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Abstract 

Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug 

discovery. This is driven by the need to develop more efficacious and safer treatments, the 

advent of molecular targeted therapeutics, and the requirements to reduce and refine current 

preclinical in vivo models. Such bioimaging strategies include magnetic resonance imaging 

(MRI), positron emission tomography (PET), single positron emission computed tomography 

(SPECT), ultrasound, and optical approaches such as bioluminescence and fluorescence 

imaging. These molecular imaging modalities have several advantages over traditional 

screening methods, not least the ability to quantitatively monitor pharmacodynamic changes 

at the cellular and molecular level in living animals non-invasively in real-time. This review 

aims to provide an overview of non-invasive molecular imaging techniques, highlighting the 

strengths, limitations and versatility of these approaches in preclinical cancer drug discovery 

and development. 
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Introduction 

 

Despite advances in cancer treatment, response of many tumour types is sub-optimal and in 

many cases not curative. Therefore new treatments or better targeting of current treatments 

for cancer therapy are of the upmost importance. As knowledge of molecular systems and 

pathways expands and improves, development of novel agents that are directed to specific 

molecular targets has become forefront. This approach aims to increase selective toxicity to 

cancer cells, reduce the likelihood of therapeutic resistance, and limit patient morbidity 

commonly associated with chemotherapy. The development and improvement of these 

‘molecular targeted’ therapies is a major goal of current anticancer drug development. 

Analytical tools that enable the assessment of new therapies targeted specifically to 

individual pathways/molecules in living mammals are already benefitting researches, with the 

potential to provide a lot more information in the future.  

 

Limitations of current preclinical in vivo models in cancer drug development. 

In vitro studies can be used to give basic information on the toxicity of a drug against cancer 

cell lines, to evaluate drug target interactions and to define biochemical and gene expression 

pathways (Massoud et al., 2003). These studies do not however answer questions regarding 

clinical response in the whole body system (de Jong et al., 2010). Ultimately the value of 

laboratory and preclinical studies depend on their capacity to accurately predict clinical 

response as a surrogate to humans, due to the ethical and practical concerns this raises (de 

Jong et al., 2010). Over the past few decades animal models have played a key part in 

revealing many biochemical and physiological processes involved in the onset of cancer and 

its development in living organisms (de Jong et al., 2010). The primary objectives of these 

animal models are firstly to mimic the human disease as closely as possible and secondly to 

proficiently test new therapies (Liao et al., 2007). In vivo models allow target-orientated drug 

screening and can yield pharmacokinetic and pharmacodynamic information, both are which 

are clinically relevant. However, despite animal models giving valuable information 

regarding drug efficacy, there are several factors that should be considered when 

extrapolating mouse data to the clinical testing, a topic succinctly reviewed by de Jong and 

Maina (de Jong et al., 2010). One such example is the use of subcutaneous tumour xenograft 

models, a tumour environment which does not accurately mimic the clinical situation.  



 Subcutaneous tumour xenograft models are traditionally used as a frontline screen for 

assessing therapeutic efficacy and drug-target interactions, the response been determined via 

calliper-based measurements, and monitoring the lifespan of animals (Suggitt et al., 2005; 

Zhang et al., 2007). This strategy has proved successful for several agents now in the clinic, 

including traztuzumab for treatment of HER2-overexpressing breast cancer (Baselga et al., 

1998; Vogel et al., 2002), Melphalan in the treatment of rhabdomyosarcoma (Horowitz et al., 

1988) and Vorinostat for treatment of cutaneous T-cell lymphoma (Kelly et al., 2003; Marks 

et al., 2007). Despite these successes and this strategy providing high quality information on 

therapeutics, several limitations exist which impinge upon the utility of this approach for 

molecular-targeted therapeutics. Firstly, these models do not fully recapitulate the tumour 

cellular heterogeneity of the clinical tumour environment. Secondly, significant efforts and 

advances are being made with molecular-targeted agents against tumour vasculature, 

including vascular-disrupting and anti-angiogenic agents. Therapeutic strategies such as these 

may exert their cytostatic effect very efficiently, but since they are not cytotoxic will not 

necessarily lead to a decrease in tumour size (Cai et al., 2006). Therefore monitoring tumour 

size using callipers could underestimate the effect of these agents, give little information 

regarding the internal structure of the tumour and thus provide inconclusive information 

regarding their efficacy.  

 A major issue with the use of calliper-measured subcutaneous xenograft tumour 

models is their lack of applicability for evaluation of metastatic disease (Suggitt et al., 2005). 

Metastasis is the leading cause of death among cancer patients so the development of robust 

model systems for front-line drug discovery in this area is an urgent requirement. Although 

preclinical models exist involving both spontaneous and experimentally induced metastatic 

tumours, these are often time consuming and labour intensive methodologies being non-

amenable to calliper-based measurements and requiring termination of multiple animals for 

tumour load determination (Grosios et al., 1999). Consequently, there is a need for improved 

preclinical models or strategies which translate and represent the clinical situation. 

 

Molecular imaging as a tool for preclinical cancer pharmacology studies. 

Molecular imaging is a rapidly emerging field with a multitude of characteristics that make it 

useful for the drug discovery process. Technically it has many advantages over traditional 

techniques as it is rapid, can be high-throughput, is non-invasive and is less labour intensive 

than pathology- and chemistry-based assays (Massoud et al., 2007). It allows imaging to be 

performed at the cellular and molecular level in living animals, in real-time and with a truly 



quantitative outcome (Laxman et al., 2002; Massoud et al., 2007; Wessels et al., 2007). With 

regards to the requirement to replace, refine and reduce (the 3Rs) the use of animals in 

research, molecular imaging can be used to follow tumour development or therapeutic effect 

over a period of time in the same animal, thereby reducing the numbers of animals being used 

whilst simultaneously improving the data set as each animal serves as its own control (Contag 

et al., 2002; Fomchenko et al., 2006). A further benefit of sequentially studying tumour 

pathogenesis in one animal is that information regarding the possible behaviour of a tumour 

in humans, especially regarding metastasis and therapy response, is more achievable.  

 Earlier detection and characterisation of disease are additional benefits of bioimaging, 

as is the information that can be obtained which is specific to particular molecular events e.g. 

evaluation of therapeutic interactions (Contag et al., 2002; Laxman et al., 2002). In vivo, 

bioimaging can be used for target and therapeutic validation in a dynamic environment 

(Gwyther et al., 2007; Laxman et al., 2002). It also allows quicker assessment of drug/target 

interactions and identification of therapeutic efficacy prior to any macroscopic or phenotypic 

changes (Massoud et al., 2007; Morse et al., 2007). Clinically this is important as efficacy of 

a treatment can be determined earlier and if necessary the treatment regime can be altered 

(Morse et al., 2007). Some types of bioimaging also have the potential to image specific 

intracellular pathways, a feature which has previously been illusive (Laxman et al., 2002). 

 

Imaging modalities in preclinical cancer drug discovery: Advantages and limitations. 

There are seven main types of bioimaging; magnetic resonance imaging (MRI), positron 

emission tomography (PET), single positron emission computed tomography (SPECT), 

computed tomography (CT), ultrasound (US) and optical imaging (including 

bioluminescence imaging (BLI) and fluorescence imaging). All of these techniques 

demonstrate merit during drug development, with each of them having advantages and 

disadvantages (Table 1). 

 

Magnetic resonance imaging (MRI)  

MRI is based on the absorption and emission of energy in the radio frequency range of the 

electromagnetic spectrum, and the fact the body is primarily composed of hydrogen-rich fat 

and water. When induced by a strong magnetic field the hydrogen nuclei emit a nuclear 

magnetic resonance signal that is determined by the direction of the spin induced. MRI gives 

high spatial resolution of about 50µm
3
 (Czernin et al., 2006) and good soft-tissue contrast. 

MRI is a very versatile technique and is widely used in small animal studies to address 



tumour physiology and quantification of tumour volume (Fomchenko et al., 2006). However 

MRI has low sensitivity and a relatively long acquisition time (up to one hour), thereby 

limiting its utility for preclinical drug development studies (Lyons, 2005). Its ability to 

amalgamate anatomical and functional information provides great insights into disease 

processes, including cancer (Hasegawa et al., 2010). Improvements in the methodology for 

MRI are constant (Schroder et al., 2006), including the use of higher magnetic fields and 

enhancing contrast agents, which has led to an improvement in the sensitivity of MRI 

(Hasegawa et al., 2010).  

 MRI has been used to successfully report efficacy of suicide gene therapy in delaying 

tumour growth in a mouse model of orthotopic glioma (Breton et al., 2010) and to 

demonstrate complete infiltration of intraprostatic injected gene therapies in preclinical 

mouse models of prostate cancer (Kassouf et al., 2007). More recently, MRI has been used 

with drug-containing liposomes, either gadolinium-labelled or paramagnetic, to facilitate 

image-supervised therapeutic delivery and subsequent monitoring of efficacy (Grange et al., 

2010; Strijkers et al., 2010). Advancements in technology have now led to more sensitive 

quantitative MRI techniques, such as high-field MRI and dynamic contrast-enhanced MRI 

(DCE-MRI), which are even more valuable for the research into tumour vasculature and the 

effects of drugs. 

 

Dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI). DCE-MRI is a 

quantitative method of investigating the structure and function of tumour microvasculature 

and microcirculation (Ali et al., 2010; O'Connor et al., 2007). Advantages of this technique 

are that in addition to initial anatomical MRI information, data are subsequently acquired 

every few seconds over a period of 5-10 minutes providing dynamic detail of features such as 

blood flow (O'Connor et al., 2007). DCE-MRI has been used to characterise tumour 

angiogenesis (Brix et al., 2010), and has the potential to aid investigation of antiangiogenic 

and vascular-disrupting therapeutics, although it is not restricted to such agents. Recently 

DCE-MRI has been used to show co-treatment with a folate-linked liposomal doxorubicin 

and a TGFβ-Receptor-1 inhibitor (A-83-01) enhanced the therapeutic effect of doxorubicin, 

indicated by DCE-MRI monitored tumour leakage of the gadolinium-liposome complex 

(Taniguchi et al., 2010). Furthermore, DCE-MRI demonstrated pancreatic xenograft tumour 

response to the HIF-1α inhibitor PX-478, before any anatomical changes were recorded 

(Schwartz et al., 2010). 



 In general MRI, although constrained by acquisition time and sensitivity, can be used 

preclinically to help develop new therapies both cytotoxic and target molecule specific, for a 

broad range of cancers. This strategy does address the requirement for a refinement of usage 

and reduction in animal numbers according to the 3Rs. In addition, MRI also allows tumour 

response to be followed in the same animal therefore improving the power of a study despite 

fewer animals being used. A drawback to the use of MRI in pre-clinical studies is the cost of 

equipment for smaller labs where in vivo work is done.  

