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Abstract: We continue the programme of exploring the means of holographically decoding

the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To

this end, we study the behaviour of certain extremal surfaces (focusing on those relevant

for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically

evolving asymptotically AdS spacetime, specifically examining how deep such probes reach.

To highlight the novel effects of putting the system far out of equilibrium and at finite

volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by

gravitational collapse of a null shell, which provides a convenient toy model of a quantum

quench in the field theory.

Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose

features depend on dimension of both the spacetime and the surface, as well as on the

anchoring region. The main common feature is that they reach inside the horizon even

in the post-collapse part of the geometry. In 3-dimensional spacetime, we find that for

sub-AdS-sized black holes, the entire spacetime is accessible by the restricted class of

geodesics whereas in larger black holes a small region near the imploding shell cannot be

reached by any boundary-anchored geodesic. In higher dimensions, the deepest reach is

attained by geodesics which (despite being asymmetric) connect equal time and antipodal

boundary points soon after the collapse; these can attain spacetime regions of arbitrarily

high curvature and simultaneously have smallest length. Higher-dimensional surfaces can

penetrate the horizon while anchored on the boundary at arbitrarily late times, but are

bounded away from the singularity.

We also study the details of length or area growth during thermalization. While the

area of extremal surfaces increases monotonically, geodesic length is neither monotonic nor

continuous.
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1 Introduction and summary

The gauge/gravity correspondence1 has proved invaluable in providing useful insights into

the behaviour of strongly coupled field theories, yet the converse quest of using the field

theory to understand quantum gravity in the bulk is still far from reaching its fruition.

Already from the outset, one of the key obstacles is our incomplete understanding of bulk

locality. Questions of how the field theory encodes bulk geometry and causal structure, or

how it describes a local bulk observer, remain opaque despite intense efforts of the last 15

years.2 While the scale/radius duality provides us with valuable intuition in the asymptotic

bulk region, the mapping becomes far more obscure deeper in the bulk, and inapplicable

for bulk regions which are causally separated from the boundary. The question ‘how does

the gauge theory see inside a bulk black hole?’ has been foremost from the start.

Causal considerations aside, the context of black hole geometry holds a particularly

sharp testing ground for quantum gravity, as the curvature singularity inside a black hole

is a region near which classical general relativity breaks down. Nevertheless, the gauge

theory contains the full physics — it understands what resolves or replaces this classical

1For definiteness we’ll mostly focus on the prototypical case of the AdS/CFT correspondence [1] which

relates the four-dimensional N = 4 Super Yang-Mills (SYM) gauge theory to a IIB string theory (or

supergravity) on asymptotically AdS5 × S5 spacetime.
2Early investigations of bulk locality from various perspectives include [2–7] whereas more recent devel-

opments and reviews are given in e.g. [8–15].
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singularity in the bulk. But for learning the answer of the gauge theory, we first need to

understand what question to ask in that language: in what field theoretic quantity can we

isolate the near-singularity behaviour?

One of the approaches aimed at elucidating the encoding of bulk geometry in the dual

field theory observables was recently undertaken in [16], which explored how much of the

bulk spacetime is accessible to certain field theory quantities related to specific geomet-

rical probes in the bulk. In particular, [16] focused on field theory probes characterised

by bulk geodesics and more general extremal surfaces, anchored on the AdS boundary.

Being geometrical by nature, such probes are well-suited for decoding the bulk geometry,3

at least at the classical level. At the same time, they are related to well-defined CFT

quantities: certain types of correlators for spacelike geodesics or bulk-cone singularities for

null geodesics [17]; Wilson-Maldecena loops for 2-dimensional surfaces [20, 21]; and entan-

glement entropy for codimension-two surfaces [22–24]. Hence, postponing for the moment

the discussion of the subtleties of the actual relation between these CFT ‘observables’ and

the corresponding bulk geometrical constructs, we will follow the approach of [16] in asking

how much these bulk geometrical quantities, i.e. extremal surfaces anchored on the AdS

boundary, know about the geometry, now specifically focusing on the black hole interior.

Perhaps the most intriguing result of [16] was that extremal surfaces anchored on the

boundary of AdS cannot penetrate through the horizon of a static black hole. Of the several

arguments provided, the most general of these, which analysed the equation of motion near

its turning point, applies to an extremal surface of any dimension, anchored on any shape

of simply-connected boundary region, in any static asymptotically-AdS spacetime with

planar symmetry and event horizon. Nevertheless, as emphasised in [16], extremal surfaces

are able to penetrate the event horizon of a dynamically-evolving black hole. This is simply

because the event horizon is a global construct whose location depends on the full future

evolution, whereas the location of extremal surfaces is determined by the local geometry.

Indeed, this observation formed the basis of [25] which used it to argue that the event

horizon by itself is not an obstruction to precursor-type CFT probes. In particular, [25]

presented a simple gedanken experiment wherein a thin null shell implodes from the AdS

boundary and forms a large black hole. The bulk geometry is pure AdS to the past of the

shell and Schwarzschild-AdS to its future; however the horizon generators (outgoing radial

null geodesics which define the late-time static horizon) originate at the center of AdS

prior to the shell. In particular, a bulk constant-time4 slice, anchored on AdS boundary

shortly before the creation of the shell, passes through the AdS region enclosed by event

horizon. Spacelike geodesics as well as higher-dimensional extremal surfaces in AdS which

are anchored at this time will lie along the same time slice, and will therefore penetrate

the black hole as long as their anchoring region is sufficiently large.

However, it not clear in this example what bulk regions remain inaccessible to such

probes. In particular it is unclear whether it is possible to probe past the event horizon in

3For example, following [17], the works [18, 19] demonstrated that one can reconstruct the bulk met-

ric for an arbitrary static and spherically symmetric bulk geometry, simply from knowing the proper

length/area/volume of such surfaces along with where they end on the boundary.
4In a static part of the spacetime, there is a geometrically unique bulk foliation by ‘constant time’

surfaces that are anchored at a fixed boundary time.
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the more genuine black hole geometry to the future of the shell, and to penetrate near the

curvature singularity, and therefore to be useful in addressing the most interesting question

of what happens there.5 Nevertheless, this argument makes it clear that we should be able

to use extremal surfaces to penetrate the horizon even after the shell has formed the black

hole, as long as the black hole is still evolving. This is the question we set out to explore:

how deep into the collapsed black hole, and especially how close to the curvature singularity,

can extremal surfaces penetrate?

Although obtaining strongly time dependent black hole solutions in general relativity

is typically a daunting process due to the non-linearity of Einstein’s equations, there are

certain solutions with sufficient symmetry which are known analytically. Perhaps the sim-

plest and best-known of these is the Vaidya (in our gauge/gravity context, Vaidya-AdS)

class of solutions. These describe a spherically symmetric collapsing null dust, where we

are free to specify the radial (or equivalently temporal) profile of the shell. Early-time

geometry (inside or before the shell) is pure AdS, while at late times (outside or after the

shell), it is Schwarzschild-AdS. The ‘dust particles’ making up the shell follow ingoing ra-

dial null trajectories, so the black hole forms maximally rapidly. This is particularly useful

in the present context: since we seek a feature which is absent in static geometries, we are

more likely to see a large effect for geometries which are as far away from being static as

possible.

There is another motivation for probing duals of such collapse geometries coming from

field theory. Since a large black hole in the bulk corresponds to a thermal state in the dual

field theory, collapse to a black hole describes the process of thermalization. Moreover,

if the collapse is rapid, the dynamics describes a far-from-equilibrium process. While we

typically have a good handle on equilibrium situations, out of equilibrium processes are

more interesting but far less understood. Sudden changes in the field theory Hamiltonian,

known as “quantum quenches”, and subsequent equilibration have been much studied in

field theory, and have recently received mounting attention from holographic studies. The

analysis of thermalization using (global, i.e. spherically symmetric) Vaidya-AdS as toy-

model for quantum quench initiated in [24] was extended in the planar case by [28, 29]

in 3-dimensional bulk, by [30] in 4 dimensions, by [31, 32] in 3,4 and 5 dimensions (the

latter having used entanglement entropy as well as equal time correlators and Wilson loop

expectation values), and more recently by [33, 34] with more general considerations.6 While

most of these works focused on the thermalization aspect, less attention was paid to the

question of how much of the collapsing black hole can such probes access, along the lines

motivated by [16]. Hence, apart from the interest in further exploration of holographic

thermalization, the question of probing inside the black hole motivates us to continue

the study of (global) Vaidya-AdS, using spacelike geodesics and codimension-two extremal

surfaces as probes. The use of these probes was more fully justified in [16] and many of the

5In fact, it would even be interesting to sample the late-time horizon itself, in the recently-explored

context of firewalls [26, 27], where semiclassical physics breaks down already at the horizon.
6See also [35–41] and references therein for other explorations of holographic entanglement entropy as

a probe in different contexts. For a more extensive review of the earlier work, see e.g. [42] and references

therein.
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references mentioned above; here we simply employ the same rationale in exploring them

further.

Perhaps the greatest novelty in our findings stems from the fact that, motivated by

creating a black hole with compact horizon, we are working with asymptotically globally

AdS spacetimes, rather than the (geometrically simpler and more often studied) asymp-

totically Poincaré AdS spacetimes. While the global case includes the planar Poincaré

case as a special limit, the converse is not true: the possibility of geodesics and surfaces

which can ‘go around’ a spherical black hole allows for a vastly richer structure. This was

evident already in the recent study [43] involving extremal surfaces in the static spherical

Schwarzschild-AdS black hole, where it was demonstrated that in a wide region of param-

eter space, there are infinitely many of extremal surfaces anchored on the same boundary

region, unlike the planar case where there is just one. Correspondingly, working with field

theory on the spatially compact Einstein Static Universe describing the boundary of global

AdS allows us to explore interesting finite-volume effects, which would have been absent

in the non-compact case.

Having motivated the spacetime of interest, specifically the global Vaidya-AdS class

of spacetimes (with shell thickness, final black hole size, and dimension of the spacetime

left as free parameters that we can dial), let us now specify our probes. From previous

studies such as [16], it is clear that extremal surfaces of different dimensionality can behave

qualitatively differently from each other; nonetheless there is a certain ‘monotonicity’ of

the behaviour in terms of dimension. The greatest qualitative difference occurs between

geodesics and higher-dimensional surfaces, and the greatest difference from the geodesic

behaviour occurs for surfaces of highest possible dimension. This motivates us to focus

on spacelike geodesics and codimension-two extremal surfaces, whose lengths and areas

characterize certain types of correlators and entanglement entropy respectively in the dual

CFT. Note that in 3-dimensional bulk, spacelike geodesics coincide with codimension-two

extremal surfaces. Although in this special case many features trivialize (and as has already

been well-appreciated, the BTZ black hole singularity behaves fundamentally differently

from higher dimensional black hole singularities [44]), it will nevertheless be instructive

to include Vaidya-AdS3 in our explorations, in order to draw contrast with the higher-

dimensional case.

The plan of the paper is as follows. In section 2 we describe the class of bulk geome-

tries which we will use, namely the Vaidya-AdS spacetimes, and explain the coordinates

for presenting our results graphically. We then turn to examining the CFT probes of

this geometry, starting with spacelike geodesics in section 3, first focusing on the higher

dimensional case in section 3.1 and then contrasting this with the Vaidya-BTZ case in

section 3.2, where we can supplement our numerical results by closed-form expressions for

the key quantities. In section 4 we turn to bulk codimension-two extremal surfaces in

higher-dimensional Vaidya-AdS, and we conclude with a discussion in section 5. The more

involved technical details are relegated to the appendices so as to avoid breaking the flow

of the presentation. In the remainder of this section we give a preview of the main results.

In section 3 we consider geodesics with both endpoints anchored on the boundary,

which we dub ‘boundary-anchored’ geodesics. We observe that every point in the bulk

spacetime (in the higher dimensional cases) lies along some boundary-anchored spacelike
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geodesic. However, the closer this point lies to the singularity, the more nearly-null will

such a geodesic be, which in turn means that its endpoints will in general be temporally

separated. This motivates us to restrict attention to spacelike geodesics, whose endpoints

lie at equal time on the boundary (dubbed ‘equal-time-endpoint boundary-anchored’ or

ETEBA for short), which are the ones relevant for encoding equal-time correlators in the

field theory. One way to achieve this is for the geodesic to be symmetric under swapping

the endpoints, though we find that this is not the only option.

When both endpoints are located prior to the shell, the entire geodesic remains in

the AdS part of the spacetime. This means that such ETEBA geodesics are constant-

time geodesics in the pure AdS part of the spacetime, which cannot penetrate near the

singularity. For a short time soon after the quench, we find that there exists a class of

geodesics which are not symmetric under reversing their affine parameter, and yet still have

endpoints at equal times. This class is not only more novel than the symmetric geodesics

(since it does not appear in static spacetimes), but also important, as in a certain regime

of the parameter space such asymmetric geodesics can reach closer to the singularity, and

furthermore are shorter than the symmetric ones. Indeed, if the endpoints are taken to be

antipodal and occur arbitrarily soon after the shell, the corresponding shortest geodesic

is nearly null, crossing the shell near its implosion at the origin, and has arbitrarily small

length. While the asymmetric geodesics exist only up until some finite endpoint time,

there are symmetric ETEBA geodesics reaching the boundary at arbitrarily late times, yet

sampling the interior of the horizon. These necessarily cross the shell to circumvent the

arguments of [16].

We then restrict the search further, to consider only the shortest geodesics for given

endpoints. The intricate nature of the results is illustrated in figure 7, which plots the

regularised proper length ` along all families of geodesics which join antipodal points at time

t, as a function of t. Curiously, the minimum ` for this set of curves jumps discontinuously,

not once, but in fact four times (twice down and twice up), before the thermal value is

achieved.

