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ABSTRACT
We present a very large high-resolution cosmological N-body simulation, the Millennium-
XXL or MXXL, which uses 303 billion particles to represent the formation of dark matter
structures throughout a 4.1 Gpc box in a � cold dark matter cosmology. We create sky maps
and identify large samples of galaxy clusters using surrogates for four different observables:
richness estimated from galaxy surveys, X-ray luminosity, integrated Sunyaev–Zeldovich
(SZ) signal and lensing mass. The unprecedented combination of volume and resolution
allows us to explore in detail how these observables scale with each other and with cluster
mass. The scatter correlates between different mass–observable relations because of common
sensitivities to the internal structure, orientation and environment of clusters, as well as to
line-of-sight superposition of uncorrelated structure. We show that this can account for the
apparent discrepancies uncovered recently between the mean thermal SZ signals measured
for optically and X-ray selected clusters by stacking data from the Planck satellite. Related
systematics can also affect inferences from extreme clusters detected at high redshift. Our
results illustrate that cosmological conclusions from galaxy cluster surveys depend critically
on proper modelling, not only of the relevant physics, but also of the full distribution of the
observables and of the selection biases induced by cluster identification procedures.

Key words: cosmology: theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

Confrontation of observational data with theoretical models, and
in particular with numerical simulations, has been a key factor
enabling the rapid recent progress of cosmological research. With-
out it, we would have not arrived at the current structure forma-
tion paradigm, which is now being subjected to ever more detailed
scrutiny. Further development of this fruitful approach requires cur-
rent and future observations to be matched with equally precise
theoretical models. The order of magnitude advances made by new
surveys hence require new simulations with comparable improve-
ments in statistical power and accuracy.

An inevitable consequence of the increasing accuracy of observa-
tional data and the growing sophistication of numerical simulations
is that comparing them becomes a non-trivial task in its own right.
It has long been appreciated that the distribution of properties in
a sample of observed objects is shaped not only by the relevant
physics but also by the observational methods used to detect and

�E-mail: rangulo@mpa-garching.mpg.de

characterize them. The resulting measurement biases have often
been neglected in the past, but this is no longer possible in the era of
‘precision cosmology’ where the systematic errors in observational
results are typically comparable to or larger than their statistical
errors. Detailed modelling of a given observational programme is
not optional in this situation, but rather is an unavoidable step in the
proper interpretation and exploitation of the data.

In this paper, we present a major new effort in this direction,
aiming to address two aspects of the physics of galaxy clusters that
have recently attracted a lot of interest. The first concerns the rela-
tions between optical richness, lensing mass, X-ray luminosity and
thermal Sunyaev–Zeldovich (tSZ) signal. It is critically important
to calibrate how these observables scale with ‘true’ mass if cluster
counts are to be used to place robust constraints on cosmological
parameters. The Planck Collaboration has recently reported puz-
zling inconsistencies in the scaling relations measured for different
samples, suggesting an unexpected dichotomy in the gas properties
of galaxy clusters (Planck Collaboration et al. 2011c). The other as-
pect concerns the inferred masses of extreme galaxy clusters. This is
interesting because discoveries of massive clusters at high redshift
have repeatedly been suggested to be in tension with the standard
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� cold dark matter (�CDM) model, possibly providing evidence
for non-Gaussian initial density perturbations (Mullis et al. 2005;
Brodwin et al. 2010; Baldi & Pettorino 2011; Foley et al. 2011;
Hoyle, Jimenez & Verde 2011; Hoyle et al. 2012; Menanteau et al.
2012, but see Hotchkiss 2011).

To study these questions, we use a new state-of-the-art simula-
tion of the evolution of the dark matter structure that provides the
arena for the formation and evolution of galaxies. This Millennium-
XXL (MXXL) is the largest high-resolution cosmological N-body
simulation to date, extending and complementing the previous Mil-
lennium and Millennium-II simulations (Springel 2005; Boylan-
Kolchin et al. 2009). It follows the dark matter distribution through-
out a volume equivalent to that of the whole sky up to redshift z =
0.7, or equivalently, of an octant up to redshift z = 1.4. Its time
and mass resolution are high enough to allow detailed modelling
of the formation of the galaxy populations targeted by future large
surveys, as well as of the internal structure of extremely rare and
massive clusters. It is also well suited for studying a number of
other probes of the cosmic expansion and structural growth histo-
ries, for example, baryonic acoustic oscillations (BAOs), redshift
space distortions, cluster number counts, weak gravitational lens-
ing and the integrated Sachs–Wolfe effect. The volume of MXXL
is very much larger than can be followed by direct hydrodynamical
computations, but its resolution is sufficient for galaxy formation
to be followed in detail within each halo by applying semi-analytic
models to its merger tree.

