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ABSTRACT
One of the problems of producing instruments for extremely large telescopes (ELTs) is that
their size (and hence cost) scales rapidly with telescope aperture. To try to break this relation
alternative new technologies have been proposed, such as the use of the Integrated Photonic
Spectrograph (IPS). Due to their diffraction-limited nature, the IPS is claimed to defeat the
harsh scaling law applying to conventional instruments. In contrast to photonic applications,
devices for astronomy are not usually used at the diffraction limit. Therefore, to retain through-
put and spatial information, the IPS requires a photonic lantern (PL) to decompose the input
multi-mode light into single modes. This is then fed into either numerous arrayed waveguide
gratings (AWGs) or a conventional spectrograph.

We investigate the potential advantage of using an IPS instead of conventional monolithic
optics for a variety of capabilities represented by existing instruments on 8 m telescopes and
others planned for ELTs. To do this, we have constructed toy models of different versions
of the IPS and calculated the relative instrument sizes and the number of detector pixels
required. This allows us to quantify the relative size/cost advantage for instruments aimed at
different science requirements. We show that a full IPS instrument is equivalent to an image
slicer. Image slicing is a beneficial strategy for ELTs as previously demonstrated. However,
the requirement to decompose the input light into individual modes imposes a redundancy in
terms of the numbers of components and detector pixels in many cases which acts to cancel
out the advantage of the small size of the photonic components. However, there are specific
applications where an IPS gives a potential advantage which we describe. Furthermore, the
IPS approach has the potential advantage of minimizing or eliminating bulk optics. We show
that AWGs fed with multiple single-mode inputs from an PL require relatively bulky auxiliary
optics and a 2D detector array which significantly increases the size of the instrument. A more
attractive option is to combine the outputs of many AWGs so that a 1D detector can be used
to greatly reduce the number of detector pixels required and provide efficient adaptation to the
curved output focal surface.

Key words: instrumentation: spectrographs – techniques: imaging spectroscopy – techniques:
spectroscopic.

1 IN T RO D U C T I O N

Spectroscopy is one of the most useful tools in astronomy, with
applications in fields ranging from cosmology to exoplanet stud-
ies. Arguably, the most common form in astronomy is dispersive
spectroscopy which uses a dispersive element to separate different
wavelengths.

In its simplest form a dispersive spectrograph contains four com-
ponents: slit to isolate the area to be dispersed, a collimator, a grating
or prism to disperse the light and a camera and detector to record the
intensity at each wavelength. In order to retain throughput the slit of
the spectrograph is usually matched to the seeing of the telescope.

� E-mail: r.j.harris@durham.ac.uk

If this is not diffraction limited then the collimated beam must in-
crease in size as the telescope grows in size in order to maintain
the same resolution (Lee & Allington-Smith 2000). The immediate
consequence of this is that the optics and disperser must also grow
in size. This then leads physical problems such as stresses and flex-
ure in the materials, along with the difficulties inherent in building
these large monolithic structures.

In order to use the same design principles as existing instruments
more exotic materials and construction processes are needed, which
drives the costs of building the instruments up. Using the conven-
tional approach, the cost of instruments scales with at least the
square of the telescope aperture (Bland-Hawthorn & Horton 2006).

In order to reduce these problems the input to the spectrograph
can be sliced by dividing the input field (the slit) into a number
of thin slices. Each of these can then be fed into a spectrograph
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or spectrographs. This technique is known as image slicing. Each
of these spectrographs produces a spectrum for each slice. The
resulting data is then reformatted into a 3D data cube with axes x,
y, λ allowing the reconstruction of the initial image.

There are several different methods for image slicing detailed
in the literature, from lenslet arrays feeding fibres to slicing mir-
rors (Allington-Smith 2007a). All have inherent advantages and
disadvantages. The various methods have all been widely adopted
in recent years and are used in various forms in instruments on the
current generation of 8 m telescopes. Theoretical investigations into
the scaling laws in relation to image slicing suggest that it will be
an even more powerful tool to reduce instrument sizes and costs on
the next generation of 30 m telescopes (Allington-Smith 2007b).

In this paper, we examine the potential applications of the Inte-
grated Photonic Spectrograph (IPS), which shares some of the fea-
tures of image slicers. Despite the physical differences they obey
the same basic physical laws as conventional instruments.

The IPS devices take light from an input fibre which is usually
matched to the seeing limit (as with conventional fibre-fed instru-
ments) and so supports many modes. The light from this multi-
mode fibre (MMF) is then split into a number of single-mode fibres
(SMFs) by a photonic lantern (PL). At this point two options have
been proposed (Bland-Hawthorn et al. 2010).

P = 1. The first requires a reformatting component (Thomson et al.
2011; Birks et al. 2012) to form a slit of SMFs which can then be
dispersed by bulk optics. We shall call this the semiphotonic case.

P = 2. In the second, the SMFs are then fed into arrayed waveguide
gratings (AWGs) which disperse the light into individual spectra,
with one or more spectra per AWG (Bland-Hawthorn et al. 2010).
These spectra have the advantage that they are in a linear format, so
can be sampled using an array of fibres or a linear detector. This is
our fully photonic case.