Having mapped the space of initial conditions for the geodesics to the space of corre-

sponding boundary parameters (namely the length and position of the endpoints), we turn

to identifying what part of the spacetime is actually probed by shortest ETEBA geodesics.

We find that even this most restrictive class allows access to a spacetime region inside the

horizon and simultaneously to the future of the shell, as indicated in figure 8. However,

this region is limited to relatively short time after the shell, and late-time near-singularity

regions remain inaccessible.

These results are in contrast to the analogous results for the 3-dimensional (Vaidya-

BTZ) spacetime. In this case, geodesics exhibit qualitatively different behaviour for small

black hole (r+ < 1) as opposed to large black hole (r+ > 1) spacetimes. We first specialise

to radial ETEBA (which in this case implies symmetric) geodesics. These only probe a

part of the spacetime (except for the special case of r+ = 1 when the entire spacetime is

accessible), though the character of the unprobed region changes depending on whether the

black hole is small or large. This behaviour is illustrated on spacetime plots in figure 10

and on the corresponding Penrose diagrams in figure 11. Adding angular momentum
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however has a dramatic effect: in the case of small black holes, the entire spacetime becomes

accessible, even by ETEBA geodesics. On the other hand, for large black holes, the deepest

boundary-anchored symmetric radial geodesic in fact bounds the region accessible to any

boundary-anchored geodesic. In other words, for large black holes, a certain region of

spacetime still remains inaccessible. However this region has very different — and almost

complementary — character from its higher-dimensional counterpart. Here it is confined

to the vicinity of the shell inside the horizon, while the late-time near-singularity regions

are fully accessible. (However, probing late-time near-singularity regions is not as useful as

it would be in the higher-dimensional case, since the spacetime is locally AdS, so we cannot

use such geodesics to directly probe the interesting strong-curvature effects; cf. [45].)

The behaviour of the length along shortest ETEBA geodesics, as function of time, is

likewise very different for the BTZ case, as illustrated in figure 13. For any-sized black hole,

the length increases monotonically from the AdS value to the BTZ value, without exhibiting

any remarkable features. This is consistent with the expectations for the behaviour of

CFT correlator during thermalization, which we expect to be directly extractible from

the shortest lengths geodesics for this 3-dimensional case (as argued in a similar context

in [46]); we revisit this point in section 5.

Indeed, the consideration of boundary-anchored geodesics in 3-dimensional spacetime

can be thought of as a special case of codimension-two extremal surfaces anchored on the

boundary. Hence the shortest boundary-anchored geodesics have a bearing both on certain

CFT correlators, as well as on entanglement entropy corresponding to a certain region

(bounded by the geodesic endpoints). The results are compared quantitatively with the

results of [33, 34] and [47], and agree with these in the regimes of early quadratic growth

and intermediate linear growth of entanglement entropy.

In section 4 we turn to considering codimension-two extremal surfaces in the higher-

dimensional case of Vaidya-AdSd+1. While these share certain features in common with

the 3-dimensional case, there are also important differences, as already exemplified by the

fact that even in the static black hole geometry, higher dimensional surfaces have richer

structure [43]. We demonstrate, both analytically and numerically, that for arbitrarily late

boundary time, one can construct extremal surfaces anchored at that time which penetrate

the black hole, an example of which is presented in figure 16. These surfaces lie along a

specific maximal area surface inside the horizon, as observed recently in a related context

by [33, 48]. By studying the linearized perturbations of the surfaces away from this point,

we obtain a good handle on what region of the bulk can be probed, indicated in figure 19.

We find that while we can probe to a finite depth inside the event horizon for arbitrarily

late times, the near-singularity region of the geometry remains inaccessible. In this respect,

the codimension-two extremal surfaces appear to be less suitable probes of the singularity

than geodesics. This of course persists when we restrict to the surfaces of smallest area,

which reach only a very limited region inside the horizon.

We also consider the evolution of the area of these surfaces for a fixed boundary region,

which is directly related to the thermalization of the entanglement entropy, analogously

to the recent examination by [33, 34] in the planar context. Since we expect the global

geometry to offer richer structure than its planar limit, we focus on nearly-hemispherical
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boundary regions. This is presented in figure 20 and (perhaps disappointingly) offers

no new surprises: the entanglement entropy increases smoothly, and monotonically in-

terpolates between the vacuum and thermal value. The growth is linear at intermediate

times, controlled by the surface hugging the maximal area constant-r surface, in agreement

with [33, 34], and for a sufficiently thin shell also exhibits the early-time quadratic growth

derived therein.

2 The Vaidya-AdS spacetime

To model a simple holographic thermalization process, we consider a bulk geometry given

by a global Vaidya-AdSd+1 spacetime, mostly for d = 2, 4. This is a solution to Einstein’s

equations with negative cosmological constant and a stress tensor for a spherically symmet-

ric null gas, obtained by expressing the Schwarzschild-AdS metric in ingoing coordinates,

and then allowing the mass to depend on the ingoing time v. The metric can be written as

ds2 = −f(r, v) dv2 + 2 dv dr + r2 dΩ2
d−1 , (2.1)

where dΩ2
d−1 is the round metric on the unit Sd−1,

f(r, v) = r2 + 1− ϑ(v)
(r+

r

)d−2
(r2

+ + 1) , (2.2)

and ϑ(v) is monotonic function, increasing from 0 in the past to 1 in the future, character-

ising the profile of a spherical null shell collapsing from the boundary. We take the shell to

be concentrated around v = 0, with a thickness of order δ, taking ϑ′(v) as a function with

compact support [0, δ]. We also consider the limit of a thin shell, for which δ → 0.

The metric interpolates between pure AdS inside (or to the past of) the shell and

Schwarzschild-AdS outside (or to the future of) the shell. Concretely, away from v = 0,

the metric inside and outside can be expressed separately in static coordinates,

ds2
α = −fα(r) dt2α +

dr2

fα(r)
+ r2dΩ2

d−1 , (2.3)

where the subscript α stands for i inside the shell and o outside. The event horizon is

at r = r+ at late times, and it originates from r = 0 at some v = vh < 0. The origin

of spherical coordinates r = 0 is smooth for v < 0, but forms a curvature singularity for

v > 0.

Coordinates for spacetime plots. It is convenient to compactify the radial coordinate

such that AdS boundary is drawn at finite distance, using ρ ∈ (0, π/2) defined by

ρ = tan−1 r. (2.4)

A natural temporal coordinate is one which makes ingoing radial null curves always at 45

degrees. In terms of v and the compact radial coordinate ρ, the new temporal coordinate is

t = v − ρ+
π

2
, (2.5)
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Figure 1. Eddington-Finkelstein (left) and Carter-Penrose (right) diagrams for the AdS-Vaidya

spacetime, with d = 4 and r+ = 1. The vertical black dashed line on the left side in each panel is the

origin of spherical coordinates before the shell begins, and the thick dashed curve the singularity.

The AdS boundary is the solid thick line on the right. The infalling shell of matter is indicated by

the red shading (its width indicating the shell thickness δ used in our numerical calculations), and

the blue dashed line denotes the event horizon.

the last term ensuring that t coincides with v on the AdS boundary. In pure AdS, t = ti is

in fact the usual static coordinate, and both ingoing and outgoing radial null curves are at

45 degrees. However, in the black hole geometry, t is different from the static coordinate,

t 6= to: indeed, t is a good coordinate on the whole spacetime, whereas the static to blows

up at the horizon.

In plotting spacetime diagrams, with all relevant directions visible, we will use coordi-

nates (ρ cosψ , ρ sinψ , t), where we use ψ as a shorthand for an angular variable on the

Sd−1. In particular, ψ will be either a longitude ϕ, or the colatitude θ, as appropriate to

the symmetries of the problem in question. It will often be more convenient to consider 2-d

projections by suppressing t or ψ. In particular, we will use ingoing Eddington-Finkelstein

plots (ρ , t) and ‘Poincaré disk’ plots (ρ sinψ , ρ cosψ).

The Eddington diagrams are useful because the static nature of the pre- and post-

collapse geometries is made manifest. It should be appreciated that they can be quite

misleading in that they distort the geometry, particularly near to the shell, and do not

represent the causal structure.

For these reasons, we complement them by showing plots on Carter-Penrose diagrams,

in which radial null geodesics, both ingoing and outgoing, appear as 45 degree lines. To

construct the necessary lightcone coordinates (U, V ) for this purpose, we observe that every

radial null geodesic has a past endpoint on the boundary. The lightcone coordinates are

obtained by assigning a number to each outgoing and each ingoing radial null geodesic,

which can be done in a very general procedure.

Given a spacetime point p, we define U by constructing the radial outgoing null geodesic

through p into the past, and noting the value of v when it meets the origin r = 0. The

– 8 –
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coordinate V can then be chosen to be constant along ingoing null geodesics, and such

that the boundary lies at V = U + π. Operationally, this can be done by finding where

an outgoing null radial geodesic ending on the boundary passes through the origin, which

gives V − π for that boundary point.

This construction has the advantage of ensuring that both the AdS boundary, and the

smooth origin at r = 0 before the shell collapse begins, are straight lines on which U −V is

constant. The resulting coordinates in the pre-collapse part of the spacetime are identical

to the standard (radially compact) coordinates on pure AdS, and hence noncompact in the

past. The diagram is however compact in the future, terminating at the singularity.

For the lowest-dimensional case of Vaidya-BTZ, with d = 2, in the limit of a thin

shell, this coordinate change can be computed explicitly, and the result is reproduced in

appendix A. The metric in this case takes a particularly simple form:

ds2 =
−dT 2 + dR2

cos2R
+ r(T,R)2dφ2, (2.6)

where T = V+U
2 and R = V−U

2 , and the radius of the φ circle is given by

r(T,R) =


(1−r2+) sinR−(1+r2+) sinT

2 cosR if R+ T > 0

tanR if R+ T < 0
(2.7)

with the coordinate ranges bounded by origin at R = 0, the boundary at R = π
2 , and the

singularity at (1− r2
+) sinR = (1 + r2

+) sinT .

While the causal structure is made manifest in these diagrams, they hide the fact

that the post-collapse geometry is static, and can be distorting because late times are

compressed into a corner of the diagram.

3 Geodesics

We begin by studying geodesics, as the simplest example of extremal surfaces. We will

restrict our considerations to spacelike geodesics, since these can end at the boundary but

need not remain outside the event horizon. In contrast, null curves are causally prevented

from entering the horizon and reemerging out to the boundary, while timelike geodesics

cannot even reach the boundary.

By spherical symmetry, we can restrict to geodesics lying in the equatorial plane, re-

ducing the spherical directions to a single relevant longitude ϕ. This simplifies the problem

to a 3-dimensional one, described by Lagrangian

L = −f v̇2 + 2 ṙ v̇ + r2 ϕ̇2, (3.1)

where the dots denote differentiation with respect to an affine parameter s, chosen so that

L is constant at +1 on the curve. This parameter s is then an arclength.

The spherical symmetry also supplies us with a first integral for the angle, given by

the conservation of angular momentum

L = r2 ϕ̇. (3.2)

– 9 –
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Away from the shell, the spacetime is locally static, so there is in addition a conserved

energy

E = f v̇ − ṙ, (3.3)

though it is important that this is constant only locally in regions where f is independent

of v, and changes whenever the shell is encountered.

The v equation of motion can be written to express this change, in the form

Ė =
1

2
f,v v̇

2 ≤ 0 (3.4)

where the inequality uses the fact that the profile function ϑ is nondecreasing. As well as

telling us the sign of the jump in the energy, it also confirms the natural expectation that

it should be greater when the shell is more dense, at smaller r, when d > 2. In the limit of

a thin shell, the discontinuity can be calculated exactly, as

E|v=0+ − E|v=0− =
1

2
(f |v=0+ − f |v=0−) v̇|v=0 (3.5)

and is equivalent to the condition that v̇ is continuous.

For numerics, we use second order equations of motion for v and r, given by

v̈ = −1

2
f,r v̇

2 +
L2

r3

r̈ =
1

2
(f,v − f f,r) v̇2 + f,r ṙ v̇ + f

L2

r3
, (3.6)

integrating the definition of the angular momentum (3.2) to solve for ϕ.

One useful fact that can be seen immediately from the equations of motion is that

whenever v̇ vanishes, v̈ must be positive. This, along with the fact that v must be increasing

as the boundary is approached, implies that v has exactly one local (and hence also global)

minimum along the geodesic. The uniqueness makes this a convenient point from which to

start numerical integration.

Effective potential. Much of the qualitative behaviour of the geodesics in the static

parts of the geometry can be understood from expressing the radial motion in the form

of an effective potential, by eliminating v̇ and ϕ̇ in favour of the conserved quantities L

and E:

ṙ2 = E2 − Veff(r), where Veff(r) =

(
L2

r2
− 1

)
fα(r). (3.7)

Again the subscriptαrefers to i or o to distinguish the pre- and post-collapse static parts

of the geometry. Most important is the form of this potential in the static Schwarzschild-

AdS spacetime. Excepting the special case of radial geodesics (L = 0), it is unbounded

from below as r tends to both zero and infinity, has exactly two zeroes at r = r+, L, and

has a single maximum between them.