 

Positron Emission Tomography (PET) 

PET produces a three-dimensional image of functional processes in the body, measuring 

biochemical function rather than structure, and thus provides a crucial insight into cancer 

biology and pharmacology (Zaidi et al., 2009). Mechanistically, a probe comprising a 

metabolically active molecule (such as glucose or water) incorporating a γ-ray emitting 

radioisotope, is introduced into animal and its uptake and metabolism monitored. The 

commonest probe is 18-fluoro-deoxy-glucose (FDG), of which uptake indicates glucose 

metabolism and thus the enhanced glycolysis associated with malignancy, enabling 

differentiation between malignant and benign tissue (Otsuka et al., 2007; Vansteenkiste, 

2002). Unfortunately, due to the requirement of a cyclotron for radio-nucleotide production 

and dedicated synthetic chemical equipment, PET systems are generally limited to research 

laboratories associated with a clinical centre. However, where they are used, PET has strong 

potential for translational research from small animals to humans (Laforest et al., 2007). 

Additionally, PET has the advantage over other imaging modalities in that it also permits 

evaluation of changes in tumour metabolism and proliferation, drug biodistribution, and 

pharmacokinetics, all of which aid assessment of drug efficacy (Avril et al., 2007). 

 A huge variety of cancer treatments have been investigated using PET, including 

treatment of malignant gliomas using bevacizumab and irinotecan (Chen et al., 2007), 

defining optimal does of mTOR inhibitors (Cejka et al., 2009), screening novel HDAC 

inhibitors (Leyton et al., 2006), evaluating ovarian tumour response to the antivascular agent 

AVE8062 and taxanes (Kim et al., 2007), and determining the therapeutic effect of the EGFR 

tyrosine kinase inhibitor lapatinib (Diaz et al., 2010). In addition, radiotracers to indicate 

changes in receptor expression following therapeutic interventions have also been studied 

(Kramer-Marek et al., 2009), as was the case with the  pharmacodynamics of C75, a fatty 

acid synthase inhibitor and emerging target for anticancer therapy (Lee et al., 2007a).  



 The ability to use PET to determine drug and target distribution in cancer cells has 

been used to monitor whether yttrium-90 spheres, a novel treatment for advanced liver 

cancer, are preferentially delivered to tumour cells following injection into the hepatic 

arteries (Tehranipour et al., 2007). Furthermore, this application of PET has been adopted to 

determine tumour specificity of the JAA-f11 antibody on the survival of mice with metastatic 

4T1 breast tumours (Rittenhouse-Olson, 2007) and to confirm that the sigma-2 receptor was a 

valid target for cancer drug development through preferential expression in tumour tissue but 

not normal tissues (Kashiwagi et al., 2007).  

 One problem reported for PET in preclinical studies was the heterogeneity of glucose 

uptake in different areas of a tumour, resulting in a lack of correlation between PET and 

standard calliper measurements, evidenced with enzastaurin, a novel protein kinase C-beta II 

inhibitor (Pollok et al., 2009). Despite this potential issue for experimental reproducibility, 

the use of PET preclinically is a viable option as it allows treatment optimisation which is one 

of the main goals of preclinical studies prior to clinical trial. However, as with MRI, the 

equipment necessary for imaging small animals is expensive and not available to the majority 

of laboratories.  

 

Single Positron Emission Computed Tomography (SPECT) 

SPECT is an imaging technique that detects low energy γ-rays arising from radioisotope 

decay and has resolution of 1-2mm. An advantage of this technique over PET is the capacity 

to detect multiple probes simultaneously. Conversely, SPECT has lower sensitivity and 

therefore requires higher amounts of probe (Lyons, 2005). A detailed comparison of PET 

versus SPECT methodologies is provided by Rahmin and Zaidi (Rahmim et al., 2008).  

 In cancer drug development, SPECT has been used to investigate the dosage effects of 

the human monoclonal antibody hu3S193, targeted to the Lewis-Y (Krug et al., 2007), and 

using Tc-99m tagged VEGF-C to analyze VEGF-induced signalling pathways and changes in 

VEGF-Receptor expression in response to the antiangiogenic agent PTK787 (Ali et al., 

2010). Similarly, small high-affinity anti-HER2 molecules have been investigated as suitable 

tracers of SPECT visualisation of HER2-expressing tumours (Ahlgren et al., 2009), with the 

benefit of also permitting assessment of treatment-induced effects on HER2 expression. 

 New probes are continually being engineered to optimise current and develop new 

methods that may help in targeted cancer drug development. For instance, activity of matrix 

metalloproteinase-14 (MMP-14), a hallmark of cancer metastasis, has been probed using a 



technetium-99m SPECT marker developed to be “activatable” by MMP-14 in vivo, a strategy 

which may facilitate development of targeted molecular therapies (Watkins et al., 2009).  

  

Computed Tomography 

Computed tomography (CT) is a medical imaging method whereby contrast agents are 

administered intravenously, and then digital geometry processing is used to generate 3-

Dimensional images from a series of 2-Dimensional X-ray scans. CT is the most commonly 

used tool for clinical assessment of the structural features of cancer and along with MRI is the 

modality of choice to monitor tumour response to therapy (Torigian et al., 2007). The 

benefits of CT include its ability to separate anatomical structures at different depths within 

the body, making it more useful than standard X-rays. It is inherently high contrast therefore 

even extremely small differences in tissue density can be distinguished. Images created by 

CT scans can be manipulated so that they can be viewed in different planes.  

 Conventional CT imaging used in the clinic is not suitable for small animal studies 

due to differences in species size and modality requirements, therefore dedicated systems 

were developed for preclinical studies (Paulus et al., 2000; Schambach et al., 2010). This 

microCT modality offers higher-resolution volumetric imaging of the anatomy of living small 

animals and has proved useful in monitoring the preclinical response of bone metastatic 

deposits to radiofrequency ablation (Proschek et al., 2008; Schambach et al., 2010) and small 

molecule inhibitors of heat-shock proteins (Kang et al., 2010). The greatest utility of 

microCT is detection of metastases, demonstrated through its ability to detect micrometastatic 

pheochromocytoma tumours in the livers of a nude mouse model, providing a tool for 

evaluating treatment strategies for this cancer (Ohta et al., 2006). Similarly, microCT has 

been employed preclinically to measure bone and tumour volumes in the evaluation of new 

treatment options for prostate cancer (Kang et al., 2010; Morgan et al., 2008), non-invasive 

real-time monitoring of lung cancer and treatment response (Fushiki et al., 2009) and to 

follow colorectal tumorigenesis through the use of micro-CT colongraphy (Durkee et al., 

2008). 

 Several studies have now demonstrated that microCT has significant potential for 

preclinical anticancer drug development. However, there still remain several issues regarding 

this technique, including imaging resolution, which often falls short of the intended 100µm 

objective due to scan quality and reader ability (Durkee et al., 2008), and the inherently poor 

contrast between different soft tissues (Prajapati et al., 2011). In preclinical studies resolution 

is vitally important since the commonest use of CT is to monitor micrometastatic deposits, 



which may be impossible to detect unless scans are of exceptional quality are achieved 

(Schambach et al., 2010). Consequently, higher resolution often involves exposure to a 

higher dose of radiation which in itself results in issues regarding exposure levels, although 

advances in technology have decreased this somewhat (Prajapati et al., 2011; Schambach et 

al., 2010). Taking this into account, although CT is a viable imaging technique for preclinical 

cancer pharmacology studies, it does have pitfalls and limitations and is generally more 

expensive than other optical imaging techniques. 

 

High-Frequency Ultrasound in Preclinical Cancer Drug Discovery 

Ultrasound (US) uses sound waves greater than 20,000Hz generated by pulse/echo 

transducers and integrated by signal processing software to produce grey scale images. The 

first high frequency (HF) US instrument specifically designed for micro-imaging of the 

mouse was described 10 years ago (Foster et al., 2002). Since then, US has developed a clear 

and growing role in pre-clinical imaging and drug development due to the significant 

advantages it has over other pre-clinical imaging modalities in that it is relatively 

inexpensive, fast, portable, easy to use, works in real time and does not involve ionizing 

radiation. Several systems are currently available for pre-clinical imaging and these have 

recently been compared for versatility and performance (Moran et al., 2011). In addition to 

anatomical imaging, US also lends itself to functional imaging with Doppler US or US 

contrast agents allowing qualitative and quantitative assessment of tumour blood flow and 

perfusion and tumour angiogenesis.  

 

Anatomical Imaging using high frequency US. Small animal imaging uses high frequency 

US in the range 25 to 50MHz for anatomical imaging giving spatial resolution of 90 x 30 µm 

(Turnbull et al., 1995) allowing high definition imaging of mouse organs such as liver, 

kidney, eyes and heart (Graham et al., 2005; Jolly et al., 2005; Sun et al., 2008). HF-US is 

applicable for imaging mouse colon and measuring colon wall thickness in vivo 

(Abdelrahman et al., 2012) and for imaging ovarian structures in mice (Jaiswal et al., 2009). 

HF-US has also been used to study tumour growth and development in different genetically 

engineered mouse models (GEMM) and in human cancer cell xenografts where grey scale 

resolution allows for the differentiation of subtle changes in anatomy and monitoring of 

changes in disease pathology (Figure 1). This is particularly important when considering 

spontaneously arising tumours in GEMM. Zhao et al. (2010) used HF-US to determine 

preleukaemic changes and splenomegaly in a transgenic model of acute myeloid leukaemia 



(Zhao et al., 2010). In conditional Kras Trp53 mutant mice, HF-US was the modality of 

choice for non-invasive detection of pancreatic tumours (Olive et al., 2006). In this context, 

HF-US is particularly useful in prescreening cohorts for presence of tumours prior to 

randomisation and drug treatment, thereby reducing the numbers of animals used and refining 

experimental protocols. 

 Measurement of tumour size in longitudinal studies is an important readout in anti-

cancer drug discovery and 3-dimensional HF-US (3D HF-US) has been shown to be more 

accurate, precise and reproducible than manual caliper measurement (Ayers et al., 2010). 

This is particularly important when assessing small irregular shaped tumours (Cheung et al., 

2005) and xenograft tumours which are often irregularly shaped. Furthermore, as 3D HF-US 

can also be used to determine tumour volume and burden within organs, it can facilitate 

longitudinal studies to assess responses to novel and existing drugs in GEMM and orthotopic 

models (Singh et al., 2010). 

 As described earlier, although subcutaneous tumour xenograft are traditionally used 

as a frontline screen for assessing therapeutic efficacy they do not accurately recapitulate the 

clinical location or environment (Suggitt et al., 2005). To address the deficiencies of 

subcutaneous models, orthotopic tumour xenografts are increasingly being explored for 

increased clinical relevance (Suggitt et al., 2005). Anatomical imaging in real time using HF-

US provides the basis for image-guided injection thus facilitating production of orthotopic 

tumour models. For example, US guided cell injections were used to create clinically relevant 

models of human pancreatic cancer (Huynh et al., 2011). Similarly, US image guided 

injection of syngeneic colonic carcinoma cells was used to create a robust mouse model of 

liver metastasis without the need for invasive surgery (Hawcroft et al., 2012). 

A limitation of US is that it cannot be used to image bone, which reflects US waves, 

making US unsuitable for analysis of brain and bone tumours. It has also been suggested with 

US is that the imaging and observations from the technique are largely operator dependent 

with discrepancies observed between studies, a feature which can, however, be controlled by 

development of robust imaging protocols (Abdelrahman et al., 2012). 

