core included, in [27]. There would be significant difficulties from
a kinematic standpoint. First, one must apply the conditions of non-overlapping contact for each pair of rods
as a set of additional constraint (see [9,29]). This is not necessary in the case of two rods, where there mutual
non-overlapping contact can be assured by assuming the vector C1 is normal to the tangent vector of the contact
line (see Section 2.2). Second, the relative degrees of freedom of two contacting rods discussed in Section 3.2.1
would have to be described in a local basis different form the centreline centre line basis R.

4 Determining the Linear Response of a Helical Birod

We consider a birod in the absence of any additional body forces fi = 0, li = 0, i = 1, 2. The birod’s interaction
mechanics are specified on the interior through constitutive laws (36) with Gk = 0, k = 1, 2, 3, 4, 5, so that the
only possible interaction force is the normal pressure F1. This is exactly the choice made in the equilibrium study
of birod structures by Starostin and van Der Heijden [41]. We consider rods of equal length Lr and demand the
boundary laws discussed in Section (3.3) satisfy the constraints (40). We assume the individual rods obey the
linear constitutive law (26), for which the rods are naturally straight in the absence of applied force/moment
combinations.

We define a ”straight” birod to be a helical birod of the form (13), with Φ′(s) having a constant value. In
this reference state the parameter s is the arclength of the birod. It was shown in [43,29,47] that this birod
configuration has equilibrium solutions with N = M = 0,∀s, we briefly re-derive this results here as we use
a different parametrisation and basis. In section 5 we then compute a expansion of the contact frame about
this state to linear order, solve the linearised system (22)-(25) assuming it is in equilibrium, and compare the
corrected frame curvatures to the net applied forces and moments to establish the linear response of the birod.

The parametrisation of the deformed configurations is the arclength of the contact line in the given config-
uration. In general this would be a rather odd choice to make as the contact line’s length is not fixed for all
admissible configurations. However, the particular linearisation procedure we use is such that the correction to
arclength is of quadratic order and at linear order the change in length of the contact line must be enforced
using the identities (17), in this case the limits (smin, smax) will change as well as the functions λi.

The birod’s constituent rods have zero reference twist and for our effective birod to match this we must
define a new untwisted contact line framing.

4.1 The Effective Rod Frame

By applying an appropriate counter rotation though Φ to the contact basis we obtain a basis D1r,D2r,D3 which
is untwisted in the initial helical state (48), where

D1r = D1 cos(Φ)−D2 sin(Φ), (41)

D2r = D1 sin(Φ) + D2 cos(Φ) (42)

The effective rod curvatures for deformed configurations can be obtained by differentiating (41) and (42) to
obtain curvatures (U1r,U2r,U3r) with

U1r = U1 cos(Φ)− U2 sin(Φ), (43)

U2r = U1 sin(Φ) + U2 cos(Φ), (44)

U3r = U3 − Φ′. (45)
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Similarly the force components of Nr and Mr are

N1r = cos(ν0s)N1 − sin(ν0s)N2, N2r = sin(ν0s)N1 + cos(ν0s)N2 (46)

M1r = cos(ν0s)M1 − sin(ν0s)M2, M2r = sin(ν0s)M1 + cos(ν0s)M2,

Nr3 = N3, Mr3 = M3. (47)

We solve the balance equations in the birod frame (D1,D2,D3), however, for the purpose of determining a linear
constitutive relationship for the birod we compare the linear corrections of Uir to the forces Nir and moments
Mir to determine the linear response of the effective birod.

4.2 The Zeroth Order

A good way to characterise a helical structure is by its helical angle θ, the constant angle made by the tangent
vector of the helix and the ẑ direction. In terms of θ and R, the radius of the helix, the two rod centrelines can
be written as

r1 =

 R sin(ψ1(s1))
−R cos(ψ1(s1))

s1 cos(θ)

 , r2 =

−R sin(ψ2(s2))
R cos(ψ2(s2))
s2 cos(θ)

 , ψi =
sin(θ)si
R

. (48)

the arclength functions are equal s1 = s2, and hence ψ1 = ψ2. The contact line is clearly a straight line

R(s) =

 0
0

s1 cos(θ)


A positive θ value gives a right-handed helical pair, θ < 0 left-handed. By comparison to (13) we have the
relationship s = s1 cos(θ), i.e., λ1 = sec(θ). Also U1 = U3 = 0 and U3 = Φ′ = tan(θ)/R from substituting for s
in the functions ψi. It was shown in [29] that if |θ| < π/4 then the two rods must necessarily be overlapping and
we must only consider the domain θ ∈ (−π/4, π/4). The curvature and torsion of r1 and r2 are equal, constant,
and given by

κ =
sin2(θ)

R
, τ =

sin(θ) cos(θ)

R
. (49)

Substituting (48) and s = s1 cos(θ) = s2 cos(θ) into (4) and then (18) we have the following expressions for the
director basis

d1i = (−1)i cos(φi(s))D1 + sin(φi(s))((−1)i cos(θ)D2 + sin(θ)D3), (50)

d2i = (−1)i+1 sin(φi(s))D1 + cos(φi(s))((−1)i cos(θ)D2 + sin(θ)D3), (51)

d3i = (−1)i+1 sin(θ)D2 + cos(θ)D3. (52)

In the Appendix Section B the system (22)-(25) is solved for this helical state. The functions φi are linear and

we write φ′i = φ
(0)
i , the contact pressure F1 is constant. The effective rod force has only a D3 component

N =

(
2R3F1 cot2(θ) + sin(θ) cos(θ)(2(γ − 1) sin(θ) + γR(ω1 + ω2))

R2

)
D3 (53)

also the force difference is

Nd = 2RF1 cot(θ)D2 +
γ sin(θ) cos(θ)(ω1 − ω2)

R
D3, (54)

and the total rod moment also has only an D3 component

M =
2R3F1 cot(θ) + 2 sin3(θ) + γ cos2(θ)(2 sin(θ) +R(ω1 − ω2))

R
D3. (55)

As N and M have only N3 components they are the same as Nr and Mr. There are three constants to be
determined by the boundary conditions, the two rates ω1, ω2 and the mutual pressure F1 exerted by the rods
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on each other. For this study it seems reasonable to assume that ω1 = ω2 = ω. The total force has a constant
value N3r, applying this to (53) we have

F1 =
tan(θ)

(
N3r tan(θ)− sin2(θ)((γ−1) sin(θ)+γRω)

R2

)
R

(56)

The total moment also has a constant value M3r, then substituting (56) into (55) we obtain

ω =
sec(2θ)(R(M3r − N3rR tan(θ))− 2 sin(θ)((γ − 1) cos(2θ) + 1))

2γR
. (57)

and the D3 component of Nd would vanish. It can be checked that by multiplying (57) by cos(θ) the factor
relating the rod arclengths to the contact line arclength we can then obtain equation (47) of [29].

Our effective zeroth order is one for which M3r = N3r = 0, with this we have

F1 =
4 sin5(θ) csc(4θ)

R3
, ω = − sin(θ)(γ + sec(2θ)− 1)

γR
. (58)

For this birod we have

α1(s)− π = α2(s) = −ωs− c, (59)

β1(s) = −β1(s) = θ. (60)

Which are obtained by comparing equations (50) and (51) to (31) and (52) to (32).

4.3 A Word on Boundary Conditions

This solution requires the specific boundary constraints that β′1 = β′2 = 0. We could have created such a uniformly
helical birod from two aligned straight rods by gradually increasing the value of Φ under the boundary constraints
discussed in Section 3.3.1. A more obvious means of creating such a helical configuration was detailed in [29].
Two initially straight rods were subjected to a fixed input twist, glued together at their ends, and then allowed
to relax creating apparently helical configurations. Mathematically this could be enforced by the restrictive
conditions (37). The authors observed in [47] that these conditions lead to a boundary layer of helical tightening
of the birod at its ends (characterised by a changing rate of Φ), but a fixed value for the majority of the interior
(the kind of behaviour shown in Figure 9(b)). In this case our model will be assumed to apply to this uniform
section. However the uniformly helical section of birod has been created, we now assume it is subjected to an
applied force and moment pair (N,M), under some boundary constraints which satisfy the sufficiently pinned
conditions (40).

