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Abstract

We study a random walk in random environment on Z+. The random envi-
ronment is not homogeneous in law, but is a mixture of two kinds of site, one in
asymptotically vanishing proportion. The two kinds of site are (i) points endowed
with probabilities drawn from a symmetric distribution with heavy tails at 0 and
1, and (ii) ‘fast points’ with a fixed systematic drift. Without these fast points, the
model is related to the diffusion in heavy-tailed (‘stable’) random potential studied
by Schumacher and Singh; the fast points perturb that model. The two compo-
nents compete to determine the behaviour of the random walk; we identify phase
transitions in terms of the model parameters. We give conditions for recurrence
and transience, and prove almost-sure bounds for the trajectories of the walk.
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1 Introduction

Given an infinite sequence ω = (p0, p1, p2, . . .) such that pi ∈ (0, 1) for all i ∈ Z+ :=
{0, 1, 2, . . .}, we consider X := (Xt)t∈Z+ a nearest-neighbour random walk on Z+ defined
as follows. Set X0 = 0, and for n ∈ N := {1, 2, . . .},

Pω[Xt+1 = n− 1 | Xt = n] = pn,

Pω[Xt+1 = n+ 1 | Xt = n] = 1− pn =: qn, (1.1)

and Pω[Xt+1 = 0 | Xt = 0] = p0, Pω[Xt+1 = 1 | Xt = 0] = 1− p0 =: q0. The assumption
that each pi be in (0, 1), with the given form for the reflection at the origin, ensures that
X is an irreducible, aperiodic Markov chain on Z+ under the quenched law Pω.

The sequence of jump probabilities ω is the environment for the random walk. We
take ω itself to be random — then X is a random walk in random environment (RWRE).
Specifically, p0, p1, . . . will be a sequence of independent (not necessarily i.i.d.) (0, 1)-
valued random variables on a probability space (Ω,F ,P).

There has been much interest in the RWRE recently; see for example [20] or [28] for
surveys. Many of the results in the literature assume that the pi are i.i.d. and that their
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tails are ‘light’ at 0 and at 1. In particular, much of the work on RWRE imposes a
uniform ellipticity condition on the environment, that is P[p0 ∈ (ε, 1 − ε)] = 1 for some
ε > 0.

We remark that many (although by no means all) of the papers on one-dimensional
RWRE work on Z rather than Z+. Obvious differences include the fact that on Z one may
have Xt → −∞, while in the i.i.d. case this regime corresponds to a positive-recurrent
regime for Xt on Z+. Taking such difference into account, for many questions of interest
the distinction is inessential, and the analysis is more-or-less unchanged.

In the case of an i.i.d. random environment, classical work of Solomon [26] demon-
strated the importance of the quantity E[log(p0/q0)], where E denotes expectation
under P; when that expectation exists Solomon [26, Theorem 1.7] showed that its
sign determines the recurrence classification of X. The null-recurrent case in which
E[log(p0/q0)] = 0 is known as Sinai’s regime after Sinai’s remarkable result [23] that
(log t)−2Xt converges weakly to some non-degenerate limit under the annealed proba-
bility measure. Sharp results on the almost-sure behaviour of the RWRE in Sinai’s
regime were provided by Hu and Shi [13], making use of some delicate technical es-
timates involving the potential associated with the random environment. In all these
results, E[(log(p0/q0))

2] <∞.
Again in the i.i.d. setting, different behaviour is observed when log(p0/q0) is heavy

tailed, in particular, when E[(log(p0/q0))
2] = ∞, i.e., the tails of p0 are (very) heavy

approaching 0 or 1. The natural model in this heavy-tailed setting takes log(p0/q0) to be
in the domain of attraction of a stable law. Singh [24] gave analogues of the almost-sure
results of Hu and Shi [13] in the stable law setting. Analogues of Sinai’s weak convergence
result were obtained by Schumacher [21,22] and Kawazu et al. [16]: now (log t)−αXt has
an annealed weak limit, where α ∈ (0, 2] is the index of the stable law.

Our main interest here is when the random environment is not i.i.d., that is, non-
homogeneous. In particular, we are interested in how the phenomena just described,
namely, the recurrence classification of Solomon [26] and the almost-sure results of Hu
and Shi [13] and Singh [24], are affected by perturbations to the random environment (in
a sense we describe in more detail below). Perturbations of random walks in Sinai-type
random environments were considered in [18,19] and [10]. In contrast, our main interest
is perturbing the heavy-tailed setting of Singh [24]. We identify families of perturbations
whose natural parameters exhibit phase transitions in the asymptotic behaviour of the
random walk. In this sense, we identify the robustness of certain features of the model
under perturbations.

The results of [13, 16, 24] (as well as the annealed results of [21, 22]) all either are
stated in the continuous setting of diffusions in random potentials, or else have their
main proofs based in the continuous setting and then some extra approximation work
to deduce results in the discrete RWRE setting. These arguments, often making use of
potential-theoretic methods, can be long and technical. In the present paper we take
a different approach. We study discrete processes directly via discrete ideas, as seems
natural, rather than appealing to a diffusion approximation.

Our methods are not as sharp as those say of [13, 24], but they are simpler and
more robust in our non-homogeneous random environment setting. The methods of the
present paper are based on Lyapunov function ideas; the usefulness of Lyapunov function
techniques for RWRE has already been demonstrated in [4,18,19]. In the present paper we
develop these techniques further. In particular, we give methods for proving almost-sure
bounds for RWRE that improve on those in [4, 19].
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In the next section, Section 2, we describe our model and present our main results. We
give the proofs of the results in Section 4, after collecting some preliminaries, including
our main technical tools, in Section 3.

2 Model, results, and discussion

2.1 Model description

We consider the RWRE as described in (1.1), so that p0, p1, . . . are independent (0, 1)-
valued random variables under P. Our random environment will in general be non-
homogeneous, so that the law of pn will depend on n.

Fix δ ∈ (−1, 1) and let φ : Z+ → [0, 1]. Let χ0, χ1, . . . be independent {0, 1}-valued
random variables with P[χn = 1] = φ(n), and let ξ0, ξ1, . . . be i.i.d. (0, 1)-valued random
variables, independent of the χi. We take

pn =

(
1− δ

2

)
χn + ξn(1− χn),

so that

qn =

(
1 + δ

2

)
χn + (1− ξn)(1− χn),

and, since χn is {0, 1}-valued, log(pn/qn) = ρχn + ζn(1− χn), where

ρ := log

(
1− δ
1 + δ

)
∈ R; ζn := log

(
ξn

1− ξn

)
. (2.1)

Note that ζ0, ζ1, . . . is an i.i.d. sequence under P.
If φ(n) ≡ 0, this model is the classical random walk in i.i.d. random environment. The

other extreme φ(n) ≡ 1 gives a reflecting random walk in a non-random environment with
a fixed drift δ (when not at 0). We consider perturbations of both of these extremes,
with φ(n) → 0 or φ(n) → 1, allowing us to interpolate between regimes of behaviour.
The case φ(n)→ 0 represents a disordered medium that is ‘doped’ with the introduction
of an asymptotically vanishing proportion of ‘fast points’ with a fixed drift δ. The case
φ(n) → 1 corresponds to a largely homogeneous system with a vanishing proportion of
random impurities (which, due to the heavy tails, can be ‘diode-like’).