 

HF-US in Functional and Molecular Imaging. In addition to its ease of use and high 

resolution in anatomical imaging, US can be used to assess tumour angiogenesis by 

qualitative and quantitative assessment of tumour blood flow using Doppler US, or addition 

of a US contrast agent or microbubbles (MBs). This is increasingly important given the 



development of anti-angiogenic therapies and the consequent need for non-invasive strategies 

for continued tumour assessment and monitoring of drug pharmacodynamics.  

 Doppler US detects blood flow by the Doppler shift frequency, with both 2D and 3D 

power Doppler (PD-US) being capable of monitoring and imaging blood flow velocities in 

murine tumour models (Goertz et al., 2002). One such example was the use of 3D PD-US to 

monitor angiogenic therapeutic response in a GEMM of prostate cancer (Xuan et al., 2007). 

However, a limitation of PD-US in this context is caused by the signal-to-noise ratio and 

presence of imaging artefacts which make accurate determination of tumour blood flow 

difficult and slow moving blood undetectable. This may be important when assessing overall 

tumour blood flow in experimental tumours.  

 A further type of US with potential for preclinical cancer pharmacology studies is 

contrast enhanced HF-US which uses gas-filled phospholipd microbubbles (MBs) of 2-7µm 

in size. The small size of these MBs makes them true vascular tracers as they are restricted to 

the vascular network and can readily pass through the lungs, unlike contrast agents from 

other imaging modalities. MBs are hyperechoic, producing bright signals on the grey scale 

image which can be artificially coloured to produce images of tumour blood flow (Figure 

2A). Relative tumour blood flow can be quantitated using time intensity curves (Figure 2B) 

or destruction replenishment imaging giving relative rates of blood flow and maximum 

perfusion. Using this methodology, therapeutic response was detected earlier than 

determination of tumour volume in an orthotopic model of breast cancer, with the area under 

the time-intensity curve and peak intensity correlating to treatment efficacy (Hoyt et al., 

2010). Furthermore, the effect of discontinuation of the anti-angiogenic therapy Bevacizumab 

was also evaluated by contrast-enhanced US, in an orthotopic model of renal cancer (Guibal 

et al., 2010). This study identified a quantitative change in tumour perfusion between those 

continuously treated with Bevacizumab and those in which treatment was interrupted. 

Moreover, contrast enhanced-US was shown to be more sensitive at detecting therapeutic 

response than histological assessment of microvessel density (Guibal et al., 2010). 

 Recently, contrast-enhanced US has been adapted to simultaneously monitor in vivo 

pharmacodynamics, achieved through surface modification of MBs to include targeting 

moieties to vascular biomarkers. Targeted contrast enhanced HF-US imaging has been used 

for in vivo assessment of aνβ3 integrin, endoglin (CD105), and VEGFR2 levels in mouse 

models of breast, ovarian and pancreatic cancer (Deshpande et al., 2011). This relatively new 

approach combining the sensitivity of molecular imaging with low cost, easy to use US 

imaging has the potential to enhance and accelerate pre-clinical drug development.  



 

Optical Imaging in Preclinical Cancer Drug Discovery 

The term optical imaging encompasses preclinical approaches using either luminescence or 

fluorescence detection as a means for evaluating drug activity, molecular events or biological 

activity of potential drug targets. These techniques typically require less equipment and 

expertise and are more cost-effective than the methodologies described above, making them 

more suitable techniques for smaller laboratories. This system relies upon detection of either 

a fluorescent or luminescent event and provides no results regarding the physical 

characteristics or pathology of the tissue or animal, requiring the overlay of the detected 

events on an anatomical image of the animal or tissue. 

 The use of optical imaging for monitoring biological changes is now a well 

established methodology within drug discovery and pharmacology (Fomchenko et al., 2006). 

Early in the drug discovery process in vitro investigations are performed on cancer cell lines, 

and here optical imaging can be used to determine the therapeutic or pharmacological effect 

on cancer cell lines treated with different compounds (Loo et al., 2007), to investigate 

transcription factor activity (Weiss et al., 2010) or to study specific protein expression 

following drug treatment (Sakoguchi-Okada et al., 2007). Furthermore, mechanistic 

information can be obtained through the use of tagged proteins or promoter-driven reporter 

expression within these experimental models. In preclinical cancer pharmacology, there are 

now a wide range of cancer cells available which express optical imaging proteins or probes, 

representing all the major human solid tumour types. 

 A downside to the use of optical imaging is that the target or investigated cells require 

genetic modification to express either luciferase or a fluorescent protein prior to their use, 

making it unlikely that such an approach will ever translate to the clinic. Nevertheless, the 

high selectivity, specificity and applicability of this approach remain a valuable tool for 

preclinical evaluation of cancer therapeutics and their acceleration and progression into the 

clinic. 

 

Bioluminescence Imaging. The principle of BLI relies upon detection of photons emitted 

from the oxygen-mediated conversion of luciferin to oxyluciferin by cells genetically-

modified to express luciferase (Figures 3 and 4), a process which does not necessitate an 

external light source (Gould et al., 1988). Several luciferase genes have now been identified 

and cloned from various natural sources, with the most common ones for imaging purposes 

being ATP-dependent luciferase isolated from the North American firefly (Photonis Pyralis) 



and ATP-independent luciferase from the anthozoan sea pansy (Renilla Reniformis) (Gould et 

al., 1988; Snoeks et al., 2010). Firefly luciferase catalyzes D-luciferin to give a flash of green 

light at 562nm, whereas Renilla luciferase catalyzes coelentrazine to generate blue 

luminescence with a wavelength centred at 482nm (Bhaumik et al., 2004). This lack of cross-

reactivity between firefly and renilla luciferase substrates also means that the BLI system can 

be utilised for dual-label and target imaging (Figure 4).  

 

Anatomical Bioluminescence Imaging. The most common use of BLI in the preclinical 

development of drugs is to monitor any change in tumour volume following treatment of 

xenograft (subcutaneous or orthotopic) tumours in rodents, usually mice (Figures 3 and 4). 

This system is underpinned by the fact that luciferase-driven photon emission can be detected 

externally, even when the cells are located several millimetres below the skin (Lyons, 2005; 

Moriyama et al., 2008). In drug efficacy studies, a decrease in luminescence is attributed to 

the cytotoxic effects of the drugs as a result of either induction of cell death or a reduction in 

cell metabolic ability. In terms of this application of BLI, there have been an extensive 

number of preclinical cancer pharmacology studies across a wide range of tumour cell types, 

including brain, breast and lung carcinoma (Grozio et al., 2007; Holzmuller et al., 2010; 

Kemper et al., 2006; Lim et al., 2009; Ozawa et al., 2010; Zeng et al., 2010), sarcomas 

(Rousseau et al., 2010; Wang et al., 2010) and multiple myeloma (Jia et al., 2010). 

Importantly in terms of the utility of BLI to cancer pharmacology, it is now established that 

neither luciferase itself or bioluminescence imaging affect tumour growth in vitro or in vivo 

(Tiffen et al., 2010).  

 Preclinical models of metastasis for assessment of new therapeutic strategies are 

extremely hard to develop and there are limited systems that adequately represent the human 

disease. Unlike conventional preclinical tumour models, BLI has the capability to detect 

micrometastatic disease and has been reliably demonstrated to detect as few as 500 cells in 

vivo at specific anatomical sites (Troy et al., 2004). This thereby permits tumour 

dissemination and appearance of micrometastatic disease to be tracked temporally and non-

invasively.  Similarly, using BLI, spontaneous tumour growth can also be monitored using 

genetically-modified murine models which can provide vital information regarding tumour 

pathogenesis and treatment strategies (Hawes et al., 2010). In this context, there are a 

plethora of studies that have used BLI as a means to monitor tumour metastases and others 

that have utilised these models to evaluate the treatment of metastatic disease, across a range 

of tumour types (Cordero et al., 2010; Drake et al., 2010; McNally et al., 2010 ; Nogawa et 



al., 2005; Shelton et al., 2010; Takahashi et al., 2010; Vikis et al., 2010; Wang et al., 2010; 

Zhang et al., 2010).  

 Although there is compelling evidence provided by a multitude of studies confirming 

a strong correlation between photon emission and tumour burden, a number of studies have 

now suggested that the intensity of this signal can plateau or even decline during tumour 

progression (Dickson et al., 2007; Jurczok et al., 2007). One explanation for this 

phenomenon is the increased degree of necrotic tissue in these advanced tumours which 

despite not being biochemically active and metabolising luciferin still contributes to the 

tumour mass, providing a disparity between tumour size and bioluminescence output 

(Jurczok et al., 2007). This increase in the proportion of necrotic tissue and reduced gross 

luciferase activity in these tumours is supported by histological studies (Jurczok et al., 2007). 

In addition, this increase in necrotic tissue within the tumour is also related to an increase in 

subtumoral hypoxia, which impacts upon luciferase activity which is an oxygen dependent 

process (Gould et al., 1988). Another issue affecting the viability of BLI for cancer 

pharmacology studies is the location of the tumour within the animal. Although BLI can 

detect tumours and cells located a distance below the skin (Lyons, 2005; Moriyama et al., 

2008), signal attenuation has been noted in deeper tumours (Kang et al., 2006) and dominant 

signals produced by one organ have been shown to mask a weaker signal produced by 

another (Nogawa et al., 2005). Taken together, despite appearing minor in terms of the major 

successes of BLI, these limitations to this strategy must be borne in mind when evaluating 

advanced or larger tumours, and multifocal metastatic models. 

 

Bioluminescence Imaging of Pharmacodynamics. In light of the evolution of molecular-

targeted cancer therapeutics and the need to extract as much information from in vivo studies 

as possible, the most significant advantage and potential for BLI is the assessment of 

molecular-target interactions and drug pharmacodynamics.  This approach has now been 

demonstrated in several studies with general success. Induction of tumour apoptosis 

simultaneously with retardation of tumour growth with a panel of chemotherapeutics was 

observed in a non-invasive preclinical in vivo study (Scabini et al., 2011). Induction of 

apoptosis was demonstrated using a conjugate of luciferin and the caspase 3/7 substrate Z-

DEVD, and tumour cells engineered to express luciferase. Upon apoptosis induction, the 

conjugated substrate is cleaved by the caspases and releases luciferin which is converted by 

the luciferase-expressing tumour cells to produce the bioluminescent signal (Scabini et al., 

2011). Similarly, a caspase-3 activated luciferase-reporter strategy was used to demonstrate 



that concomitant therapy with 5-fluoruracil and tumour necrosis factor alpha-related 

apoptosis-inducing ligand (TRAIL) enhances apoptotic activity in vivo, resulting a 

significantly greater antitumour response (Lee et al., 2007b). In another iteration of this 

approach, BLI was utilised to show that inhibition of N-linked glycosylation activity reduces 

receptor tyrosine kinase activity in tumour cells and is a novel therapeutic strategy for 

targeting tumours resistant to epidermal growth factor inhibitors (Contessa et al., 2010). In 

this study, the BLI approach was also applied to determine safe and efficacious in vivo dosing 

of tunicamycin, which blocks N-glycan precursor biosynthesis (Contessa et al., 2010). 