As is well-known (see e.g. the discussion in [44]), the 2+1 dimensional case is qualita-

tively different from the higher dimensional cases. This is because in 3 dimensions, the BTZ

black hole has locally the same geometry as pure AdS, so geodesics are not cognisant of
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Figure 2. Effective potentials for spacelike geodesics in the BTZ (left) and Schwarzschild-AdS5

(right) geometry with horizon radius r+ = 1, for various values of the angular momenta: L = 0

(red) to L = 2 (purple), in increments of 0.2. The two cases are qualitatively different for low-L

values.

the curvature singularity at r = 0. We can see this explicitly from the form of the effective

potential, plotted in figure 2. For d > 2, the height of the maximum grows without bound

as L is taken to zero, with the potential for radial geodesics unbounded from above for

small r. (For example, in d = 4, the maximum of Veff scales as
r2+(r2++1)

2L2 at small L.) The

consequence is that the singularity repels even nearly-null geodesics, if they are sufficiently

close to being radial. This simple observation turns out to be crucial to our considerations.

The d = 2 (BTZ) case is qualitatively different from this, with the potential reaching a

maximum of (r+ − L)2, which is bounded for small L. This means that geodesics must

have small energies, or end up in the singularity, so the nearly null geodesics of relevance

in higher dimension will not be relevant for the d = 2 case.

Lengths of geodesics. One natural observable associated with spacelike geodesics is

their proper length. Since we are using arclength as a parameter, in principle we merely

need to read off the difference ∆s between the initial and final value on the curve. This is

complicated by the fact that the length is infinite: r asymptotes to e±s as s → ±∞. We

will only need to compare lengths of geodesics with matching endpoints, so we need not

worry about the details of choosing a renormalization scheme. We regulate in a simple way,

cutting off at a large radius rc, and subtract off the divergent piece 2 log(2rc). Whenever

length ` is referred to, it may be taken to mean this regularized version.

Terminology. As mentioned above, for purposes of relating the geodesic (length) to a

natural CFT observable (i.e. a two-point function of high-dimension operators with inser-

tion points at the geodesic endpoints on the boundary), we wish to restrict attention to

spacelike geodesic with both endpoints on the (same) boundary. We will refer to these

as boundary-anchored geodesics7 and we will be primarily interested in the question of

what part of the bulk spacetime is reached by the set of boundary-anchored geodesics.

In particular, how deep into the black hole, and how close to the curvature singularity,

can such boundary-anchored geodesics penetrate. Since one is often most interested in

7In [16] these were referred to as ‘probe geodesics’.

– 11 –



J
H
E
P
0
3
(
2
0
1
4
)
0
9
7

equal-time correlators on the CFT side, we will find it convenient to further refine our class

of boundary-anchored geodesics to ones with both endpoints lying at the same boundary

time; we will call these ETEBA (for ‘equal-time-endpoint boundary-anchored’) geodesics.

Initial condition space. A preliminary task is to find a convenient parameterization of

the set of all geodesics. For this, we use the fact that on any given geodesic, v has exactly

one stationary point (in contrast to r, for example, which may have more). With this in

mind, we parameterize the set of geodesics by three parameters (v0, r0, E0), respectively

corresponding to the initial values of v and r when v̇ = 0, and the energy E = fv̇− ṙ at that

point. We take E0 to be nonnegative, since choice of sign corresponds only to choosing the

direction of parameterization. The angular momentum follows from these; in fact L = r0

(another choice of sign here corresponds to choosing the direction of increase of ϕ). These

parameters are sufficient to give an initial unit tangent vector, from which the geodesic

may be found, and no two different sets of parameters will give rise to the same geodesic.

Of course, some of these will end up in the singularity, so can be disregarded. We have

thus put the set of all geodesics (modulo symmetries) into one-to-one correspondence with

the set of (v0, r0, E0) ∈ R × [0,∞) × [0,∞), which we will henceforth refer to as ‘initial

condition space’.

3.1 Geodesics in higher dimensions

As already noted, the lowest dimensional case of BTZ is qualitatively different from higher

dimensions, and the questions we are considering have correspondingly different answers.

This section will focus on the case of Vaidya-Schwarzschild-AdSd+1 with d ≥ 3, postponing

the discussion of Vaidya-BTZ to section 3.2.

One natural question to ask is what spacetime region is accessible to spacelike geodesics

with both endpoints anchored on the AdS boundary. Our first observation is that the

answer to this question is in fact very simple: Every point in the spacetime has a boundary-

anchored spacelike geodesic passing through it. For example, given any point (r0, v0) inside

the horizon and after the shell, one may take a radial geodesic, picking the energy such

that E2 = Veff(r0), so that r is at a local minimum. Constructing the geodesic in the

maximally extended static black hole spacetime, it would join opposite asymptotic regions,

geometrically encoding correlations between the two halves of the thermofield double state.8

In the Vaidya-AdS spacetime, one end of this is altered since the second asymptotic region

is replaced inside the shell by part of pure global AdS. Both ends must then lie on the

(single) boundary, since there is no other boundary and no way it can reach the singularity

since the effective potential is unbounded there. An example of such a geodesic is shown

in figure 3.

There are two noteworthy points. Firstly, geodesics reaching very close to the singular-

ity must be nearly null, and will hence have arbitrarily short lengths. Indeed, this was the

key observation used in the eternal Schwarzschild-AdS context in [44] to probe the black

8In that context, such a geodesic would not qualify as boundary-anchored geodesic since it connects

different boundaries; indeed, as argued in [16] for any static spacetime, boundary-anchored geodesics can

only probe the spacetime region outside the black hole.
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Figure 3. A radial geodesic (solid blue curve) with v0 = −1.4 and E0 = 12, in Schwarzschild-AdS5

with r+ = 1, plotted on Eddington (left) and Penrose (right) diagrams, as described in figure 1.

We have cut off the uninteresting bottom part of the geodesic; its continuation approaches the

boundary in a similar manner to the top part. Note that on the Penrose diagram in the right panel,

the geodesic looks like it reaches the singularity, but this is misleading effect of the coordinates, as

evident in the Eddington diagram on the left panel.

hole singularity (upon suitable analytic continuation). Secondly, geodesics reaching inside

the horizon at late times will have one end close to v = vh, the value of v at which the

horizon is first formed. For strictly null geodesics, this observation was used in the context

of bulk-cone singularities [17] to detect the horizon formation event: radial null geodesics

whose earlier endpoint approaches vh have the other endpoint v →∞. However, bulk-cone

singularities arise from individual null geodesics which cannot penetrate the black hole by

the usual causality constraints, so they are more limited probes of the bulk geometry [16].

With these observations made, we now restrict attention to the case of ETEBA

geodesics, whose endpoints lie at matching times, corresponding to equal-time CFT corre-

lators.

ETEBA geodesics. One obvious way to ensure a geodesic will have endpoints lying at

equal times is to impose a Z2 symmetry under reflection, i.e. under swapping the endpoints.

This is equivalent to setting E0 = 0, so the initial conditions at the earliest part of the

geodesic have this enhanced symmetry. In a globally static geometry, energy conservation

implies that this is the only option, but it no longer needs to be the case in spacetimes with

nontrivial time evolution. Indeed, the Vaidya geometry admits geodesics with equal-time

endpoints which do not respect this symmetry.

A further refinement, relevant in cases with multiple geodesics joining the same end-

points, is to restrict to geodesics of shortest length for given time and angular separation

of the endpoints, which are expected9 to dominate the CFT correlators.

9This expectation is subject to the assumption that this dominant saddle point lies on the path of

steepest descent. For nearly-null geodesics bouncing off the singularity in the eternal Schwarzschild-AdS
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The classification of these classes of geodesics amounts to the following procedure:

1. Characterize the set of geodesics with both endpoints on the boundary.

2. Identify those geodesics with endpoints at equal times.

3. Compare lengths of such geodesics with matching endpoints.

Having identified the initial condition space (v0, r0, E0), we must first find the region of

this space for which both ends of the associated geodesic reach the boundary, and then find

the two-dimensional surface in initial condition space for which the endpoints are at equal

times. This is the level set ∆t = 0, where ∆t is the difference of times at final and initial

endpoints (being the limits of v as s→ ±∞). This is a 2-parameter set of geodesics. One

part of this surface will be the portion of the plane E0 = 0 for which the geodesic reaches

the boundary. Then, we find the time t∞ and angular separation ∆ϕ of the endpoints

for each such geodesic, along with the length `. This amounts to finding the map from

initial condition space to ‘boundary parameter space’ (t∞,∆ϕ, `), which collects all the

field theory data associated with a given geodesic. The image of the equal-time geodesics

under this map is a two-dimensional surface in boundary parameter space, and comparing

lengths for given endpoints will amount to understanding different branches of this surface.

Initial condition surface of ETEBA geodesics. We numerically undertook a system-

atic study of the geodesics in the Vaidya-Schwarzschild-AdS5 spacetime, to find a repre-

sentative sample of ETEBA geodesics. This was done by taking a fine grid of initial points

(v0, r0), and for each of these points finding every initial energy which gives an appropriate

geodesic, in the following process:

1. Identify the range of energies for which geodesics reach the boundary at both ends.

This turns out to be an interval (possibly empty), which can be understood from

the effective potential: the geodesic hits the singularity when the energy exceeds the

maximum of Veff . This maximum energy is found by progressively bisecting between

energies reaching the boundary or hitting the singularity.

2. Take a sample of geodesics reaching the boundary, and identify when the endpoints

swap temporal order between adjacent energies. Each such occasion identifies an

interval of energies containing a root of ∆t.

3. Use a root-finding algorithm to find the appropriate initial energy within each such

interval.

Each energy E0 found in this manner gives a point (v0, r0, E0) in the equal-time surface

∆t = 0 of the initial condition space. Sufficiently many such points build up a complete

picture of this surface.

The first piece of the picture can be obtained from looking at radial geodesics, for

which L = r0 = 0. Provided the initial point is regular (meaning v0 < 0 here), these

spacetime this does not happen as discussed in [44], so accessing the signature of this geodesic directly from

the field theory is more subtle. We revisit this point in section 5.
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v0

E0

Figure 4. Contours of ∆t for radial geodesics. They are parameterised by the value of v = v0
and the energy E0 when they pass through the origin. The green lines give the ∆t = 0 contours,

corresponding to ETEBA geodesics.

always end at the boundary, since the Schwarzschild-AdS effective potential is unbounded

as r → 0 in this case (cf. the red curve in right panel in figure 2). The restriction to radial

geodesics leaves us with two parameters to specify, namely (v0, E0), and the equal-time

radial geodesics give a curve in this space. This turns out to have two branches, as shown

in figure 4, one the symmetric E0 = 0 case, and another at nonzero initial energy.

The reason for the latter is a trade-off between two competing effects. At nonzero

energy, as it goes away from the origin the geodesic moves into the future or past depending

on which direction is taken, and this separates the two branches in time. In a globally static

geometry, the conservation of energy means that this separation persists to the boundary.

This argument fails in the evolving geometry, but as long as the time-dependence is not

too strong, this effect should still dominate.

The second effect is that the future branch encounters the shell of matter later and

closer to the origin, when it has collapsed more, is more dense, and causes stronger cur-

vature. This strongly influences the geodesic, and there is a large jump in energy as the

shell is crossed, as implied from equation (3.4). The future branch of the geodesic becomes

nearly null, and hugs very closely to the shell. If this effect is different enough for past and

future branches, it can cause the endpoints to exchange order in time.

It turns out that for sufficiently late initial conditions, it is the latter effect which

dominates at low energies, the former taking over when the geodesic is nearly null, as

illustrated in figure 5.
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Figure 5. Radial geodesics passing through the origin at v0 = −0.3, with increasing energy, plotted

on Eddington diagram (left) and Penrose diagram (right), with d = 4 and r+ = 1. The blue curve

has zero initial energy, so is symmetric, the purple has initial energy E0 = 0.5, and the yellow has

E0 = 2.7, close to the energy required to give equal-time endpoints.

This intuition for the existence of asymmetric equal-time geodesics also gives an in-

dication of when they are unlikely to exist. Firstly, as we will argue in section 3.2, they

do not exist in a 3-dimensional bulk. The effect of the shell on the energy is independent

of the time at which the geodesic crosses it, because of the slow fall-off of gravity, so the

competition is absent. Related to this, even radial geodesics of sufficient energy will not be

prevented from ending in the singularity. Secondly, moving back to higher dimensions, the

competition relies on the high energy, nearly null geodesics, which will fail for appreciable

angular momentum. The maximum of the effective potential must be high enough to reflect

the geodesics away from the singularity, but this maximum is reduced as L is increased.

The result is that asymmetric geodesics only exist joining points of the boundary sphere

that are close to antipodal.

The full surface of initial conditions corresponding to ETEBA geodesics is shown in

figure 6.

Length of geodesics. The next stage is to map this surface (of initial conditions cor-

responding to ETEBA geodesics) into the boundary parameter space (t∞,∆ϕ, `). This

gives a complicated, multi-branched surface, but many of the salient features are revealed

from taking a cross-section at ∆ϕ = π, which corresponds to the set of geodesics joining

antipodal points of the boundary sphere at equal times, shown in figure 7. At early times,

before the collapse begins, the only possibility is a simple straight line through the middle

of AdS; this geodesic is both symmetric and radial. At late times, the only possibilities

are again symmetric geodesics, lying at constant Schwarzschild-AdS time to, but these are

not radial as they cannot penetrate the event horizon. This regime is then dominated by

a geodesic simply deformed to one side of the horizon.10 In the intermediate region, these

10There are infinitely more possibilities, since the geodesic may wrap around the horizon arbitrarily many

times, but such geodesics are of course longer.
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v0

r0

E0

Figure 6. The surface in initial condition (v0, r0, E0) space corresponding to ETEBA geodesics.