While the principles for both have been demonstrated (Cvetojevic
et al. 2009, 2012; Leon-Saval, Betters & Bland-Hawthorn 2012), so
far these have only used single or few modes from a single input,
resulting in limitations in throughput and field. They are also not
optimized in terms of size or the components used. This led us
to investigate how complete instruments would perform compared
to current instrumentation, with initial results suggesting that a
fully photonic IPS would be best suited to small, diffraction-limited
telescopes with small fields of view (Harris & Allington-Smith
2012).

In this paper, we determine the application areas where the IPS
may have an advantage over conventional instrumentation. After
noting the formal similarity between image slicing and photonic
spectroscopy in Section 2, we consider the requirement for the field
of view of the instrument in Section 3. Simplified models of the IPS
are presented in Sections 4 and 5. The results of comparing con-
ventional and IPS instruments are given in Section 6. In Section 7,
we discuss different ways to reduce the number of AWGs and/or
detector pixels, before presenting our conclusions in Section 8.

2 INSTRUMENT SIZE SCALE
RE LATIONSHIPS

It is often claimed that IPS violates the relationship between tele-
scope diameter and spectral resolution:

R = mρλW

χDT
= 2 tan γDcol

χDT
, (1)

where R is the resolution of the instrument, m is the diffraction
order, ρ is the ruling density, λ is the wavelength, W is the length
of intersection between the grating and collimated beam, χ is the
angular slitwidth, DT is the diameter of the telescope, γ is the blaze
angle, ρ is the ruling density and Dcol the diameter of the collimated
beam.

This applies to a slit spectrograph using a diffraction grating as
the dispersive element and shows that for a given resolution, angular
slitwidth and blaze angle, the diameter of the collimated beam must
increase in proportion to the telescope aperture, leading to a bigger
instrument.

Unlike a conventional spectrograph the input to the IPS must be
diffraction limited (λ ≈ χDT) due to its single-mode nature, so the
resolution can be shown to be of the form

R = mNwg

C
, (2)

where Nwg is the number of waveguides in the AWG or number of
rulings on a conventional grating and C a factor to account for man-
ufacturing errors (Lawrence et al. 2010). This has no dependence on
telescope diameter so it would appear to break the relation. It must
be noted though, this applies to a device operated at the diffraction
limit of the telescope, not at the seeing limit as with equation (1).

To examine what happens when the input at the seeing limit, we
consider the number of spatial modes in a conventional step-index
fibre (Cheo 1990) which can be approximated as

M = V 2
fibre

4
. (3)

It is useful to remember that each spatial mode has two polariza-
tion states, though we do not include the factor here as each SMF
accepts two polarizations. The associated V parameter is

Vfibre = πs�

λ
, (4)

where s is the diameter of the fibre core (assumed equal to the
slitwidth in equation 1) and � the numerical aperture at which the
fibre is operated. This must be less than the limiting (i.e. maximum)
numerical aperture of the fibre. Noting that

� ≈ 1

2FT
(5)

s = χfT = χFTDT, (6)

where FT the telescope focal ratio and fT is the telescope focal
length, the number of modes is given by

M =
(

πχDT

4λ

)2

. (7)

Therefore, it can be seen that for each sampling element the
number of modes increases as the square of the telescope diam-
eter in a similar way to the number of slices at the diffraction
limit (χDT/1.22λ)2. This confirms that, to first order, photonic
spectrographs are bound by the same scaling laws as conventional
spectrographs. In what follows, we attempt to quantify areas where
photonic spectrographs may confer an advantage, and suggest mod-
ifications which may allow photonic spectrographs to make a sig-
nificant impact on future astronomical instrumentation.

3 THE I NPUT FI ELD AND SPATI AL
MULTI PLEX

In the previous section, we calculated the number of modes per spa-
tial sampling element (spaxel). As with diverse field spectroscopy
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(Murray & Allington-Smith 2009), photonic spectrographs address
a number of individual spaxels, which can be grouped (as in In-
tegral Field Spectroscopy; IFS), or separate (as in Multi Object
Spectroscopy; MOS). In order to fairly compare with conventional
instrumentation we need to make sure that we sample the same
number of spaxels (e.g. observe the same field).

A long slit can be thought of as a series of spaxels joined to form
a rectangle of size 1× N, where N is the total number of spaxels.
In IFS, the field is equivalent to a series of slits (each composed of
linked spaxels) joined so the total number of spaxels is N = NxNy,
where Nx is the number of spaxels in the x direction and Ny in the y
direction. MOS can be thought of as the same number of spaxels,
N, distributed throughout the field of the telescope and brought
together to form a long slit. See Fig. 2 for an illustration of this.

An important consideration is the sampling of the field. From
Fig. 1 and equation (7) it can be seen that the number of modes pro-
duced is dependent on the overall size of the field, not the individual
spaxel size (as the number of modes per spaxel is proportional to the
square of the spaxel size). This means that the number of compo-
nents for the IPS (and hence the approximate size of the instrument)
required for the instrument will not depend on the sampling scale.

However, the amount of spatial information and throughput will
depend on the sampling scale. Although it might appear best to
reduce the spaxel size and the number of modes, this will reduce
the coupling efficiency and throughput (Corbett & Allington-Smith
2006). At the other extreme the use of very large fibres would result
in loss of spatial information. A balance must be found between
throughput and spatial resolution. We do not investigate this fully
here as it does not affect the total number of modes in the field or
the required number of detector pixels. Thus, we choose to make
our spaxel size equal to the full width at half-maximum (FWHM)
of the seeing.