Recently, BLI has also been used to evaluate tumour glycolysis pathways and demonstrate 

that lactate but not pyruvate concentrations correlate with tumour response to fractionated 

irradiation, an in vivo observation that was not predicted using in vitro assays (Sattler et al., 

2010).  

 One area of preclinical cancer pharmacology where BLI has proved highly useful is 

the assessment of agents targeting angiogenesis or disrupting existing tumour vasculature  

(Angst et al., 2010; Snoeks et al., 2010; Sun et al., 2010a; Zhao et al., 2008). Unlike the 

majority of chemotherapeutic approaches which are cytotoxic and induce tumour regression, 

those strategies which target the tumour blood supply normally induce a cytostatic response 

and subsequent tumour necrosis. Consequently, palpation of these treated tumours would not 

indicate tumour shrinkage and may prove misleading in terms of a response. Use of BLI for 

assessment of tumour response to these agents provides much greater information regarding 

tumour response. Evidence for this application is succinctly reviewed elsewhere (Snoeks et 

al., 2010; Zhao et al., 2008).  

 Despite showing good results in vitro and in conventional in vivo tumour models, 

many cancer therapeutics fail to progress into the clinic as a consequence of poor 

bioavailability, drug resistance and target selectivity (Jones et al., 2006; Wender et al., 2007). 

Identifying and predicting the potential for these limitations preclinically has often proved 

difficult, involving ex vivo drug and tissue analysis or extensive pharmacokinetic studies. 

Over recent years BLI strategies have been utilised in preclinical pharmacology assessments 

to address many of these issues with specific agents. The potential for modulating the 

multidrug resistance (MDR) gene and subsequently P-glycoprotein expression in vivo, and 

thus chemotherapeutic response, has been demonstrated using BLI with Renilla luciferase 

(Jeon et al., 2010). Bioavailability and tumour drug delivery have been monitored using BLI 

(Cirstoiu-Hapca et al., 2010; Peng et al., 2010). Similarly, luciferin-transporter conjugates 

have been used as tools for real-time determination of drug uptake into cells and tumours in 



vivo (Jones et al., 2006; Wender et al., 2007). Furthermore, activity of the metabolic enzyme 

cytochrome P450 3A4 has been monitored in vivo using BLI (Weisheng et al., 2005), an 

important factor when considering pharmacokinetics, metabolism and clearance of a novel 

anticancer agent. 

  

  

Fluorescence Imaging. In agreement with BLI, fluorescence optical imaging requires either 

modification of the target cells to express a specific fluorescent protein or introduction of a 

fluorescently-tagged reporter construct into the animal. The principle of fluorescence imaging 

is similar to BLI in that it relies upon detection of emitted photons; but in contrast to BLI this 

does not require addition of an exogenous substrate and relies upon excitation of the 

fluorophore using a light source or laser. There are now a vast number of fluorescent 

proteins, both natural and engineered, with a wide variety of emitted colours across the 

visible spectrum from blue to far red. The utility of these fluorescent proteins for in vivo 

preclinical cancer pharmacology studies has been shown in many studies representing all 

areas of the preclinical cancer drug discovery and pharmacology process, including drug 

efficacy, monitoring of tumour growth and detection and analysis of angiogenesis and 

metastatic tumour spread (Liu et al., 2007). 

 Relative to BLI, fluorescence imaging has lower sensitivity and a higher background 

signal due to the requirement of an external illumination source to facilitate fluorescent 

emission. This high background being due to biomolecules having intrinsic fluorescence and 

the fact that cells and tissues can both quench and scatter emitted light. Consequently, this 

can limit the depth of penetration of light as the emitted light is absorbed and scattered by 

various tissues, including haemoglobin, (Tung, 2004). As such, important criteria for 

selection of fluorescent proteins for in vivo molecular imaging studies are the required signal 

intensity, photostability and potential for tumour autofluorescent interference. The use of 

fluorescent signals with excitation and emission wavelengths within the near infrared (NIR; 

650-900 nm) region of the spectrum has now proven highly applicable in this context. Lower 

background signals and noise are observed with NIR, due principally to the fact that it is 

poorly absorbed by haemoglobin and lipids (Weissleder et al., 2008). This therefore improves 

contrast between target and background tissues and allows much greater in vivo tissue 

penetration and detection (Weissleder et al., 2008). Despite these apparent limitations, 

fluorescence imaging has proved invaluable in extending our understanding of cancer 

biology, drug efficacy and preclinical cancer pharmacology.  



 One major benefit of fluorescence imaging over other imaging strategies has been the 

ability to simultaneously monitor several processes or molecular events within the same cell 

or preclinical tumour model, facilitated by the wide range of fluorescent proteins with 

differential emission spectra. For example, the role, involvement and interactions between 

tumour cells and the host cellular environment was conclusively addressed using green 

fluorescent protein (GFP) expressing transgenic mice transplanted with tumour cells 

engineered to express red-fluorescent protein (Hoffman, 2009). Such an approach permitted 

the distinction between host and tumour cells, the involvement of specific cell types in 

tumour development such as macrophages, lymphocytes and fibroblasts (Hoffman, 2009). 

Using this model, the effects of cancer drug upon each of these cell types was also examined 

(Hoffman, 2009). A similar approach was also utilised for the evaluation of novel anti-

angiogenic compounds (Amoh et al., 2006; Dunphy et al., 2009). In the initial study, human 

pancreatic tumour cells expressing red fluorescent protein were injected intrasplenically into 

mice expressing GFP under the control of the nestin promoter, a marker of blood vessel 

formation, with this model then being used to simultaneously visualise and quantify nascent 

angiogenesis and the effects of gemcitabine (Amoh et al., 2006). In the latter strategy, GFP 

expression was driven by the Tie2 promoter, an endothelial specific promoter (Dunphy et al., 

2009).  

 

Quantum Dots (QDs). One advance made within the area of fluorescence imaging is the 

development of QDs, small nanocrystals (1-10 nm) made of inorganic semiconductor 

materials (Bentolila et al., 2009). QDs exhibit several properties that make them suited for 

preclinical imaging; the emission wavelength can be precisely tuned and can range from 

ultraviolet to near-infrared, they are very bright and photostable and they have a wide 

absorption band but a narrow emission band making them ideal for multiplexed analysis. The 

relatively large surface area of QDs also allows their utilisation with other contrast agents, 

permitting the use in multimodality imaging strategies (Bentolila et al., 2009). Consequently, 

because of these beneficial properties and the lack of detrimental effects upon cellular 

proliferation or tumourigenicity of cancer cells in vivo, QDs are becoming popular for in vivo 

monitoring of cancer cell behaviour and growth (Bentolila et al., 2009; Sun et al., 2010b; Sun 

et al., 2007; Tavares et al., 2011).  

 The nanoscale structure and versatility of QDs has also provided the potential for the 

development of multifunctional theragnostics, whereby the QD is utilised as both a tumour 

imaging marker and an indicator of drug delivery (Choi et al., 2010; Jain, 2011; Nie et al., 



2007). The in vivo feasibility of this approach was demonstrated preclinically by QDs 

targeted to prostate-specific membrane antigen (PSMA) and integrin ανβ3, which bound to the 

surface of prostate and melanoma cells, respectively (Choi et al., 2010). The potential for 

using QDs as ‘markers’ for tumour selective drug delivery and evaluation of therapeutic 

response was recently demonstrated preclinically (Savla et al., 2011). Using QDs linked to 

doxorubicin and bioconjugated to an aptamer for the mucin-1 tumour marker, the targeting 

and delivery of doxorubicin to ovarian cancer was shown (Savla et al., 2011). This approach 

whereby QDs are developed to evaluate imaging and delivery of therapeutic agents has the 

potential to significantly refine and increase the utility of preclinical cancer pharmacology 

studies and their translation to the clinic. 

 

Multimodal Imaging in Preclinical Cancer Pharmacology 

Although all of the techniques discussed above are proficient in their own right, very often 

these imaging techniques are combined to allow the best aspects of different techniques to be 

used in parallel and to gain as much information as possible from the same animal. 

Combination of modalities providing both functional and anatomical information has proved 

particularly advantageous, such as MRI/BLI, SPECT/CT and PET/CT (Lyons, 2005; 

McCann et al., 2009; Mulder et al., 2009; Nam et al., 2010; van Dalen et al., 2007). With 

regards preclinical cancer pharmacology, there are now a large number of studies in which 

multimodal imaging has been utilised, of which several studies are described below. 

 Combination of MRI with optical imaging has been used preclinically to produce a 

three-dimensional brain image, allowing the morphology, physiology and chemotherapeutic 

response of glioma to be determined non-invasively (Kang et al., 2006; McCann et al., 2009). 

For instance, efficacy of the hypoxia-inducible factor-1 (HIF-1) inhibitor 2-methoxyestradiol 

against glioma was determined in an orthotopic glioma model using BLI and MRI to monitor 

HIF-1 activity and tumour size, respectively (Kang et al., 2006). Several other preclinical 

approaches monitoring tumour response and molecular interactions following chemotherapy 

have also been reported (Medarova et al., 2009), including visualisation and monitoring of 

tumour angiogenesis (Mulder et al., 2009), temporal determination of optimal prodrug 

administration for enzyme-prodrug therapy (Li et al., 2008), and combination therapy of 

chemo- and immuno-therapy against pancreatic cancer  (Kim et al., 2008). In the current era 

of molecular targeted personalised therapeutics, MRI has been applied alongside fluorescence 

imaging to indicate expression and activity of the epidermal growth factor receptor in 



orthotopic glioma, thereby improving the potential for evaluating new and existing treatments 

for this tumour type (Davis et al., 2010). 

 The combination of MicroSPECT and CT imaging has proved very informative in 

preclinical pharmacology studies through provision of tumour metabolic capacity within the 

framework of anatomical structures. In addition, this multimodal strategy demonstrated 

beneficial utility through its ability to monitor retention, pharmacokinetics, distribution and 

excretion of therapeutics, including prostate cancer immunotherapy (Chang et al., 2007), 

distribution of liposome based drug carriers (Bao et al., 2006), and the evaluation of 

antibodies as putative therapeutics for tumour-lymph angiogenesis (Zehnder-Fjallman et al., 

2007). SPECT/CT has also been used to optimise biodistribution of bombesin analogues, 

with the potential of using them to target gastrin releasing-peptide receptor-positive tumours 

(Garcia Garayoa et al., 2007; Mendoza-Sanchez et al., 2011). In this sense, information from 

such studies can be used to demonstrate whether the pharmacokinetic properties of the drug 

are optimal or whether improvements need to be made.  

 SPECT and MRI have been applied to evaluate a variety of therapies including the 

monitoring of changes in vascular permeability and expression of different angiogenic factors 

following anti-angiogenic treatment in  a rat glioma model (Ali et al., 2010), and to 

demonstrate the capacity of AC133+ progenitor cells as a breast cancer cell targeted gene 

delivery system (Rad et al., 2009). 