Often, we make the following assumption about the law of the ζn defined at (2.1).

(S) The distribution of ζ0 is symmetric about 0, i.e., P[ζ0 ≤ −x] = P[ζ0 ≥ x], x ≥ 0.

Note that in the case φ(n) ≡ 0, (S) is equivalent to the assumption that p0 has the same
distribution as q0. The following result is essentially due to Solomon [26].

Theorem 2.1. Suppose that (S) holds and φ(n) ≡ 0. Then X is recurrent for P-a.e. ω.

We investigate the effect of perturbing this situation with some φ(n) > 0. For many
of our results we assume that ζ0 has heavy tails; in particular that E[ζ2

0 ] = ∞. In such
cases, we will typically assume that, for some c ∈ (0,∞) and α ∈ (0, 2), as r →∞,

P[ζ0 > r] ∼ cr−α; (2.2)

here and elsewhere we use ‘∼’ in the standard sense, indicating that the ratio of the
two sides tends to 1. Our methods could be extended to the more general case P[ζ0 >
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r] = r−αL(r), for some slowly-varying function L, at the expense of complicating the
statements and introducing additional technicalities; for these reasons we restrict the
presentation to the case (2.2).

We present our main results in the next few subsections. Very different phenomena
occur depending on whether E[|ζ0|] is finite or not, so we separate these two cases.

2.2 Recurrence classification when E[|ζ0|] <∞
If E[|ζ0|] < ∞, then we need φ(n) → 0 to obtain a range of phenomena. The next two
results identify the scale of φ that leads to phase transitions in the model. For clarity of
presentation, we separate the cases where E[ζ2

0 ] does and does not exist.

Theorem 2.2. Suppose that (S) holds, and that E[ζ2
0 ] ∈ (0,∞). Suppose that φ(n) = n−β

for β ∈ (0, 1).

(i) Suppose that β < 1
2
. If δ < 0, then X is recurrent for P-a.e. ω. If δ > 0, then X is

transient for P-a.e. ω.

(ii) Suppose that β > 1
2
. Then (for any δ) X is recurrent for P-a.e. ω.

When E[ζ2
0 ] < ∞, the model is a particular perturbation of Sinai’s regime, in which

a vanishing fraction of the sites are replaced by ‘fast points’ with drift δ. A different,
but related, perturbation of Sinai’s regime was introduced in [18, 19], in which the per-
turbation occurs at every site, but is asymptotically small in magnitude. In that case, a
perturbation of ‘density’ about n−1/2 is also critical: see Theorem 6 of [18].

When E[ζ2
0 ] =∞, the ‘critical exponent’ is different, as shown by the next theorem.

Theorem 2.3. Suppose that (S) holds, and that (2.2) holds for α ∈ (1, 2). Suppose that
φ(n) = n−β for β ∈ (0, 1).

(i) Suppose that β < 1− 1
α

. If δ < 0, then X is recurrent for P-a.e. ω. If δ > 0, then
X is transient for P-a.e. ω.

(ii) Suppose that β > 1− 1
α

. Then (for any δ) X is recurrent for P-a.e. ω.

We leave open the critical cases β = 1
2

and β = 1 − 1
α

in Theorems 2.2 and 2.3
respectively. Our methods could be used to settle these cases, with a more delicate
analysis, but in the critical cases the recurrence/transience classification is likely to be
more sensitive to the exact form of the tail of ζ0, and in the present paper our primary
interest is only in ‘first order’ effects. For instance, adding a slowly-varying factor to the
right-hand side of (2.2) would have an impact in the critical cases, although it would not
change the stated recurrence classification for the non-critical domains of β.

2.3 Almost-sure bounds when E[|ζ0|] <∞
Next we state almost-sure bounds for the trajectory of the walk in the recurrent cases
identified by Theorems 2.2 and 2.3. Our results are of ‘lim sup’-type, i.e., for functions
b+ and b−, with b+(t) → ∞ and b−(t) → ∞, such that b−(t) ≤ b+(t), we show that
Xt ≤ b+(t) all but finitely often, but Xt ≥ b−(t) infinitely often. In each case b+(t) and
b−(t) are (log t)θ+o(1), where θ ∈ (1, 2] depends on the parameters of the model.
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Theorem 2.4. Suppose that (S) holds, and that E[ζ2
0 ] ∈ (0,∞). Suppose that φ(n) = n−β

for β ∈ (0, 1).

(i) Suppose that β < 1
2

and δ < 0. Then for P-a.e. ω, Pω-a.s.,

lim sup
t→∞

Xt

(log t)
1

1−β
=

(
1− β
ρ

) 1
1−β

.

(ii) Suppose that β > 1
2
. Then for any ε > 0, for P-a.e. ω, Pω-a.s., for all but finitely

many t ∈ Z+,
Xt ≤ (log t)2(log log t)2+ε.

On the other hand, for some absolute constant c, for P-a.e. ω, Pω-a.s., for infinitely
many t ∈ Z+,

Xt ≥ c(log t)2 log log log t.

Theorem 2.4 shows similar behaviour to the analogous results (Theorems 2 and 5)
of [19]; roughly speaking, the upper envelope of the walk lives on scale (log t)θ+o(1) where
θ is the minimum of 2 and 1

1−β . The next result shows that, in the heavy-tailed case, the

scale exponent θ is now the minimum of α and 1
1−β .

Theorem 2.5. Suppose that (S) holds, and that (2.2) holds for α ∈ (1, 2). Suppose that
φ(n) = n−β for β ∈ (0, 1).

(i) Suppose that β < 1− 1
α

and δ < 0. Then for P-a.e. ω, Pω-a.s.,

lim sup
t→∞

Xt

(log t)
1

1−β
=

(
1− β
ρ

) 1
1−β

.

(ii) Suppose that β > 1 − 1
α

. Then for any ε > 0, for P-a.e. ω, Pω-a.s., for all but
finitely many t ∈ Z+,

Xt ≤ (log t)α(log log t)2+ε.

On the other hand, for some absolute constant c, for P-a.e. ω, Pω-a.s., for infinitely
many t ∈ Z+,

Xt ≥ c(log t)α log log log t.