4.4 A Word on the Divergence of the Birod Forces

From (53) and (54) (with ω1 = ω2) it is always necessary to apply equal and opposite forces along the direction
D2 at each boundary, leading to a moment about D3 which opposes the internal twist of the individual rods in
the effective sum M (30). The contact pressure and forces n2i, given by

F1 =
4 sin5(θ) csc(4θ)

R3
, n22 = −n21 =

sin3(θ) sec(2θ)

R2
,

diverge at θ = ±π/4, i.e., at lock-up. Mathematically this is a result of the ill-definition of the birod manifold
past lock-up, physically it would correspond to trying to tighten this braided birod beyond a possible physical
limit. In this limit it is necessary to apply an infinitely large pair of equal and opposite forces at the birod’s ends
in order to maintain the helical structure (it would likely buckle before this limit is reached). This presents an
interesting cautionary note. Whilst the effective force N and moment M remain finite (zero) in this limit, their
constituent components do not. We must always be aware of the fact that though the net force may be zero
or small there may still be large forces applied at the boundary by whatever device is used to hold it together.
Having given this cautionary note we should also observe that the required pre-twist also diverges in this limit,
so it would not have been physically possible to create this divergent state. For the majority of the domain
θ ∈ (−π/4, π/4) this model is reasonable.
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4.5 The Zeroth Order System:- a Summary

For the purpose of labelling in the perturbation expansion we consider in the next section we shall label all these
zeroth order solutions with a superscript (0). The zeroth order variables are

n
(0)
11 = n

(0)
12 = 0, (61)

n
(0)
22 = −n

(0)
21 =

sin3(θ) sec(2θ)

R2
,

F
(0)
1 =

4 sin5(θ) csc(4θ)

R3
,

n
(0)
31 = n

(0)
32 = 0,

∂φ(0)

∂s
= ω = − sin(θ)(γ + sec(2θ)− 1)

γR
,

U
(0)
1 = U

(0)
2 = U

(0)
1r = U

(0)
2r = 0,

U
(0)
3 =

tan(θ)

R
,

U
(0)
3r = 0,

λ
(0)
i = sec(θ).

The zeroth order variables for the effective rod frame U
(0)
ir are obtained by substitution of the U

(0)
i into (43) -

(45). Note that θ has no expansion and hence no labelling, it is the zeroth order form of the angles αi which we
do expand.

5 The Linearised System

In order to consider the changing geometry of the birod’s contact line we consider a perturbation of the contact
frame. Goriely and Tabor [17] showed the linear correction to the frame can be written in the original basis{

D
(0)
j

}
, using a perturbation function a = a1(s)D

(0)
1 + a2(s)D

(0)
2 + a3(s)D

(0)
3 , and writing

Di ≈ D
(0)
i + εD

(1)
i = D

(0)
i + ε(a×D

(0)
i ). (62)

Under this perturbation scheme the frame’s orthonormality is preserved to O(ε). To be clear the correction to
arclength is second order so all the functions in what follows will be parametrised by the arclength of the original
birod. The curvatures can be calculated using the following relations

U1 = D3 ·D′2, U2 = −D3 ·D′1, U3 = D2 ·D′1, (63)

which can be obtained from (11). By expanding the vectors, applying (61), and collecting terms up to first order
we obtain

U1 ≈ ε(a′1 −
tan θ

R
a2), (64)

U2 ≈ ε(a′2 +
tan θ

R
a1),

U3 ≈
tan(θ)

R
+ ε a′3.

The force vectors are expanded as

ni ≈
3∑
j=1

(n
(0)
ji + εn

(1)
ji )(D

(0)
ji + ε(a×D

(0)
ji )), (65)

F ≈ (F
(0)
1 + εF

(1)
1 )(D

(0)
1 + ε(a×D

(0)
1 )), (66)
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and the moment vector using

mi ≈ (u
(0)
1i + εu

(1)
1i )(d

(0)
1i + εd

(1)
1i ) + (u

(0)
2i + εu

(1)
2i )(d

(0)
2i + εd

(1)
2i ) + γ(u

(0)
3i + εu

(1)
3i )(d

(0)
3i + εd

(1)
3i ). (67)

with the expansions for the basis dji calculated using (19), (14), (16), the equations for the curvature and torsion
(6), the equations for the Frenet vectors (4), (18), and

φi ≈ ωs− c+ εφ
(1)
i . (68)

The length constraints (17) are expanded using the Leibniz rule, as the limits will change with the change in
shape of the birod, to first order we have

0 =
L(1)

2

[
λ
(0)
i (L(0)/2) + λ

(0)
i (−L(0)/2)

]
+

∫ L(0)/2

−L(0)/2

λ
(1)
i (q) dq, (69)

= L(1) sec(θ) +

∫ L(0)/2

−L(0)/2

λ
(1)
i (q) dq.

here q is a dummy parameter representing the arclength of the zeroth order solution and we have used the
fact that the Li are fixed under all deformations due to the individual rod’s inextensibility. The integrand is
calculated by expanding (16) to first order.

A similar correction must be used for the angles αi and βi. By specifying say β+
1 and β−i we make an implicit

statement about the correction in length of the contact line through the following relations

αi(L/2)− αi(−L/2) =

∫ L/2

−L/2

∂αi
∂q

dq, βi(L/2)− βi(−L/2) =

∫ −L/2
−L/2

∂βi
∂q

dq.

Expanding we have

α±i = L(1)

[
∂α

(0)
i

∂s
(L(0)/2) +

∂α
(0)
i

∂s
(−L(0)/2)

]
+

∫ L(0)/2

−L(0)/2

∂α
(1)
i

∂q
dq, (70)

=
L(1) sin(θ)(γ + sec(2θ)− 1)

γR
+

∫ L(0)/2

−L(0)/2

∂α
(1)
i

∂q
dq.

where we have used (61) and we use the notation α±i to denote the total change, incorporating the changing
length of the contact line. The corrections to αi are obtained by expanding (31). For β we have

β±i = L(1)

[
∂bv(0)

∂s
(L(0)/2) +

∂β(0)

∂s
(−L(0)/2)

]
+

∫ L(0)/2

−L(0)/2

∂β
(1)
i

∂q
dq, (71)

=

∫ L(0)/2

−L(0)/2

∂β
(1)
i

∂q
dq.

where we have used (60) and the fact that θ is constant with respect to s, the correction to the angle β is
obtained by expanding (32).

In order to automatically include (24) we re-express the balance equations (22) and (23) in sum/difference
from i.e.,

n1 − n2 + 2F1 = 0 (72)

n1 + n2 = 0 (73)

m1 −m2 +
dr2
ds
× n1 −

dr2
ds
× n2 = 0 (74)

m1 + m2 +
dr2
ds
× n1 +

dr2
ds
× n2 = 0. (75)

The tedious work of inserting the expansions (65), (66) and (67) into (72)-(75), expanding and collecting the O(ε)
terms was performed using symbolic manipulation the resulting equations are given in equations (C.1)-(C.12) of
the Appendix. Also in Appendix (C) we detail the procedure by which the ensuing equations are solved. Here we
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discuss two linear differential equations which are encountered in solving the system, as their solutions represent
two key modes of behaviour inherent to the linearised system. The first is for a3 and is a fourth order O.D.E

a
′′′′

3 −
(2 cos(2θ) + cos(4θ) + 3) tan2(θ) sec(2θ)

R2
a
′′

3 = 0 (76)

The coefficient of a′′3 is positive-definite on the domain θ ∈ (−π/4, π/4) so this equation has hyperbolic solutions
which are

a3(s) = C6 + C7s+
R2 cos(2θ) cot2(θ)

(
C8 eΘ1s + C9 e−Θ1s

)
2 cos(2θ) + cos(4θ) + 3

, (77)

Θ1 =
sec(θ)

√
− cos(4θ) + 2 sec(2θ)− 1√

2R
.

With C6-C9 constants of integration. This function is associated with the correction to the twisting through the
third of (64). The constant C7 represents constant change in the twisting of the contact frame, i.e., a constant
increase/decrease in helical pitch of the structure. The hyperbolic parts, as we shall see, correspond to dramatic
changes in the twisting correction near the boundary. An example of such behaviour is shown in Figure 9(b).

The second equation concerns a2 and is the following inhomogeneous fourth order O.D.E.

a
′′′′

2 +
2 tan2(θ)

R2
a′′2 +

tan4(θ)

R4
a2 = Θ2

(
C3 sin

(
s tan(θ)

R

)
− C2 cos

(
s tan(θ)

R

))
, (78)

Θ2 =
(cos(2θ) + cos(4θ) + 2) tan2(θ) sec(θ) sec2(2θ)

2R2
.

In this case the coefficients on the left hand side are positive definite and the general solution has the following
form

a2(s) = (ai2 + aii2 s+ aiii2 s2) cos

(
s tan(θ)

R

)
+ (aiv2 + av2s+ avi2 s

2) sin

(
s tan(θ)

R

)
, (79)

ai2 = − 1

64
csc2(θ) sec2(2θ)

(
3C2R

2(5 cos(θ) + 2 cos(3θ) + cos(5θ))− 16C10(sin(θ)− sin(3θ))2
)

aii2 = C11 −
1

8
C3R(cos(2θ) + cos(4θ) + 2) csc(θ) sec2(2θ), aiii2 =

1

8
C2

(
sec(θ) + cos(θ) sec2(2θ)

)
,

aiv2 =
1

64
csc2(θ) sec2(2θ)

(
16C12(sin(θ)− sin(3θ))2 + 3C3R

2(5 cos(θ) + 2 cos(3θ) + cos(5θ))
)

av2 = C13 −
1

8
C2R(cos(2θ) + cos(4θ) + 2) csc(θ) sec2(2θ) avi2 = −1

8
C3

(
sec(θ) + cos(θ) sec2(2θ)

)
.