 As a consequence of its ability to provide information non-invasively regarding 

tumour viability and metabolic activity, PET imaging has been combined with many of the 

other imaging modalities. One of the most commonly utilised approaches is the use of PET 

with CT, which allows anatomical localisation and size to also be monitored (Otsuka et al., 

2007). PET/CT imaging has been shown to be a reliable preclinical tool for the early 

detection of response to molecular targeted therapeutics such as the kinase inhibitor erlotinib 

in head and neck cancers, and as such a surrogate marker for predicting tumour response 

(Vergez et al., 2010). PET/CT imaging also has significant utility for the detection and 

monitoring of tumour development, progression and response in preclinical models (Walter et 

al., 2010). In this context, PET/CT imaging of a genetically-engineered mouse model of lung 

carcinoma has proved valuable in determining whether the clinical efficacy of 

phosphoinositide 3-kinase inhibitors is restricted to malignancies with specific mutations in 

this signalling pathway (Engelman et al., 2008). 

 Incorporation of a third or fourth technique into a multimodal imaging strategy (BLI, 

MRI and PET) has also been suggested to have potential for preclinical cancer pharmacology 



studies (Deroose et al., 2007; Hwang do et al., 2009; Mouchess et al., 2006; Xie et al., 2010). 

Using a trimodality imaging strategy of BLI/Micro-CT/MRI the effects of zoledronic acid 

upon tumour progression and bone resorption were evaluated in a neuroblastoma xenograft 

tumour model (Mouchess et al., 2006). In this study, BLI increased concomitantly with 

detectable osteolytic lesions and also reflected tumour growth inhibition by zoledronic acid. 

Bone loss was quantified using micro-CT, and MRI allowed assessment of tumour cells both 

within the bone marrow cavity and as distant metastases (Mouchess et al., 2006). This 

simultaneous multimodal strategy thereby allowed a detailed analysis of the tumour and host 

tissue response. In another study, greater quantification of primary and metastatic tumour 

burden in mice was achieved using PET/BLI combined with CT (Deroose et al., 2007). The 

use of a trimodality fusion reporter gene, which allows detection by fluorescence, BLI and 

PET, combined with CT gave improved sensitivity and allowed molecular signals to be 

analysed in the context of anatomical structures. PET/CT combination was advantageous as it 

allowed localisation of lesions not observed by CT due to poor contrast resolution and not 

seen by PET because of high background signal (Deroose et al., 2007). 

 More recently, greater imaging capability for use in preclinical cancer pharmacology 

studies has been achieved through combination of molecular imaging with nanoparticles. 

Nanoparticles capable of concurrent fluorescence, bioluminescence, bioluminescence-

resonance-energy-transfer (BRET), PET and MR imaging have been developed and provide 

further advantages through cellular uptake, the ability to track tumour dissemination and 

therapeutic response in vivo, and their amenability for molecular targeting (Hwang do et al., 

2009; Xie et al., 2010). 

 

Conclusion 

Non-invasive and molecular imaging strategies are now well established and powerful 

methodologies used to evaluate drug efficacy and safety in preclinical cancer 

pharmacological studies. Through advances in this area we have a much greater 

understanding of tumour development at the molecular level, and have made significant 

advances in our ability to monitor or predict therapeutic response. Furthermore, molecular 

imaging in preclinical studies is increasingly more important in light of the clinical 

progression toward personalised medicine, with treatment being tailored to a specific tumour 

protein, gene profile, or genetic polymorphism. In this context, preclinical disease models 

that can give information regarding specific targets will be hugely beneficial. 



 The increasing availability of new multifunctional imaging probes, BLI reporter 

systems and more sensitive equipment in combination with more clinically relevant and 

improved animal models of human cancers is likely to have increasing impact on the 

development of new therapeutics and subsequent improved clinical response. The advent of 

molecular biomaging approaches and advances in this area is further improving the impact of 

preclinical cancer pharmacology studies, not least through the additional ability to 

dynamically monitor drug pharmacodynamics and drug-target interactions non-invasively. 

The most promising advances have been made through the combination of several 

approaches into a single multimodal imaging strategy, with the ability now to utilise tri- and 

quadruple-modality approaches within a single animal. Finally, detection of metastatic 

disease and treatment response against these lesions is an essential requirement for preclinical 

pharmacological studies, requiring sensitive methodology and clinically applicable disease 

models. The significant improvements in non-invasive methodologies, multimodal imaging 

capabilities, and greater detection sensitivity coupled with better metastatic disease models 

and the ability to monitor response in the same animal over time is now permitting the 

previously elusive evaluation of metastatic tumour therapeutic response to be evaluated in 

much greater depth and better translation of therapeutic approaches to the clinic. 
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Table 1: Advantages and Disadvantages of Imaging Modalities for Preclinical Cancer 

Drug Discovery 

 

Modality Advantages Disadvantages 

MRI - High Spatial Resolution 

- Good Soft Tissue Contrast 

- Provides both anatomical and 

functional information 

 

- Low Sensitivity 

- Relatively long acquisition time 

- Requires expensive equipment 

PET - Provides biochemical information 

- High Sensitivity 

- Three-Dimensional Imaging 

- Can monitor changes in tumour 

metabolism and drug biodistribution 

 

- Limited anatomical information 

- Requires specialised equipment 

- Requires radio-nucleotide facilities 

- Requires expensive equipment 

SPECT - Potential to detect multiple probes 

simultaneously, in contrast to PET 

 

- Lower sensitivity than PET 

CT - High sensitivity anatomical 

imaging 

- Provides three-dimensional image 

 

- Lower resolution 

- Limited functional information 

- Poor soft tissue contrast 

- Requires expensive equipment 

 

Ultrasound - Good Resolution 

- Provides both anatomical and 

functional information 

- Fast and portable technique 

- Relatively inexpensive 

- Amenable to smaller research 

laboratories 

 

- Inability to image through bone 

 

Optical 

(BLI and 

fluorescent) 

- Wide applicability 

- Simultaneously monitor several 

molecular events 

- Relatively inexpensive 

- Amenable to smaller research 

laboratories 

- Requires genetic manipulation of 

investigated cells 

- Provides limited anatomical information 

- Reduced sensitivity with increased 

imaging depth 

Abbreviations: BLI: bioluminescent; CT: computerised tomography; MRI: magnetic 

resonance imaging; PET: positron emission tomography; SPECT: single photon emission 

computed tomography. 

  



Figure 1: High frequency ultrasound (HFUS) imaging of the proximal colon of an 

Apc
Min/+

 mouse. 

The VisualSonics Vevo770 system has a resolution of 30µm allowing identification of 

normal and pathological colon. (A) shows normal colon where an even thickness of colon 

wall surrounds the faecal pellet. The wall thickness was measured as 0.18mm [measurement 

not shown]. (B) shows an adjacent section of colon where an adenoma had formed. This was 

identified in vivo as a significant thickening of the colon wall. The maximum wall thickness 

was measured as 0.87mm [measurement not shown]. Black arrows show the outer colon wall, 

white circles delineate the border between faecal pellet and the inner colon wall and white 

stars indicate the faecal pellet. 

 

Figure 2: Contrast-enhanced HFUS imaging. 

The use of microbubble contrast agents with HFUS imaging protocols allows the 

visualisation and relative quantification of tumour blood flow and perfusion. (A) shows a 

contrast-enhanced HFUS image of an SW480 human colorectal cancer xenograft where 

microbubbles are coloured green and the region of interest [tumour] is delineated by the blue 

line. By imaging the contrast agent over time both qualitative and quantitative data on tumour 

vascularity and tumour blood flow respectively can be obtained. (B) shows a wash-in time 

intensity curve where the contrast intensity in arbitrary units is plotted against time in 

seconds. Analysis of these curves provides values for the maximum intensity of the contrast 

agent or relative perfusion and the maximum relative rate of tumour blood flow. 

 

Figure 3:Bioluminescence imaging of orthotopic tumour growth 

Mice were orthotopically implanted on the caecum with DLD1-1 colorectal cancer cells 

engineered to express firefly luciferase (under control of the Simian Virus-40 [SV40] 

promoter). At weekly intervals the mice were injected with D-luciferin and imaged using an 

IVIS-50 system (Caliper Life Sciences). The image shown depicts the growth of the 

orthotopic tumour over time.  

 

 

Figure 4: Potential for dual bioluminescence imaging of tumours in vivo 

A) Mice bearing subcutaneous tumours engineered to express either firefly luciferase (tumour 

site 1, FLuc), renilla luciferase (tumour site 2, RLuc) or both lucifearse systems (tumour site 

3); B) Bioluminescence image following injection of coelenterazine (substrate for renilla 

luciferase), with light detected from tumours 2 and 3; C) The same mouse imaged 4 hours 

later following injection with D-luciferin (substrate for firefly luciferase), with light detected 

from tumours 1 and 3. Neither of the substrates showed any cross-reactivity with the 

alternative luciferase enzyme, and tumour 3 (a mixture of both cell types) emitted a signal 

when both substrates were administered, supporting the potential for dual BLI imaging in 

preclinical cancer pharmacology studies. All images were collected using the IVIS-50 system 

(Caliper Life Sciences) 

 

 

 

  



References 

 

Abdelrahman MA, Marston G, Hull MA, Markham AF, Jones PF, Evans JA, et al. (2012). 

High-frequency ultrasound for in vivo measurement of colon wall thickness in mice. 

Ultrasound Med Biol 38: 432-442. 

 

Ahlgren S, Wallberg H, Tran TA, Widstrom C, Hjertman M, Abrahmsen L, et al. (2009). 

Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant 

affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J Nucl Med 50: 

781-789. 

 

Ali MM, Janic B, Babajani-Feremi A, Varma NR, Iskander AS, Anagli J, et al. (2010). 

Changes in vascular permeability and expression of different angiogenic factors following 

anti-angiogenic treatment in rat glioma. PLoS One 5: e8727. 

 

Amoh Y, Nagakura C, Maitra A, Moossa AR, Katsuoka K, Hoffman RM, et al. (2006). Dual-

color imaging of nascent angiogenesis and its inhibition in liver metastases of pancreatic 

cancer. Anticancer Res 26: 3237-3242. 

 

Angst E, Chen M, Mojadidi M, Hines OJ, Reber HA, Eibl G (2010). Bioluminescence 

imaging of angiogenesis in a murine orthotopic pancreatic cancer model. Mol Imaging Biol 

12: 570-575. 

 

Avril N, Propper D (2007). Functional PET imaging in cancer drug development. Future 

Oncol 3: 215-228. 

 

Ayers GD, McKinley ET, Zhao P, Fritz JM, Metry RE, Deal BC, et al. (2010). Volume of 

preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual 

caliper measurements. J Ultrasound Med 29: 891-901. 

 

Bao A, Phillips WT, Goins B, Zheng X, Sabour S, Natarajan M, et al. (2006). Potential use of 

drug carried-liposomes for cancer therapy via direct intratumoral injection. Int J Pharm 316: 

162-169. 

 

Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J (1998). Recombinant humanized 

anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and 

doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 

58: 2825-2831. 

 

Bentolila LA, Ebenstein Y, Weiss S (2009). Quantum dots for in vivo small-animal imaging. 

J Nucl Med 50: 493-496. 

 

Bhaumik S, Lewis XZ, Gambhir SS (2004). Optical imaging of Renilla luciferase, synthetic 

Renilla luciferase, and firefly luciferase reporter gene expression in living mice. J Biomed 

Optics 9: 578-586. 