In order to calculate the scale length of the instrument we take
the cube root of the volume of the instrument. We can calculate

Figure 1. An example of the number of modes generated from a single
spaxel on an 8 m telescope of 0.5 arcsec FWHM seeing at λ = 1650 nm.
Fixing the size of the spaxel to the FWHM gives a single spaxel (here
number of slices = 1); this spaxel is large and contains many modes. Slicing
the spaxel produces smaller spaxel sizes, but larger numbers of them (the
number of spaxels is the slices squared). This results in the same total number
of modes in the area (the horizontal yellow line). The variation in the blue
is due to the integerization of modes within individual slices. Note that the
three final red points lie under the blue ones.

this from the number of spaxels in the total field passed to the
spectrograph

scale length =
√

NM(λmin)P−1LxLyLz, (8)

where M is a function of the shortest wavelength in the spectrograph
(λmin), in order to account for all spatial modes. Lx, Ly and Lz are the
lengths of an individual component spectrographs or AWGs in the
x, y and z direction, respectively, which will be defined in the next
two sections. P = 1 and 2 represent the semiphotonic and photonic
cases, respectively.

4 THE SEMI PHOTONI C I PS (P = 1 )

The semiphotonic case involves taking an individual spaxel and
using a re-arranged PL to form a diffraction-limited slit, which is
then dispersed by bulk optics (Bland-Hawthorn et al. 2010).

4.1 Model geometry

Slicing the input of a spectrograph has already been examined the-
oretically in Allington-Smith (2007b). The paper took existing in-
struments and sliced the input, either adding the slices to the length
of the slit or placing them into replica spectrographs. It showed that
slicing could result in an instrument with a slightly smaller overall
volume, though the instruments sliced to the diffraction limit were
shown to be larger than their counterparts due to the extra compo-
nents required. This is important to us as we showed that photonic
spectroscopy is similar to image slicing to the diffraction limit in
Section 2.

As conventional image slicing has already been examined, we
restrict ourselves to examining only the IPS concept, which takes
each individual spaxel (not a number of them) and separates it into
a single spectrograph.

We will be using the modified model from Allington-Smith
(2007b) described in Harris & Allington-Smith (2012) and adding
this to our results. As the input to each spectrograph now depends
on the number of modes per spaxel, we shall be setting the length
of the slit to the number of modes (equation 7) instead of ny in the
previous papers.

4.2 Semiphotonic model limits and calibration

In order to calibrate the model we use the same method as Allington-
Smith (2007b), with the S = 1 case oversizing using a multiplicative
factor and the S = 2 case oversizing the spectrograph input beam.
The scaling factors for our instruments can be found in Table 1.

Table 1. The scaling parameters for the
semiphotonic versions of the conventional in-
struments. The scaling scenarios are described
fully in Allington-Smith (2007b) and Harris &
Allington-Smith (2012).

Instrument S = 1 S = 2
a (m) b a (m) b

GNIRS 0.1 2.1 0.46 1.1
CRIRES 0.1 2.2 0.61 1.1
NIFS (J) 0.1 7.0 0.86 1.1

SINFONI (H) 0.1 7.0 0.86 1.1

IRMS 0.1 8.0 2.06 1.1
IRIS 0.1 10.0 1.46 1.1
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Figure 2. An illustration of conventional slicing and photonic slicing. All methods sample an area of the same size (e.g. the same number of spaxels). The
three conventional methods reformat the input and disperse it, producing one spectrum per spaxel. The fully-photonic option takes each input spaxel and splits
it into individual modes using an PL. Each of these modes is fed into an AWG to produce a spectrum. These then need to be recombined and summed to produce
the spectrum for the spaxel. The semiphotonic option uses the same PL, but this is then reformatted into a long slit and fed into conventional spectrographs.

5 T H E F U L LY PH OTO N I C IP S ( P = 2 )

For our fully photonic model, we shall concentrate on modelling
the size of the AWGs, not the components that feed them. We shall
include a factor for our detector sizes.

5.1 Model geometry

For the fully photonic model, we first need to consider the geom-
etry of AWGs. These are available in many different variations,
especially with respect to the geometry which generates the path
difference between waveguides (e.g. S-bend, circular, horse-shoe).
To keep the toy model simple, we have chosen a reflective AWG
(Grave de Peralta et al. 2003, 2004) using a Rowlands circle ar-
rangement for the free propagation region (FPR). We have removed
the bend at the end of the waveguide array for simplicity. Because of
this it looks almost identical to a conventional double-pass echelle
spectrograph.