The part of the plane E0 = 0 for which geodesics are boundary-anchored, bounded by the red

curve, gives symmetric geodesics. The blue points give asymmetric geodesics, and the curve for

those which are radial is shown in green (cf. figure 4).

families can be continued, and indeed meet, but there is also the additional possibility of

the asymmetric geodesics presented in figure 4 and the accompanying discussion. This

additional family dominates for a short time immediately after the collapse; indeed for

sufficiently early times the lengths may be arbitrarily short as the geodesics become very

nearly null. On the other hand, there are no antipodal ETEBA geodesics which are neither

symmetric nor radial.

The structure that figure 7 reveals is surprisingly intricate. In the course of ther-

malization (i.e. between t = 0 when the shell starts imploding and t ≈ 1.3 when the

antipodal ETEBA geodesic remains entirely to the future of the shell), there are 4 ‘jumps’

in the shortest length as different branches start or terminate. There are also several

points where families of geodesics exchange dominance, but these kinks are hidden by the

shorter ` families. The field theory interpretation of figure 7 is, on the face of it, quite

strange. It would seem to suggest that, during thermalization, the equal-time correlators

of high-dimension operators of antipodal points correspondingly undergo no less than four

discontinuous jumps. Furthermore, the first of these, at the start of thermalization, is an

unbounded increase. However, as discussed in section 5, the shortest ` real-time geodesics

may not actually be the ones to dominate the CFT correlator; such contingency arises in

the simpler context of the eternal Schwarzschild-AdS geometry [44]. Nevertheless, even if

the correlator is not dominated by these geodesics, their rich structure should still be subtly

encoded in the correlation functions, possibly extractible by suitable analytic continuation.
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Figure 7. Regularised length of ETEBA geodesics joining antipodal points, plotted against the

time at which the boundary is reached. The blue curve corresponds to radial, symmetric geodesics;

the yellow curve to symmetric but not radial, and the purple curve to radial but not symmetric

ones.

We expect the geometry leading to this unexpected behaviour to be robust to changing

many details of the collapse, depending rather only on the main features: spherical sym-

metry, and the formation of a spacelike singularity.11 This is because any such geometry

allows for nearly null radial geodesics, essentially following light rays except close to the

singularity where they are repelled, with equal-time endpoints, by sending them into the

corner of the Penrose diagram where the singularity is formed.

For geodesics joining points which are far from antipodal, the picture is simpler, with

one family having the shortest length for all time, smoothly and monotonically interpolating

between vacuum and thermal values. The asymmetric geodesics are absent entirely, this

family disappearing very quickly on moving away from ∆ϕ = π. The other parts of the

curves visible in figure 7 split into two families, one dominant, and the other corresponding

to geodesics passing round the far side of the black hole. In the limit of large black hole and

small angular separations, which recovers the planar black hole case, the picture becomes

even simpler, since then even the possibility of passing on the other side of the black hole is

not present. Hence the intricate structure observed in figure 7 relies on both the black hole

having compact horizon and on the geodesic connecting sufficiently far-separated points

within the spherical boundary.

11The singularity however has to be ‘black-hole-like’ in the sense that it repels at least some class of

spacelike geodesics; if the singularity were of the big crunch type (wherein all the transverse directions

contract as the singularity is approached), then our spacelike geodesics would simply terminate in it.

This observation indicates that probing cosmological singularities (and correspondingly the resolution of a

cosmological singularity in quantum gravity) would be expected to be drastically different from that of a

black hole singularity.
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Region of geometry probed. The final task is to identify the region of spacetime

covered by the ETEBA geodesics, both in totality, and also restricting to the shortest

length for given endpoints. The latter region gives the part of the bulk on which the

associated field theory observable is most sensitive. We find that the deepest probing

geodesics are those connecting antipodal points ∆ϕ = π, so restricting to these alone will

not reduce the accessible region.

The region covered by the geodesics as a whole is illustrated in figure 8, which shows the

deepest points reached by asymmetric and symmetric geodesics. The symmetric geodesics

are adequate to cover almost all of the accessible region. In particular they reach inside

the horizon at arbitrarily late times, though only by a small distance, shrinking to zero

as v → ∞. They also cover the entirety of the spacetime inside the shell (v < 0), which

includes points arbitrarily close to the singularity. From our numerics, it appeared that

these geodesics did this in such a way as to remain at bounded curvature (considering, for

example, the Kretschmann scalar RabcdR
abcd, which goes like r−8ϑ(v)2). This computation

is rather sensitive to the fine details of the profile of the shell, so it is not clear how robust

the conclusion is. Indeed, taking the limiting case of a shell of zero thickness, it is clear

from considering symmetric radial geodesics passing through the origin immediately before

collapse that unbounded curvature can be obtained.

This region close to the singularity is the only place where one may do better by

including the asymmetric geodesics. These reach the region of small r to only slightly later

times, but crucially appear to be able to get arbitrarily close to the singularity at some

strictly positive v, where the curvature may become arbitrarily strong.

Including the restriction of considering only the shortest geodesics, we do not lose

access to much of the region soon after formation of the black hole. In particular, the

same asymmetric geodesics that reach to regions of arbitrary curvature are also those of

arbitrarily short length, and thus dominate.

Thereafter, we must consider what happens as dominance is exchanged between various

families, as illustrated in figure 7. The result is that we must exclude the geodesics reaching

inside the horizon at late times, so the region after the shell and inside the horizon covered

by shortest ETEBA geodesics is very limited, as shown in figure 9. For example, in the

case of r+ = 1, d = 4, the latest time a shortest geodesic reaches the interior of the

horizon is at v ≈ 0.4. Thereafter, it should be emphasised that they reach not the whole

exterior of the horizon, but only to the deepest radius of the shortest antipodal geodesic

in Schwarzschild-AdS, which is at a finite though small distance above the horizon.

Apart from this region inside and close to the black hole, there is a distinct region

which is not reached by shortest-length ETEBA geodesics. The shortest geodesics jump

after t = 0 with the transition to the nearly-null geodesics, and because of this, a part of the

pure AdS section of the geometry is also missed. This is the one place where including the

geodesics which are not antipodal will allow access to a larger region. Despite this, there is

still a small region remaining inaccessible, close to r = 0 and for some intermediate range

of times, well after formation of the horizon but well before formation of the singularity.
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Figure 8. The region covered by all ETEBA geodesics, on Eddington and Penrose diagrams. The

purple curves indicate the boundary of the region covered by only the symmetric geodesics, and

the blue curves the region covered by the asymmetric geodesics. In particular, the asymmetric

geodesics reach deeper, but only in a very small region.

Figure 9. The region covered by shortest ETEBA geodesics, on Eddington and Penrose diagrams,

bounded by the black curve, and examples of each family of such geodesics. Moving from early to

late time, the blue curve is asymmetric and radial, the purple curve symmetric and radial, and the

yellow and green symmetric but not radial. The green curve lies entirely in the Schwarzschild-AdS

part, reaching not to the horizon but only to r ≈ 1.014 in this case (d = 4, r+ = 1)
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3.2 Geodesics in Vaidya-BTZ

We have seen in section 3.1 that not every point in the Vaidya-AdS5 spacetime is reached

by the equal-time-endpoint boundary-anchored geodesics. In particular, events inside the

black hole at late time (large v) do not lie on any ETEBA geodesic. However, at the

same time, our geodesics probe arbitrarily close to the singularity just after its formation

(though only traversing regions of bounded curvature). Here we wish to contrast this

with the analogous set-up in 2 + 1 bulk dimensions, i.e. the Vaidya-BTZ geometry. While

as pointed out previously, this case is qualitatively different since the geometry is locally

AdS3 everywhere outside the shell and singularity, this case is most tractable by analytical

means and most amenable to direct comparison to field theory. To take full advantage of

the former, we also take the limit of a thin shell (δ → 0) in order to write simple closed-form

expressions.

An additional curiosity in the case of BTZ is that for a time, the singularity is timelike.

This can be seen from looking at outgoing radial geodesics: they may move away from r = 0

as long as f(r = 0, v) > 0, which happens for some window during the collapse. By making

the collapse very slow, the singularity may even be made naked. Indeed, if the shell does

not carry enough energy, having a BTZ black hole final state is not an option.12 In the

Vaidya case, while it starts out timelike, the singularity is of a particularly mild type, being

only a spatial conical defect.

Symmetric radial geodesics. Let us first consider the simplest case of symmetric radial

geodesics in Vaidya-BTZ, starting at the origin r0 = 0 before the implosion of the shell with

v0 = −τ where τ ∈ (0, π2 ), and with initial energy E0 = 0. To simplify the computations,

it turns out to be convenient to parameterize the final black hole size by a parameter µ

defined by r+ = secµ+ tanµ, where µ ∈ (−π
2 ,

π
2 ). Note that r+ = 1 corresponds to µ = 0,

which is a critical size separating qualitatively distinct types of behaviour.

The radial equation of motion outside the shell can be written as

ṙ2 = r2 +
sin2 µ− sin2 τ

(1− sinµ)2
, (3.8)

from which it is clear that when τ ≥ |µ|, the geodesic can never reach the singularity at

r = 0 since ṙ2 would be negative for small r. When this fails (τ < |µ|), r has no turning

points, so the fate of the geodesic depends on the sign of ṙ just after crossing the shell: it

will end in the singularity or on the boundary if it is negative or positive respectively. The

calculations give

ṙ|v=0+ =
sin2 τ − sinµ

cos τ (1− sinµ)
, (3.9)

which for small black holes (µ < 0) is automatically positive, so the geodesic continues to

the boundary. On the other hand, large black holes µ > 0 allow a regime for sufficiently

small τ (i.e. later starting point, closer to the implosion of the shell) where ṙ < 0 outside the

shell, so that the geodesic initially recedes to smaller r. If τ < µ, ṙ remains negative for all

12See however [49] for a numerical study of scalar collapse in AdS3 inducing turbulent instability which

nevertheless remains regular.
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Figure 10. Radial symmetric ETEBA geodesics in Vaidya-BTZ, with horizon size r+ = 1/2 (left),

r+ = 1 (middle), and r+ = 2 (right) black holes. The red geodesic bounds the spacetime region

which is attainable to this class of geodesics. We see that the unattainable region is above and to

the left of this curve; for r+ = 1 (i.e. µ = 0) the entire spacetime is accessible.

r so the geodesic crashes into the singularity. On the other hand, if µ < τ < arcsin
√

sinµ,

it turns around at rtp, where

rtp ≡
√

sin2 τ − sin2 µ

1− sinµ
. (3.10)

This can be made arbitrarily small by letting τ → µ+, so such boundary-anchored geodesic

gets arbitrarily close to the singularity. Moreover, since ṙ2 gets correspondingly small, the

geodesic can remain in this vicinity for arbitrarily long span in v, and consequently make

it out to the boundary arbitrarily late. In particular, the time at which it attains the

boundary is given by

t =
1− sinµ

cosµ
log

[
cos
( τ+µ

2

)
sin
( τ−µ

2

) ] , (3.11)

which is logarithmically divergent as τ → µ+.

From these considerations we can now determine what part of the spacetime is probed

by these symmetric radial geodesics. The attainable region is bounded by the latest such

geodesic, which originates inside the shell at τ → 0+ for small black holes (i.e. when µ < 0)

and at τ → µ+ for large black holes (i.e. when µ > 0). The limit µ → 0 agrees from

both directions, and in this special case the entire spacetime is attainable. However, when

µ 6= 0, some spacetime regions are missing, the character of which depends on whether µ is

positive or negative. This behaviour is illustrated in figure 10 for small (left), intermediate

(middle), and large (right) black holes on Eddington diagram, and in figure 11 on the

corresponding Penrose diagrams.
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Figure 11. Radial symmetric ETEBA geodesics in Vaidya-BTZ as in figure 10, now plotted on

the Penrose diagram.

Small black holes (µ < 0): The inaccessible region occurs to the future of the geodesic

from τ → 0+ (which is outgoing everywhere). This includes the entire interior of the

black hole to the future of this geodesic. As µ → −π/2, this region is described by

the line13 v > 2 tan−1 r − π
2 on the Eddington plot. On the other hand, as µ→ 0−,

the initial slope dv
dr increases, and the time at which the boundary is attained (3.11)

diverges logarithmically. In this limit the unattainable region at large v gets pushed

off to infinity.

Large black holes (µ>0): Now the inaccessible region occurs to the future of the geodesic

from τ → µ+, which is initially ingoing, and turns around arbitrarily near the singu-

larity, with arbitrarily small velocity. This means that the only unattainable region

is the one between the shell and this geodesic. In the limit of very large black hole,

µ → π/2, this region is described by the triangle bounded by r = 0, v = 0, and

v = tan−1 r − π
2 , while as µ → 0+ the region receded towards and gets elongated

along the singularity r = 0.

These conclusions are made very clear by using the Penrose coordinates, which give

the metric of equation (2.7). In particular, it is manifest that the radial geodesics will

follow identical curves to the case of pure AdS, and for the symmetric geodesics these are

horizontal lines of constant T . The only remaining requirement is to know the shape of the

singularity, given by (1− r2
+) sinR = (1 + r2

+) sinT , which depends on the size of the black

hole. For small black holes, this is at increasing T as R increases toward the boundary;

for r+ = 1 it is the horizontal line T = 0; and for large black holes it lies at decreasing

T moving towards the boundary. Concretely, the singularity is between R = T = 0, and

13This relation is simple in the tiny black hole limit since the spacetime region inside the horizon is

so small that we can treat is as flat (recall that in BTZ the curvatures do not grow as the singularity is

approached). On AdS scales the curvature is felt, though, and this bounding geodesic attains the boundary

at v = 2. Note that, in contrast to the Eddington spacetime diagram, all geodesics are in fact straight

horizontal lines in the Penrose diagram.
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R = π/2, T = 2 tan−1 r+ − π/2. This alone is enough to reproduce the plots of figure

figure 11 and the associated conclusions.