 

Breton E, Goetz C, Kintz J, Accart N, Aubertin G, Grellier B, et al. (2010). In vivo preclinical 

low-field MRI monitoring of tumor growth following a suicide-gene therapy in an orthotopic 

mice model of human glioblastoma. C R Biol 333: 220-225. 

 



Brix G, Griebel J, Kiessling F, Wenz F (2010). Tracer kinetic modelling of tumour 

angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur J Nuc 

Med. Mol Imag. 37 Suppl 1: S30-51. 

 

Cai W, Rao J, Gambhir SS, Chen X (2006). How molecular imaging is speeding up 

antiangiogenic drug development. Mol Cancer Ther 5: 2624-2633. 

 

Cejka D, Kuntner C, Preusser M, Fritzer-Szekeres M, Fueger BJ, Strommer S, et al. (2009). 

FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR 

inhibitor everolimus in vivo. Br J Cancer 100: 1739-1745. 

 

Chang CH, Hsu WC, Wang CY, Jan ML, Tsai TH, Lee TW, et al. (2007). Longitudinal 

microSPECt/CT imaging and pharmacokinetics of synthetic luteinizing hormone-releasing 

hormone (LHRH) vaccine in rats. Anticancer Res 27: 3251-3258. 

 

Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, et al. (2007). Predicting 

treatment response of malignant gliomas to bevacizumab and irinotecan by imaging 

proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin 

Oncol 25: 4714-4721. 

 

Cheung AM, Brown AS, Hastie LA, Cucevic V, Roy M, Lacefield JC, et al. (2005). Three-

dimensional ultrasound biomicroscopy for xenograft growth analysis. Ultrasound Med Biol 

31: 865-870. 

 

Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, et al. (2010). Design considerations 

for tumour-targeted nanoparticles. Nat Nanotechnol 5: 42-47. 

 

Cirstoiu-Hapca A, Buchegger F, Lange N, Bossy L, Gurny R, Delie F (2010). Benefit of anti-

HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated 

ovarian cancer: Therapeutic efficacy and biodistribution in mice. J Control Release 144: 324-

331. 

 

Contag CH, Ross BD (2002). It's not just about anatomy: in vivo bioluminescence imaging as 

an eyepiece into biology. J Magn Reson Imaging 16: 378-387. 

 

Contessa JN, Bhojani MS, Freeze HH, Ross BD, Rehemtulla A, Lawrence TS (2010). 

Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target 

for cancer therapy. Clin Cancer Res 16: 3205-3214. 

 

Cordero AB, Kwon Y, Hua X, Godwin AK (2010). In vivo imaging and therapeutic 

treatments in an orthotopic mouse model of ovarian cancer. J Vis Exp. 42: 2125 

 

Czernin J, Weber WA, Herschman HR (2006). Molecular imaging in the development of 

cancer therapeutics. Annu Rev Med 57: 99-118. 

 

Davis SC, Samkoe KS, O'Hara JA, Gibbs-Strauss SL, Payne HL, Hoopes PJ, et al. (2010). 

MRI-coupled fluorescence tomography quantifies EGFR activity in brain tumors. Acad 

Radiol 17: 271-276. 

 



de Jong M, Maina T (2010). Of mice and humans: are they the same?--Implications in cancer 

translational research. J Nucl Med 51: 501-504. 

 

Deroose CM, De A, Loening AM, Chow PL, Ray P, Chatziioannou AF, et al. (2007). 

Multimodality imaging of tumor xenografts and metastases in mice with combined small-

animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 48: 295-303. 

 

Deshpande N, Ren Y, Foygel K, Rosenberg J, Willmann JK (2011). Tumor angiogenic 

marker expression levels during tumor growth: longitudinal assessment with molecularly 

targeted microbubbles and US imaging. Radiology 258: 804-811. 

 

Diaz R, Nguewa PA, Parrondo R, Perez-Stable C, Manrique I, Redrado M, et al. (2010). 

Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor 

lapatinib in a lung cancer model. BMC Cancer 10: 188. 

 

Dickson PV, Hamner B, Ng CY, Hall MM, Zhou J, Hargrove PW, et al. (2007). In vivo 

bioluminescence imaging for early detection and monitoring of disease progression in a 

murine model of neuroblastoma. J. Pediatr Surg 42: 1172-1179. 

 

Drake JM, Danke JR, Henry MD (2010). Bone-specific growth inhibition of prostate cancer 

metastasis by atrasentan. Cancer Biol Ther 9: 607-614. 

 

Dunphy MP, Entenberg D, Toledo-Crow R, Larson SM (2009). In vivo microcartography and 

subcellular imaging of tumor angiogenesis: a novel platform for translational angiogenesis 

research. Microvasc Res 78: 51-56. 

 

Durkee BY, Mudd SR, Roen CN, Clipson L, Newton MA, Weichert JP, et al. (2008). 

Reproducibility of tumor volume measurement at microCT colonography in living mice. 

Acad Radiol 15: 334-341. 

 

Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, et al. (2008). 

Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R 

murine lung cancers. Nat Med 14: 1351-1356. 

 

Fomchenko EI, Holland EC (2006). Mouse models of brain tumors and their applications in 

preclinical trials. Clin Cancer Res 12: 5288-5297. 

 

Foster FS, Zhang MY, Zhou YQ, Liu G, Mehi J, Cherin E, et al. (2002). A new ultrasound 

instrument for in vivo microimaging of mice. Ultrasound Med Biol 28: 1165-1172. 

 

Fushiki H, Kanoh-Azuma T, Katoh M, Kawabata K, Jiang J, Tsuchiya N, et al. (2009). 

Quantification of mouse pulmonary cancer models by microcomputed tomography imaging. 

Cancer Sci 100: 1544-1549. 

 

Garcia Garayoa E, Schweinsberg C, Maes V, Ruegg D, Blanc A, Blauenstein P, et al. (2007). 

New [99mTc]bombesin analogues with improved biodistribution for targeting gastrin 

releasing-peptide receptor-positive tumors. Q J Nucl Med Mol Imaging 51: 42-50. 

 



Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS (2002). High-frequency Doppler 

ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 62: 

6371-6375. 

 

Gould SJ, Subramani S (1988). Firefly luciferase as a tool in molecular and cell biology. Anal 

Biochem 175: 5-13. 

 

Graham KC, Wirtzfeld LA, MacKenzie LT, Postenka CO, Groom AC, MacDonald IC, et al. 

(2005). Three-dimensional high-frequency ultrasound imaging for longitudinal evaluation of 

liver metastases in preclinical models. Cancer Res 65: 5231-5237. 

 

Grange C, Geninatti-Crich S, Esposito G, Alberti D, Tei L, Bussolati B, et al. (2010). 

Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-

targeted doxorubicin-containing liposomes in experimentally induced Kaposi's sarcoma. 

Cancer Res 70: 2180-2190. 

 

Grosios K, Holwell SE, McGown AT, Pettit GR, Bibby MC (1999). In vivo and in vitro 

evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br J Cancer 81: 1318-

1327. 

 

Grozio A, Paleari L, Catassi A, Servent D, Cilli M, Piccardi F, et al. (2008). Natural agents 

targeting the alpha7-nicotinic-receptor in NSCLC: A promising prospective in anti-cancer 

drug development. Int J Cancer. 122: 1911-1915 

 

Guibal A, Taillade L, Mule S, Comperat E, Badachi Y, Golmard JL, et al. (2010). 

Noninvasive contrast-enhanced US quantitative assessment of tumor microcirculation in a 

murine model: effect of discontinuing anti-VEGF therapy. Radiology 254: 420-429. 

 

Gwyther SJ, Schwartz LH (2008). How to assess anti-tumour efficacy by imaging techniques. 

Eur J Cancer. 44: 39-45 

 

Hasegawa S, Furukawa T, Saga T (2010). Molecular MR imaging of cancer gene therapy: 

ferritin transgene reporter takes the stage. Magn Reson Med Sci 9: 37-47. 

 

Hawcroft G, Volpato M, Marston G, Ingram N, Perry SL, Cockbain AJ, et al. (2012). The 

omega-3 polyunsaturated fatty acid eicosapentaenoic acid inhibits mouse MC-26 colorectal 

cancer cell liver metastasis via inhibition of PGE2-dependent cell motility. Br J Pharmacol 

166: 1724-1737. 

 

Hawes JJ, Reilly KM (2010). Bioluminescent approaches for measuring tumor growth in a 

mouse model of neurofibromatosis. Toxicol Pathol 38: 123-130. 

 

Hoffman RM (2009). Imaging cancer dynamics in vivo at the tumor and cellular level with 

fluorescent proteins. Clini Exp Metas 26: 345-355. 

 

Holzmuller R, Mantwill K, Haczek C, Rognoni E, Anton M, Kasajima A, et al. (2011). YB-1 

dependent virotherapy in combination with temozolomide as a multimodal therapy approach 

to eradicate malignant glioma. Int J Cancer. 129: 1265-1276 

 



Horowitz ME, Etcubanas E, Christensen ML, Houghton JA, George SL, Green AA, et al. 

(1988). Phase II testing of melphalan in children with newly diagnosed rhabdomyosarcoma: a 

model for anticancer drug development. J Clin Oncol 6: 308-314. 

 

Hoyt K, Warram JM, Umphrey H, Belt L, Lockhart ME, Robbin ML, et al. (2010). 

Determination of breast cancer response to bevacizumab therapy using contrast-enhanced 

ultrasound and artificial neural networks. J Ultrasound Med 29: 577-585. 

 

Huynh AS, Abrahams DF, Torres MS, Baldwin MK, Gillies RJ, Morse DL (2011). 

Development of an orthotopic human pancreatic cancer xenograft model using ultrasound 

guided injection of cells. PLoS One 6: e20330. 

 

Hwang do W, Ko HY, Kim SK, Kim D, Lee DS, Kim S (2009). Development of a quadruple 

imaging modality by using nanoparticles. Chemistry 15: 9387-9393. 

 

Jain KK (2011). Advances in the field of nanooncology. BMC Med 8: 83. 

 

Jaiswal RS, Singh J, Adams GP (2009). High-resolution ultrasound biomicroscopy for 

monitoring ovarian structures in mice. Reprod Biol Endocrinol 7: 69. 

 

Jeon YH, Bae SA, Lee YJ, Lee YL, Lee SW, Yoon GS, et al. (2010). Evaluation of the 

reversal of multidrug resistance by MDR1 ribonucleic acid interference in a human colon 

cancer model using a renilla luciferase reporter gene and coelenterazine. Mol Imaging 9: 343-

350. 

 

Jia D, Koonce NA, Halakatti R, Li X, Yaccoby S, Swain FL, et al. (2010). Repression of 

multiple myeloma growth and preservation of bone with combined radiotherapy and anti-

angiogenic agent. Radiat Res 173: 809-817. 

 

Jolly C, Jeanny JC, Behar-Cohen F, Laugier P, Saied A (2005). High-resolution 

ultrasonography of subretinal structure and assessment of retina degeneration in rat. Exp Eye 

Res 81: 592-601. 

 

Jones LR, Goun EA, Shinde R, Rothbard JB, Contag CH, Wender PA (2006). Releasable 

luciferin-transporter conjugates: tools for the real-time analysis of cellular uptake and release. 