Part (ii) of Theorem 2.5 should be compared to Singh’s result [24, Theorem 1], which
covers the case φ(n) ≡ 0 (actually in the analogous diffusion setting) and gives a sharp
‘lim sup’ result with normalization (log t)α log log log t: see the discussion around (2.5)
below. Theorem 2.5(ii) shows that (log t)α remains the correct (coarse) scale when our
perturbation is small enough. Singh’s result suggests that it is the lower bound in Theo-
rem 2.5(ii) that is sharp.

2.4 Results when E[|ζ0|] =∞
In the case where E[|ζ0|] =∞, the influence of the heavy-tailed sites in the environment
overwhelms the ‘fast points’ unless the heavy-tailed sites are scarce. In this case, we
need φ(n) → 1 to observe interesting results and to obtain a phase transition. Now
the environment consists of sites with fixed drift perturbed by an asymptotically small
fraction of very ‘heavy-tailed’ sites.

For reasons of space, we state just one result, the recurrence classification, in this
regime. Almost-sure bounds could also be obtained by our methods.
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Theorem 2.6. Suppose that (S) holds, and that (2.2) holds for α ∈ (0, 1). Suppose that
φ(n) = 1− n−β for β ∈ (0, 1).

(i) Suppose that β < 1− α. Then (for any δ) X is recurrent for P-a.e. ω.

(ii) Suppose that β > 1− α. If δ < 0, then X is recurrent for P-a.e. ω. If δ > 0, then
X is transient for P-a.e. ω.

Finally, we give one result in the non-symmetric case where (S) does not hold. For
simplicity we give a result in the case of no perturbation (φ(n) ≡ 0), but when E[|ζ0|] =∞
and ζ0 has regularly-varying tails of different orders in each direction.

Theorem 2.7. Suppose that φ(n) ≡ 0 and for 0 < α− < 1 ∧ α+, for x > 0,

P[ζ0 > x] = x−α+L+(x), P[ζ0 < −x] = x−α−L−(x), (2.3)

where L+ and L− are slowly-varying. Then for P-a.e. ω, X is transient.

2.5 Further remarks and open problems

The case φ(n) ≡ 0 reduces to the classical i.i.d. random environment setting as studied
by Solomon [26] and others.

Here by far the most studied case has E[ζ2
0 ] < ∞. Under this condition and (S), of

course E[ζ0] = 0; the case of an i.i.d. environment in which E[ζ0] = 0 and E[ζ2
0 ] = σ2 ∈

(0,∞) is Sinai’s regime. Our model can be seen as a generalization of this setting. In
Sinai’s regime for the RWRE on Z+, sharp almost-sure upper and lower bounds were
given by Hu and Shi [13]. In particular [13, Theorem 1.3] says that for P-a.e. ω, Pω-a.s.,

lim sup
t→∞

Xt

(log t)2 log log log t
=

8

π2σ2
. (2.4)

It is worth comparing our results specialized to Sinai’s regime with the result (2.4).
Our Lemma 4.3 below, together with the upper bound in Lemma 3.5 and the Chung–
Jain–Pruitt ‘other’ law of the iterated logarithm [2,14], yields for any ε > 0, for P-a.e. ω,
Pω-a.s., for infinitely many t ∈ Z+,

Xt ≥ (1− ε) 2

π2σ2
(log t)2 log log log t,

which is a factor of 4 away from Hu and Shi’s [13] sharp lower bound in (2.4).
The case where φ(n) ≡ 0 but E[ζ2

0 ] =∞ has been studied by Singh [24], who gives a
sharp version of our Theorem 2.5(ii) in that case. Singh’s result [24, Theorem 1] is stated
for a diffusion in a random potential, but it is indicated [24, p. 138] that the result can
be adapted to the RWRE setting. Specifically, under the conditions of the φ(n) ≡ 0 case
of Theorem 2.5, Singh [24, Theorem 1] states that for P-a.e. ω, Pω-a.s.,

lim sup
t→∞

Xt

(log t)α log log log t
= c0, (2.5)

for some absolute constant c0 ∈ (0,∞) depending only on the law of the environment.
A natural question not addressed in our stated results concerns almost-sure bounds

for the transient cases identified in Theorems 2.2 and 2.3. Now, since Xt → ∞, one
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wants almost-sure bounds of the form b−(t) ≤ Xt ≤ b+(t) all but finitely often. The
transient cases introduce extra technicalities. One is that an extra argument (cf the
proof of Theorem 3 in [19]) is needed for the ‘all but finitely often’ lower bound. The
main complication, however, is due to the fact that the simple bounds on the expected
hitting times T (n) that we give in Lemma 3.5 below are not sharp enough, and a more
careful analysis of the shifting sums in T (n) is needed (see Section 3.1 for definition of
T (n)). In [19] the analogous analysis was accomplished using some technical estimates
(e.g. Lemmas 5 and 6 of [19]); suitable versions of these results in the heavy-tailed setting
of the present paper seem harder to obtain. Rough calculations suggest that one should
have results of the form Xt = (log t)θ+o(1), where now θ ∈ (1,∞) is given by:

• θ = 1
β

in the transient case identified in Theorem 2.2(i);

• θ = α−1
β

in the transient case identified in Theorem 2.3(i).

We leave formalizing these statements as open problems.
We briefly mention other related work in the literature. In [25], Singh gives a ‘slow

transient’ result for a two-part potential similar to our model but in the diffusion case: the
rough analogue of his model in our setting has α ∈ (1, 2), φ(n) ≡ φ ∈ (0, 1), and δ > 0.
Other recent work concerns RWRE without uniform ellipticity in high dimensions [11]
and the related ‘random conductance’ model [1]; other random media models for which
heavy-tailed cases have been explored include the ‘random traps’ model [9].

3 Preliminaries

3.1 Lyapunov functions

For fixed ω, there are two very useful natural Lyapunov functions provided by the fact
that X is a nearest-neighbour random walk under Pω. For fixed ω, define for i ∈ Z+,

Di := Di(ω) :=
i−1∏
j=0

pj
qj

; (3.1)

∆i := ∆i(ω) :=
i∑

j=0

q−1
i−j

i∏
k=i−j+1

pk
qk

; (3.2)

here and throughout we adopt the convention that an empty product is 1 and an empty
sum is 0, so that D0 = 1 and ∆0 = 1/q0. Now for n ∈ Z+ define

f(n) := f(n;ω) :=
n∑
i=0

Di(ω).

The function f has a classical interpretation in terms of hitting probabilities. For our
purposes, its usefulness stems from the fact stated in Lemma 3.1, which is related to the
fact that f is harmonic for the process X killed on hitting 0.

We write Eω for expectation under Pω, and 1{ · } for the indicator function of the
given event.

Lemma 3.1. For fixed ω, any t ∈ Z+, and any n ∈ Z+,

Eω[f(Xt+1)− f(Xt) | Xt = n] = q01{n = 0}.

7



Proof. For n ≥ 1,

Eω[f(Xt+1)− f(Xt) | Xt = n] = pnf(n− 1) + qnf(n+ 1)− f(n) = qnDn+1 − pnDn = 0.