The very restricted set of symmetric radial geodesics is a good starting point, but is

too constraining. In particular, one might naturally expect that the region of spacetime

covered will be increased by including more general classes of geodesic. As we demonstrate

below, this expectation is only realised for small black holes.

For the small black holes, the result is analogous to the higher dimensions, in that

boundary-anchored geodesics will cover the whole spacetime, though for a rather different

reason — the mechanism can no longer rely on geodesics bouncing off the singularity.

Indeed, we can use the same construction used in the previous section, of picking a radial

geodesic passing through an arbitrary point at a local minimum of r, though it requires

more work to argue that it will avoid the singularity. In fact, we can do better still in this

case, since we can reach the same conclusion even with the restricted class of symmetric

geodesics, once angular momentum is allowed. In particular, this means that ETEBA

geodesics cover the whole spacetime.

This conclusion can be reached by considering a family of geodesics with initial condi-

tions close to the singularity formation, with a small angular momentum. To fix notation,

we will generalize the definition of the initial time τ to correspond to minus the initial

AdS time, so that the shell is always reached at rs = tan τ . This means that we must

restrict L < tan τ so that the geodesic actually starts inside the shell. We then consider

the family of geodesics with angular momentum L = (− sinµ)τ . Taking τ to be small,

there is a parametric separation between the radius where the geodesic crosses the shell rs,

the circular orbit radius r0 at which the effective potential reaches its maximum, and the

horizon r+. Asymptotically as τ → 0:

rs ∼ τ � r0 ∼

√
− sinµ cosµ

1− sinµ

√
τ � r+ =

cosµ

1− sinµ
. (3.12)

Moreover, the difference between E2 and the maximum of the effective potential, which is

the minimum of ṙ2, is asymptotically

E2 − V (r0) ∼ −2 sinµ cosµ

1− sinµ
τ > 0. (3.13)

This is positive but small, which means that the geodesic stays in the vicinity of r0 ∼
√
τ

for an arbitrarily long time ∆v as τ → 0 before reaching the boundary. Since we can make

r0 arbitrarily small (and parametrically inside the horizon even for arbitrarily small black

holes), and the radial velocity there likewise arbitrarily small, such geodesics penetrate

arbitrarily close to the singularity at arbitrarily late time v. Details of the computation

are included in section A.

For the large black holes, the situation is entirely different, since the coverage of the

radial symmetric geodesics is not improved by including even the most general boundary-

anchored geodesics. The region covered by all geodesics is thus bounded by the innermost

symmetric radial geodesic. This region includes points arbitrarily close to the singularity

at late times, but is bounded away from its formation. This conclusion is easy to reach by
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using the Penrose coordinates once more. The equation of motion for geodesics associated

with T in the BTZ part of the spacetime is

T̈ + 2ṘṪ tanR =
1 + r2

+

2

L2

r(T,R)3
cosR cosT, (3.14)

and the right hand side is positive for the corresponding range of coordinates. If Ṫ = 0,

T̈ ≥ 0, with equality only for the radial (L = 0) geodesics, so T can never have a local

maximum on the geodesic. This means that if a geodesic lies above the critical curve

T = 2 tan−1 r+ − π/2 for any of its length, it must end in the singularity in at least one

direction. The conclusion is that boundary-anchored geodesics see no more of the spacetime

than the symmetric radial ones, namely the region T ≤ 2 tan−1 r+ − π/2.

Asymmetric ETEBA geodesics. In higher dimensions, we saw the novel feature of

geodesics with endpoints at equal times, but nonetheless having no reflection symmetry.

Our intuition for their existence relied on competition between two effects, one of which

required nearly-null radial geodesics to be repelled from the singularity. In the case of BTZ,

this effect is absent, since the effective potential is bounded, so it is a natural expectation

that this class of geodesics does not exist.

If asymmetric ETEBA geodesics were to exist, it is expected that they would appear

amongst radial geodesics, to give the largest potential barrier away from the singularity.

With this simplification of assuming zero angular momentum, it is immediate from the

metric in terms of Penrose coordinates that they may not exist. As already noted, in these

coordinates the radial geodesics are identical to those in pure AdS (with the restriction

that they must avoid the singularity), which move monotonically in T .

Allowing for angular momentum, this straightforward argument fails since T may have

a minimum in the interior of the spacetime. The possibility that there may be asymmetric

ETEBA geodesics is not in principle ruled out, but it seems highly unlikely that they

would only appear for some intermediate L. This conclusion is supported by numerical

calculations such as performed in higher dimensions, from which we find that for d = 2

there are indeed no asymmetric ETEBA geodesics.

Regions probed by ETEBA geodesics, and lengths. Our previous remarks have

already answered the question of the region probed by ETEBA geodesics, being in the

case of small black holes the entire spacetime, and in the case of large black holes the

region outside the latest boundary-anchored radial symmetric geodesic. The final part of

the picture is the refined question of the region covered by the shortest ETEBA geodesics.

The question of which geodesics dominate by virtue of having shortest length for given

endpoints was investigated numerically, and turns out to have a simple answer, in contrast

to the higher-dimensional cases. Because the only ETEBA geodesics are symmetric, we

need only look at a two-parameter initial condition space, characterized by the location of

the minimum of v.

We begin with the geodesics connecting antipodal points. There are two obvious

candidates for such geodesics. Firstly, radial geodesics, with initial condition at r = 0,

will automatically fall into this class. Secondly, in the static BTZ geometry there are
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Figure 12. Region accessible by shortest ETEBA geodesics in Vaidya-BTZ as in figure 10, plotted

on the Penrose diagram. For large black hole, individual geodesics are plotted to illustrate the

rounding of accessible region.

antipodal geodesics passing outside the event horizon, with closest approach at r = rmin,

so in Vaidya-BTZ they must exist at late times, along with a continuation of the family to

earlier times. This family in fact joins up continuously with the radial geodesics. Before

this time, the only choice is the radial family, but after the nonradial family appears, there

is a choice of two, of which the nonradial is always shorter. This means that the shortest

antipodal geodesics follow a continuous curve in initial condition space as boundary time

increases, starting at r0 = 0, moving to nonzero r0 when the new family appears, and

following this to join the static BTZ geodesics at r0 = rmin. This outermost contour in

initial condition space of ∆φ = π turns out to be a boundary between initial conditions

of shortest geodesics, lying outside it, and longer ones, lying inside it. In particular, the

geodesics approaching close to the singularity are never shortest.

The region probed by these shortest geodesics is again covered by those with antipodal

endpoints, with others reaching no deeper. In the case of small black holes r+ ≤ 1, it is

simple to characterize, being bounded by two curves. The first is the latest radial geodesic

of shortest length, with initial conditions at the critical point at which nonradial antipodal

geodesics appear. The second curve is the deepest reach of the surfaces contained entirely

in the static BTZ, at r = rmin. In particular, from the time when nonradial geodesics

become dominant, they never see deeper than the last radial geodesic, excepting for later

points outside the minimal radius rmin.

For large black holes, the situation is similar, with the difference that at intermedi-

ate times the geodesics ‘cut the corner’ inside these two curves, passing through a small

additional portion of the spacetime.

These regions covered are shown in figure 12 for small, critical and large black holes,

along with the curve of initial conditions giving antipodal geodesics.

Finally, we take the opportunity to note how the lengths of the geodesics evolve with

boundary time t∞. In stark contrast to the higher-dimensional case, the length increases

monotonically and smoothly with time, as shown in figure 13. This is fortunate, as we

have a more direct field theory interpretation for the observable associated with these

lengths, postulated to be the entanglement entropy of the region between the endpoints.

Furthermore, the early time growth, which in the case of antipodal points can be extracted

from the expression in equation (A.16), agrees precisely with the results of [33, 34].
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Figure 13. Regularised proper lengths along ETEBA geodesics in Vaidya-BTZ, plotted as a

function of boundary time. Blue curves correspond to the radial geodesic branch , the others to

the non-radial branch.

4 Codimension-two extremal surfaces

Having considered the properties of ETEBA geodesics (which are simply one-dimensional

extremal surfaces) in the previous section, we now turn to codimension-two extremal sur-

faces. As remarked previously, the 3-dimensional Vaidya-BTZ set up studied in section 3.2

is a special case of these. Here we generalise this case to higher dimensions, keeping the

codimension fixed. We restrict exclusively to surfaces anchored to (d− 2)-spheres at con-

stant latitude, to retain an O(d − 1)-subgroup of the O(d) spherical symmetry. Further,

we consider only surfaces that respect this symmetry in the bulk spacetime, which makes

the great simplification of reducing the extremising equations from partial to ordinary dif-

ferential equations. The experience from the geodesics in higher dimensions, where the

boundary O(1) = Z2 symmetry of swapping insertion points need not be respected by the

shortest geodesics in the bulk with given equal time endpoints, shows that this may be

a genuinely restrictive assumption. However, regarding the surfaces more naturally as a

generalisation of geodesics in 3 dimensions counters this concern. Moreover, in the case

of extremal surfaces, the symmetry is continuous, which perhaps makes it less likely to be

broken than for the discrete symmetry for geodesics.

The surface is parametrised by d − 2 ‘longitudes’ φ on Sd−2, along with one other

parameter, for now generically denoted by s, such that v, r, and the colatitude θ depend

only on s. The area functional of the surface is given by

A = V (Sd−2)

∫
ds (r sin θ)d−2

√
−f(r, v) v̇2 + 2 ṙ v̇ + r2 θ̇2 (4.1)

where dots denote differentiation with respect to s, and V (Sd−2) is the volume of the unit

Sd−2. The surfaces of interest are extrema of this functional, so the integrand acts as
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the Lagrangian from which the equations of motion my be obtained.14 We have complete

freedom in choice of the parameter s, setting it to be equal to one of the coordinates, or

another convenient choice, for example a parameter analogous to the arc length of geodesics.

The surface must meet the poles of the Sd−1 at θ = 0 or π exactly once (excluding

self-intersecting surfaces), so we can set boundary conditions at the North pole (WLOG),

specifying that the surface must be smooth there. The equations of motion are singular at

these points, so for the purposes of numerics, initial conditions are set by solving the first

few terms in a series expansion near θ = 0, and using this to begin the integration at a

small positive value of θ. An exception to this rule is when the surface passes through the

origin r = 0 (inside the shell, when v < 0), in which case the symmetry is enhanced, and

the surface must lie entirely on the equatorial plane θ = π/2. Details of parameters used,

equations of motion, series solutions and initial conditions are given in appendix B.

One useful point from the equations of motion is that, like the geodesics, if v̇ = 0,

then v̈ > 0, so v can never have a local maximum. This tells us that the value of v on

a particular surface is largest when r → ∞, smallest at the initial point where it crosses

the pole, and monotone between. In particular, a surface anchored to the boundary before

the collapse begins can only sample the pure AdS part of the geometry, so entanglement

entropy cannot evolve before the quench. It also means that v is a suitable parameter

along the surface (unlike θ or r), useful because it reduces the order of the equations of

motion to 4.

From the field theory point of view, there are three interesting pieces of data associated

with each extremal surface ending on the boundary. The first two, θ∞ and t∞, respectively

the colatitude and time at which the surface meets the AdS boundary (i.e. the asymptotic

values of θ and v respectively as r →∞), characterise the region with which it is associated.

The third, the area A, is a candidate for the entanglement entropy of the region, according

to the conjecture in [24]. If there are several candidates for a given boundary region, the

proposal specifies that we take the minimal area,15 so comparison of areas in particular will

be important for our purposes. As in the case of geodesics, we can think of each surface as

giving a point in the ‘boundary parameter space’ (θ∞, t∞, A).

The area itself is divergent due to the portion of the surface heading to r =∞. We regu-

late by cutting off the surface at a large but finite r = rc, corresponding to a UV cutoff in the

field theory. The leading order divergence can be computed as V (Sd−2)(rc sin θ∞)d−2/(d−
2), though for d > 3 there are additional divergences: logarithmic for d = 4, and stronger

as d increases. Hence, as a simple universal prescription to renormalise the area, we use

background subtraction. We compute the area as a function of the cutoff radius rc, and

subtract the same quantity computed for an extremal surface in the static AdS spacetime

with the same θ∞, which can be computed analytically. As the cutoff is taken to infinity,

this tends to a constant, which is defined as the renormalised area. The practicalities of

this are outlined in the appendix.

14One may worry that an extremum of this functional may not be a true extremal surface, since there

are variations away from spherical symmetry. However, we have verified that stationarity with respect to

variations preserving the symmetry implies stationarity with respect to all variations.
15A summary of alternate definitions and subtleties in specification of the covariant entropy proposal,

especially the role of the homology constraint, have been recently discussed in [43].
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The equations of motion along with smoothness condition at θ = 0 have a 2-parameter

family of solutions, labelled by the point (r0, v0) where the surface crosses the pole of the

sphere. Similarly to the case of geodesics, we can think of this as a 2-dimensional ‘initial

condition space’, parametrizing the set of spherically symmetric extremal surfaces.

Integration of the equations proceeds from this initial point, and either ends in the

singularity, or continues to the AdS boundary r →∞. We are interested only in the latter,

so one requirement is to find the region of the initial condition space (r0, v0) corresponding

to these probe surfaces.

The problem of computing the entanglement entropy of regions bounded by such a

sphere of constant latitude, according to the proposal in [24], is then one of identifying

the surfaces with appropriate (θ∞, v∞), and finding their areas. For any given region, we

expect some discrete set of surfaces; those of most interest will be the ones of minimal area

amongst that set.