J Am Chem Soc 128: 6526-6527. 

 

Jurczok A, Fornara P, Soling A (2008). Bioluminescence imaging to monitor bladder cancer 

cell adhesion in vivo: a new approach to optimize a syngeneic, orthotopic, murine bladder 

cancer model. BJU Int. 101: 120-124 

 

Kang BH, Siegelin MD, Plescia J, Raskett CM, Garlick DS, Dohi T, et al. (2010). Preclinical 

characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in 

advanced prostate cancer. Clin Cancer Res 16: 4779-4788. 

 

Kang SH, Cho HT, Devi S, Zhang Z, Escuin D, Liang Z, et al. (2006). Antitumor effect of 2-

methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res 66: 11991-11997. 

 



Kashiwagi H, McDunn JE, Simon PO, Jr., Goedegebuure PS, Xu J, Jones L, et al. (2007). 

Selective sigma-2 ligands preferentially bind to pancreatic adenocarcinomas: applications in 

diagnostic imaging and therapy. Mol Cancer 6: 48. 

 

Kassouf W, Brown GA, Shetty A, Hazle JD, Stafford RJ, Rosser CJ, et al. (2007). An in vivo 

orthotopic canine model to evaluate distribution of intraprostatic injectate: implications for 

gene therapy and drug delivery for prostate cancer. Urology 70: 822-825. 

 

Kelly WK, Richon VM, O'Connor O, Curley T, MacGregor-Curtelli B, Tong W, et al. 

(2003). Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid 

administered intravenously. Clin Can. Res 9: 3578-3588. 

 

Kemper EM, Leenders W, Kusters B, Lyons S, Buckle T, Heerschap A, et al. (2006). 

Development of luciferase tagged brain tumour models in mice for chemotherapy 

intervention studies. Eur J Cancer 42: 3294-3303. 

 

Kim H, Morgan DE, Buchsbaum DJ, Zeng H, Grizzle WE, Warram JM, et al. (2008). Early 

therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic 

pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res 

68: 8369-8376. 

 

Kim TJ, Ravoori M, Landen CN, Kamat AA, Han LY, Lu C, et al. (2007). Antitumor and 

antivascular effects of AVE8062 in ovarian carcinoma. Cancer Res 67: 9337-9345. 

 

Kramer-Marek G, Kiesewetter DO, Capala J (2009). Changes in HER2 expression in breast 

cancer xenografts after therapy can be quantified using PET and (18)F-labeled affibody 

molecules. J Nucl Med 50: 1131-1139. 

 

Krug LM, Milton DT, Jungbluth AA, Chen LC, Quaia E, Pandit-Taskar N, et al. (2007). 

Targeting Lewis Y (Le(y)) in small cell lung cancer with a humanized monoclonal antibody, 

hu3S193: a pilot trial testing two dose levels. J Thorac Oncol 2: 947-952. 

 

Laforest R, Liu X (2008). Image quality with non-standard nuclides in positron emission 

tomography. Q J Nucl Med Mol Imaging. 52: 151-158 

 

Laxman B, Hall DE, Bhojani MS, Hamstra DA, Chenevert TL, Ross BD, et al. (2002). 

Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99: 16551-16555. 

 

Lee JS, Orita H, Gabrielson K, Alvey S, Hagemann RL, Kuhajda FP, et al. (2007a). FDG-

PET for pharmacodynamic assessment of the fatty acid synthase inhibitor C75 in an 

experimental model of lung cancer. Pharm Res 24: 1202-1207. 

 

Lee KC, Hamstra DA, Bhojani MS, Khan AP, Ross BD, Rehemtulla A (2007b). Noninvasive 

molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/Apo2L for 

cancer therapy. Clin Cancer Res 13: 1839-1846. 

 

Leyton J, Alao JP, Da Costa M, Stavropoulou AV, Latigo JR, Perumal M, et al. (2006). In 

vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3'-

deoxy-3'-[18F]fluorothymidine positron emission tomography. Cancer Res 66: 7621-7629. 

 



Li C, Penet MF, Winnard P, Jr., Artemov D, Bhujwalla ZM (2008). Image-guided 

enzyme/prodrug cancer therapy. Clin Cancer Res 14: 515-522. 

 

Liao CP, Zhong C, Saribekyan G, Bading J, Park R, Conti PS, et al. (2007). Mouse models of 

prostate adenocarcinoma with the capacity to monitor spontaneous carcinogenesis by 

bioluminescence or fluorescence. Cancer Res 67: 7525-7533. 

 

Lim E, Modi KD, Kim J (2009). In vivo bioluminescent imaging of mammary tumors using 

IVIS spectrum. J Vis Exp. 26: 1210 

 

Liu T, Ding Y, Xie W, Li Z, Bai X, Li X, et al. (2007). An imageable metastatic treatment 

model of nasopharyngeal carcinoma. Clin Cancer Res 13: 3960-3967. 

 

Loo WT, Sasano H, Chow LW (2007). Effects of capecitabine and vinorelbine on cell 

proliferation, metabolism and COX2 and p16 expression in breast cancer cell lines and solid 

tumour tissues. Biomed Pharmacother 61: 596-600. 

 

Lyons SK (2005). Advances in imaging mouse tumour models in vivo. J Pathol 205: 194-

205. 

 

Marks PA, Breslow R (2007). Dimethyl sulfoxide to vorinostat: development of this histone 

deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25: 84-90. 

 

Massoud TF, Gambhir SS (2007). Integrating noninvasive molecular imaging into molecular 

medicine: an evolving paradigm. Trends Mol Med 13: 183-191. 

 

Massoud TF, Gambhir SS (2003). Molecular imaging in living subjects: seeing fundamental 

biological processes in a new light. Genes Dev 17: 545-580. 

 

McCann CM, Waterman P, Figueiredo JL, Aikawa E, Weissleder R, Chen JW (2009). 

Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals 

glioma response to chemotherapy. NeuroImage 45: 360-369. 

 

McNally LR, Welch DR, Beck BH, Stafford LJ, Long JW, Sellers JC, et al. (2010 ). KISS1 

over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse 

model. Clin Exp Metastasis 27: 591-600. 

 

Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A (2009). Multiparametric 

monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res 69: 

1182-1189. 

 

Mendoza-Sanchez AN, Ferro-Flores G, Ocampo-Garcia BE, Morales-Avila E, de MRF, De 

Leon-Rodriguez LM, et al. (2011). Lys3-bombesin conjugated to 99mTc-labelled gold 

nanoparticles for in vivo gastrin releasing peptide-receptor imaging. J Biomed Nanotechnol 6: 

375-384. 

 

Moran CM, Pye SD, Ellis W, Janeczko A, Morris KD, McNeilly AS, et al. (2011). A 

comparison of the imaging performance of high resolution ultrasound scanners for preclinical 

imaging. Ultrasound Med Biol 37: 493-501. 

 



Morgan TM, Pitts TE, Gross TS, Poliachik SL, Vessella RL, Corey E (2008). RAD001 

(Everolimus) inhibits growth of prostate cancer in the bone and the inhibitory effects are 

increased by combination with docetaxel and zoledronic acid. The Prostate 68: 861-871. 

 

Moriyama EH, Niedre MJ, Jarvi MT, Mocanu JD, Moriyama Y, Subarsky P, et al. (2008). 

The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor 

cells in vitro. Photochem Photobiol Sci 7: 675-680. 

 

Morse DL, Raghunand N, Sadarangani P, Murthi S, Job C, Day S, et al. (2007). Response of 

choline metabolites to docetaxel therapy is quantified in vivo by localized (31)P MRS of 

human breast cancer xenografts and in vitro by high-resolution (31)P NMR spectroscopy of 

cell extracts. Magn Reson Med 58: 270-280. 

 

Mouchess ML, Sohara Y, Nelson MD, Jr., De CYA, Moats RA (2006). Multimodal imaging 

analysis of tumor progression and bone resorption in a murine cancer model. Journal of 

computer assisted tomography 30: 525-534. 

 

Mulder WJ, Castermans K, van Beijnum JR, Oude Egbrink MG, Chin PT, Fayad ZA, et al. 

(2009). Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted 

multimodal quantum dots. Angiogenesis 12: 17-24. 

 

Nam T, Park S, Lee SY, Park K, Choi K, Song IC, et al. (2010). Tumor targeting chitosan 

nanoparticles for dual-modality optical/MR cancer imaging. Bioconjug Chem 21: 578-582. 

 

Nie S, Xing Y, Kim GJ, Simons JW (2007). Nanotechnology applications in cancer. Annu 

Rev Biomed Eng 9: 257-288. 

 

Nogawa M, Yuasa T, Kimura S, Kuroda J, Sato K, Segawa H, et al. (2005). Monitoring 

luciferase-labeled cancer cell growth and metastasis in different in vivo models. Cancer Lett 

217: 243-253. 

 

O'Connor JP, Jackson A, Parker GJ, Jayson GC (2007). DCE-MRI biomarkers in the clinical 

evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96: 189-195. 

 

Ohta S, Lai EW, Morris JC, Bakan DA, Klaunberg B, Cleary S, et al. (2006). MicroCT for 

high-resolution imaging of ectopic pheochromocytoma tumors in the liver of nude mice. Int J 

Cancer 119: 2236-2241. 

 

Olive KP, Tuveson DA (2006). The use of targeted mouse models for preclinical testing of 

novel cancer therapeutics. Clin Cancer Res 12: 5277-5287. 

 

Otsuka H, Morita N, Yamashita K, Nishitani H (2007). FDG-PET/CT for cancer 

management. J Med Invest 54: 195-199. 

 

Ozawa T, James CD (2010). Establishing intracranial brain tumor xenografts with subsequent 

analysis of tumor growth and response to therapy using bioluminescence imaging. J Vis Exp. 

41: 1986 

 



Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK (2000). High resolution X-

ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2: 

62-70. 

 

Peng W, Ye Y, Rabinovich BA, Liu C, Lou Y, Zhang M, et al. (2010). Transduction of 

tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and 

antitumor immune responses. Clin Cancer Res 16: 5458-5468. 

 

Pollok KE, Lahn M, Enas N, McNulty A, Graff J, Cai S, et al. (2009). In vivo Measurements 

of Tumor Metabolism and Growth after Administration of Enzastaurin Using Small Animal 

FDG Positron Emission Tomography. J Oncol 2009: 596560. 

 

Prajapati SI, Keller C (2011). Contrast enhanced vessel imaging using microCT. J Vis Exp 

47: 2377. 

 

Proschek D, Mack MG, Kurth AA, Proschek P, Martin B, Hansmann ML, et al. (2008). 

Radiofrequency ablation of experimental bone metastases in nude rats. Anticancer Res 28: 

879-885. 

 

Rad AM, Iskander AS, Janic B, Knight RA, Arbab AS, Soltanian-Zadeh H (2009). AC133+ 

progenitor cells as gene delivery vehicle and cellular probe in subcutaneous tumor models: a 

preliminary study. BMC Biotech 9: 28. 

 

Rahmim A, Zaidi H (2008). PET versus SPECT: strengths, limitations and challenges. Nucl 

Med Commun 29: 193-207. 