Using the definitions in Fig. 3, we arrive at the following equa-
tions for the size of the AWG model

Lx = (max(D, E) + aawg)bawg (9)

Ly = (cawg + w)bawg (10)

Lz = (aawg + A + (Nwg − 1)�L)bawg. (11)

Here A is the x-length of the FPR, �L the length difference be-
tween adjacent waveguides to achieve the required order for a given
central wavelength (λc), D is the length containing the waveguides
(analogous to the illuminated length of the grating in a standard
echelle grating), E the x-length of the detecting surface and w is the
waveguide diameter. The oversizing parameters aawg, bawg and cawg

parametrize the extra size required to implement a practical device.
First, we calculate the appropriate dispersion order, m, in terms

of the free spectral range (FSR, �λFSR) for an AWG,

m = λmin

�λFSR
. (12)

Setting D = Nwg/ρ, this can be combined with equation (2),
where ρ is the density of waveguides (analogous to the ruling density
of a conventional disperser) to give

D = CR

mρ
. (13)

The physical extent of the FSR in an AWG is XFSR = (λminLFρ/ns),
where ns is the refractive index of the slab and LF the length of
the free space propagation region. Combining with geometrical
arguments gives

E = LF sin

(
	

2

)
= LF sin

(
λminρ

ns

)
, (14)
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Figure 3. The fully photonic model. The left image shows the x–y view of the AWG, with the (left to right) input fibre, FPR and waveguides. The top-right
image shows the side view of the AWG model, with the top and bottom cladding layers and the layer containing the waveguides in the centre. The bottom-right
image is an enlargement of the FPR which is a Rowlands circle arrangement.

where 	 is defined in Fig. 3. In order to calculate �L we make use
of the equation for calculating the central wavelength of the AWG

�L = λcm

nc
, (15)

where nc is the refractive index of the waveguides, the central op-
erating wavelength is λc = λmin + �λFSR/2, so A can be calculated
from geometry as

A = LF cos(θ ) = LF cos

(
Nwg

2ρLF

)
, (16)

where θ is defined in the figure and Nwg is calculated using equation
(2). In order to calculate LF, we make use of the fact that the imaging
requires the number of detector pixels to be able to adequately
sample at the resolution required (equivalent to sampling of the
echelle model in Allington-Smith (2007b). To do this, we take the
dispersion relation
(

δλ

δx

)
�

(
dλ

dx

)
= ns

Lf mρ
. (17)

and combine it with equation (12), setting δx = N0dp, where N0

is the oversampling and dp is the size of the pixels. We also take
the equation for the spectral resolution δλ = λmin/R. Minimizing to
obtain the maximum LF we find

LF ≥ nsN0dpR�λFSR

ρλ2
min

. (18)

Finally, we can calculate the number of pixels we need for the
required resolution

NP = LFSR

N0dp
= λcLFρ

nsdp
. (19)

5.2 Fully photonic model limitations and calibration

Astronomical spectrographs are usually designed to operate with
a large FSR (typically several hundred nm). This is a problem for
the IPS because conventional telecoms AWGs are designed with
low FSR in order to deal with the discrete narrow-band input from
the telecoms industry. For astronomy, single AWGs need to be re-
designed to work in lower spectral orders by reducing the path differ-
ence between adjacent waveguides. This requires more waveguides
to maintain the maximum theoretical resolution and an increase in
LF to maintain a practical one (see equation 18). This produces very
large AWG dimensions which cannot be manufactured due to chip
manufacturing size constraints (Lawrence et al. 2010).

We wish to avoid this problem and retain a fully integrated design
with no external optics. As such we make use of the tandem AWG
arrangement, where a primary AWG filters the light by wavelength
into secondary AWGs, each encompassing a fraction of the original
FSR (see Fig. 4 and Takada et al. 2001). This allows the individual
component dimensions to be within manufacturing limits whilst al-
lowing our full device to sample the correct FSR. It would also allow
the AWG design process to remain similar to current specifications.

Since no full-scale AWG instruments currently exist, we are re-
quired to use a bottoms-up approach to estimate its size. To do so we
take an existing AWG acquired from Gemfire Livingstone. We use
its known parameters and adjust the model-produced dimensions
until they match the real ones. In order to emulate Allington-Smith
(2007b), we set the scaling parameters to two extremes.

S = 1. Minimize bawg = 1.1, which yields a aawg = 10 mm
S = 2. Minimize aawg = 0 mm, which yields bawg = 2.8.

For both scenarios, we keep cawg = 0.7 mm as the device is planar
so the height should not change.

For simplicity, we will not include the volume of the initial MMF
bundle, the PL or the housing of the instrument. We will however

 at D
urham

 U
niversity L

ibrary on June 19, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3144 R. J. Harris and J. R. Allington-Smith

Figure 4. An illustration of the tandem and single AWG setup. The image
on the left shows the conventional AWG dispersing the whole spectrum.
The image on the right is the tandem configuration. The intial AWG (or
other dispersive optic) splits the light by wavelength (here to �λFSR/3) and
feeds the second set of AWGs. This has the advantage that each individual
AWG can be smaller, though it requires more AWGs, additional components
(feeding fibres) and is subject to extra loss of throughput. Note that the
length of the output must be the same in both cases in order for the detector
to sample adequately.

include an estimate for the size of the detector. This value is calcu-
lated assuming the size of a typical detector sub-system including
the cryostat. This is estimated as 10−7 m3 per detector pixel.

6 R ESULTS

To estimate the uncertainties within our model, we use both of
our oversizing options for both models and also vary C between 1
(diffraction limited) and 4 (the initial results obtained in Cvetojevic
et al. 2009) for our fully photonic instrument. This gives us two
extremes and allows for the current maximum of C = 1.6 achieved
in Cvetojevic et al. 2012.