The function a1 is composed of the terms which make up a2. The rate of oscillation of the trigonometric terms
is determined by the twist of the original structure. Similar trigonometric terms arise in the linearisation of
the single helical rod (see [10]). In that case however there are no linear or quadratic parts to the first order
correction of the curvatures of the centreline, thus we see there is a difference in the behaviour of a combined
pair of contacting rods, by comparison to two helical rods treated as separate systems. Under the action of
moments about D1 and D2 the effective rod forms shapes which have a nearly circular bending of the contact
line (depicted in Figure 8). By comparison moment induced bending of a single helix yields properly circular
bending of the helices centreline (by this we mean the rod centrelines wind with uniform rate on a section of a
torus surrounding this centreline).

All other corrections can be written in terms of a1, a2 and a3 with some additional linear terms which result
from the various integrations performed during the process of solving the system. We detail the full solutions in
the Appendix (equations (D.1)-(D.13)), though their complexity suggests that they only have use for the study
of particular interesting limits which can be obtained from them, rather than for their use as a model. In general
the accurate treatment of this type of birod system would perhaps best be approached numerically.

6 Effective Rod Constants

The zeroth order terms of both N, M and the curvatures Uir are zero (see Section 4.5) so we drop the subscript
notation of the previous section for what remains. We write L = L(0), the contact line length correction L(1)
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is denoted Lc, and we remind the reader that the vectors {Dj} and {Djr} are the contact basis of the zeroth
order helical configuration (given by (50)-(51)). We denote the extension per unit original length of the contact
line as e = Lc/L. The only kinematic changes to the contact line are the curvatures Ujr and the extension e and
expanding to linear order we have

Mkr(Ujr, e) ≈ 0 +

(
∂Mkr

∂Ujr
Ujr +

∂Mkr

∂e
e

)
ε,

Nkr(Ujr, e) ≈ 0 +

(
∂Nkr
∂Ujc

Ujr +
∂Nkr
∂e

e

)
ε,

with the derivatives evaluated at Ujr = 0, e = 0, i = 1, 2, 3.. It is the values of the partial derivatives we wish
to obtain, they form a matrix which represents the linear constitutive law of the system. In what follows it will
actually be more convenient to obtain the partial derivatives

∂Ujr
∂Mkr

,
∂Ujr
∂Nkr

,
∂e

∂Mkr
,

∂e

∂Nkr
.

evaluated as the moments and forces vanish.

6.0.1 Orders of L and R

As we are using Kirchhoff model for the individual rods and we allow for significant curvature of the two rods
we require that L/R >> 1 and R << 1 (see Section 3). In what follows it will be convenient to assume that
L ∼ O (1/R), R << 1. With this the product LR is of order 1. We shall also be assuming the upper bounds
used for the sufficiently pinned conditions (40) are of the same order as R, i.e., αim, βim ∼ O(R).

6.0.2 Applying the Boundary Conditions

Given we do not enforce specific boundary conditions we instead write our solutions in terms of the corrections

α
(1)
1 , α

(1)
2 , β

(1)
1 and β

(1)
2 , which would be determined by a specific choice of boundary conditions and constraints.

For (40) they must all be less than αim, βim.

If we specify values for these functions at one boundary, say the upper boundary, we can use (70) and (71) in
conjunction with specifying the total differences between ends of the birod α±i and β±i to obtain values of these
quantities on the lower boundary with

α±i = αi(L/2)− αi(−L/2) + Lc
sin(θ)(γ + sec(2θ)− 1)

γR
,

β±i = βi(L/2)− βi(−L/2).

The constraints (40) also ensure the quantities α±i and β±i of the same order as R. This is immediately obvious
for βi. In the case of α, the difference ∆αi(B

+) − ∆αi(Bi) is the net change the total rotation of the pair
(d1i,d2i) with respect to D1, and it is of order R if the changes ∆αi(B

±) are order R, hence the quantities α±i
are also required to be of order R.

6.1 Forces

It is shown in Appendix D.1 that the correction to the components to the force Nr are constant across the
birod’s length and hence determined by the applied boundary conditions (N1r,N2r,N3r).
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Fig. 8 Depicted are thin tubes representing the contact line of the deformed birod, subject to an applied moment M1r, (linear
combinations of M1r and M2r show similar behaviour). The tube widths are the radius R = 0.1. Panels (a) and (b) have initial
helical angle θ = 0.01 and θ = 0.3 respectively, it is only on the circled section of (b) that we see there is a minor diversion from
a circular arc. For the initially much tighter helical structure θ = 0.6 we still see only a small deviation.

6.2 Moments I - the Bending Moment

If N1r = N2r = 0 the components of the correction to the effective rod moment components M1r and M2r are
shown to be constants (Appendix D.2), however, the corrections to the curvatures are not. We first consider the
relationship between the curvatures U1r and U2r and the moments M1r and M2r. We have from equation (D.21)

U1r(s) = A1 +A2 sin

(
s tan(θ)

R

)
+A3 sin

(
2s tan(θ)

R

)
+A4 cos

(
2s tan(θ)

R

)
, (80)

A1 =
1

4
M1r

(
sec(θ) + cos(θ) sec2(2θ)

)
,

A2 =
2M2rR

2 csc(θ) sec2(2θ) sin
(
L tan(θ)

2R

)
2LR

,

A3 = −1

4
M2r(2 sin(θ) + sin(3θ)) tan(θ) sec2(2θ),

A4 = −1

4
M1r sin(θ) tan(θ) sec(2θ)(3 sec(2θ) + 2).
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we see no dependence on M3r, N3r or the kinematic parameters. The same is true of U2r, from equation (D.22)
we have

U2r(s) = A5 +A6 cos

(
s tan(θ)

R

)
+A7 sin

(
2s tan(θ)

R

)
+A8 cos

(
2s tan(θ)

R

)
(81)

A5 =
1

4
M2r

(
sec(θ) + cos(θ) sec2(2θ)

)
,

A6 = −
2M2rR

2 csc(θ) sec2(2θ) sin
(
L tan(θ)

2R

)
2LR

,

A7 = −1

4
M1r sin(θ) tan(θ) sec(2θ)(3 sec(2θ) + 2),

A8 =
1

4
M2r(2 sin(θ) + sin(3θ)) tan(θ) sec2(2θ).

Despite the arclength-varying nature of these expressions we see in Figure 8 that the effective configurations
of the deformed contact line do not actually deviate too far from a circular arc if the birod is long and thin.
These plots are deliberately exaggerated to make a point (in the sense that this is a linearisation and it applies
properly to smaller deformations). In this case we have chosen parameters L = 30, R = 0.1, and θ = 0.01(a),
0.3(b) and 0.6 for(c). These plots were made by varying M1r. Similar behaviour for a linear combination of M1r

and M2r is found. It would appear then that there is good reason to take the averaged values of U1r and U2r

Ūαr =
1

L

∫ L/2

−L/2
Uαr(q) dq, α = 1, 2, (82)

as a good measure of the effective constant curvature of the birod under the action of constant moments, at
least when the ratio L/R is large. On applying (82) to (80) and (81) we find

Ū1r =
1

4
M1

(
sec(θ) + cos(θ) sec2(2θ)

)
−
M1R sin(θ) sec(2θ)(3 sec(2θ) + 2) sin

(
L tan(θ)

R

)
4L

,

Ū2r =
1

4
M2

(
sec(θ) + cos(θ) sec2(2θ)

)
−

csc(θ) sin
(
L tan(θ)

2R

)(
2M2R

2 cot(θ) sec2(2θ) sin
(
L tan(θ)

2R

))
L2

+
M2R(2 sin(θ) + sin(3θ)) sec2(2θ) sin

(
L tan(θ)

R

)
4L

.

If we concentrate on Ū1r briefly we see there are two contributions, the first depends only on the value of M1r

and θ, the second also depends on the length and radius of the rod, both algebraically and trigonometrically.
The quantity L tan(θ)/R is the total helical winding of the birod, its value affects the relative orientation of the
vectors D1 and D1r. Whilst D1r(−L/2) is parallel to D1r(L/2) the same is not true of D1 unless L tan(θ)/R is
a multiple of 2π. Thus the second quantity depends on the relative orientation of the vectors D1 at s = ±L/2.
If L tan(θ)/R is not a multiple of 2π the applied moment M1r at the two ends will have a differing effect on the
birod due to the anisotropy of response shown in Figure 3. However, if the birod is thin and L/R >> 1 this
term will be negligible, in this limit we have

Ū1r ≈
1

4
M1r

(
sec(θ) + cos(θ) sec2(2θ)

)
.

We note the same trigonometric behaviour appears in the expression for Ū2r, though not in the same form as
for Ū1r. This is another manifestation of the anisotropy of response of the birod to applied moments. That said
in the limit L/R this effect once again becomes negligible and we have

Ū2r ≈
1

4
M2r

(
sec(θ) + cos(θ) sec2(2θ)

)
.