Using mock observations of galaxy clusters in the MXXL, we
show in this study that current interpretations of cluster surveys are
significantly affected by systematic biases. In particular, we show
that the apparent inconsistencies highlighted by the Planck Collab-
oration in the mean SZ and X-ray signals measured for optically
and X-ray selected cluster samples can be understood as resulting
from substantial and correlated scatter in the various observables
among clusters of given ‘true’ mass. Currently there appears to be no
compelling evidence for unknown processes affecting the gas prop-
erties of clusters or for a bimodality in cluster scaling properties.
We also comment on the implications of our results for constraining
cosmology using extreme clusters at high redshift.

Our paper is structured as follows. Section 2 is devoted to pre-
senting the MXXL and our techniques for modelling the observable
properties of galaxy clusters. In particular, Section 2.1 provides
technical and numerical details of the simulation, while Section 2.2
describes our surrogates for X-ray luminosity, gravitational lensing
mass, optical richness and tSZ flux. In Section 3, we then explore the
impact and implications of various selection biases. We explain how
we identify clusters in Section 3.1, and in Section 3.2 we analyse the
bulk of the cluster population, with a focus on extreme objects. We
discuss the implication of our findings for the conundrum reported
by the Planck Collaboration in Section 4. Finally, we present our
conclusions in Section 5.

2 N U M E R I C A L M E T H O D S

In this section, we describe our dark matter simulation and the way
we use it to construct surrogates for four observational properties
of galaxy clusters: their optical richness, their weak gravitational
lensing signal, their X-ray luminosity and their tSZ amplitude.

2.1 The MXXL N-body simulation

The ‘Millennium-XXL Simulation’ or MXXL follows the nonlinear
growth of dark matter structure within a cubic region of 4.11 Gpc

(3 h−1Gpc) on a side. The dark matter distribution is represented by
67203 = 303, 464, 448, 000 particles, substantially exceeding the
number used in all previous simulations of this type (Springel et al.
2005; Kim et al. 2009; Teyssier et al. 2009; Prada et al. 2012) apart
from the recent ‘Horizon Run 3’ of Kim et al. (2011), which has
20 per cent more particles but 40 times poorer mass resolution. We
note that the simulated volume of the MXXL is equivalent to that
of the whole observable Universe up to redshift z = 0.72. It is more
than 200 times that of our ‘Millennium Simulation’ (MS, Springel
et al. 2005), almost 30 times that of the recently completed Mul-
tiDark simulation (Prada et al. 2012) but still only 2 per cent that
of the Horizon Run 3. The MXXL is also about seven times larger
than the expected volume of the Baryon Oscillation Spectroscopic
Survey (BOSS) (Schlegel et al. 2007) and about twice that of the
planed JPAS.1 Its particle mass is mp = 8.456 × 109 M�, approxi-
mately seven times that of the MS but more than 300 times smaller
than that of the ‘Hubble Volume Simulation’ (Evrard et al. 2002),
completed a decade ago with a comparable volume to MXXL. The
mass resolution of MXXL is sufficient to identify the dark matter
haloes hosting central galaxies with stellar mass exceeding ∼1.5 ×
1010 M� (De Lucia et al. 2006), and also to predict robustly the
internal properties of the haloes corresponding to very massive
clusters, which are represented by more than 100 000 dark matter
particles. The Plummer-equivalent softening length of the gravita-
tional force is ε = 13.7 kpc, which translates into a dynamic range
of 300 000 per dimension, or formally to more than 2 × 1016 resolu-
tion elements within the full simulation volume. This large dynamic
range can be appreciated in Fig. 1, where we show the large-scale
density field together with the internal structure of a few selected
massive clusters.