To test our models, we choose two sets of instruments. First,
those designed to represent current instrumentation on 8 m tele-
scopes. Then, we test against instruments that have been designed
for the Thirty Meter Telescope (TMT). We shall only investigate a
single mode of operation for each instrument. This may be over-
simplifying as most instruments are designed to operate at different
resolutions and at different wavelengths by changing gratings or
optics. It however keeps the model simple and IPS devices could be
adapted to suit various purposes; this is discussed in the conclusions.

The first set of instruments are in current use on 8 m telescopes
and are intended to represent generic instrument types. We use the
parameters in Table 2 to calculate the volume of the instruments.
The instruments we have chosen are as follows.

(i) Gemini Near-InfraRed Spectrograph (GNIRS) on Gemini-
North. The instrument has an overall wavelength range of 1.0–
5.4 μm, resolutions of between 1700 and 18 000, and slitwidths of
between 0.1 and 1.0 arcsec. It has an imaging mode, a long-slit
mode and originally an IFS mode (destroyed during maintenance

at the telescope). We will be comparing our photonic instrument to
the long-slit configuration.

(ii) CRyogenic high-resolution InfraRed Echelle Spectrograph
(CRIRES) is a high-resolution spectrograph on the Very Large Tele-
scope (VLT). It is designed to operate between 1.0 and 5 μm, with
a resolution of up to 105. We have chosen it to illustrate a long-slit
high-resolution spectrograph.

(iii) Near-Infrared Integral Field Spectrometer (NIFS) on
Gemini-North is our first Integral Field Unit (IFU) instrument. It
is designed to work with the Adaptive Optics (AO) system, over
0.9–2.4 μm.

(iv) Spectrograph for INtegral Field Observations in the Near
Infrared (SINFONI) on the VLT is our second IFU instrument. It
operates in the 1.1–2.45 μm range, again with AO.

We have also chosen two hybrid instruments proposed for the
Thirty Meter Telescope (TMT; Simard et al. 2010). The Infra-
Red Multi-object Spectrograph (IRMS) will employ 10 or more
IFUs. Each one will have a 2 × 2 arcsec-squared field of view
with a 50 per cent of the energy enclosed by 50 mas at wave-
length 1 μm, resulting in 1600 spaxels per IFU. The Infrared Imag-
ing Spectrograph (IRIS) has three IFU units, two of which will
be lenslet arrays (for observing smaller fields) and one will be
an image slicer (larger fields). Here, we model the slicer, which
has 88 mirror facets, but will keep the best resolution possible
with our AWG model. As with the 8 m instruments, the instru-
ment scale lengths are fitted to values taken from the literature, see
Table 2.

Table 3 shows the resulting parameters in the fully photonic
case. The total number of AWGs required are shown in the second
column; this number will be in the tens of thousands for 8 m in-
struments and the hundreds of thousands for the 30 m instruments.
The large number of AWGs requires rigorous quality control to
test the large number of individual components. This may be of
advantage though, as the individual AWGs should be less prone to
flexure and, due to their modular nature, are better suited to mass
production and upgrades and expansion to suit cashflow. Note that
the size predictions do not include provision for mounting hard-
ware required to support the instrument components or to provide
a suitable controlled environment.

The next eight columns show the different resulting normalized
scale lengths of the instrument. Note that this is the scale length of
the overall instrument, not the individual components. The first four
are the scale lengths without provision for the detector size and show
that the total size of the 8 m instruments will be of the same order as
the conventional instrument. If the diffraction limit can be achieved,
the resulting instruments are smaller for all scenarios, with the
exception being NIFS with the S = 2 scaling. If the diffraction limit

Table 2. Table of input parameters for all instruments. Symbols except for NIFU, the number of IFUs in the
instrument, are explained in the text. The numbers are taken (and approximated from) Allington-Smith (2007b)
for GNIRS; Kaeufl (2004) for CRIRES; McGregor et al. (2003) for NIFS; Eisenhauer et al. (2003) for SINFONI;
Eikenberry et al. (2006) for IRMS and Larkin et al. (2010) for IRIS.

Instrument χ Ny (Nx )[NIFU] Total spaxels R λc �FSR ρ Vol
(arcsec) (nm) (nm) (mm−1) (m3)

GNIRS 0.3 330(1) 330 5900 1650 400 31.7 2.00
CRIRES 0.3 200(1) 200 100 000 1650 48 31.6 3.00
NIFS (J) 0.1 30(29) 870 6050 1250 600 600 2.75

SINFONI (H) 0.2 32(32) 1024 3000 1650 400 128.57 2.75

IRMS 0.1 40 (40)[10] 16 000 10 000 1200 400 128.57 16.00
IRIS 0.1 60(60)[1] 4000 8000 1200 400 310 55.00
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Table 3. Table of the resulting scale lengths of the respective fully photonic instruments. The total
number of modes in the whole instrument is shown first, with the next four columns showing the
respective sizes for the model with no detector. This is followed by the model with detector. All of
the scale lengths are normalized to the cube root of the volume in Table 2. The AWG model uses a
waveguide separation of ρ = 200 mm−1.