With this we see we have the following averaged linear constitutive relationship for the bending moments of the
birod (

M1r

M2r

)
=

4

sec(θ) + cos(θ) sec2(2θ)

(
1 0
0 1

)(
U1r

U2r

)
. (83)
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Fig. 9 Panel (a) is a plot of the bending coefficient Bc against θ on the domain θ ∈ [−π/4, π/4]. Panel (b) is an example of the
function U3r(s), plotted against s with fully pinned conditions, L = 30, θ = 0.3, R = 0.1 and γ = 1 M3r = 1, N3r = 1, we see it
is constant for the majority of the domain, with a sharp drop to zero at the boundary. Also plotted is the appropriate averaged
value Û3r given by (86), we see they overlap for the majority of the domain.

This has the same form as one would expect for an isotropic rod with circular cross-section, i.e., the birods
linear bending response is of the same form as its constituent rods. The pre-multiplier is our effective bending
coefficient which we label Bc, it is plotted in 9(a) as a function of θ, the initial helical tightness. It does not
involve the relative ratio of bending to twisting of the individual rods γ and it is symmetric in θ, hence the
same for left-handed and right-handed helical birods. Finally it shows that the birod gets easier to bend as
the structure tightens. We should be wary of the limit π/4 as at this point the divergent sec(2θ) would mean
(i) we cannot ignore the boundary terms, (ii) the rod would not show the nice almost circular behaviour. But
perhaps most importantly the undeformed helical state would have shown divergent behaviour anyway and the
linearisation would not have been appropriate.

We should comment on the absence of the ratio γ. In the engineering literature the effective bending coef-
ficients derived depend on γ (see [13]). In these cases however the moment under discussion are the moment
applied to the end of the individual rods (mi) and would thus be more directly influenced by the internal twist-
ing of the rod. This moment would also not take into account the effect of the moment arising from the force
difference n1 − n2 of (30). In this note we are interested in the effective moments applied to the rod by some
device like the pin device depicted in (Figure 2), and we have found here that, at least to linear order, it is only
the tightness of the helical structure through the angle θ which is important. That said we shall see there is a
dependency on γ in the torsional response.

6.2.1 Bending with Forces

It is shown in Appendix E that if forces N1r and N2r are applied then the moments M1r and M2r are no longer
constant, they have linear behaviour. It is also demonstrated in the presence of forces that the averaged effective
moments M̄αr have the same relationship to the averaged curvatures Ūαr as demonstrated in the above (under
the assumptions detailed in Section 6.0.1). We feel then that the constitutive behaviour (83) is a good effective
measure of the bending moment of the system.

6.3 Moments II - the Torsional Response

It is shown in Appendix D.2 that the moment M3r is arclength-constant. The twist of our effective rod U3r (the
derivative of (77)) is not constant as a result of the hyperbolic terms. This can lead to extreme changes in pitch
of the birod braiding structure near its ends as depicted in Figure 9(b) for a rod of length L = 30, and radius
R = 0.1. We are interested here in the average behaviour of U3r (in the sense of (82)). We see in Figure 9(b) a
superposition of the effective average value Ū3r and the actual twist appear to coincide for the majority of the



Helical birods: An Elastic Model of Helically Wound Double-Stranded Rods 25

Fig. 10 Plots of the coefficients CM3
and CN3

against the initial helical tightness θ. In (a) we see examples of CM3
with

γ = 0.75, 1, 1.5. For γ = 0.75 and 1 the coefficient increases with θ with asymptotic behaviour as θ → π/4, for γ = 1.5 the
asymptotic behaviour is still present but the minimum value is for a non-zero θ. In (b) we see the plots of CN3 with θ for R = 0.1,
there are asymptotes at θ = 0 and θ = π/4. We note that the values of CN3

are consistently higher (in magnitude) that those of
CM3 except as θ → π/4.

birod’s interior. It is is shown in Appendix F that

Ū3r = −Lc csc(θ) sec(θ)

LR
. (84)

and

Lc = LicM1r + Liic M3r + Liiic N1r + Livc N2r + LvcN3r + Lvic

(
α±1 + α±2

)
+ Lviic β±, (85)

Lic =
8R2 sin4(θ)(2 cos(2θ) + cos(4θ) + 3) sec

3
2 (2θ) sin

(
L tan(θ)

2R

)
√
−3 cos(2θ)− cos(6θ) + 4(3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4)

,

Liic = − 2LR sin(θ) cos(2θ)

3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4
,

Liiic =
4R2 sin4(θ)((cos(4θ) + 3) sec(2θ) + 2)

(
L cos

(
L tan(θ)

2R

)
− 2R tan(θ) sin

(
L tan(θ)

2R

))
√
− cos(2θ)(3 cos(2θ) + cos(6θ)− 4)(3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4)

,

Livc =
4LR2 sin4(θ)(2 cos(2θ) + cos(4θ) + 3) sec

3
2 (2θ) sin

(
L tan(θ)

2R

)
√
−3 cos(2θ)− cos(6θ) + 4(3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4)

,

Lvc =
2LR2 sin(θ) cos(2θ) tan(θ)

3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4
,

Lvic = − 2γR sin(θ) cos2(2θ)

3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4
,

Lviic =
8R sin3(θ)(2 cos(2θ) + cos(4θ) + 3)

(3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4)
√

(−3 cos(2θ)− cos(6θ) + 4) sec(2θ)
.

Under the assumptions of Section 6.0.1 the leading order term in terms of a series in R is the one involving M3r

(Liic ). This conclusion actually only requires the changes α±i and β± are of the same order order 1, less stringent
than those we have required, we shall see why we chose more conservative constraints shortly.

With this (84) reduces to

Ū3r =
2 cos(2θ) sec(θ)

3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4
M3r, (86)

and the effective torsional stiffness CM3
of the birod would be

CM3
= 2 cos(θ)

(
(γ − 1) cos2(2θ) + sec(2θ)

)
. (87)
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Fig. 11 Panel (a) shows plots of SM3 against θ for γ = 0.75, 1, 1.5. We see asymptotic behaviour at θ → 0 and θ → π/4. It is
also notable that even at its lowest values the coefficient is of a higher order of magnitude than CM3

as depicted in Figure 10(a).
Panel (b) shows plots of the effective twist to bending ratio of the effective rod model of the birod.

For reasons which we shall shortly explain we note the coefficient associated with an axial force N3r would be

CN3
= −

2 cos(θ) cot(θ)
(
(γ − 1) cos2(2θ) + sec(2θ)

)
R

. (88)

As shown in Section G of the appendix this is the same behaviour as the linear response of a uniformly helical
straight axis birod subjected to a wrench pair (M3,N3), these coefficients were first derived in [29]. In fact most
previous effective rope models haves stiffness matrices which include a coefficient relating U3r to N3 [13]. If there
are no applied forces N1r and N2r and we enforce constraints (40) on the changes in the quantities αi and βi
then the contributions to Lc associated to the force N3 (Lvc ) is out on its own as the next order contribution
thus yielding the results derived in [29]. Crucially we have found here that this linear constitutive behaviour also
holds when the rod is subject to bending moments, i.e., the bending and twisting moments are decoupled.

We have also shown that if we make reasonable assumptions about the boundary constraints used to specify
the nature of the pinning device used at the boundaries then the boundary laws have a negligible effect on the
large scale mechanical behaviour of the effective rod.

Example plots of the relationship between the coefficients CM3
, CN3

and the value of θ of the initial ply
are shown in Figure 10 for the example rod depicted in Figure 8, for which R = 0.1. The two most important
features of these plots are the asymptotic behaviour of both coefficients as θ → π/4, indicating as expected that
it becomes harder to further tighten the birod with the increasing initial tightness (increasing θ value) of the
initial helical birod. The second highlights the fact that for small R the coefficient CN3

is much larger than CM3
,

providing good reason to ignore the effect of an axial force on the torsional response of the birod.

6.3.1 Contact Line Extension

By dividing (85) by L we obtain an expression for the relative extension e, for which the M3r component will
also be the leading order. Once again we also include the N3r term to obtain

e =
2R sin(θ) cos(2θ)(N3rR tan(θ)−M3r)

3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4
(89)

and the effective coefficients SM3
, SN3r

would be

SM3
= −csc(θ)(2(γ − 1) cos2(2θ) + 2 sec(2θ))

R
, (90)

SN3
=

cot(θ) csc(θ) sec(2θ)(3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4)

2R2
.
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It is shown in the Appendix section G how these same coefficients can be obtained assuming a helical configu-
ration, again this result was previously derived in [29].

The coefficient SM3
is plotted in Figure 11(a) using the same parameters as that of Figure 10, it can be seen

that the effective coefficient has a similar asymptotic behaviour to CN3
and has values of an order of magnitude

higher than that of CM3
as predicted from (85). This suggests that in the limit R << 1 the extension of the

contact line is suppressed by comparison to the twisting of the birod.