The main problem thus amounts to finding first the domain of the function (r0, v0) 7→
(θ∞, t∞, A), for which the minimal surface ends at the boundary rather than in the sin-

gularity, and then understanding the image, a surface in (θ∞, t∞, A)-space. We must bear

in mind that for the purposes of computing entanglement entropy, there is an equivalence

θ∞ ∼ π − θ∞, corresponding to a choice of which side surfaces may pass round the origin

and related by a rotation. In particular, this is not disrupted by a homology constraint as

in the globally static case [43, 50], and only connected surfaces need be considered, which

is a reflection of the CFT being in a pure state.16

The result must interpolate between the two static geometries, namely pure AdS for

t∞ < 0 and Schwarzschild-AdS for large t∞. The surface in the (θ∞, t∞, A) boundary

parameter space must smoothly match up these early and late parts.

For pure AdS, this is all known analytically: the surfaces lie on constant time slices, and

in fact are surfaces of revolution of geodesics. Explicitly, the map is given by θ∞ = cot−1 r0,

t∞ = v0 + cot−1 r0, and A = 0 as a consequence of the renormalisation prescription. The

domain of relevant initial conditions is the whole spacetime, and the resulting surface in

(θ∞, t∞, A) space is the plane A = 0, for 0 < θ < π
2 .

In the case of Schwarzschild-AdS, again the staticity greatly simplifies, since the sur-

faces are orthogonal to the timelike Killing field. This causes the dependence to decouple,

so that θ∞ depends only on r0, and t∞ reduces to the value of the static coordinate to on

which the surface lies. The näıve expectation here is that any boundary region should be

matched by two minimal surfaces, one passing round each side of the event horizon, but

the actual story is more complicated, and is described in detail in [43]. There is an infinite

tower of surfaces for sufficiently large boundary regions, shown in figure 14. Only the low-

est branch of this tower, up to θ∞ = π/2, is directly relevant for computing entanglement

16Geometrically, the homology constraint being satisfied (even in the strong form of there existing a bulk

codimension-one smooth achronal surface whose only boundaries are the anchoring region and the extremal

surface), follows from the fact that from arbitrarily late section of the boundary, there exists a smooth

spacelike surface stretching to pre-singularity-formation era. This is most readily apparent by considering

the Penrose diagram, and follows directly from the spacelike nature of the curvature singularity and the

fact that there is only a single asymptotic region.

– 29 –



J
H
E
P
0
3
(
2
0
1
4
)
0
9
7

0
Π

2

Π

0

1

2

Θ
¥

A

Aho riz o n

Figure 14. Renormalised areas of connected minimal surfaces relative to the area of the event

horizon plotted against their colatitude θ∞ at the boundary. The tower of surfaces continues

indefinitely, repeating in an essentially periodic pattern.

entropy in the static case, since the others all have larger area. The domain of relevant

initial conditions is the exterior of the event horizon, and the surface in (θ∞, t∞, A) space

is a translation in the t-direction of the multi-branched shape of figure 14.

It is useful to bear these static cases in mind, since during the collapse, the surface in

(θ∞, t∞, A) must interpolate between these regions, and join the simple plane pre-collapse

to the complicated folded surface post-collapse. To solve the puzzle of how this can occur,

we turn to numerical studies. The computations were made almost exclusively in AdS5

(i.e. d = 4), with horizon radius r+ = 1, though comparisons with other parameters indicate

that the results are generic. Details of the methods are given in appendix B.

Domain of relevant initial conditions, and an interesting class of surfaces. Nu-

merical studies to identify the region of relevant initial conditions show that it is charac-

terised by a very simple critical curve, which can be defined by a function rc(v0). This

is shown in figure 15. Initial conditions (r0, v0) give a surface ending on the boundary

when r0 > rc(v0). (Note that the actual surfaces themselves can penetrate past rc(v0), as

we will see momentarily, but their ‘initial condition point’ is restricted by rc(v0).) After

the collapse of the shell, the critical curve coincides with the event horizon, so rc equals

r+. Before the collapse, the curve meets the origin, so rc vanishes at a particular value

of v0, before which time all surfaces will reach the boundary, for any r0. This part of the

critical curve lies entirely inside the event horizon. In particular, this shows already that

codimension-two extremal surfaces anchored on the boundary do reach within the horizon.

In the process of finding this critical surface, we found a particularly interesting class

of solutions, a typical example of which is shown in figure 16. If the initial conditions
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Figure 15. The region of relevant initial conditions. Surfaces whose earliest point (with respect

to the ingong time v) lie outside or inside the curve reach the boundary or end in the singularity

respectively.

are chosen close to the critical curve, the resulting solution lies inside the event horizon

along much of its length, at nearly constant r, moving outside the horizon and to the

boundary at a late time. By careful tuning of the initial conditions, extremal surfaces

meeting the boundary at arbitrarily late times can be constructed. These surfaces link up

to the multiply wrapping surfaces in the static black hole geometry; indeed it was these

surfaces in the dynamic Vaidya geometry which led to the discovery of the tower of surfaces

in the static case. They can be understood from an analytic study, to which we now turn.

Consider first surfaces in the Schwarzschild-AdS part of the spacetime which lie at

constant radius r, on the equator θ = π/2, extended in the v (or t) direction. Inside the

event horizon, these are spacelike. Taking r to be small, approaching the singularity, their

area (per unit extent in the v direction) reduces to zero by virtue of the shrinking in the

spherical directions (for d > 2). Taking r larger, approaching the event horizon, the area

also reduces to zero, this time by virtue of the surface becoming null. Between these two

extrema, there must be a maximal area surface.17

Indeed, the equations of motion for extremal surfaces in the static black hole geometry

admit an exact solution at constant r = r∗ < r+, on the equatorial plane θ = π/2. In the

globally static spacetime, a perturbation of this surface must either meet the singularity,

or form a tube connecting the two asymptotically AdS regions, as in [48]. In constrast, the

Vaidya geometry allows for extremal surfaces lying close to this critical radius for much

of their extent, but smooth everywhere, and terminating on the boundary, as seen in the

numerics.
17The former effect of shrinking the sphere is absent for geodesics, which is essentially why they are

different. We would expect surfaces between the two cases discussed here, with dimension larger than one,

but smaller than d− 1, to behave more like the codimension-two surfaces than the geodesics for essentially

this reason.
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(a) Eddington

(b) Penrose

(c) Poincaré

(d) 3-d Eddington

Figure 16. A surface whose initial conditions are very close to the critical value in the figure 15.

By tuning this closeness to be exponentially small, the boundary time t∞ may be made as late as

desired.

We look next at the equations of motion, in the Schwarzschild-AdS geometry, linearised

around this constant radius solution. We parameterise by v, primes denoting differentiation

with respect to v. The radius of maximal area r∗ satisfies

f ′(r∗) + 2
d− 2

r∗
f(r∗) = 0, (4.2)

which has a unique solution (when d > 2). Linearising around this, with r = r∗ + ρ and

θ = π
2 + η, the equations of motion decouple, and reduce to

ρ′′ − λ2 ρ = 0 (4.3)

η′′ + ω2 η = 0 (4.4)

with parameters given by

λ2 =
(2d− 3)(d− 2)f(r∗)

2

r2
∗

− 1

2
f(r∗)f

′′(r∗) (4.5)

ω2 = −(d− 2)f(r∗)

r2
∗

, (4.6)

which are both positive when f has the form of Schwarzschild-AdS.
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A case of particular interest is when the surface meets the boundary at late times. For

these, the growing mode for ρ will be tuned close to zero, so ρ will be much smaller than

η, and η2 terms become relevant at leading order for ρ. We include this forcing for ρ by

solving for η as θ = π/2 + a cos(ωv), keeping terms up to order a2, to get

ρ′′ − λ2ρ = −a2(d− 1)(d− 2)
f(r∗)

2

r∗
sin2(ωv), (4.7)

which has a particular solution

ρ = a2(d− 1)(d− 2)
f(r∗)

2

2r∗

(
1

λ2
− cos(2ωv)

λ2 + 4ω2

)
. (4.8)

This explains the oscillations in the radial direction visible in figure 16, showing that r

is largest when θ = π/2, and smaller where the surface is further from the equator. Of

particular note is that this particular solution is strictly positive, which constrains the

surface to lie outside r = r∗, a point to which we return later.

Not every possible solution in Schwarzschild-AdS will give an extremal surface when

continued into the full spacetime, since generically this continuation will not be smooth at

the pole of the sphere: indeed, in Schwarzschild-AdS, there are four parameters describing

the solutions, but there is only a two parameter family smooth solutions in Vaidya. Con-

sider starting at an initial point inside the shell, with the two initial condition parameters

(r0, v0), and integrating until reaching the outside of the shell. After this, our surface is

well described by our analytic solution. In this way, the initial conditions map to values

for the four constants of integration: the amplitude a and phase of the angular oscillations,

and the growing and shrinking modes of ρ. Further, this map should be smooth. For

surfaces for which the linearisation is a good approximation, this observation alone will tell

us much.

The fate of an extremal surface is characterised, in this approximation, by the sign of

the coefficient of the growing mode eλv of ρ, which we denote by g. It will escape to the

boundary if g is positive, or end in the singularity if g is negative. The limiting case, when

g = 0, will give the critical curve in the (v0, r0) initial conditions plane separating surfaces

ending on the boundary from those ending in the singularity.

Boundary region from initial conditions. Having characterised the domain of rele-

vant initial conditions, we would now like to understand how they correspond to a region

on the boundary. Initially, the analytic study will take us a long way towards this goal.

When g > 0, it will roughly tell us the time at which the surface meets the boundary,

since we expect g ≈ e−λv∞ . Since g changes smoothly with the initial conditions, barring

any coincidences, it should go to zero linearly as the critical curve is approached, along a

line of constant v0, say. This implies that t∞ should diverge logarithmically near the edge

of initial condition parameter space:

t∞ ∼ −
1

λ
log(r0 − rc(v0)) (4.9)

In particular, the surface can reach the boundary at arbitrarily late time, by tuning initial

conditions exponentially accurately.
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This also corresponds nicely to what happens for inital conditions near the horizon in

the static black hole part of the geometry. Surfaces fully in this region lie on a constant-

time slices with respect to the static coordinate to, and, approaching the future horizon, to
blows up logarithmically.

Close to the critical curve, changes in the other parameters will be unimportant relative

to the effect of g going to zero. Fixing v0, and considering r0 very close to rc, the shape of

the surface should be almost unchanged, except for the time at which the growing mode

of ρ kicks in and drives the solution out to the boundary. Hence, we expect the value of

θ∞ to be determined largely by the phase of η when the growth of ρ begins.

Since η undergoes oscillations in v, this means that as the critical curve is approached,

the blow-up of v∞ is accompanied by increasingly rapid oscillations in the value of θ∞.

The angular frequency in t∞ will be ω, so we expect

θ∞ ∼ a cos
(ω
λ

log(r0 − rc(v0)) + phase
)

(4.10)

with the phase depending on the choice of v0 along which the critical curve is approached.

The range of θ∞ covered is determined by the amplitude a of the η oscillations, which

depends most strongly on r0. It must vanish, by the enhanced symmetry, when r0 = 0,

and should increase with increasing r0, as the surfaces depart further from the equatorial

plane θ = π/2.

Again, this matches the behaviour seen in the static Schwarzschild-AdS spacetime,

where there are similar oscillations as the initial conditions approach the event horizon.

The numerical results show all these features. In particular, the details close to the

edge of the initial condition space match the expectation from the analytic calculations,

including the rate of blow-up of t∞, and the period of oscillations of θ∞.

Contour plots, representing how the boundary region associated to a given surface

corresponds to its initial point where it crosses the pole of the S3, are shown in figure 17.

The contours of constant θ∞ are particularly interesting, as they correspond to a family

of curves associated with entanglement entropy for a specific region of space in the field

theory. We see the first few curves of what we expect to be an infinite collection for a given

region (as long as that region is not too small). These continue into the black hole part of

the geometry, where they correspond to the tower of surfaces of [43].

In terms of the surface in boundary parameter space (θ∞, t∞, A) we have enough to

build a qualitative picture of what goes on. The surface will have an edge corresponding to

the equatorial surfaces lying entirely on θ = π/2, which is the image of the initial conditions

r0 = 0, v0 < 0. The other boundary of initial condition space (the curve of figure 15) maps

to t∞ → ∞, so the only other edge of the surface is at θ∞ = 0, A = 0, when the initial

conditions approach the AdS boundary. The surface thus looks like a strip, which for v < 0

is just the flat plane 0 < θ < π/2, A = 0, and thereafter progressively folds over itself to

link up with the tower of figure 14 one branch at a time. The beginning of the first such

folding is shown in figure 18.

Spacetime region covered. Of particular interest is the region in spacetime covered

by the probe extremal surfaces. As long as there are no unexpected departures from the
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Figure 17. Contour plots for t∞ (left) and θ∞ (right) as a function of initial conditions (v0, r0). The

red curve is the edge of the relevant initial conditions (as in figure 15). The values of the contours

in the top right figure are at multiples of π/12; part of the outermost contour for θ∞ = π/2 is

just visible. The bottom figures show the detail close to the edge of the region of relevant initial

conditions. The horizontal coordinate is r0, and the vertical coordinate − log(vc(r0) − v0), where

vc(r0) gives the latest relevant initial v0 for given r0.

approximation scheme, the analytic study gives us a complete characterisation of this. After

the collapse of the shell, extremal surfaces reach precisely the region of the bulk outside

the radius r = r∗ (perhaps excepting ‘cutting the corner’ very near the shell, allowing for a

negative decaying mode of ρ). Given this, it is not unreasonable to expect that the covered

region of spacetime is bounded by the surface on the equator θ = π/2 (so r0 = 0), with v0

chosen such that r → r∗ as v → ∞. This is the critical value between surfaces ending on

the boundary or in the singularity. This expectation is borne out by the numerics, and the

region covered is shown in figure 19.