Normalized scale length
Total No detector With detector

Instrument number C = 1 C = 4 C = 1 C = 4
of AWGs S = 1 S = 2 S = 1 S = 2 S = 1 S = 2 S = 1 S = 2

GNIRS 13 000 0.49 0.87 1.46 1.55 0.51 0.89 1.47 1.55
CRIRES 6300 0.50 0.90 1.19 1.32 0.60 1.09 1.22 1.42

NIFS 8900 0.79 1.45 1.66 1.93 0.80 1.46 1.66 1.93
SINFONI 28 000 0.39 0.64 1.36 1.39 0.39 0.66 1.36 1.39

IRMOS 520 000 1.69 3.08 3.53 4.09 1.71 3.11 3.53 4.11
IRIS 110 000 0.72 1.07 1.34 1.48 0.73 1.08 1.35 1.49

Table 4. Further information on the fully photonic model. The AWG
model uses a waveguide separation of ρ = 200 mm−1.

Instrument Modes Total detector Reference instrument
per spaxel pixels/(106) pixels/(106)

GNIRS 39 60.69 1.05
CRIRES 31 47.31 2.10

NIFS 10 112.43 4.19
SINFONI 27 66.50 4.19

IRMOS 32 6263.44 83.89
IRIS 32 1127.42 16.78

cannot be achieved the instruments will have a scale length larger
than the original instruments. The results for the 30 m instruments
are similar to the 8 m ones, with the S = 1 scaled case of IRIS being
slightly smaller and the rest being slightly larger.

The second four include the provision for detector and show
similar results, though the scale lengths are increased slightly as
expected. This shows though that the size of the additional detector
pixels (discussed later) will not pose a significant size restriction on
the instrument.

Table 4 shows the results corresponding to the number of modes
per spaxel and hence the requirements in terms of detector pixels.
The second column shows that all of the instruments will have
around 30 modes per spaxel, with the exception of NIFS, which
will have 10. This causes problems with oversampling in the fully
photonic model due to each mode needing to be sampled using two
detector pixels per resolution element (Nyquist sampling). There
needs to be some way of combining the individual spectra to stop
massive oversampling (shown in column 3). This will be discussed
later, but will probably involve additional components, increasing
the size of the instrument.

Table 5 shows the results from the semiphotonic model. The sec-
ond column shows that the number of replica photonic instruments
will be 103–104. As such using the semiphotonic method will re-
quire mass production of the replica spectrographs which is not
common in the astronomical instrumentation community. The al-
ternative is to put many spaxels in the same spectrograph and would
require a balance between redundancy and overlarge components
for this version to work.

The next two columns show that using the semiphotonic model
for the instrument will result in much larger instruments. This
matches with the results of Allington-Smith (2007b), where as the
input was sliced more the instrument tended to get bigger. As stated
in Section 4, we are slicing the instrument to the diffraction limit in

Table 5. Results for the semiphotonic model. All of the scale lengths are
normalized to the cube root of the volume in Table 2. The semiphotonic
model uses ρ stated in Fig. 2.

Number Normalized scale length Number of
Instrument of replica detector

spectrographs S = 1 S = 2 pixelsa /(106)

GNIRS 330 4.30 5.30 1.05
CRIRES 200 3.06 4.66 2.10

NIFS 870 9.55 9.54 4.19
SINFONI 1024 8.62 9.36 4.19

IRMOS 16 000 26.07 32.48 83.89
IRIS 3600 8.49 9.20 16.78

aThe number of detector pixels assumes that the modes in each spaxel can
be reduced on to the detector appropriately, which may not be the case.

the spatial direction and then separating each spaxel into a separate
spectrograph, which imposes huge redundancies. The number of
required detector pixels are shown in the final column, for this we
are assuming that all the detector separate modes can be combined
on to a linear detector, which may not be possible.

7 M O D I F I C AT I O N S TO I N T E G R AT E D
P H OTO N I C S P E C T RO G R A P H S

From the results already discussed, it is clear that IPSs in their
current state offer little or no advantage in terms of size and detector
pixels when compared with existing instruments on large telescopes
or those planned for extremely large telescopes (ELTs). However,
it is possible to envisage modifications to the fully photonic device
which would make it possible to exploit the unique features of
photonic spectrographs. One such scheme is already being studied
(Cvetojevic et al. 2012).

7.1 Multiple-input arrayed waveguide gratings

So far we have restricted ourselves to one input per AWG (i.e.
one mode per AWG), which as shown in previous sections requires
many AWGs. Placing multiple inputs per AWG would reduce the
dependence on equation (7), at the extreme eliminating it entirely
if all the inputs could fit into a single AWG. In order to introduce
these extra inputs additional fibres are placed at different positions
on the input FPR. This introduces a path difference between each
input with respect to the central one (see Figs 5 and 6). This path
difference is carried through the system and results in the output
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Figure 5. Cutaway diagram illustrating the difference between the single
and multiple input versions of the AWG. To the left is the single input,
which would make use of a linear detector array to sample the output
spectrum. To the right the multiple input version. Here five inputs produce
five separate spectra that overlap at the output of the AWG. This has a couple
of implications, first the spectra would need to be cross-dispersed in order
to be sampled and secondly, the end of the second FPR would need to be
larger (though not the input which would remain the size of the waveguides).
The path difference in the waveguides is not illustrated in this diagram for
simplicity.

spectrum of each mode being shifted in the dispersion direction
at the output. To remove the overlap between spectra, it will be
necessary to introduce cross-dispersion.