6.3.2 The Remaining Boundary Conditions

It will have been noted that our expressions do not include the quantities αi(L/2) and βi(L/2), only the
differences α±i , β±i . It is shown in Appendix F that we need further conditions to specify the actual twist
correction U3r rather than just its average. In addition there are constants which need to be specified to obtain

the complete expressions for the twists φ
(1)
i . As this has no effect on the quantities of interest for this particular

study we do not pursue this issue any further here.

7 Conclusions

In Sections 2 and 3 we have constructed a birod model for a pair of tubular elastic rods which are in contact.
The model focuses on treating the birod composite as a single object by defining its kinematics and dynamics
in terms of the changing morphology of the line of mutual contact (section 2.2). The governing mechanical
laws of this coupled system are introduced in Section 3. The model is sufficiently general to allow for a varying
range of interaction laws at the line of contact, as well as any additional applied body forces/couples. In Section
3.2 we discuss the means by which the interaction laws at the line of contact can be specified, using either
constitutive laws or geometric constraints. Finally in Section 3.3 we discuss the application of the boundary
conditions through the imposition of geometric constraints and discuss some particularly relevant cases.

In Section 4.2 we discuss the equilibrium state of a birod composed of helically intertwined rods whose contact
line is straight. We assume that the interaction at contact is dominated by the normal pressure exerted by the
rods on each other. Under these assumptions this is the same model as discussed in [41], though in our case
the systems kinematics are expressed in terms of the contact line rather than the individual rods as in [41]. In
Section 5 we detail the linearisation procedure used to obtain the linear response of helical birod introduced in
Section 4.2. The perturbation scheme is based on the work of Goriely and Tabor [17]. Careful attention is paid
to the need to take into account the changing length of the contact line. We discuss the two linear O.D.E’s which
are encountered in solving the system, the full solution set is to long-winded for the main text and is detailed in
Appendix C.

Finally in Section 6.2 we derive the linear response of this helical birod to arbitrary forces and moments. It
was shown that if the ratio L/R is large then the effective bending moment of the linearised birod is independent
of the boundary conditions used. In Sections 6.3 and 6.3.1 it is shown that if R << 1, L ∼ O(1/R) the relative
motion of the individual rods at the boundary are restricted so the upper bounds of (40) are of order R, then
the effective torsional response coefficients are independent of the particular boundary constraints used. It is
also shown that the linear bending and torsional responses of the birod are decoupled. Further it is shown that
if R is small then the extension of the birods contact line is suppressed by comparison to the twisting, at least
in terms of its linear response, and we propose to treat a birod with the dimensions of a Kirchhoff rod as an
effective unstretchable-unshearable rod with the following constitutive law,M1r

M2r

M3r

 =

 4
sec(θ)+cos(θ) sec2(2θ) 0 0

0 4
sec(θ)+cos(θ) sec2(2θ) 0

0 0 2 cos(θ)
(
(γ − 1) cos2(2θ) + sec(2θ)

)
 Ū1r

Ū2r

Ū3r

 . (91)

With Mjr the components of net moment of the contact line (the effective birod) and U1r the averaged curvatures
of the contact line. The ratio γb, the dimensionless ratio of twisting stiffness over bending stiffness is given by

γb =
Bc
CM3

=
1

16
(cos(2θ) + cos(4θ) + 2) sec3(2θ)(3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4). (92)
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Fig. 12 A comparison of the bending coefficient Bc given by (83) and the Costello [11] bending coefficient (94), plotted for
γ = 2/3 and γ = 1. The coefficients are plotted as functions of the initial helical angle θ.

Plots of γb with θ are shown in Figure 11(b) for values of the rod ratio γ = 0.75, 1, 1.51. The behaviour is
qualitatively similar to the twisting coefficient with the ratio diverging as θ → π/4 when the original helical
structure approaches lock-up.

If the ratio L/R >> 1 but R is not too small, requiring the curvature is not too large and hence θ small, and
we do not consider applying forces N1r and N2r, then the changing length of the contact line becomes important
and we propose a linear response of the form

M1r

M2r

M3r

N3r

 =


4

sec(θ)+cos(θ) sec2(2θ) 0 0 0

0 4
sec(θ)+cos(θ) sec2(2θ) 0 0

0 0 CM3
CN3

0 0 SM3
SN3




Ū1cr

Ū2cr

Ū3cr

e

 , (93)

with the constants CM3
, CN3

, SM3
and SN3

given by (87), (88) and (90). These constants are the same as those
derived in [29], though we have shown here they are applicable even if the birod is subject to bending moments.
It was also shown that if the boundary restrictions (40) are assumed then (93) is independent on the particular
boundary constraints used.

If the ratio L/R is not large then the constitutional behaviour of the birod would be far more complex and
depends on the exact number of helical turns of its initial straight axis state.

7.1 Comparison to Previous Approaches

The homogenization approach of Kehrbaum and Maddocks [21] and Healey [19] considered single elastic rods
with helical symmetry and high intrinsic twist. For an isotropic circular rod with the effective bending stiffness
is found to be twice the bending coefficient of the rods themselves (2 for the scaling used in (26)). This is the
same value as our birod model if θ = 0. Healey considers the most general type of quadratic energy model with
this symmetry, and the effective bending coefficients depend on the shearing and coupling moduli of the rod.

1 Though γ = 1.5 is outside the range allowed for a single Cosserat rod it would be permissible for a birod composed of
linearised birods with constitutive behaviour given by (93).
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However, in any of these cases the coefficient does not depend on the initial rate of helical winding, so there
would be no drop off in the bending coefficient as seen in Figure 9(a), nor does the effective twisting coefficient
have the asymptotic behaviour shown in Figure 10(a) as the original structure approaches lock-up. This is a
consequence of the fact that the continuum approach does not take into account the finite volume effects of
treating the system a two solid contacting rods.

Costello [11] derived the following coefficient for the bending of the centre of rotation of a single helical rod,

Bcc =
2γ cos(θ)

2γ + (1− γ) sin(θ)2
. (94)

We assume the birod was composed of two such helical rods with this bending coefficient and plot 2Bcc and our
derived bending coefficient against θ for γ = 2/3, 1 in Figure 12. For small θ the two measures agree, this is a
result of the fact that the mutual pressure F1 is small in this limit. The effect of including the pressure leads
the bending coefficient of the birod structure to be significant smaller than two non-interacting rods when this
pressure is high. Ramsay [32] extended this work to include the possibility of inter-strand pressure though, its
value is based on the incorrect assumption that the rod cross-sections in the plane normal to the rope axis are
elliptic. The coefficient does decrease as dramatically as our value as θ → π/4. These two models are the only rope
models which include bending coefficients [13]. Notably, none of the torsional or extension coefficients mentioned
in the models covered [13] have the asymptotic behaviour shown in Figure 10(a) as lock-up approaches, so the
effective ratio of twisting to bending stiffness does not have the asymptotic behaviour shown in Figure 11(b).

7.1.1 An Application of Our Constitutive Law to Actin Filaments

A valuable test of our derived coefficients is by comparison to experimental data of a coiled-coil structure. Actin
filaments are know to play a vital role in Eukaryotic Cells. They are coiled-coil molecules and recent experimental
evidence suggests the helical shape of the constituent coils has a pitch (P ) of approximately 72 nm and a radius
of approximately 3 nm [50]. The following relationship

P =
2πR

tan(θ)
, (95)

gives a helical angle θ ≈ 0.256053 rad. Studies estimate the measured bending rigidity of Actin to be (7.3± 4)×
10−26 Nm2 [15] and its torsional rigidity to be (8.0±1.2)×1026Nm2 [45]. This gives a range of possible γb values
[0.883177, 1.3̇]. If we assume the constituent rods of the birod model of Actin are incompressible γ = 2/3, then
92 would predict a range θ ∈ [0.217577, 0.342496], which includes the known value.

A The αi Boundary Condition of [47]

The second possible pair of conditions given in [47] concern the twisting of the individual rods, either the total twist value U3

or the twist associated with the function φ are fixed for all variations, the authors assume U31 = U32 and φ1 = φ2 so there are
only really two conditions. They are

∆U3(P,P0, B
±) = 0, or. ∆φ(P,P0, B

±) = 0.

We can translate these into a conditions on β as follows. We differentiate (31) using (2) and (11) to obtain

D′1 = (α′1 − λiU31)(cos(αi)d1i − sin(αi)d2i) + λi(cos(αi)U1i − sin(αi)U2i)d31.

The D1 component of the R.H.S must be zero. It can be shown that when the birod takes on the general helical form (13) that
this condition can be satisfied if

α′i = −(λiτ + φ′), or, αi = −φ.
giving the required conditions.