The MXXL adopts a �CDM cosmology with the same cos-
mological parameters and output times as the previous two MSs
(Springel et al. 2005; Boylan-Kolchin et al. 2009). This facilitates
the joint use of all these simulations in building models for the
galaxy population. Specifically, the total matter density, in units of
the critical density, is �m = �dm + �b = 0.25, where �b = 0.045
refers to baryons (although these are not explicitly treated in the
simulation); a cosmological constant, �� = 0.75, gives a flat space
geometry; the rms linear density fluctuation in 10.96 Mpc spheres,
extrapolated to the present epoch, is σ 8 = 0.9; and the present-
day Hubble constant is H0 = 73 km s−1 Mpc−1. Although this set
of parameters is discrepant at about the 3σ level with the latest
constraints from cosmic microwave background (CMB) and LSS
observations (Komatsu et al. 2011), the scaling technique proposed
by Angulo & White (2010) (see also Ruiz et al. 2011) allows the
MSs to provide theoretical models for the formation, evolution and
clustering of galaxies over the full range of cosmologies allowed by
current observational constraints. The parameter offset with respect
to the best current observational estimates lies mainly in the high
value for σ 8, but this is an advantage for reliable scaling of the simu-
lation results to other cosmologies, as this requires interpolation on
the stored MXXL/MS/MS-II data which is only possible for target
cosmologies with lower σ 8 than used in the MS.

2.1.1 Initial conditions

The initial unperturbed particle load for the simulation was built by
periodically replicating a 2803 particle cubic glass file 24 times in
each coordinate direction. The glass file was created for the MXXL

1 http://www.j-pas.org

C© 2012 The Authors, MNRAS 426, 2046–2062
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at D
urham

 U
niversity L

ibrary on A
ugust 20, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2048 R. E. Angulo et al.

Figure 1. The projected density of dark matter in the MXXL simulation at z = 0.25. The insets correspond to circles of radius 5.5 Mpc centred on the most
extreme clusters identified according to our surrogates for X-ray luminosity, optical richness, lensing signal and integrated tSZ strength (see Section 2.3).
The underlying image is a projection of the dark matter density in a slab of thickness 27 Mpc, and width 2050 Mpc. It is oriented so that it contains three of
the selected clusters, as indicated in the figure (the lensing example is from a different slice). The whole simulation box is actually twice as wide, spanning
4110 Mpc. All four cluster images and the large-scale slice use the same colour scale, which varies in shade from light blue in the least dense regions to orange
and white in the densest regions.

using the method of White (1996) (see also Baugh, Gaztanaga &
Efstathiou 1995). The initial conditions were then produced by
computing displacements and velocities for each of the particles at
starting redshift zstart = 63, using an upgraded version of the code
originally developed for the Aquarius Project (Springel et al. 2008).
Further improvements include communication and memory opti-
mizations, as well as the use of second-order Lagrangian perturba-
tion theory (2LPT; Scoccimarro 1998), rather than the Zel’dovich
approximation for computing the position and velocity perturba-
tions of each particle. The latter modification is particularly impor-
tant for the present study, since the abundance of high-mass haloes
is sensitive to initial transients, which are much smaller and decay
more quickly when 2LPT is used (Crocce, Pueblas & Scoccimarro
2006).

Another important change is the introduction of a new approach to
generate Gaussian initial fluctuations. Rather than setting the phases
of the modes in k-space (as done, for example, in the MS), we first
generated a real-space white noise field. The Fourier transform of
this field was then used to set the amplitudes of all of the modes
needed to make the initial conditions (Salmon 1996; Bertschinger
2001; Hahn & Abel 2011). For the MXXL, the real-space white

noise field was created on a 92163 grid. Only modes within a spher-
ical k-space volume of radius 6720/2 = 3360 times the fundamental
frequency (i.e. below the particle Nyquist frequency) were used to
generate the displacement and velocity fields (all other modes were
given zero amplitude).