On the other hand, Eω[f(Xt+1)− f(Xt) | Xt = 0] = q0(f(1)− f(0)) = q0D0 = q0.

For n ∈ Z+, denote the first hitting time of n by

τn := min{t ∈ Z+ : Xt = n}. (3.3)

Note that Xτn = n a.s. and τn 6= τm for any n 6= m. For n ∈ Z+, set

T (n) := T (n;ω) := Eω[τn],

with τn as defined at (3.3); T (n) is the expected first hitting time of n under Pω for fixed
environment ω. The following result is classical. Recall that we assume X0 = 0.

Lemma 3.2. For n ∈ Z+, T (n;ω) =
∑n−1

i=0 ∆i(ω), where ∆i is given by (3.2).

A key property of T (Xt;ω) is the following strict submartingale result.

Lemma 3.3. For fixed ω, any t ∈ Z+ and any n ∈ Z+,

Eω[T (Xt+1)− T (Xt) | Xt = n] = 1. (3.4)

Proof. For n ≥ 1, we have

Eω[T (Xt+1)− T (Xt) | Xt = n] = pn(T (n− 1)− T (n)) + qn(T (n+ 1)− T (n))

= qn∆n − pn∆n−1 = 1,

by (3.2). Also,
Eω[T (Xt+1)− T (Xt) | Xt = 0] = q0T (1) = 1,

since T (1) = ∆0 = 1/q0.

3.2 Quenched bounds on Lyapunov functions

In this section we give elementary bounds on f and T . We start with f .

Lemma 3.4. For any ω and any n ∈ Z+,

f(n) ≥ exp

{
max
0≤i≤n

i−1∑
j=0

log(pj/qj)

}
.

Proof. Note that, using the non-negativity of the exponential function,

f(n) =
n∑
i=0

exp

{
i−1∑
j=0

log(pj/qj)

}
≥ max

0≤i≤n
exp

{
i−1∑
j=0

log(pj/qj)

}
,

which yields the result by monotonicity of x 7→ exp(x).

We also need bounds for T (n). The following result is closely related to [19, Lemma
10], although in that result uniform ellipticity was used for the upper bound; our Lemma
3.5 is essentially as sharp without the uniform ellipticity assumption, which does not hold
in our main case of interest in the present paper.
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Lemma 3.5. For any ω and any n ∈ Z+,

T (n) ≥ exp

{
max
0≤i≤n

i−1∑
j=0

log(pj/qj)

}
. (3.5)

On the other hand, for any ω and any n ∈ Z+,

T (n) ≤ 2n2 exp

{
max

0≤i≤n−1

i∑
j=0

log(pj/qj) + max
0≤i≤n−1

i∑
j=0

(− log(pj/qj))

}
(3.6)

≤ 2n2 exp

{
2 max

0≤i≤n−1

∣∣∣∣∣
i∑

j=0

log(pj/qj)

∣∣∣∣∣
}
. (3.7)

Proof. First we prove the upper bounds. Since q−1
i−j = 1 + (pi−j/qi−j), Lemma 3.2 shows

T (n) =
n−1∑
i=0

i∑
j=0

exp

{
i∑

k=i−j+1

log(pk/qk)

}
+

n−1∑
i=0

i∑
j=0

exp

{
i∑

k=i−j

log(pk/qk)

}
. (3.8)

For the first term on the right-hand side of (3.8) we have

n−1∑
i=0

i∑
j=0

exp

{
i∑

k=i−j+1

log(pk/qk)

}
≤

n−1∑
i=0

(i+ 1) max
0≤j≤i

exp

{
i∑

k=i−j+1

log(pk/qk)

}

≤ n2 exp

{
max

0≤i≤n−1
max
0≤j≤i

i∑
k=i−j+1

log(pk/qk)

}
.

Here we have that

max
0≤i≤n−1

max
0≤j≤i

i∑
k=i−j+1

log(pk/qk) = max
0≤i≤n−1

(
i∑

k=0

log(pk/qk) + max
0≤j≤i

i−j∑
k=0

(− log(pk/qk))

)

≤ max
0≤i≤n−1

i∑
k=0

log(pk/qk) + max
0≤i≤n−1

i∑
k=0

(− log(pk/qk)).

Hence

n−1∑
i=0

i∑
j=0

exp

{
i∑

k=i−j+1

log(pk/qk)

}

≤ n2 exp

{
max

0≤i≤n−1

i∑
j=0

log(pj/qj) + max
0≤i≤n−1

i∑
j=0

(− log(pj/qj))

}
.

A similar calculation yields the same upper bound for the second term on the right-hand
side of (3.8), and so (3.6) follows. Then (3.7) is an immediate consequence of (3.6).

For the lower bound, (3.8) shows that

T (n) ≥ max
0≤i≤n−1

max
0≤j≤i

exp

{
i∑

k=i−j

log(pk/qk)

}
≥ max

0≤i≤n−1
exp

{
i∑

k=0

log(pk/qk)

}
,

which yields the result in (3.5).
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3.3 Asymptotics for sums of independent random variables

In this section we collect some results on almost-sure asymptotics for sums of independent
random variables. For notational convenience when we come to our applications, we
present the results using P for probability and E for expectation.

Upper bounds

We recall the Hartman–Wintner law of the iterated logarithm (LIL): see e.g. [15, p. 275].

Lemma 3.6. Suppose that ζ0, ζ1, . . . are i.i.d. with E[ζ0] = 0 and E[ζ2
0 ] = σ2 ∈ (0,∞).

Then, P-a.s.

lim sup
n→∞

∑n
i=0 ζi

σ
√

2n log log n
= 1.

The most convenient statement of an analogous result in the heavy-tailed case is the
following simple consequence of classical results of Feller [8, Theorems 1 and 2].

Lemma 3.7. Suppose that ζ0, ζ1, . . . are i.i.d. random variables for which (S) holds and

(2.2) holds for some α ∈ (0, 2). Then for any ε > 0, P-a.s., |
∑n

i=0 ζi| ≤ n
1
α (log n)

1
α

+ε,
for all but finitely many n ∈ Z+.

Hirsch-type laws

We will need bounds of the form max0≤i≤n
∑i

j=0 ζj ≥ an, where the inequality holds for
all but finitely many n, almost surely. The following result, due to Csáki [5, Theorem
3.1], extends a result of Hirsch [12], who imposed a 3rd moments condition.

Lemma 3.8. Suppose that ζ0, ζ1, . . . are i.i.d. with E[ζ0] = 0 and E[ζ2
0 ] ∈ (0,∞). For any

ε > 0, P-a.s., for all but finitely many n ∈ Z+,

max
0≤i≤n

i∑
j=0

ζj ≥ n1/2(log n)−1−ε.