The AWG also produces multiple diffraction orders (as with a
conventional grating), so we also need to make sure that the inputs
all lie within a region half that of the FSR of the central input. This
is to stop the same wavelength from different orders lying in the
same position in the linear output, resulting in the cross-dispersed
spectra lying the same position on the detector. The refractive index
change in fused silica is not great enough to disperse the light by
polishing the AWG at an angle. In order to separate the spectra,
the outputs need to be cross-dispersed using conventional optics
(Cvetojevic et al. 2009). This means that each AWG will need a 2D
detector, a dispersive element and collimating and camera lenses.
Here, we look at the relative advantages of using cross-dispersion
in the system.

7.2 Adding cross-dispersion

To cross-disperse, we need additional optics, which means that the
device is no longer fully integrated, potentially making manufacture
and maintenance more difficult, but reducing the number of AWGs
required for the device. We construct a new toy model to see how the
scale length of a cross-dispersed system (multiple inputs) compares
to the one with linear arrays (single inputs). For this section, we
have modified our fully photonic model so it is no longer reflective
and the output of the second FPR outputs is linear (e.g. Fig. 5 and
Lu et al. 2003). The first FPR is still in its original shape so as to
allow the multiple inputs. Changing the model like this will affect
the overall size of the instrument (due to the difference in AWG

design), but will still allow us to examine the relative sizes of the
two scenarios.

We retain the single-input model for our comparison and use
the length values calculated in previous sections. As such the scale
length of the instrument (with all modes) is still NawgLxLyLz, where
Nawg is the number of AWGs.

The calculation of the size of the multiple-input AWG option
follows that for the cross-dispersion option requires the AWG, a
collimator, a prism and then a camera in front of the detector (see
Fig. 7). The equation for the volume of the system now becomes
NawgLxLyLz, where Nawg = N/Ni, the total number of spaxels
divided by the number of inputs per AWG and the dimensions
being defined below.

We start by examining the output end of the AWG. For a single in-
put, the x-length of the AWG system would be the same as described
in equation (9), with E will now be XFSR as we have flattened out the
output. Adding extra inputs such as the ones illustrated in Fig. 7 will
increase this x-length. The maximum distance between inputs must
be less than XFSR, to avoid the same wavelength in a different orders
lying on the same position. For simplicity, we assume that evenly
spaced inputs, which when combined with the previous condition,
yield equation (26). We set the maximum number of inputs to be
XFSR/Dinput, where Dinput is the diameter of the input fibre (here set
to 125 μm).

To calculate the y-length, we must consider how the spectra are
to be cross-dispersed. We need to make sure that the output beam
from the system is collimated. To do this, we make sure that the
output angle of the collimator is small: θ2 = w/2fc < 0.◦01, where
θ2 is the divergence in the collimator and fc is the focal length of
our collimator. As our system is diffraction limited, the diameter of
our collimated beam is

D = θ1fc ≈
(

λmax

w

)
fc. (20)

For cross-dispersion we use a prism, although a grating could
also be used. We need to work out the required resolution of the
prism, which is proportional to the number of inputs (e.g. as the
number of inputs increases the FSR decreases by that factor). This
gives

Rx = Niλmin

�λFSR
, (21)

where Rx is the resolution of the cross-dispersed system. We can
then combine this with the equation for the resolving power of a
diffraction-limited prism (Foy & Foy 2002) to yield

t > Rx

(
dλ

dn

)
=

(
Niλmax

�λFSR

) (
dλ

dn

)
, (22)

Figure 6. The multi-input model for the cross-dispersed system. Each spaxel from the input field is fed into an PL. The output SMFs are fed into AWGs, with
multiple fibres in each AWG. The output from these AWGs is then cross-dispersed on to a 2D detector.
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Figure 7. The new model for the AWG. This allows multiple inputs to the AWG and includes cross-dispersion at the output in order to separate overlapping
spectra.

where t is the path difference between the upper and lower rays
in the prism. In order to account for all wavelengths, we must use
the maximum value of the material dispersion, dλ/dn within the
required wavelength range. The vertex angle of the prism is

α = arcsin

(
2D

nt

)
, (23)

where α is the angle the prism makes to the collimated beam and n
is the refractive index of the prism. This allows the calculation of
the vertex angle of the prism,

φ = 2 arcsin

(
t

2D
sin α

)
. (24)

The output angle of the prism

β = π − φ − 2α. (25)

We can then calculate Ly from Fig. 7, giving equation (27). Finally,
from above and from the geometry in Fig. 7, we have

Lx = MAX

(
XFSR

(
2Ni − 1

Ni

)
, D

)
+ 2aawg (26)

Ly = D

2
+ t sin δ + a sin β + MAX

(
fc sin β,

D

2

)
(27)

Lz = Lz + fcol + a + t cos δ + (a + fc) cos β. (28)

7.3 Results for cross-dispersed multiple-input AWG

We now run the simulation for all the instruments detailed in Sec-
tion 6 using the model above and fused silica as the glass in our
prism. We also set the maximum value of t to 30 cm, to represent
sensible limits for the prism size.

By imposing our limit on t, we can see in Fig. 8 that the number
of inputs per chip is limited to the tens for all the resulting graphs
due to equation (22). The potential advantage of this is that all the
resulting modes from a single spaxel could be fed into one AWG,
meaning that each one could be isolated.