The use of a white noise field in real space, while not necessary for
the MXXL initial conditions themselves, will make it much easier
to resimulate arbitrary MXXL regions of interest at higher reso-
lution, for example, the extreme objects illustrated in the present
paper. This is because in our new approach it is unnecessary to
reproduce the entire white noise field at the original resolution in
order to capture the phases of large-scale modes. A consequence
is the ability to create consistent sets of initial conditions for res-
imulations (including ‘resimulations of resimulations’ at yet higher
resolution) for arbitrarily defined subregions over a huge dynamic
range. The real-space white noise field is generated in a special
top-down hierarchical fashion, based on an oct-tree, making it easy
to generate coarse representations of the MXXL field at low com-
putational cost. The MXXL white noise field itself occupies just
a small subvolume of a single realization of a huge white noise
field created in a hierarchical way. This realization is specified
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everywhere to a resolution below the likely free streaming scale of
CDM. This means that resimulations of parts of the MXXL volume
can be created at any desired resolution as the phases are fully spec-
ified everywhere in advance. A full description of this method will
be given in Jenkins (in preparation).

2.1.2 The simulation code

Evolving the distribution of the dark matter particles in the MXXL
under their mutual gravitational influence was a formidable com-
putational problem. Storing the positions and velocities of the par-
ticles in single precision already requires about 7 TB of memory.
As each particle exerts a force on every other particle, a CPU-
and memory-efficient approximate calculation of the forces is of
paramount importance. It is also necessary to develop new strate-
gies to deal with the huge data volume produced by the simulation.
Using the same analysis approach as for the MS would have resulted
in more than 700 TB of data, adding a severe data analysis problem
and significant disc space costs to the computational challenge.

In order to alleviate these problems, we developed a special ‘lean’
version of the Tree-PM code GADGET-3, which improves the scalabil-
ity and memory efficiency of the code considerably, outperforming
the highly optimized version of GADGET-2 (Springel 2005) used for
the MS. GADGET-3 computes gravitational forces with a Tree-PM
method by combining a particle–mesh (PM) scheme with a hier-
archical tree method, and it uses spatially and temporally adaptive
time stepping, so that short time-steps are used only when particles
enter localized dense regions where dynamical times are short. A
significant improvement in the new code is a domain decomposition
that produces almost ideal scaling on massively parallel computers.
Finally, the MXXL version of GADGET-3 uses aggressive strategies
to minimize memory consumption without compromising integra-
tion accuracy and computational speed. To be specific, (i) we have
taken advantage of the unused bits in the 64-bit particle IDs to store
various quantities during the calculation, e.g. 4/8-bit floats contain-
ing the number of interactions and the acceleration in the previous
time-step (these allow us to improve the work–load balance), the
group/subhalo membership and the time-step bin; (ii) each MPI task
contains multiple disjoint sequences of the Peano–Hilbert curve de-
scribing the computational domain, resulting in an almost perfect
load decomposition; (iii) we avoid storing the geometric centre for
each node in the tree structure used to compute gravitational forces,
reducing the memory requirement at the cost of a slightly less ef-
fective tree opening criterion. We also note that we have searched
for the combination of force and time-integration parameters that
minimizes the total execution time for a given desired accuracy in
the simulation results.

The code also carries out a significant part of the required post-
processing on-the-fly as an integral part of the simulation. This
includes group finding via the Friends-of-Friends (FoF) algorithm
(Davis et al. 1985), application of the SUBFIND algorithm (Springel
et al. 2001) to find gravitationally bound subhaloes within these
groups and calculation of basic properties of these (sub)haloes,
like maximum circular velocities, cumulative density profiles, halo
shapes and orientations, velocity dispersions, etc. These extended
halo and subhalo catalogues are then stored at the same output
times as for the other MSs, allowing the construction of detailed
(sub)halo merger trees. Full particle data are, however, stored only
at a handful of redshifts, very significantly reducing the stored data
volume. Only 72 bytes per particle are needed by the simulation
code during normal dynamical evolution. When the in-lined group

and substructure finders are enabled as well (which is optional),
the peak memory consumption per particle increases by a further
26 bytes.

2.1.3 Computational cost and code performance

The MXXL simulation was carried out in the late summer of 2010
on the JuRoPa machine at the Jülich Supercomputing Centre (JSC)
in Germany. A partition of 1536 compute nodes was used, each
equipped with two quad-core Intel X5570 processors and 24 GB
of RAM. We ran our code in a hybrid MPI/shared memory setup
on 12 288 cores, placing one MPI task per processor socket (3072
in total), and employing all four cores of each socket via threads.
This setup turned out to be advantageous compared with a pure
MPI parallelization based on 12 888 MPI tasks, because it reduces
the amount of intra-node MPI communication, and minimizes the
RAM required for MPI communication buffers. Also, this makes
it easier for our code to reach close-to-optimum work and load
balance during the calculation.