In the heavy-tailed case, corresponding results were obtained by Klass and Zhang [17].
The following is a consequence of [17, Theorem 5.1] (see also [17, Example 5.2, p. 1872]).

Lemma 3.9. Suppose that ζ0, ζ1, . . . are i.i.d. for which (S) holds, and suppose that (2.2)
holds for α ∈ (0, 2). Then for any ε > 0, P-a.s., for all but finitely many n ∈ Z+,

max
0≤i≤n

i∑
j=0

ζj ≥ n
1
α (log n)−

2
α
−ε. (3.9)

Chung-type laws

Finally, we also need bounds of the form max0≤i≤n |
∑i

j=0 ζj| ≤ an, where the inequality
holds for infinitely many n, almost surely. When ζ0 has a finite second moment, the
appropriate result is the ‘other’ law of the iterated logarithm due to Chung [2] (under a
3rd moments condition) and Jain and Pruitt [14]:
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Lemma 3.10. Suppose that ζ0, ζ1, . . . are i.i.d. with E[ζ2
0 ] = σ2 ∈ (0,∞). Then, P-a.s.,

lim inf
n→∞

(
n−1/2(log log n)1/2 max

0≤i≤n

∣∣∣∣∣
i∑

j=0

ζj

∣∣∣∣∣
)

=
πσ√

8
.

In the heavy-tailed case, results were obtained by Jain and Pruitt [14] and extended
by Einmahl and Mason [6]. The following result is a consequence of Corollaries 3 and 4
of [6] (see also [14, Theorem 1]).

Lemma 3.11. Suppose that ζ0, ζ1, . . . are i.i.d. satisfying (S) and (2.2) for some α ∈
(0, 2). Then there exists a constant c0 ∈ (0,∞) for which, P-a.s.,

lim inf
n→∞

(
n−1/α(log log n)1/α max

0≤i≤n

∣∣∣∣∣
i∑

j=0

ζj

∣∣∣∣∣
)

= c0. (3.10)

4 Proofs of main results

4.1 Recurrence classification

Solomon’s theorem [26, p. 4] formally gives a complete recurrence classification for any
random walk in i.i.d. random environment (on Z rather than Z+, but that is an inessential
distinction), and in particular shows that the process is recurrent for a.e. environment if
E[ζ0] = 0. Solomon’s result is not so easy to use when E[|ζ0|] = ∞, and only applies in
the case of an i.i.d. random environment, so we take a different approach.

For fixed ω, our process is a nearest-neighbour random walk on Z+. The recurrence
classification for such processes is classical (see e.g. [3, §I.12, pp. 71–76]) and is summa-
rized in the following result; an efficient proof of part (i) of Lemma 4.1 may be given by
exploiting Lemma 3.1 and the Lyapunov function results of [7, Chapter 2].

Lemma 4.1. For fixed ω,

(i) X is recurrent if and only if limn→∞ f(n) =∞;

(ii) X is positive recurrent if and only if
∑∞

n=1
1
Dn

<∞.

Note that the criterion given in Lemma 4.1(ii) often appears as
∑∞

n=1
p0

pnDn
<∞, but

1
pnDn

= 1
Dn

+ 1
Dn+1

, and pi ∈ (0, 1) for all i, so the criteria are equivalent.

4.2 Almost-sure upper bounds

To obtain upper bounds on Xt, we will use the following consequence of [19, Lemma 9],
whose proof (see [19]) relies on the submartingale property of T (Xt) given in Lemma 3.3.

Lemma 4.2. Let w : Z+ → [0,∞) be increasing, with w(n) → ∞ as n → ∞. Suppose
that for P-a.e. ω, T (n) ≥ w(n) for all but finitely many n ∈ Z+. Then for any ε > 0, for
P-a.e. ω, Pω-a.s., for all but finitely many t ∈ Z+,

Xt ≤ w−1((2t)1+ε).

Proof. Under the assumptions of the lemma, P-a.s. there exists Cω ∈ (0,∞) such that
T (n) ≥ Cωw(n) for all n ∈ Z+. Now we can apply part (i) of [19, Lemma 9].
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4.3 Almost-sure lower bounds

The next lemma will enable us to obtain lower bounds for Xt valid for infinitely many t.
The corresponding result in [19] (Lemma 9 there) required an upper bound T (n) ≤ h(n)
valid for all n. The following result shows that a weaker bound T (n) ≤ g(n) (where
g(n) < h(n)), for only infinitely many n, allows us to obtain a sharper lower bound
for Xt: under condition (i) of Lemma 4.3, [19, Lemma 9] shows that X2

t h(Xt) ≥ t for
infinitely many t, roughly speaking a lower bound for Xt of order h−1(t), while Lemma
4.3 gives a bound of order g−1(t), which is potentially significantly larger.

Lemma 4.3. Suppose that there are non-negative, increasing functions g and h such that

(i) for P-a.e. ω, T (n) ≤ h(n) for all but finitely many n ∈ Z+;

(ii) for P-a.e. ω, T (n) ≤ g(n) for infinitely many n ∈ Z+.

Suppose also that

∞∑
n=1

h(n)

g(n3/2)
<∞, and lim

n→∞
(g(n3/4)/g(n)) = 0. (4.1)

Then for P-a.e. ω, for any ε > 0, Pω-a.s., for infinitely many t ∈ Z+,

Xt ≥ g−1((1− ε)t).

Proof. First we obtain a rough upper bound on τn (equation (4.2) below). Condition (i)
and Markov’s inequality yield, for P-a.e. ω,

Pω[τn > g(n3/2)] ≤ T (n)

g(n3/2)
≤ h(n)

g(n3/2)
,

for all n ≥ n0, where n0 := n0(ω) <∞. Hence, for P-a.e. ω,∑
n∈N

Pω[τn > g(n3/2)] ≤ n0 +
∑
n∈N

h(n)

g(n3/2)
<∞,

by the first condition in (4.1). Thus by the Borel–Cantelli lemma, for P-a.e. ω,

τn ≤ g(n3/2), (4.2)

for all n ≥ N0 where N0 := N0(ω) (a random variable for each ω) has Pω[N0(ω) <∞] = 1.
Now we use (4.2) and condition (ii) to show that τn is in fact much smaller than the

bound in (4.2) for infinitely many n. Let ε > 0. Condition (ii) implies that for P-a.e. ω
there exist ni := ni(ω), i ∈ N, such that ni+1 > n2

i for all i and T (ni) ≤ g(ni) for all i (the
ni are a subsequence of that specified by (ii) chosen so as to have very large spacings).
By Markov’s inequality and the fact that Eω[τni+1

] = T (ni+1) ≤ g(ni+1),

Pω[τni+1
− τni > (1 + ε)g(ni+1)] ≤ Pω[τni+1

> (1 + ε)g(ni+1)] ≤ 1/(1 + ε).