B Solving the Zeroth Order Equilibrium Equations

Substituting (50-52) and (49) into the moment vector (26) we have

mi = (−1)i+1 sin(θ) cos(θ)
(
(γ − 1) sin(θ) + γRφ′i(s)

)
R

D2 (B.1)

+
sin(θ)((γ − 1) cos(2θ) + γ + 1) + 2γR cos2(θ)φ′i

2R
D3.
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Substituting (28), the moment vector (B.1) and (15) into (23), with U1 = U2 = 0 and ν0 = tan(θ)/R, we obtain the following
equations for rod 1

−(γ − 1) sin3(θ) +R
(
Rn21 −R tan(θ)n31 + γ sin2(θ)φ′1

)
= 0, (B.2)

n11(s) + γ sin(θ) cos(θ)φ′′1 = 0, (B.3)

γ cos2(θ)φ′′1 − tan(θ)n11 = 0. (B.4)

With the three equations corresponding to the D1, D2 and D3 components of (23) respectively. And for rod 2 we have

(1− γ) sin3(θ) +R
(
−R(n22 + tan(θ)n32) + γ sin2(θ)φ′2

)
= 0, (B.5)

n12(s)− γ sin(θ) cos(θ)φ′′2 = 0, (B.6)

γ cos2(θ)φ′′2 + tan(θ)n12 = 0. (B.7)

Substituting (28) into the force equations (22), using F1 = −F2 = F and using (15) we obtain

F1 − n21
tan(θ)
R

+ n′11 = 0, −F1 − n22
tan(θ)
R

+ n′12 = 0

n11
tan(θ)
R

+ n′21 = 0, n12
tan(θ)
R

+ n′22 = 0
n′31 = 0, n′32 = 0

(B.8)

With the equations on the left being those of the first rod and those on the right of the second rod. We have used F2 = −F1

from (24). The third line of equations imply n31 and n32 are constant.

It is known that for rods with the particular linear form of moment vector we use that u′3i = 0 and the twist is linear, e.g.,
[30]. In this case as the torsion of the rods is constant and this implies that φ′′1 = φ′′2 = 0, and from (B.3) and (B.6) we have that
n11(s) = n12(s) = 0, which also satisfies (B.4) and (B.7). So we can write

φ1 = ω1s+ c1, φ′2 = ω2s+ c2. (B.9)

With the constants (c1, c2) determined by the relative orientation of the pairs (d1i,d2i) with respect to the Cartesian basis at
s = 0. They do not feature in the following analysis. With this constant rate and the fact that n11 = n12 = 0, the equations on
the second line of (B.8) imply that n21 and n22 are constant and the first line gives us the following

n21(s) = RF1 cot(θ), n22(s) = −RF1 cot(θ), n21 = −n22. (B.10)

so F1 is also constant. Finally from (B.2) and (B.3) we obtain

n31 =
R3F1 cot2(θ) + sin(θ) cos(θ)((γ − 1) sin(θ) + γRω1)

R2
, (B.11)

n32 =
R3F1 cot2(θ) + sin(θ) cos(θ)((γ − 1) sin(θ) + γRω2)

R2
. (B.12)

Using n1i = 0 and substituting (B.10), (B.11) and (B.12) into 29 and 30 we obtain respectively (53) and (C.1). Substituting
(B.9) into (B.1) we obtain expressions for m1 and m2. Substituting these expressions and (54) into (30) we obtain (55).

C Solving the first-order system

In what follows all unknown functions will be the order ε corrections of the expansion detailed in Section 5 of the main document,

as such we shall drop the superscript notation i.e. n
(1)
i will simply be denoted ni. Expressed in full the majority of the functions

are quite substantial in terms of the length on the page. However, much of this complexity arises from terms which have no
dependence on s, only the characteristic values of the undeformed state of the birod θ, γ and R. For clarity we do not detail
these expressions in this document, except where necessary. This choice is made to clearly highlight the functional s-dependence
of each function and map out the various steps by which the system can be solved. The full forms are available to the interested
readers who are invited to contact the author to obtain them.

We have chosen to label these constant terms in the same form as the function itself with a roman numeral superscript. For
example the function n31 is shown to be

n31(s) = ni31 +
(
nii31 + niii31 s

)
cos

(
s tan(θ)

R

)
+
(
niv31 + nv31s

)
sin

(
s tan(θ)

R

)
,

with the terms nl31, l = i, . . . v having no s− dependence whose exact for is omitted form this document.

Applying (11), (64), (65) and (66) to (72) and collecting the order ε terms we obtain the following three equations,

R
(
R
(
2F1 + n′11 − n′12

)
+ tan(θ)(n22 − n21)

)
− 2 sin3(θ) sec(2θ)a′3 = 0, (C.1)

tan(θ)(n11 − n12) +R
(
n′21 − n′22

)
= 0, (C.2)

R3
(
n′31(s)− n′32

)
+ 2 sin3(θ) sec(2θ)

(
Ra′1(s)− tan(θ)a2

)
. (C.3)
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Applying (11), (64), (65) and (66) to (73) and collecting the order ε terms we obtain the following three equations,

R
(
n′11(s) + n′12(s)

)
− tan(θ)(n21 + n22) = 0, (C.4)

tan(θ)(n11 + n12) +R
(
n′21 + n′22

)
= 0, (C.5)

n′31 + n′32 = 0. (C.6)

Applying the moment difference equations (11), (64), (65) and (67) to (74) and collecting the order ε terms we obtain the following
three equations.

n21 + n22 + tan(θ)(n31 + n32) + mid1a
(3)
3 + miid1a

′
3 −

γ sin2(θ)

R
(φ′1 + φ′2) = 0, (C.7)

n11 − n12 + mid2a
(4)
3 + miid2a

′′
3 + γ sin(θ) cos(θ)(φ

′′
1 + φ′′2 ) = 0 (C.8)

− tan(θ)(n11 + n12) + mid3a
(4)
2 + miid3a2 + miiid3a

(3)
1 + mivd3a

′
1 + mvd3a

′′
2 + γ cos2(θ)(φ′′1 − φ′′2 ) = 0. (C.9)

The terms mldi (difference) are the arclength constant terms which we omit for brevity. Finally applying the moment sum
equations (11), (64), (65) and (67) to (75) and collecting the order ε terms we obtain the following three equations.

− n21 − n22 + tan(θ)(n31 − n32) + mis1a1 + miis1a
(3)
2 + miiis1 a

′
2 −

γ sin2(θ)

R
(φ′1 − φ2) + mivs1a

′′
1 = 0, (C.10)

n11 + n12 + mis2a2 + miis2a
(3)
1 + miiis2 a

′
1 + mivs2a

′′
2 + γ sin(θ) cos(θ)(φ′′1 − φ′′2 ) + mvs2a

(4)
2 = 0, (C.11)

tan(θ)(n12 − n11) + mis3a
′′
3 + miis3a

(4)
3 + γ cos2(θ)(φ′′1 + φ′′2 ) = 0. (C.12)

The terms mldi (sum) are the arclength constant terms which we omit for brevity. To begin solving, from (C.6) we have

n31 = C1 − n32.

with C1 an arbitrary constant of integration, in what follows all constants of integration will be labelled Ci. It can also be shown
that (C.4) and (C.5) are satisfied generally if

n22(s) = C2 sin

(
tan(θ)

R
s

)
+ C3 cos

(
tan(θ)

R
s

)
− n21(s),

n11(s) = C3 sin

(
tan(θ)

R
s

)
− C2 cos

(
tan(θ)

R
s

)
− n12(s).

Our next step is to obtain an equation for a3. We use (C.10) to eliminate n32. We then use (C.7) to eliminate n21 and (C.8) to
eliminate n12. Having followed these steps (C.2) is reduced to an equation which can be integrated twice to eliminate φ2. Finally,
substituting this expression for φ2 into (C.12) and using the full forms of the various constant expressions introduced, we obtain
the following fourth order O.D.E

a
′′′′
3 −

(2 cos(2θ) + cos(4θ) + 3) tan2(θ) sec(2θ)

R2
a
′′
3 = 0

The coefficient of a′′3 is positive-definite on the domain θ ∈ (−π/4, π/4) so this equation has hyperbolic solutions which are

a3(s) = C6 + C7s+
R2 cos(2θ) cot2(θ)

2 cos(2θ) + cos(4θ) + 3

(
C8 eΘ1s + C9 e−Θ1s

)
, (C.13)

Θ1 =
sec(θ)

√
− cos(4θ) + 2 sec(2θ)− 1

√
2R

.

At this point we take stock, we have eliminated all the force terms, φ2 and a3, using equations (C.2), (C.4), (C.5), (C.6), (C.7),
(C.8), (C.10), and (C.12). The remaining functions are

a1, a2, φ1, and F1.

and the remaining equations (C.1), (C.3), (C.9) and (C.11).