 

Rittenhouse-Olson K (2007). Jaa-f11: extending the life of mice with breast cancer. Expert 

Opin Biol Ther 7: 923-928. 

 

Rousseau J, Escriou V, Perrot P, Picarda G, Charrier C, Scherman D, et al. (2010). 

Advantages of bioluminescence imaging to follow siRNA or chemotherapeutic treatments in 

osteosarcoma preclinical models. Cancer gene therapy 17: 387-397. 

 

Sakoguchi-Okada N, Takahashi-Yanaga F, Fukada K, Shiraishi F, Taba Y, Miwa Y, et al. 

(2007). Celecoxib inhibits the expression of survivin via the suppression of promoter activity 

in human colon cancer cells. Biochem Pharmacol 73: 1318-1329. 

 

Sattler UG, Meyer SS, Quennet V, Hoerner C, Knoerzer H, Fabian C, et al. (2010). 

Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol 94: 

102-109. 

 

Savla R, Taratula O, Garbuzenko O, Minko T (2011). Tumor targeted quantum dot-mucin 1 

aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153: 

16-22. 

 

Scabini M, Stellari F, Cappella P, Rizzitano S, Texido G, Pesenti E (2011). In vivo imaging 

of early stage apoptosis by measuring real-time caspase-3/7 activation. Apoptosis 16: 198-

207. 

 



Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA (2010). Application of micro-

CT in small animal imaging. Methods 50: 2-13. 

 

Schroder L, Lowery TJ, Hilty C, Wemmer DE, Pines A (2006). Molecular imaging using a 

targeted magnetic resonance hyperpolarized biosensor. Science 314: 446-449. 

 

Schwartz DL, Bankson JA, Lemos R, Jr., Lai SY, Thittai AK, He Y, et al. (2010). 

Radiosensitization and Stromal Imaging Response Correlates for the HIF-1 Inhibitor PX-478 

Given with or without Chemotherapy in Pancreatic Cancer. Mol Cancer Ther 9: 2057-2067. 

 

Shelton LM, Huysentruyt LC, Seyfried TN (2010). Glutamine targeting inhibits systemic 

metastasis in the VM-M3 murine tumor model. Int J Cancer 127: 2478-2485. 

 

Singh M, Lima A, Molina R, Hamilton P, Clermont AC, Devasthali V, et al. (2010). 

Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse 

models. Nat Biotechnol 28: 585-593. 

 

Snoeks TJ, Lowik CW, Kaijzel EL (2010). 'In vivo' optical approaches to angiogenesis 

imaging. Angiogenesis 13: 135-147. 

 

Strijkers GJ, Kluza E, Van Tilborg GA, van der Schaft DW, Griffioen AW, Mulder WJ, et al. 

(2010). Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of 

tumor angiogenesis. Angiogenesis 13: 161-173. 

 

Suggitt M, Bibby MC (2005). 50 years of preclinical anticancer drug screening: empirical to 

target-driven approaches. Clin Cancer Res 11: 971-981. 

 

Sun A, Hou L, Prugpichailers T, Dunkel J, Kalani MA, Chen X, et al. (2010a). Firefly 

luciferase-based dynamic bioluminescence imaging: a noninvasive technique to assess tumor 

angiogenesis. Neurosurgery 66: 751-757. 

 

Sun D, Yang K, Zheng G, Li Z, Cao Y (2010b). Study on effect of peptide-conjugated near-

infrared fluorescent quantum dots on the clone formation, proliferation, apoptosis, and 

tumorigenicity ability of human buccal squamous cell carcinoma cell line BcaCD885. Int J 

Nanomedicine 5: 401-405. 

 

Sun J, Zhu MQ, Fu K, Lewinski N, Drezek RA (2007). Lead sulfide near-infrared quantum 

dot bioconjugates for targeted molecular imaging. Int J Nanomedicine 2: 235-240. 

 

Sun L, Xu X, Richard WD, Feng C, Johnson JA, Shung KK (2008). A high-frame rate duplex 

ultrasound biomicroscopy for small animal imaging in vivo. IEEE Trans Biomed Eng 55: 

2039-2049. 

 

Takahashi A, Ohkohchi N, Yasunaga M, Kuroda J, Koga Y, Kenmotsu H, et al. (2010). 

Detailed distribution of NK012, an SN-38-incorporating micelle, in the liver and its potent 

antitumor effects in mice bearing liver metastases. Clin Cancer Res 16: 4822-4831. 

 

Taniguchi Y, Kawano K, Minowa T, Sugino T, Shimojo Y, Maitani Y (2010). Enhanced 

antitumor efficacy of folate-linked liposomal doxorubicin with TGF-beta type I receptor 

inhibitor. Cancer Sci 10: 2207-2213 



 

Tavares AJ, Chong L, Petryayeva E, Algar WR, Krull UJ (2011). Quantum dots as contrast 

agents for in vivo tumor imaging: progress and issues. Anal Bioanal Chem 399: 2331-2342. 

 

Tehranipour N, A AL-N, Canelo R, Stamp G, Woo K, Tait P, et al. (2007). Concordant F-18 

FDG PET and Y-90 Bremsstrahlung scans depict selective delivery of Y-90-microspheres to 

liver tumors: confirmation with histopathology. Clin Nuc Med 32: 371-374. 

 

Tiffen JC, Bailey CG, Ng C, Rasko JE, Holst J (2010). Luciferase expression and 

bioluminescence does not affect tumor cell growth in vitro or in vivo. Mol Cancer 9: 299. 

 

Torigian DA, Huang SS, Houseni M, Alavi A (2007). Functional imaging of cancer with 

emphasis on molecular techniques. CA Cancer J Clin 57: 206-224. 

 

Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004). Quantitative comparison of the 

sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol 

Imaging 3: 9-23. 

 

Tung CH (2004). Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76: 

391-403. 

 

Turnbull DH, Starkoski BG, Harasiewicz KA, Semple JL, From L, Gupta AK, et al. (1995). 

A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging. Ultrasound Med 

Biol 21: 79-88. 

 

van Dalen JA, Vogel WV, Corstens FH, Oyen WJ (2007). Multi-modality nuclear medicine 

imaging: artefacts, pitfalls and recommendations. Cancer Imaging 7: 77-83. 

 

Vansteenkiste JF (2002). Imaging in lung cancer: positron emission tomography scan. Eur 

Resp Journal 35: 49s-60s. 

 

Vergez S, Delord JP, Thomas F, Rochaix P, Caselles O, Filleron T, et al. (2010). Preclinical 

and clinical evidence that Deoxy-2-[18F]fluoro-D-glucose positron emission tomography 

with computed tomography is a reliable tool for the detection of early molecular responses to 

erlotinib in head and neck cancer. Clin Cancer Res 16: 4434-4445. 

 

Vikis HG, Jackson EN, Krupnick AS, Franklin A, Gelman AE, Chen Q, et al. (2010). Strain-

specific susceptibility for pulmonary metastasis of sarcoma 180 cells in inbred mice. Cancer 

Res 70: 4859-4867. 

 

Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. (2002). 

Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-

overexpressing metastatic breast cancer. J Clin Oncol 20: 719-726. 

 

Walter MA, Hildebrandt IJ, Hacke K, Kesner AL, Kelly O, Lawson GW, et al. (2010). 

Small-animal PET/CT for monitoring the development and response to chemotherapy of 

thymic lymphoma in Trp53-/- mice. J Nucl Med 51: 1285-1292. 

 



Wang S, Ren W, Liu J, Lahat G, Torres K, Lopez G, et al. (2010). TRAIL and doxorubicin 

combination induces proapoptotic and antiangiogenic effects in soft tissue sarcoma in vivo. 

Clin Cancer Res 16: 2591-2604. 

 

Watkins GA, Jones EF, Scott Shell M, VanBrocklin HF, Pan MH, Hanrahan SM, et al. 

(2009). Development of an optimized activatable MMP-14 targeted SPECT imaging probe. 

Biorg Med Chem 17: 653-659. 

 

Weisheng Z, Min C, West DB, Purchio AF (2005). Visualizing drug efficacy in vivo. Mol 

Imaging 4: 88-90. 

 

Weiss MS, Penalver Bernabe B, Bellis AD, Broadbelt LJ, Jeruss JS, Shea LD (2010). 

Dynamic, Large-Scale Profiling of Transcription Factor Activity from Live Cells in 3D 

Culture. PLoS One 5: e14026. 

 

Weissleder R, Pittet MJ (2008). Imaging in the era of molecular oncology. Nature 452: 580-

589. 

 

Wender PA, Goun EA, Jones LR, Pillow TH, Rothbard JB, Shinde R, et al. (2007). Real-time 

analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in 

transgenic reporter mice. Proc Natl Acad Sci USA 104: 10340-10345. 

 

Wessels JT, Busse AC, Mahrt J, Dullin C, Grabbe E, Mueller GA (2007). In vivo imaging in 

experimental preclinical tumor research--a review. Cytometry A 71: 542-549. 

 

Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, et al. (2010). 

Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102: 1555-

1577. 

 

Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, et al. (2010). PET/NIRF/MRI triple 

functional iron oxide nanoparticles. Biomaterials 31: 3016-3022. 

 

Xuan JW, Bygrave M, Jiang H, Valiyeva F, Dunmore-Buyze J, Holdsworth DW, et al. 

(2007). Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer 

using three-dimensional power Doppler ultrasound. Cancer Res 67: 2830-2839. 

 

Zaidi H, Prasad R (2009). Advances in multimodality molecular imaging. J Med Phys 34: 

122-128. 

 

Zehnder-Fjallman AH, Marty C, Halin C, Hohn A, Schibli R, Ballmer-Hofer K, et al. (2007). 

Evaluation of anti-VEGFR-3 specific scFv antibodies as potential therapeutic and diagnostic 

tools for tumor lymph-angiogenesis. Oncol Rep 18: 933-941. 

 

Zeng Q, Yang Z, Gao YJ, Yuan H, Cui K, Shi Y, et al. (2010). Treating triple-negative breast 

cancer by a combination of rapamycin and cyclophosphamide: an in vivo bioluminescence 

imaging study. Eur J Cancer 46: 1132-1143. 

 

Zhang CC, Yan Z, Zhang Q, Kuszpit K, Zasadny K, Qiu M, et al. (2010). PF-03732010: a 

fully human monoclonal antibody against P-cadherin with antitumor and antimetastatic 

activity. Clin Cancer Res 16: 5177-5188. 



 

Zhang GJ, Chen TB, Bednar B, Connolly BM, Hargreaves R, Sur C, et al. (2007). Optical 

imaging of tumor cells in hollow fibers: evaluation of the antitumor activities of anticancer 

drugs and target validation. Neoplasia 9: 652-661. 

 

Zhao D, Richer E, Antich PP, Mason RP (2008). Antivascular effects of combretastatin A4 

phosphate in breast cancer xenograft assessed using dynamic bioluminescence imaging and 

confirmed by MRI. Faseb J 22: 2445-2451. 

 

Zhao YZ, Lu CT, Zhou ZC, Jin Z, Zhang L, Sun CZ, et al. (2010). Enhancing 

chemotherapeutic drug inhibition on tumor growth by ultrasound: an in vivo experiment. J 

Drug Target 19: 154-160. 

 

 

 

 

 

 

 

 

 

 