Surfaces of minimal area, and entanglement entropy. We now turn to the mea-

surement of the field theory quantity of interest, namely the area of the surfaces. This

is interesting for at least two reasons. Firstly, we can learn about the thermalization of

entanglement entropy for a field theory on a sphere. Secondly, we would like to compare
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θ∞

t∞

A

Figure 18. Part of the surface in boundary parameter space (θ∞, t∞, A) induced by the extremal

surfaces. The red curve shows the edge of the surface, which corresponds to surfaces lying on the

equator θ = π/2, and passing through the origin with r0 = 0, v0 < 0.

Figure 19. The region covered by all extremal surfaces reaching the boundary. The edge is the

same as the limiting surface between surfaces ending on the boundary or in the singularity, lying

on the equatorial plane, and at constant r = r∗ after the collapse.

areas of surfaces anchored to the same boundary region, because the extremal surface of

least area is most directly associated with the field theory observable. This will allow us

to refine our description of the spacetime region covered by surfaces, to include only those

of minimal area for a given boundary region.

The simplest possibility is that the relevant surfaces of minimal area are those arising

from a continuous deformation between the static parts of the geometry. In terms of the
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Figure 20. Thermalization of entanglement entropy for a hemisphere (left), and a slightly smaller

region (right). Data points for extra branches of surfaces are shown, and can be seen to have larger

areas.

initial conditions, this will correspond to the outside of the outermost θ∞ = π/2 contour

(see figure 17). In principle, this could be spoilt by the higher branches of surface: for

example, one could imagine a case where the folding portion of the surface in boundary

parameter space (figure 18), where θ∞ > π/2, dips below the corresponding piece under

the equivalence θ∞ ∼ π−θ∞. If this were to occur, it would allow for some novel behaviour

of entanglement entropy, such as kinks, discontinuities, and non-monotonicity as a function

of time, where two branches of surfaces exchange dominance or new branches appear. This

turns out not to be realised in the case at hand, though we know of nothing which would

prevent it; it would not be entirely dissimilar to what we have found in the case of geodesics.

It would be interesting to see if these possibilities can be excluded, or instead found to be

present in an altered geometry.

With the absence of these complications, the thermalization of entanglement entropy

offers nothing new, as shown in figure 20, smoothly and monotonically increasing from

the vacuum to the thermal value. This matches well with the findings of [33, 34], who

undertake a similar study in the planar case. Here we might a-priori have expected the

physics to be much richer, but that expectation has not been realised. In particular, there is

an intermediate regime where the area grows linearly, controlled by the surface extending

along the critical radius r = r∗. Additionally, if the is shell sufficiently thin, at early

times there is a quadratic growth with known coefficient, proportional to the area of the

bounding region (in our case an Sd−2) and the energy density, since the calculation of [33]

goes through unchanged. Unsurprisingly, this is modified to a slower growth if the collapse

is more gradual. We found no clear robust law found governing the final approach to

equilibrium, excepting that it appears to be smooth, though a more thorough investigation

of this would be worthwhile.

The part of spacetime covered by the extremal surfaces of minimal area is accurately

characterised as the outside of either of two regions. The first is given by the deepest point

of the minimal surface giving the entanglement between hemispheres in Schwarzschild-AdS,

which is a value of r strictly larger than r+, important after the collapse. The second is the

latest surface giving entanglement between hemispheres which passes through the origin.

The initial conditions of this are given by the meeting of the outermost θ = π/2 contour

– 37 –



J
H
E
P
0
3
(
2
0
1
4
)
0
9
7

Figure 21. A selection of the surfaces corresponding to entanglement between hemispheres. The

innermost of these characterises the region of the bulk probed by these observables.

of figure 17 with the origin. This surface samples the inside of the horizon, including for a

significant time outside the shell, but is bounded well away from the singularity and hence

is protected from regions of strong curvature. This is illustrated in figure 21.

5 Discussion

We have explored the behaviour of spacelike boundary-anchored geodesics and codimension-

two extremal surfaces in a spherically symmetric Vaidya-AdS bulk spacetime. The main

goal was to assess how deep past the horizon can such surfaces reach in this simple model of

a collapsing black hole. This was motivated in part by the observation of [16], that unlike

for a static spacetime wherein such boundary-anchored extremal surfaces cannot penetrate

a black hole,18 in dynamically evolving spacetime, the event horizon, being globally de-

fined, does not pose a fundamental obstruction. We realized this expectation both with

geodesics as well as with codimension-two extremal surfaces, and in all cases there are even

surfaces passing inside the horizon at arbitrarily late times. Having said this, the actual

bulk regions probed are qualitatively rather different.

18In fact, there is an interesting subtlety in this argument, partly analogous to the geodesic behaviour

we exploited in the present context: [16] used conservation of ‘energy’ along a geodesic to argue that in

static spacetimes, once a geodesic enters the future event horizon, it cannot exit back through the future

horizon. This argument didn’t prevent the geodesic from reaching the same boundary via the past horizon,

but [16] argued that in order to do that, it would have to turn around in the ‘right’ exterior region, which,

assuming it has the same radial profile of the metric as the left region, would contradict the assumption that

the geodesic reached from the left boundary to the horizon. One may, however, consider a more contrived

spacetime with a static shell on the right side of Schwarzschild-AdS beyond which the right boundary is

replaced by e.g. de Sitter region with smooth origin as in [51]. In such a situation, as discussed in that

work, there certainly do exist boundary-anchored spacelike geodesics passing through the black hole.
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Geodesics with endpoints on the boundary at equal times are able to reach arbitrarily

close to the singularity when it forms, accessing regions of arbitrarily strong curvature. The

same is not true of codimension-two extremal surfaces, which remain bounded away from

the singularity. However, these access a much larger region later on, being constrained only

to lie outside the surface of maximal area at constant radius, while the geodesics probe a

region shrinking to the horizon at later times.

The exception to this is in the special case of 3-dimensional bulk, where the two classes

coincide, and the behaviour depends crucially on the final size of the black hole. For black

holes no larger than the critical radius r+ = 1 in AdS units, even the geodesics with

endpoints at equal times cover the whole spacetime. For black holes larger than this, there

is a region inaccessible to all geodesics with both endpoints on the boundary, even without

the restriction to equal-time endpoints, around the singularity when it first forms. At late

times, the geodesics still can approach arbitrarily close to the singularity.

In all cases, restricting considerations to the surfaces expected to dominate the CFT

variable, of smallest area or shortest length, puts constraints on the probed region. In

particular, none of these surfaces reach inside the horizon for an extended time after the

shell passes.

Unsurprisingly, the surfaces reaching the deepest are consistently those corresponding

to the largest possible length scales, namely geodesics connecting antipodal points, and

surfaces corresponding to entanglement between hemispheres. Access to the largest part

of the bulk requires knowledge of the correlations on the biggest scales.

Let us pause briefly to consider what attributes of the geometry enabled the novel

features described above such as ETEBA geodesics penetrating to regions of arbitrarily

high curvature. The most obvious feature is the rapid time-dependence. Indeed, the shell

has a dramatic effect on geodesics which traverse it, especially near the point of implosion.

But compared to previous studies of extremal surface probes in Vaidya-AdS, further novel

features arise due to the compactness of the horizon, i.e. by considering collapsing black

hole with spherical, rather than planar, symmetry. From the field theory point of view, this

enables us to access finite-volume effects. Indeed, we have seen that some of the surprising

features arise only when the boundary endpoints are sufficiently nearly antipodal. From

the bulk standpoint, there are two different effects of the spherical geometry. The one

which is most crucial for the asymmetric radial geodesics is the fact that prior to the shell,

the geometry has a smooth origin through which the geodesic may pass, heading back

out to the boundary rather than through the Poincaré horizon which replaces it in the

planar geometries. The other effect, which is most crucial for the extremal surfaces, is that

surfaces can pass around the black hole.

In [43] we considered the question of whether in a fixed bulk geometry, the area of

smallest-area extremal surface can jump discontinuously as a function of the parameters

specifying the surface (namely the size and time of the boundary region on which this

bulk surface is anchored). We argued that in the case of static spacetimes, where the

extremal surface is in fact a minimal surface on a constant-time slice as required by the

Ryu-Takayanagi prescription [22, 23], the area must vary continuously, which implies that
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correspondingly the entanglement entropy must vary continuously.19 The argument how-

ever relied on minimality, so that the corresponding issue was not clear for the broader

class of extremal surfaces which is relevant for time-dependent bulk geometries.

Indeed, the most general statement to the effect that areas of smallest-area extremal

surfaces vary continuously with the boundary conditions is false. The results of section 3

provide a manifest counter-example in the case of geodesics, being one-dimensional ex-

tremal surfaces, since we saw in figure 7 that the minimal length `(t) is discontinuous.

This is in sharp contrast to the naive thermalization picture where we would expect this

quantity to grow monotonically and thermalize.

On the other hand we found that, in all situations we considered, codimension-two ex-

tremal surfaces do vary continuously, thus rescuing entanglement entropy from the bizarre

contingency of discontinuous jumps. The question of whether this is true in general remains

open, though its failure for geodesics provides some guidance for any attempt at a proof,

by ruling out arguments that would encompass all extremal surfaces. On the other hand, if

there are situations in which the area may vary discontinuously, looking at asymptotically

locally AdS spacetimes with non-planar boundary topology seems a good place to search

for counterexamples. As seen here, this allows for a richer structure, with multiple branches

of surfaces, which is likely to be a minimum requirement for a discontinuous exchange of

dominance.

We now turn to the question of interpreting the results obtained for the lengths of

the geodesics. Using spacelike geodesics to probe the black hole has a long history; see

e.g. [44, 45, 53–56], and more recently revisited in [46, 57, 58]. In the present work, perhaps

the most fascinating result is the striking contrast between the conventional thermalization

picture and the non-monotonic, discontinuous behaviour of the length `(t) along shortest

ETEBA geodesics with endpoints at time t, antipodally-separated, as illustrated in figure 7.

Translated directly to the corresponding expectation for the equal-time CFT correlator of

high-dimension operators, 〈φφ〉(t) ∼ e−m`(t), this would be very bizarre. However, we do

not expect this to hold due to the subtlety that the geodesic may not lie on the path of

steepest descent.

As argued in [44] in the eternal Schwarzschild-AdS context (see also [56] for a comple-

mentary approach and [46] for more recent discussion in a broader context, more germane

to the present case of interest), if the CFT correlator were dominated by the shortest space-

like geodesic (which bounces off the black hole singularity), the correlator would become

singular when the insertion points are such that the joining geodesic approaches being null,

which is ruled out by direct considerations in the CFT. The resolution of this apparent

puzzle comes from the fact that there are multiple (complexified) geodesics connecting

the boundary points. At the time-reflection-symmetric point they coincide, signalled by a

branch point in the correlator. By considering the resolution of this branch point, [44] was

able to show that the correlator is given by a sum of two complex branches. But since the

correlator is an analytic function in the position and time of the insertion points, one can

recover the expected ‘light cone singularity’ by analytic continuation.

19See also the discussion in [52] which appeared concurrently with our work.
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Here the situation is more complicated, since these methods are explicitly inapplicable

if the spacetime itself is not analytic — as in the present case of the shell having compact

support. This by itself might be circumvented by considering an analytic spacetime (which

can be arbitrarily close to the present geometry and therefore the behaviour of the real

geodesics will likewise be arbitrarily close to the present case), by making the shell profile

analytic. However, in this dynamical situation we will have lost the standard crutch of

being able to use the Euclidean continuation. In [46] the authors consider such a situation,

involving a shock wave in BTZ which is nonanalytic, and analytic approximations do not

have real Euclidean continuations. For small non-analytic perturbations of the metric, the

authors argue that indeed the saddle point represented by the perturbed geodesic contin-

ues to give the dominant contribution to the two-point function when the unperturbed one

does. On the other hand, in the higher dimensional case where the shortest nearly-null

geodesic of [44] did not dominate the correlator of the eternal Schwarzschild-AdS geometry,

a ‘corresponding’ geodesic continued from Schwarzschild-AdS to our Vaidya-AdS geometry

will probably likewise not dominate. It would be useful to develop a robust and universal

criterion for directly determining when a given shortest geodesic dominates the correspond-

ing CFT correlator, without recourse to solving the wave equation.

In the second part we focused on spacelike surfaces which are anchored on a round d−2

sphere at constant time in d-dimensional boundary. The motivation for this restriction was

two-fold: from the pragmatic standpoint, this is the case which is simplest to solve when

the bulk spacetime is spherically symmetric. Although the specification of the entangling

surface necessarily breaks the full symmetry, for spherical regions we retain SO(d − 1),

which is inherited by the full extremal surface. This is an enormous simplification, since

the extremal surface is determined by coupled ODEs rather than PDEs. By itself, this is

a looking under the lamppost type motivation; however, choosing spherical regions has a

separate reason, based on the expectation that for a fixed extent of the entangling surface

on the boundary, the corresponding extremal surface reaches the deepest into the bulk.20

Hence for the question of how deep into the black hole can extremal surfaces reach, spherical

entangling regions seem like the ‘best bet’. However it would be useful to verify this

expectation explicitly, by considering other entangling surfaces. It would also be interesting

to consider disconnected boundary regions, with multiple entangling surfaces. Is there a

constellation allowing the corresponding extremal surfaces to probe still deeper?