The linear combination of equations sin(θ)(C.9) - cos(θ)(C.11), (C.3)R−(C.11), and cos(θ)(C.8) + sin(θ)(C.11) yield respec-
tively the equations

sec(θ)

(
C2 cos

(
s tan(θ)

R

)
− C3 sin

(
s tan(θ)

R

))
+

(sec(2θ)− 1)a2

R2
−

(cos(2θ) + cos(4θ) + 2) tan(2θ)a′1
2R

+ cos2(θ)(−(cos(4θ) sec(2θ) + 1))a′′2 = 0 (C.14)

2C2 cos

(
s tan(θ)

R

)
− 2C3 sin

(
s tan(θ)

R

)
+ 2R2 cos3(θ)a

(4)
2 +

2 sin(θ) tan(θ)a2

R2
− 2R cos3(θ) cot(θ)a

(3)
1

−
2 sin(θ) cos2(θ)a′1

R
+

1

2
(5 cos(θ)− cos(3θ))a′′2 = 0. (C.15)

− 2γR2 cos2(θ) cot(θ)a
(4)
2 + 2γR cos2(θ) cot2(θ)a

(3)
1 (s) +

2 sin2(θ) cos2(θ)(γ − sec(2θ) + 1)a′1
R

−
1

8
cot(θ) sec(2θ)((15γ − 1) cos(2θ) + (γ + 1) cos(6θ)− 2 cos(4θ) + 2)a′′2 + 2γ cos(θ)φ′′1 = 0

(C.16)
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Using (C.14) we can obtain expressions for a′1 and a
′′′
1 in terms of a2 and its derivatives. Substituting this into (C.15) we obtain

the following inhomogeneous fourth order O.D.E.

a
′′′′
2 +

2 tan2(θ)

R2
a′′2 +

tan4(θ)

R4
a2 = Θ2

(
C3 sin

(
s tan(θ)

R

)
− C2 cos

(
s tan(θ)

R

))
,

Θ2 =
(cos(2θ) + cos(4θ) + 2) tan2(θ) sec(θ) sec2(2θ)

2R2
.

In this case the coefficients on the left hand side are positive definite and the general solution has the following form

a2(s) = (ai2 + aii2 s+ aiii2 s2) cos

(
s tan(θ)

R

)
+ (aiv2 + av2s+ avi2 s

2) sin

(
s tan(θ)

R

)
. (C.17)

We can now use (C.14) to obtain a final expression for a1, it only appears as a first derivative so all that is required is a single
integration (the final expression is shown in (D.13)). Inserting the expressions for a1 and a2 into (C.16), we then integrate twice
to obtain an expression for φ2 (D.12). Finally we can use (C.1) to obtain our expression for F1 (D.10).

D The corrected system

As in C the final expressions written out in full are somewhat substantial. Once again we only highlight the functional s-
dependence of each function and label the parts of the final expressions which are constant in s using the roman numeral system
introduced in section C. The final forms of the solutions to the system (C.1)- (C.12) are

n11(s) = −
1

2

(
C2 cos

(
s tan(θ)

R

)
+ C3 sin

(
s tan(θ)

R

))
+ sin(θ) cos4(θ)(sec(2θ) + 2)

(
C8 eΘ1s + C9 e−Θ1s

)
, (D.1)

n12(s) = −
1

2
C2 cos

(
s tan(θ)

R

)
+

1

2
C3 sin

(
s tan(θ)

R

)
− sin(θ) cos4(θ)(sec(2θ) + 2)

(
C8 eΘ1s + C9 e−Θ1s

)
, (D.2)

n21(s) = ni21 +
1

2

(
C2 sin

(
s tan(θ)

R

)
+ C3 cos

(
s tan(θ)

R

))
− nii21

(
C8 eΘ1s − C9 e−Θ1s

)
, (D.3)

n22(s) = ni22 +
1

2

(
C2 sin

(
s tan(θ)

R

)
+ C3 cos

(
s tan(θ)

R

))
+ nii22

(
C8 eΘ1s − C9 e−Θ1s

)
, (D.4)

n31(s) = ni31 +
(
nii31 + niii31 s

)
cos

(
s tan(θ)

R

)
+
(
niv31 + nv31s

)
sin

(
s tan(θ)

R

)
(D.5)

n32(s) = ni32 +
(
nii32 + niii32 s

)
cos

(
s tan(θ)

R

)
+
(
niv32 + nv32s

)
sin

(
s tan(θ)

R

)
, (D.6)

U1(s) =
(
Ui1 + Uii1 s

)
cos

(
s tan(θ)

R

)
+
(
Uiii1 + Uiv1 s

)
sin

(
s tan(θ)

R

)
, (D.7)

U2(s) =
(
Ui2 + Uii2 s

)
cos

(
s tan(θ)

R

)
+
(
Uiii2 + Uiv2 s

)
sin

(
s tan(θ)

R

)
+ Uv2 , (D.8)

U3(s) = C7 + Ui3

(
C8 eΘ1s + C9 e−Θ1s

)
, (D.9)

F1(s) = Fi1 + Fii1

(
C8 eΘ1s − C9 e−Θ1s

)
, (D.10)

φ1(s) =
(
φi1 + φii1 s

)
cos

(
s tan(θ)

R

)
+
(
φiii1 + φiv1 s

)
sin

(
s tan(θ)

R

)
+ φv1

(
C8 eΘ1s + C9 e−Θ1s

)
+ C15s+ C16, (D.11)

φ2(s) =
(
φi2 + φii2 s

)
cos

(
s tan(θ)

R

)
+
(
φiii2 + φiv2 s

)
sin

(
s tan(θ)

R

)
+ φv2

(
C8 eΘ1s + C9 e−Θ1s

)
+ φvi2 + φvii2 s, (D.12)

a1(s) =
(
ai1 + aii1 s

)
cos

(
s tan(θ)

R

)
+
(
aiii1 + aiv1 s

)
sin

(
s tan(θ)

R

)
+ C14. (D.13)

in conjunction with (C.17) and (C.13). In addition by expanding (31) and (32) and comparing the order ε terms to the expansion
for D1 and d3i we obtain the following expressions for the corrections to the angles αi and βi

α1 =
(
αi1 + αii1 s

)
cos

(
s tan(θ)

R

)
+
(
αi1 + αii1 s

)
sin

(
s tan(θ)

R

)
+ αiii1

(
C8 eΘ1s + C9 e−Θ1s

)
− C15s− C16, (D.14)

α2 =
(
αi2 + αii2 s

)
cos

(
s tan(θ)

R

)
+
(
αiii2 + αiv2 s

)
sin

(
s tan(θ)

R

)
+ αv2

(
C8 eΘ1s + C9 e−Θ1s

)
αvi2 s− αvii2 , (D.15)

β1 =
(
βi1 + βii1 s

)
cos

(
s tan(θ)

R

)
+
(
βiii1 + βiv1 s+

)
sin

(
s tan(θ)

R

)
+ βv1

(
C8 eΘ1s − C9 e−Θ1s

)
+ βvi1 , (D.16)

β2 =
(
βi2 + βii2 s

)
cos

(
s tan(θ)

R

)
+
(
βiii2 + βiv2 s

)
sin

(
s tan(θ)

R

)
+ βv2

(
C8 eΘ1s − C9 e−Θ1s

)
+ βvi2 . (D.17)
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Finally the corrections λ
(1)
i can be integrated leading to expressions for the quantity

sic(s) =

∫ L/2

−L/2
λ
(1)
i (q) dq. (D.18)

with

s1c(s) =
(
si1c + sii1cs

)
cos

(
s tan(θ)

R

)
+
(
siii1c + siv1cs+

)
sin

(
s tan(θ)

R

)
+ sv1c

(
C8 eΘ1s + C9 e−Θ1s

)
+ svi1cs+ C17, (D.19)

s2c(s) =
(
si2c + sii2cs

)
cos

(
s tan(θ)

R

)
+
(
siii2c + siv2cs+

)
sin

(
s tan(θ)

R

)
+ sv2c

(
C8 eΘ1s + C9 e−Θ1s

)
+ svi2cs+ C18.

D.1 Birod forces

Applying (C.13), (D.1)-(D.6), (D.13) and (C.17) to (65) we obtain the corrections to the force vectors ni. Using (29), (46) and
the fact that the zeroth order birod forces Njr are zero, we obtain the following expressions for the effective birod forces Nir

N1r = −C2, (D.20)

N2r = C3,

N3r = C1.

D.2 Birod Moments

Applying (C.13), (C.17) and (D.7)-(D.13) to (67) we obtain the corrections to the moment vectors mi. Using (30), (46), and the
fact that the zeroth order birod moments Mjr are zero we obtain expressions for the effective birod moments Mir. With a little
algebra it we see there is no ensuing trigonometric dependence on s. Finally, using (D.20) and the exact forms of the various
constants we have introduced, we arrive at the following expressions

M1r(s) = −
csc(θ)(4C13(sin(2θ) + sin(6θ)) + N1rR(9 cos(θ) + 6 cos(3θ) + cos(5θ))− 2N2rs(3 sin(θ) + sin(5θ)))

4(cos(2θ) + cos(4θ) + 2)
, (D.21)

M2r(s) = −
csc(θ)(−4C11(sin(2θ) + sin(6θ)) + 2N1rs(3 sin(θ) + sin(5θ)) + N2rR(9 cos(θ) + 6 cos(3θ) + cos(5θ)))

4(cos(2θ) + cos(4θ) + 2)
, (D.22)

M3r = N3rR tan(θ) + γC4 cos(2θ) + C7(cos(3θ) + cos(θ)(2 sec(2θ) + 3)). (D.23)

We note that M3r is constant and in the absence of forces N1r and N2r, M1r and M2r are also constant.