It follows that, for all i ∈ N,

Pω[τni+1
− τni ≤ (1 + ε)g(ni+1)] ≥ ε′, (4.3)
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where ε′ > 0 depends only on ε. So by (4.3), for P-a.e. ω, for any ε > 0,∑
i∈N

Pω[τni+1
− τni ≤ (1 + ε)g(ni+1)] =∞. (4.4)

Under Pω, the random variables τni+1
− τni , i ∈ N, are independent, by the strong

Markov property. Hence (4.4) and the Borel–Cantelli lemma imply that, for P-a.e. ω,
Pω-a.s., for infinitely many i,

τni+1
− τni ≤ (1 + ε)g(ni+1).

Together with (4.2) this implies that, for P-a.e. ω, Pω-a.s., for infinitely many i,

τni+1
≤ (1 + ε)g(ni+1) + g(n

3/2
i ) ≤ (1 + ε)g(ni+1) + g(n

3/4
i+1),

since ni < n
1/2
i+1 and g is increasing. Hence by the second condition in (4.1), we finally

obtain that, for any ε > 0, for P-a.e. ω, Pω-a.s., for infinitely many n,

τn ≤ (1 + 2ε)g(n) = (1 + 2ε)g(Xτn).

Since τn 6= τm for any n 6= m, it follows that, for any ε > 0, for P-a.e. ω, Pω-a.s.,
t ≤ (1 + 2ε)g(Xt) for infinitely many t, which gives the result.

4.4 Proofs of theorems on recurrence and transience

Recall the notation from Section 2.1. First we appeal to a result of Solomon [26] to prove
Theorem 2.1.

Proof of Theorem 2.1. By assumption (S),
∑n

i=0 ζi has the same distribution as
−
∑n

i=0 ζi, so in particular

∞∑
n=0

n−1P

[
n∑
i=0

ζi > 0

]
=
∞∑
n=0

n−1P

[
n∑
i=0

ζi < 0

]
=∞; (4.5)

see the remark after the theorem on p. 4 of [26]. Recurrence of X can now be deduced
from Solomon’s theorem [26] (in fact, Solomon’s theorem is stated for the RWRE on
Z, but the result carries across to the present setting). Alternatively, one can appeal to
classical random walk results (see e.g. Ch. 9 of [15], particularly p. 170) to deduce directly
from (4.5) that maxn≥0

∑n
i=0 ζi = +∞ P-a.s., so that, by Lemma 3.4, f(n) → ∞ P-a.s.,

which yields recurrence for X by Lemma 4.1.

The remainder of our results on recurrence and transience will use Lemma 4.1 and an
analysis of the quantity f(n). Recall that

f(n) =
n∑
i=0

exp

{
i−1∑
j=0

log(pj/qj)

}
. (4.6)

Proof of Theorem 2.7. Here φ(n) ≡ 0, so log(pn/qn) = ζn, P-a.s. It follows from the
conditions of the theorem that for some ε > 0, P[ζ0 < −x] ≥ cx−(1∧α+−ε) for some c > 0
and all x large enough, while E[(ζ+

0 )p] < ∞ for any p < α+. Then a result of Derman
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and Robbins (see [27, Theorem 3.2.6, p. 133]) implies that, for P-a.e. ω,
∑n

i=0 ζi < −n,
for all n ≥ n0 where n0 := n0(ω) <∞. Hence, for P-a.e. ω, by (4.6),

f(n) ≤
n0∑
i=0

exp

{
i−1∑
j=0

ζj

}
+
∑

i≥n0+1

exp{−i} <∞.

Transience follows from Lemma 4.1.

When φ(n) > 0, the analysis of (4.6) becomes a little more involved. Central to our
arguments for most of our theorems are almost-sure estimates such as those in Lemma
4.4 below.

We make an important remark on notation: in our use of the Landau symbols o( · ) and
O( · ), the implicit constants are allowed to be random. So, for instance, the expression
(4.7) means that for any ε > 0 there exists a finite random variable Nε for which∣∣∣∣∣nβ−1

n∑
j=0

log(pj/qj)− ρcβ

∣∣∣∣∣ ≤ ε, for all n ≥ Nε.

We refer back to (2.1) for the definition of ρ.

Lemma 4.4. Suppose that (S) holds. Suppose that φ(n) = n−β for β ∈ (0, 1).

(i) Suppose that either (a) E[ζ2
0 ] < ∞ and β < 1

2
; or (b) (2.2) holds with α ∈ (1, 2)

and β < 1− 1
α

. Then for cβ := 1
1−β ∈ (1, 2), P-a.s., as n→∞,

n∑
j=0

log(pj/qj) = (ρcβ + o(1))n1−β. (4.7)

(ii) Suppose that E[ζ2
0 ] <∞ and β > 1

2
. Then, P-a.s., as n→∞,

n∑
j=0

log(pj/qj) =
n∑
j=0

ζj +O(n1−β). (4.8)

(iii) Suppose that (2.2) holds with α ∈ (1, 2) and β > 1 − 1
α

. Then there exists ε > 0
such that, P-a.s., as n→∞,

n∑
j=0

log(pj/qj) =
n∑
j=0

ζj +O(n(1/α)−ε). (4.9)

Proof. For k ∈ {0, 1}, set

Nk(n) := #{j ∈ {0, 1, . . . , n} : χj = k}. (4.10)

Then N1(n) =
∑n

j=0 χj is a sum of independent, {0, 1}-valued random variables and
E[N1(n)] =

∑n
j=0 φ(j). We have that

n∑
j=0

log(pj/qj) = ρN1(n) +
n∑
j=0

ζj(1− χj). (4.11)

14



Here E[N1(n)] ∼ cβn
1−β (where cβ = (1 − β)−1 as in the statement of the lemma) and

Var[χn] = (1 − φ(n))φ(n) ∼ n−β. The Kolmogorov convergence criterion for sums of
independent random variables with finite second moments (see e.g. [15, Corollary 4.22,

p. 73]) implies that, for any ε > 0, P-a.s., |N1(n) − E[N1(n)]| = O(n
1−β

2
+ε). Choosing

ε < (1− β)/2, we thus see that N1(n) = (cβ + o(1))n1−β, P-a.s. Then by (4.11),

n∑
j=0

log(pj/qj) = (ρcβ + o(1))n1−β +
n∑
j=0

ζj(1− χj). (4.12)

We need to deal with the final sum on the right-hand side of (4.12).
Consider first the case where E[ζ2

0 ] <∞. Then E[ζn(1−χn)] = 0 and Var[ζn(1−χn)] =
E[ζ2

0 ]E[(1−χn)2] = E[ζ2
0 ]+O(n−β), so another application of the Kolmogorov convergence

criterion implies that, for any ε > 0, P-a.s., |
∑n

j=0 ζj(1 − χj)| = O(n(1/2)+ε), which is

o(n1−β), for a suitably small choice of ε, provided β ∈ (0, 1/2). So in this case from (4.12)
we see that, P-a.s., (4.7) holds. This proves part (i) of the lemma in case (a). In case (b),

note that (
∑n

j=0 ζj(1 − χj))n∈N has the same distribution as (
∑N0(n)

j=0 ζj)n∈N. This fact
together with Lemma 3.7 implies that, for any ε > 0, P-a.s.,∣∣∣∣∣

n∑
j=0

ζj(1− χj)

∣∣∣∣∣ = O(N0(n)(1/α)+ε) = O(n(1/α)+ε).