We can also see that though the instrument size decreases (par-
ticularly for NIFS, IRMS and IRIS) as more inputs are added, all
instrument sizes will be much larger than the single-input version.
Existing results have only put around 10 inputs on a chip and then
cross-dispersed by the IRIS2 instrument (Cvetojevic et al. 2012),
which fits with our results. There is no result for CRIRES as the
prism would have to be too large to have sufficient resolution.

Not shown in the resulting graphs are the numbers of pixels
required for the instruments, which would be of the same order or
greater for this new setup.

It should be noted that we have used a prism in our example, which
is usually used for lower resolution cross-dispersion. The alternative
is to use a grating, though this would work in a similar way. Taking
the equation for FSR and combining it with a diffraction-limited
grating (Rx = mρW) yields

Ni = ρW. (29)
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Figure 8. The resulting scale length due to varying the number of inputs to each AWG on each instrument. The different scaling cases are shown in green and
blue with the dashed horizontal line indicating the scale length of the single input instrument. From the figure you can see that all the results will produce larger
instruments than the single-input case. The result for CRIRES is omitted as no sensibly sized prism could be found with sufficient resolution to cross-disperse
the outputs.

Showing the grating size (related to W) will increase as the number
of inputs increases (given a maximum ruling density).

7.4 Other instrument options

In its present form, it is clear that trying to compete with
large IFU-style instruments is not a viable option. As shown

in Harris & Allington-Smith (2012) the areas providing the
greatest advantage would be small or diffraction-limited tele-
scopes, preferably operating at longer wavelengths with instru-
ments that only require a small field of view. There is po-
tential for applications in Solar system science, planetary and
stellar science and studies of individual stars in nearby galaxy
populations.

 at D
urham

 U
niversity L

ibrary on June 19, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Applications of IPS in astronomy 3149

Another option is to use multiple single-input AWGs, but to
combine the output on to a single linear detector array to reduce the
number of detector pixels by a factor equal to the number of modes
per spaxel. This would greatly reduce the cost of the detector system
and bring the benefit of adaptability of a 1D detector array to the
output focal surface of the AWG. This would only be possible if the
pixels had a large aspect ratio. This might incur a penalty in terms
of extra detector noise, and the number of AWGs is not reduced.
This option is currently under investigation.

A further option is to reduce the number of modes that are
extracted from the input multi-mode light to produce an accept-
able tradeoff between cost and performance defined as a combi-
nation of throughput, spectral resolution and field size. Options
include.

(a) Restrict the number of SMFs output from the PL with a
consequent loss of throughput. This may be acceptable because the
population of excited modes is not likely to be uniform (Corbett &
Allington-Smith 2006) but will reduce as a function of mode number
to a cutoff value at high order. Thus, the overall performance of the
system in terms of the product of cost and throughput may be
acceptably high.

(b) Reduce the number of AWGs (and detector pixels) by making
each work in a partly multi-mode (i.e. few mode) configuration so
that the AWG disperses light which is not in a single mode. This
may be acceptable if high resolving power is not required e.g. in a
survey of faint, unresolved galaxies.

(c) Reduce the number of AWGs (and detector pixels) by de-
creasing the field of view. This directly trades off cost with field
coverage. This is of relevance to applications requiring little spa-
tial multiplex, e.g. single-object spectroscopy or spectroscopy with
high-order AO such that the input image is already near the diffrac-
tion limit (Harris & Allington-Smith 2012).

8 C O N C L U S I O N

We have examined the application of Integrated Photonic Spectro-
graphs in astronomy and shown that an IPS is equivalent in function
to an image slicer. We have shown that as the telescope diameter in-
creases, the size of an IPS must also increase (provided that the slit
is not matched to the diffraction limit) due to the increase in number
of modes in the field (equivalent to the number of diffraction-limited
slices). We have also shown that the number of modes in a field is
independent of how the field is initially sampled [the size of the
sampling element (spaxel) has no effect on the total number of
modes in the field].

We modelled IPS instruments to compare them with conventional
instruments on large telescopes and found that they require 103–
105 AWGs or 103–104 replica spectrographs if bulk optics are used
for instruments on 8 and 30 m telescopes. We found that fully
photonic instruments were comparable in size to their conventional
counterparts but only if the AWG was close to the diffraction limit.
The semiphotonic instruments were found to be much larger, due
to the redundancies of having multiple spectrographs.

We have also found that unless the input image is sampled near the
diffraction limit, the number of component spectra in each spaxel
is very high, requiring large numbers of pixels in the detector array.
This is equivalent to oversampling the PSF and could also poten-
tially increase detector noise in the instrument.

To combat the problem of size, we considered the effect of
adding extra inputs to the AWG to reduce the number of AWGs
required. However, the resulting instrument was of the same size

or larger. It also means that the problem of oversampling in the
linear case remains unsolved and potentially will be worse since
the spectra will need to have gaps between them to distinguish
them.

We also examined other options for reducing the number of de-
tector pixels and/or AWGs and concluded that instruments of pho-
tonic construction may be viable depending on the extent to which
performance (including throughput, spectral resolution and spatial
multiplex) can be traded against cost.

Even without these modifications or restrictions, there are some
areas where IPSs may offer a significant advantage. These include
spectroscopy of objects near the diffraction limit, e.g. single ob-
jects with high-order AO such as in exoplanet studies. Another is
low-resolution multiplexed spectroscopy working in the few-mode
limit.
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