D.3 Enforcing full birod contact

Before considering any questions of applying moments we must first enforce the complete contact of both rods, as well as the
unstreatchable nature of the two rods. To order ε both can be done using (D.19), enforcing (69) for both rods and demanding
s1c(0) = s2c(0). This allows us to eliminate the constants C14 and C7, it will also introduce the length correction of the contact

line Lc = L(1) to the system as an unknown. In section F it will be important to know the specific forms of C7 and C14 which
are

C7 = −
1

2LR
csc(θ)

(
4R3(C8 − C9) cos(θ) cos(2θ) cot(θ) sinh (2LΘ1)

2 cos(2θ) + cos(4θ) + 3
+ 2L1 sec(θ)

)
, (D.24)

C14 = (D.25)

1

8L(cos(2θ) + cos(4θ) + 2)
R2 csc2(θ) sec2(2θ)

[
csc(θ) sin

(
L tan(θ)

2R

)(
N2rR(23 cos(2θ) + 15 cos(4θ) + cos(6θ) + 25)

− 16C11 sin(θ)(cos(θ) + cos(3θ))2
)
− 2LN2r(5 cos(θ) + 2 cos(3θ) + cos(5θ)) cos

(
L tan(θ)

2R

)]

E Bending Response

Using the fact that the zeroth order effective rod curvatures Ujr are zero we substitute (D.7)-(D.8) into (43) and (44) to obtain

U1r(s) = Ui1r sin

(
s tan(θ)

R

)
+ Uii1r cos

(
2s tan(θ)

R

)
+ Uiii1r sin

(
2s tan(θ)

R

)
+ Uiv1rs+ Uv1r, (E.1)

U2r(s) = Ui2r cos

(
s tan(θ)

R

)
+ Uii2r cos

(
2s tan(θ)

R

)
+ Uiii2r sin

(
2s tan(θ)

R

)
+ Uiv2rs+ Uv2r, (E.2)
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The case in which N1r = N2r = 0 is covered in Section 6.2 of the paper. We turn our attention to the case in which at least one
of N1r and N2r is non-zero. Similar to the definition of average curvature we define the averaged effective moments to be

M̄jr =
1

L

∫ L/2

−L/2
Mjr(q) dq, j = 1, 2, 3. (E.3)

Applying this to (D.21) we find

M̄1r = −
csc(θ)(4C13(sin(2θ) + sin(6θ)) + N1rR(9 cos(θ) + 6 cos(3θ) + cos(5θ)))

4(cos(2θ) + cos(4θ) + 2)
, (E.4)

M̄2r = −
csc(θ)(N2rR(9 cos(θ) + 6 cos(3θ) + cos(5θ))− 4C11(sin(2θ) + sin(6θ)))

4(cos(2θ) + cos(4θ) + 2)
. (E.5)

Eliminating C13 for M̄1r and C11 for M̄2r we obtain

Ū1r =R sec2(2θ)
(
−8L sin(θ)− 2L(2 sin(θ) + sin(3θ)) cos

(
L tan(θ)

R

)
+R(cos(2θ) + cos(4θ) + 8) sec(θ) sin

(
L tan(θ)

R

))
16L

N1r

+

 sec2(2θ)
(
L(cos(3θ) + sec(θ))−R(2 sin(θ) + sin(3θ)) sin

(
L tan(θ)

R

))
4L

 M̄1r.

Under the assumptions of Section 6.0.1 the leading order term in a series in R is

Ū1r ≈
1

4
sec2(2θ)(cos(3θ) + sec(θ))M̄1r =

1

4

(
sec(θ) + cos(θ) sec2(2θ)

)
M̄1r. (E.6)

Leading to the same conclusion as in the case where the forces were absent. For U2r we have

Ū2r =

1

64L2

(
R csc2(θ) sec2(2θ)

(
L

(
8L sin3(θ)

(
(2 cos(2θ) + 3) cos

(
L tan(θ)

R

)
− 4

)
−R(cos(2θ) + cos(4θ)− cos(6θ) + 31) sec(θ) sin

(
L tan(θ)

R

))
− 64R2 csc(θ)

(
cos

(
L tan(θ)

R

)
− 1

)))
N2r

+

 sec2(2θ)
(
L2(cos(3θ) + sec(θ)) + 4R2 cot(θ) csc(θ)

(
cos
(
L tan(θ)

R

)
− 1
)

+ LR sin(θ)(2 cos(2θ) + 3) sin
(
L tan(θ)

R

))
4L2

 M̄2r.

Once again using assumptions of Section 6.0.1 the leading order term is

Ū2r ≈
1

4

(
sec(θ) + cos(θ) sec2(2θ)

)
M̄2r. (E.7)

F Torsional Response

On applying the full contact constraint as discussed in Section D.3 we obtain

U3r = −
Lc csc(θ) sec(θ)

LR
+ Ui3r + Uii3r

(
C8 eΘ1s − C9 e−Θ1s

)
, (F.1)

With Lc the change in length of the contact line. The average Ū3r is

Ū3r = −
Lc csc(θ) sec(θ)

LR
. (F.2)

So we only require an expression for the contact line length correction Lc. Substituting (D.14) and (D.15), (D.20), (D.24) and

(D.25) into (70) we obtain an expression for Lc in terms of the effective forces and moments, α±1 , α±2 and the constants C8 and
C9, which remain to be eliminated.

From (D.16) and (D.17), (D.24) and (D.25) we find the quantities βi(L/2) − βi(−L/2), i = 1, 2 are identical, hence from

(71) the quantities β±i are also the same. Also they only depend on the constant C7, which from (D.24) means they only depend

on the sum C8 +C9 and we can eliminate both for β±. Thus by applying the condition (71) we obtain (85). This is also sufficient
to determine the averaged birod twist Ū3r. In passing we note that the actual twist U3r also depends on the difference C8 − C9

and would require specification of further geometric quantities.
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G Derivation of the Linear Torsional and Extensional Response of A Uniform Helical Birod

Multiplying (57) by cos(θ) we obtain

∂φ

∂si
=

sec(2θ)(R(M3r cos(θ)− N3rR sin(θ))− 2 sin(θ) cos(θ)((γ − 1) cos(2θ) + 1))

2γR
. (G.1)

Under the boundary constraints for which the angles αi are fixed at the birod ends for all deformations the left hand side must be
constant with respect to all deformation sets P (M3r and N3r here). This is a result of the fact that the rod’s lengths Lr are fixed

and that ∂φ
∂si

is constant in any given admissible helical configuration. With this the twist rate is given by (φ(L/2)−φ(−L/2))/Li

and if αi are fixed at the boundaries for all admissible configurations it is a fixed quantity. Taking the partial derivative of (G.1)
with respect to M3r and evaluating at M3r = 0,N3r = 0 we obtain

0 =
R cos(θ) sec(2θ)− 2 ∂θ

∂M3r

(
(γ − 1) cos(2θ) + sec2(2θ)

)
2γR

. (G.2)

giving us an expression for ∂θ
∂M3r

in terms of the original angle θ. Since U3 = tan(θ)/R we have

∂U3

∂M3r
=

sec2(θ)

R

∂θ

∂M3r
=

sec(θ)

2 ((γ − 1) cos2(2θ) + sec(2θ))
.

using (G.2). The inverse of this is the coefficient of linear response of the uniformly helical birod and it is the same as (87).

Taking the partial derivatives of (G.1) with respect to N3r and evaluating at M3r = 0,N3r = 0 we obtain

0 = −
sec2(2θ)

(
∂θ
∂N3r

(3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4) +R2(sin(3θ)− sin(θ))
)

4γR
(G.3)

Using this we obtain
∂u3

∂N3r
=

sec2(θ)

R

∂θ

∂N3r
= −

2R cos(2θ) tan(θ) sec(θ)

3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4
.

It can be confirmed that the inversion of this gives (88).

The relative extension of the contact line, by comparison to its zero force and moment equilibrium length is given by

e =
Li cos(θ∗)

Li cos(θ)

With θ∗ the deformed helical angle. It is only θ∗ which is a function of M3r and N3r here. Taking derivatives evaluated at
M3r = N3r = 0 we have

∂e

∂M3r
= − tan(θ)

∂θ

∂M3r
,

∂e

∂N3r
= − tan(θ)

∂θ

∂N3r
.

substituting for the partial derivatives obtained from (G.2) and (G.3) we obtain

∂e

∂M3r
= −

R sin(θ) sec(2θ)

2 ((γ − 1) cos(2θ) + sec2(2θ))
,

∂e

∂N3r
=

2R2 sin(θ) cos(2θ) tan(θ)

3(γ − 1) cos(2θ) + (γ − 1) cos(6θ) + 4
,

whose inversions give the coefficients of (90).
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