With (4.12) we see that (4.7) again holds, since if 1 − β > 1/α, we can choose ε small
enough so that n(1/α)+ε = o(n1−β). Thus we verify part (i) of the lemma in case (b) also.

Next we prove part (ii). We obtain from (4.12), P-a.s.,

n∑
j=0

log(pj/qj) = O(n1−β) +
n∑
j=0

ζj −
n∑
j=0

ζjχj. (4.13)

Suppose once more that E[ζ2
0 ] < ∞. To deal with the final sum in (4.13), note that

E[ζnχn] = 0 and Var[ζnχn] = E[ζ2
0 ]E[χ2

n] = O(n−β). Kolmogorov’s convergence criterion

now implies that, for any ε > 0, P-a.s., |
∑n

j=0 ζjχj| = O(n
1−β

2
+ε). Combining this with

(4.13) we obtain (4.8), which proves part (ii) of the lemma.
Finally, we prove part (iii). Again consider (4.13). Here, since (

∑n
j=0 ζjχj)n∈N has the

same distribution as (
∑N1(n)

j=0 ζj)n∈N, Lemma 3.7 implies that, for any ε > 0, P-a.s.,∣∣∣∣∣
n∑
j=0

ζjχj

∣∣∣∣∣ = O(N1(n)(1/α)+ε) = O(n(1−β)((1/α)+ε)),

and since β > 0, α < ∞ we may choose ε sufficiently small (less than β
2α

, say) that this
last term is O(n(1/α)−ε). Now part (iii) follows from (4.13), since β > 1− 1

α
.

Now we can prove the rest of our main theorems on recurrence and transience.

Proof of Theorem 2.2. For part (i), first consider the case β < 1
2
. In this case,

Lemma 4.4(i)(a) applies and so (4.7) holds. It follows from (4.6) that if ρ < 0, then
maxn∈Z+ f(n) <∞ for P-a.e. ω. On the other hand, if ρ > 0, then

f(n) = exp{(ρcβ + o(1))n1−β}, (4.14)

15



for P-a.e. ω. Hence for P-a.e. ω, f(n)→∞ as n→∞. Part (i) now follows from Lemma
4.1 and the fact that δ and ρ have opposite signs.

For part (ii), suppose that β > 1
2
. Now, by Lemma 3.4 and (4.8), P-a.s.,

f(n) ≥ exp

{
max
0≤i≤n

i−1∑
j=0

ζj −O(n1−β)

}
.

Now Lemma 3.8, with the fact that β > 1
2
, shows that for any ρ, for any ε > 0, for P-a.e.

ω, for all but finitely many n,

f(n) ≥ exp{n1/2(log n)−1−ε}. (4.15)

Since the right-hand side of (4.15) tends to infinity with n, another application of Lemma
4.1 yields recurrence, and completes the proof of part (ii).

Proof of Theorem 2.3. Suppose now that (2.2) holds for α ∈ (1, 2). Part (i) follows in
the same way as the proof of part (i) of Theorem 2.2, since, by Lemma 4.4(i)(b), (4.7)
also holds in the case where β < 1− 1

α
.

It remains to prove part (ii). Now Lemma 3.4 with Lemma 3.9 and (4.9) implies that,
for some ε > 0 and any ε′ > 0, P-a.s., for infinitely many n ∈ Z+,

f(n) ≥ exp

{
max
0≤i≤n

i−1∑
j=0

ζj −O(n(1/α)−ε)

}
≥ exp

{
n1/α(log n)−(2/α)−ε′

}
.

So, for any ρ, f(n)→∞ P-a.s. Recurrence follows from Lemma 4.1.

Proof of Theorem 2.6. Now φ(n) = 1 − n−β, and (2.2) holds with α ∈ (0, 1). Recall the
definition of Nk(n) from (4.10) and the representation (4.11). In the present setting,
the sequence N1(n) is distributed as the sequence N0(n) in the setting of Lemma 4.4
(where φ(n) = n−β), and so the argument in the proof of Lemma 4.4 shows that, P-a.s.,
N0(n) ∼ cβn

1−β, N1(n) ∼ n, and

n∑
j=0

log(pj/qj) = (ρ+ o(1))n+
n∑
j=0

ζj(1− χj).

Here (
∑n

j=0 ζj(1− χj))n∈N has the same distribution as (
∑N0(n)

j=0 ζj)n∈N.
First we prove part (ii) of the theorem. Lemma 3.7 shows that, for any ε > 0, P-a.s.,∣∣∣∣∣

n∑
j=0

ζj(1− χj)

∣∣∣∣∣ = O(N0(n)(1/α)+ε) = O
(
n

1−β
α

+ε
)
,

which is o(n) for β > 1− α and ε small enough. Then, by (4.6), we have that, for P-a.e.
ω, f(n)→∞ if ρ > 0 but maxn∈Z+ f(n) <∞ if ρ < 0. Lemma 4.1 then gives the proof
of part (ii) of the theorem.

On the other hand, Lemma 3.9 shows that, P-a.s., for all but finitely many n,

max
0≤i≤n

i−1∑
j=0

ζj(1− χj) ≥ (N0(n))
1
α (logN0(n))−

3
α ≥ n

1−β
α (log n)−

4
α ,
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since N0(n) ∼ cβn
1−β. Then by Lemma 3.4, since 1− β > α,

f(n) ≥ exp

{
max
0≤i≤n

i−1∑
j=0

ζj −O(n)

}
≥ exp

{
n

1−β
α (log n)−

5
α

}
,

for all n sufficiently large. So f(n) → ∞ for P-a.e. ω, for any ρ, and Lemma 4.1 shows
recurrence, completing the proof of part (i) of the theorem.

4.5 Proofs of theorems on almost-sure bounds

We obtain our almost-sure bounds on Xt via Lemmas 4.2 and 4.3. This requires an
analysis of the expected hitting times T (n). The next two lemmas collect bounds on
T (n) that we will use.

Lemma 4.5. Suppose that (S) holds, and that E[ζ2
0 ] ∈ (0,∞). Suppose that φ(n) = n−β

for β ∈ (0, 1).

(i) Suppose that β < 1
2

and ρ > 0. Then with cβ = 1
1−β , P-a.s., as n→∞,

T (n) = exp{(ρcβ + o(1))n1−β}.