We have seen that the two types of probes we focused on, spacelike geodesics and

codimension-two extremal surfaces, both probe inside the genuine black hole, but that

each class accesses a different region inside the horizon. One might then ask if there is a

natural geometrical characterization of the region probed, without making direct reference

to the probes. In other words, is there any special meaning to this region, especially from

the CFT standpoint? Such a characterization cannot be global like the event horizon, nor

can it be quasi-local (spacetime foliation-dependent) like the apparent horizon.21 It should

20This was argued in [16] in case of planar AdS: deforming the entangling surface on the boundary, while

keeping its extent (or volume enclosed) fixed, makes the bulk extremal surface recede towards the boundary.
21A similar issue for planar charged collapsing shell was recently considered in [59] which discussed

connection between surfaces reaching past apparent horizon and strong subadditivity violation.
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also be something which only requires knowledge of the local part of the geometry, but at

the same time it should allow for the richness of changing with dimension.

A weaker version of this question is whether there may be simple considerations giving

bounds on the accessible region. In the present work, one likely candidate for such a bound

was the critical surface corresponding to the maximal-area constant-r surface inside the

black hole, which we saw characterized the region covered very simply. Some steps in

this direction have been made in [60], which provided criteria for surfaces bounding the

region accessible by extremal surfaces anchored on a boundary. While no bound exists for

geodesics, which access the whole spacetime, in may be possible to use their results to say

something about codimension-two surfaces. It would be interesting to see how much can

be said on such general grounds, and in particular how closely any bounds thus constructed

come to characterizing the actual region probed.

Apart from the understanding they might provide in their own right, such bounds have

a possible practical purpose in a study of thermalization requiring numerical evolution

of the spacetime, such as formation of a black hole after sourcing some specific CFT

operator for a time. The numerics do not allow for evolving the spacetime all the way to

the singularity, but to study entanglement entropy via extremal surfaces, stopping at the

horizon will be inadequate. The radius of maximal area, or any other more general bound

that could be found, give a natural intermediate place to stop integration.22

Since geodesics (1-dimensional extremal surfaces) and codimension-two (in d + 1 di-

mensional bulk) extremal surfaces have such different behaviour in terms of their reach

when d > 2, one might naturally ask what happens to n-dimensional extremal surfaces

with 1 < n < d− 1 when d > 3. For example in d = 4, string worldsheets corresponding to

a Wilson loop would constitute such an intermediate case. While we expect the qualitative

behaviour to be close to the case of the codimension-two surfaces, a more full comparison

would be needed to check whether this is borne out. Another natural generalization to

consider would be more general spacetimes, for example adding charge, as in [59], and even

causally trivial spacetimes may give interesting results (for example, see work on scalar

solitons as in [61, 62]).

Acknowledgments

It is a pleasure to thank Matt Headrick, Gary Horowitz, Hong Liu, Juan Maldacena,

Don Marolf, Mukund Rangamani, Steve Shenker, and Tadashi Takayanagi for various

illuminating discussions. VH would like to thank CERN, ITF, Amsterdam, ICTP, Centro

de Ciencias de Benasque Pedro Pascual and the Isaac Newton Institute for hospitality

during this project. HM is supported by a STFC studentship. VH is supported in part by

the STFC Consolidated Grant ST/J000426/1 and by FQXi Grant RFP3-1334.

A Geodesics in Vaidya-BTZ

In this appendix we collect the details of the calculations of geodesics in the d = 2 case of

BTZ, in the limit of a thin shell, used in section 3.2.

22We thank M. Headrick for this suggestion.
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Firstly, we give the change of coordinates to the Penrose diagram as described in

section 2. In the BTZ part of the spacetime, after the collapse, for v > 0, the coordinate

transformation is given by

v =
2

r+
coth−1

(
1

r+
cot

V

2

)
(A.1)

r = −
r2

+ tan V
2 + tan U

2

1 + tan U
2 tan V

2

(A.2)

and in the pure AdS by

v = V (A.3)

r = tan

(
V − U

2

)
(A.4)

Writing T = V+U
2 and R = V−U

2 , the metric is

ds2 =
−dT 2 + dR2

cos2R
+ r(T,R)2dφ2. (A.5)

One point that this choice of coordinates makes clear is that the metric is in fact continuous,

which is not evident from the original coordinates. This implies that the tangent vectors

of geodesics will change continuously across the shell, with no kink.

A striking feature of these coordinates is that the T −R part of the metric is identical

to pure AdS. It should be emphasized that this does not happen in higher dimensions, but

is special to the BTZ case.

The most useful equations of motion will be:

ṙ2 = E2 +

(
1− L2

r2

)
f(r) (A.6)

v̇ =
ṙ + E

f(r)
(A.7)

To match cross the shell, we use the fact that v̇ is continuous. To get energy after shell

crossing, we eliminate ṙ from the above and use

E =
f(r)v̇

2
− 1

2v̇

(
1− L2

r2

)
. (A.8)

We first record the solutions for symmetric geodesics in the pure AdS part of the

geometry, corresponding to zero energy there. The initial condition will be parameterized

by the angular momentum L, which is also the minimum of r, and the static time slice

it starts on, labelled by τ = tan−1 r0 − v0, lying in the range (tan−1 L, π/2). For radial

geodesics, starting at the origin, this gives the time before the formation of the shell; it is

larger for starting points further in the past. The solution is
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r =
√
L2 cosh2 s+ sinh2 s

v̇ =
tanh s√

L2 cosh2 s+ sinh2 s

v = tan−1
√
L2 cosh2 s+ sinh2 s− τ

ϕ = − tan−1(L coth s)

The shell is hit at

s = cosh−1 sec τ√
1 + L2

=
1

2
cosh−1 1− L2 + 2 tan2 τ

1 + L2
(A.9)

at which point v = 0, r = rs = tan τ , and

v̇ = cos τ
√

1− L2 cot2 τ

The next step is to extend into the BTZ part of the spacetime. Note that the s in

what follows is not the same parameter, but differs by some shift. This only matters for

measuring length, where the two parts need to be added separately.

It turns out that it’s very convenient to parametrize the radius of the BTZ horizon as

r+ = secµ+ tanµ, with −π
2 < µ < π

2 . With this, we get the energy outside the shell as

E = −cos τ
√

1− L2 cot2 τ

1− sinµ
. (A.10)

A useful piece of information is also the value of ṙ after shell crossing, which is

ṙ(rs) =

√
1− L2 cot2 τ

cos τ

(sin2 τ − sinµ)

(1− sinµ)
(A.11)

A.1 Symmetric radial geodesics

We now specialize further to consider just the radial geodesics, with L = 0. Outside the

shell, the radial equation of motion can be obtained from the energy, and is

ṙ2 = r2 +
sin2 µ− sin2 τ

(1− sinµ)2

Combining this with the value of ṙ after the shell, we find that the boundary is reached if

and only if τ > µ, as argued in the text. In particular, if µ < 0 (corresponding to r+ < 1),

the geodesics will reach the boundary for all positive τ .

We must now split into two cases, depending on whether τ is greater than or less

than |µ|.
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τ > |µ|. We begin with the case of earlier geodesics, relevant for any size of black hole.

The simpler parts of the solution to obtain are

r =

√
sin2 τ − sin2 µ

1− sinµ
cosh s

v̇ =
1− sinµ√

sin2 τ − sin2 µ sinh s+ cos τ

and at the shell, we have

s = log

[
1 + sin τ

cos τ

√
sin τ − sinµ

sin τ + sinµ

]
. (A.12)

Note that this can be positive or negative, depending on whether the geodesic is going

inwards or outwards after crossing the shell.

By integrating v̇ from this value to ∞, using the substitution

x =

√
sin2 τ − sin2 µ es + cos τ

cosµ
, (A.13)

we eventually get the time at which the boundary is reached:

t∞ =
1− sinµ

cosµ
log

[
cos
( τ+µ

2

)
sin
( τ−µ

2

) ] , (A.14)

or back in terms of r+,

t∞ =
1

r+
log

[
sec τ + tan τ + r+

sec τ + tan τ − r+

]
. (A.15)

Finally, we extract the length from this, by the value of s at the (large) cutoff r = R,

minus the value of s at the shell, plus the length from the pure AdS region:

` = 2 log

[
2(1− sinµ)R√
sin2 τ − sin2 µ

]
− 2 log

[
1 + sin τ

cos τ

√
sin τ − sinµ

sin τ + sinµ

]
+ 2 log(sec τ + tan τ)

= 2 log

(
1− sinµ

sin τ − sinµ

)
+ 2 log(2R),

where the second term in the last line is the result in vacuum.

We can eliminate τ between these, to get

` = 2 log

(
cosh2 r+t

2
+

1

r2
+

sinh2 r+t

2

)
+ 2 log(2R) (A.16)

for t > 0.
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τ < |µ|. The second case is only relevant for small black holes (µ < 0). The solution is

r =

√
sin2 µ− sin2 τ

1− sinµ
sinh s

v̇ =
1− sinµ√

sin2 µ− sin2 τ cosh s+ cos τ

and at the shell, the parameter is

s = log

[
1 + sin τ

cos τ

√
sinµ− sin τ

sinµ+ sin τ

]
. (A.17)

The time at which the boundary is reached, as well as the length, are computed in a

similar way to the first case, and the resulting expressions are identical.

An alternative way to reach the same results is to calculate directly in the Penrose

coordinates, which reduces to the simpler computation in pure AdS. The only extra work

required is to check that the geodesics remain away from the singularity, and to work out

how the coordinates transform at the boundary, to obtain t∞ and to make the correct

regularization of the lengths.

A.2 Region covered by geodesics

We here flesh out the arguments in the text describing the regions of spacetime accessible

to geodesics of various classes.

The radial motion in the BTZ part of the geometry is described by

ṙ2 = r2 − L2 −
cos2 µ

(
1− L2

r2

)
− cos2 τ (1− L2 cot2 τ)

(1− sinµ)2
, (A.18)

and ṙ2 has a minimum at r = r0 =
√
Lr+. This minimum value ṙ2

min ≡ ṙ2(r0) is given by

ṙ2
min =

cos2 τ (1− L2 cot2 τ)− (cosµ− L (1− sinµ))2

(1− sinµ)2
(A.19)

which can take either sign, depending on the specific values of the parameters.

The fate of a given geodesic depends on the interplay of r+, L and rs. In particular, it

can make it out towards the boundary only if either ṙ2
min > 0 and ṙ(rs) > 0, or if ṙ2

min ≤ 0

but rs > r0. The geodesic can remain for an arbitrarily long time ∆v in the vicinity of r0,

which happens in the former case as ṙ2
min → 0+, or in the latter case when ṙ(rs) < 0 and

ṙ2
min → 0−.

In either case, the desired fine-tuning is one which makes the magnitude of ṙ2
min very

small. For a fixed black hole size µ, the condition ṙ2
min = 0 specifies a curve in the τ − L

plane. Solving for L = L0(τ), we obtain

L0(τ ;µ) =
± cot τ(sin2 τ − sinµ)− cosµ(1− sinµ)

(1− sinµ)2 + cos2 τ cot2 τ
. (A.20)

In particular, asymptotically as τ → 0, we find that L0 ∼ ±(sinµ) τ.
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This motivates us to look at the family of geodesics with L = −(sinµ)τ for small

black holes. We expand the relevant quantities for small τ , and conclude that the whole

spacetime is accessed by this family of geodesics as described in the text.

B Details of extremal surface computations

Extremal surfaces with the appropriate symmetries, parametrized by generic parameter s,

are found from the Lagrangian

L = (r sin θ)d−2
√
−f(r, v)v̇2 + 2ṙv̇ + r2. (B.1)

The equations of motion, at a point where v̇ = 0, give v̈ = (d − 1)rθ̇2 > 0, which implies

that any critical point for v must be a minimum. This, along with the fact that v must be

increasing as the boundary is approached, tells us that v has exactly one local minimum.

Furthermore, the symmetries imply that this must occur when the surface crosses the pole

of the sphere at θ = 0. This makes v an appropriate candidate for a parameter along the

surface.

Denoting differentiation with respect to v by primes, the Lagrangian with the param-

eter v is

L = (r sin θ)d−2
√
−f(r, v) + 2r′ + r2θ′2, (B.2)

which gives the equations of motion

r′′ =
3r′ − f

2

df

dr
+ (f − r′)

(
(d− 1)rθ′2 +

d− 2

r
(−f + 2r′)

)
(B.3)

θ′′ =

(
1

2

df

dr
− f

r

)
θ′ −

(
d− 1

r
θ′ − d− 2

r2
cot θ

)
(−f + 2r′ + r2θ′2). (B.4)

Initial conditions are chosen as the values of v and r as the pole θ = 0 is crossed. Since this

is a singular point of the equations, for numerics we must start integration slightly away

from this point, picking initial conditions by a series solution:

θ(v0 + h) =

√
2h

r0
(1 +O(h)) , r(v0 + h) = r0 + f(r0, v0)h+O(h2). (B.5)

This is altered in the special case where the surface is equatorial; this means that it

passes through r = 0 and has θ = π
2 . The solution will always be the same close to the

origin, namely lying on a static slice of pure AdS until it meets the shell, which, and this

is how initial conditions are specified.

The areas are found by numerically integrating the difference between the Lagrangian

and
(r sin θ)d−2√
1 + r2 sin2 θ

(r′ sin θ + rθ′ cos θ), (B.6)

which is the derivative of the function which gives the area of a minimal surface in AdS

passing through the point r, θ. This automatically regularizes the area by subtracting off

the background vacuum value.
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