(ii) Suppose that β > 1
2
. Then (for any ρ), for any ε > 0, P-a.s., for all but finitely

many n ∈ Z+,

exp{n1/2(log n)−1−ε} ≤ T (n) ≤ exp{n1/2(log log n)(1/2)+ε}.

Moreover, there is some c ∈ (0,∞) for which, P-a.s., for infinitely many n ∈ Z+,

T (n) ≤ exp{cn1/2(log log n)−1/2}.

Proof. The lower bounds for T (n) follow in the same way as the lower bounds for f(n)
obtained in (4.14) and (4.15), using the lower bound for T (n) in (3.5) in place of the
identical lower bound for f(n) in Lemma 3.4.

Next we prove the upper bounds on T (n). Under the conditions of part (i) of the
lemma, Lemma 4.4(i)(a) shows that (4.7) holds. We apply the upper bound for T (n) in
(3.6). Since ρ > 0, (4.7) shows that, P-a.s.,

max
0≤i≤n−1

i∑
j=0

log(pj/qj) = (ρcβ + o(1))n1−β, and max
0≤i≤n−1

i∑
j=0

(− log(pj/qj)) = O(1),

recalling that, in our notation, ‘= O(1)’ in the second expression means bounded by finite
random variable (function of ω). Using these expressions in (3.6), we obtain

T (n) ≤ 2n2 exp
{

(ρcβ + o(1))n1−β +O(1)
}

= exp
{

(ρcβ + o(1))n1−β} ,
matching the lower bound and completing the proof of part (i). Under the conditions
of part (ii) of the lemma, Lemma 4.4(ii) shows that (4.8) holds. Thus from the upper
bound in (3.7) we have that P-a.s., for all but finitely many n ∈ Z+,

T (n) ≤ exp

{
2 max

0≤i≤n

∣∣∣∣∣
i∑

j=0

ζj

∣∣∣∣∣+O(n1−β)

}
. (4.16)
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Here the LIL (Lemma 3.6) shows that, P-a.s., max0≤i≤n |
∑i

j=0 ζj| = O(n1/2(log log n)1/2),
which with (4.16) yields the ‘all but finitely often’ upper bound in part (ii).

On the other hand, the Chung–Jain–Pruitt law (Lemma 3.10) shows that for some
c ∈ (0,∞), P-a.s., for infinitely many n ∈ Z+, max0≤i≤n |

∑i
j=0 ζj| ≤ cn1/2(log log n)−1/2,

which with (4.16) yields the final statement in part (ii).

Lemma 4.6. Suppose that (S) holds, and that (2.2) holds for α ∈ (1, 2). Suppose that
φ(n) = n−β for β ∈ (0, 1).

(i) Suppose that β < 1− 1
α

and ρ > 0. Then with cβ = 1
1−β , P-a.s., as n→∞,

T (n) = exp{(ρcβ + o(1))n1−β}.

(ii) Suppose that β > 1− 1
α

. Then (for any ρ), for any ε > 0, P-a.s., for all but finitely
many n ∈ Z+,

exp{n1/α(log n)−(2/α)−ε} ≤ T (n) ≤ exp{n1/α(log n)(1/α)+ε}.

Moreover, there is some c ∈ (0,∞) for which, P-a.s., for infinitely many n ∈ Z+,

T (n) ≤ exp{cn1/α(log log n)−1/α}.

Proof. The proof is analogous to that of Lemma 4.5, so we only point out the main
differences, which appear in the upper bounds in part (ii).

Under the conditions of part (ii) of the lemma, Lemma 4.4(iii) shows that (4.9) holds.
Then the upper bound in (3.7) implies that, for some ε > 0, P-a.s., for all but finitely
many n ∈ Z+,

T (n) ≤ exp

{
2 max

0≤i≤n

∣∣∣∣∣
i∑

j=0

ζj

∣∣∣∣∣+O(n(1/α)−ε)

}
. (4.17)

Lemma 3.7 shows that for any ε′ > 0, P-a.s., max0≤i≤n |
∑i

j=0 ζj| = O(n1/α(log n)(1/α)+ε′),
which with (4.17) yields the ‘all but finitely often’ upper bound in part (ii).

On the other hand, Lemma 3.11 implies that for some c ∈ (0,∞), P-a.s., for infinitely
many n ∈ Z+, max0≤i≤n |

∑i
j=0 ζj| ≤ cn1/α(log log n)−1/α, which with (4.17) yields the

final statement in part (ii).

Now we can complete the proofs of Theorems 2.4 and 2.5. We give full details first
for the case of Theorem 2.5.

Proof of Theorem 2.5. We use Lemmas 4.2 and 4.3 with the bounds on T (n) given in
Lemma 4.6. First we prove part (ii) of the theorem. Lemma 4.6(ii) shows that the
hypothesis of Lemma 4.2 holds with w(n) = exp{n1/α(log n)−(2/α)−ε} for any fixed ε > 0.
Now we have that w((log n)α(log log n)2+2αε) > n for all n large enough, so that

w−1(n) ≤ (log n)α(log log n)2+2αε,

for all n large enough. So we may apply Lemma 4.2, yielding the upper bound in
part (ii) of the theorem. For the lower bound, we have from Lemma 4.6(ii) that
the hypotheses of Lemma 4.3(i) and (ii) hold with h(n) = exp{n1/α(log n)(1/α)+ε}
and g(n) = exp{cn1/α(log log n)−1/α}, respectively. It is also easy to check that, for
these choices of g and h, h(n)/g(n3/2) is summable and g(n3/4)/g(n) → 0. Hence
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Lemma 4.3 applies; we thus need to estimate g−1(t). Now, for suitable A ∈ (0,∞),
g(A(log n)α log log log n) < n for all n large enough, so that

g−1(t) ≥ A(log t)α log log log t,

for all t large enough. The lower bound in part (ii) of the theorem follows.
The argument for part (i) of the theorem is similar. By Lemma 4.6(i), for any ε > 0,

we can take w(n) = exp{(ρcβ− ε)n1−β} and g(n) = h(n) = exp{(ρcβ + ε)n1−β} for which
the hypotheses of Lemmas 4.2 and 4.3 are satisfied. Lemma 4.2 then shows that, for any
ε > 0, for P-a.e. ω, Pω-a.s.,

Xt ≤ (1 + ε)(ρcβ)−
1

1−β (log t)
1

1−β ,

for all but finitely many t ∈ Z+. On the other hand, Lemma 4.3 shows that, for any
ε > 0, for P-a.e. ω, Pω-a.s.,

Xt ≥ (1− ε)(ρcβ)−
1

1−β (log t)
1

1−β ,

for infinitely many t ∈ Z+. Combining these two bounds, since ε > 0 was arbitrary, gives
the claimed lim sup result.

Proof of Theorem 2.4. This is similar to the previous proof, but using Lemma 4.5 in place
of Lemma 4.6.
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