The final production run carried out approximately 87 trillion
force calculations to reach z = 0, and used about 28.5 TB of RAM,
nearly the whole available physical memory of JuRoPa. The run
time was 9.3 d (wall-clock), equivalent to 2.86 million CPU hours
(or 326 yr) in serial. Of this time, 15 per cent were required for
running our on-the-fly postprocessing software, notably the group
finding, the substructure finding and the power spectrum calcula-
tion, and another 14 per cent were needed for I/O operations. The
total long-term storage space required for all MXXL data products
is about 100 TB, down by a factor of about 8 per particle relative to
the approach used for the MS and MS-II simulations.

2.2 Basic validation results

At redshift z = 0, the MXXL contains more than 700 million haloes
with at least 20 particles. These account for 44 per cent of all the
mass in the simulation. Among these objects, 23 million have a
value of M200

2 larger than that of the Milky Way’s halo (M200 =
2 × 1012 M�) and 464 have a value in excess of that of the Coma
galaxy cluster (M200 = 2 × 1015 M�). In Fig. 2, we show the
differential halo mass function (FOF masses for a linking length
b = 0.2) at the present epoch, which is a robust way of describing
the abundance of nonlinear objects as a function of mass (Davis
et al. 1985). The most massive halo at z = 0 has MFoF = 8.98 ×
1015 M�. Such extreme objects are so rare that they can only be
found in volumes as large as that of the MXXL. We compare the
MXXL results with similar measurements from the MS and MS-
II simulations. For masses where the three simulations have good
statistics and are away from their resolution limits, the agreement
is at the few per cent level. The results from all three simulations
are well described by

M
dn

dM
= ρ0

d ln σ−1

dM
f (σ (M)), (1)

where ρ0 is the mean mass density of the universe, σ (M) is the
variance of the linear density field within a top-hat filter containing

2 We define the conventional virial mass of a halo M200 as the mass within
a sphere centred on the potential minimum which has a mean density 200
times the critical value.
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Figure 2. The differential FoF halo mass function (top panel) of the MXXL
(blue), MS (red) and MS-II (green). The MXXL provides vastly superior
sampling of the massive end, where the abundance of objects drops expo-
nentially as a function of mass. Combined, the three simulations cover about
eight decades in halo mass. The vertical lines mark the halo resolution limits
(20 particles) of the three simulations. For comparison, we also display a fit
to the mass function of all self-bound subhaloes in the three MSs (dashed).
The bottom panel gives the ratio of the three mass functions to an analytic
fitting formula given in the text. We see that the simulations agree accurately
with each other for intermediate masses, but also that different methods for
identifying structures disagree significantly in the expected number density
of objects of given mass, especially at the high-mass end.

mass M and f (σ ) is the fitting function

f (σ (M)) = 0.201 ×
[

2.08

σ (M)
+ 1

]1.7

exp

[−1.172

σ 2(M)

]
. (2)

The residuals from this analytic halo mass function, displayed in the
bottom panel of Fig. 2, show that it describes the numerical results
accurately (to better than 5 per cent over most of the mass range)
over eight orders of magnitude in halo mass, extending the accuracy
of previous models to larger and to smaller scales (e.g. Jenkins et al.
2001; Warren et al. 2006; Tinker et al. 2008). In Fig. 2, the dashed
lines show a fit of this same analytic form to the mass function of
all self-bound subhaloes (as identified by SUBFIND) in the MXXL,
MS and MS-II simulations. These curves correspond to the fit

f (σ (M)) = 0.265 ×
[

1.675

σ (M)
+ 1

]1.9

exp

[ −1.4

σ 2(M)

]
. (3)

The difference between the two fits illustrates how the mass function
of objects depends on the way they are defined. This is especially
important at the high-mass end. For example, the expected abun-
dance of haloes with M ∼ 1015 M� changes by a factor of ∼2 when
FoF haloes and self-bound subhaloes are compared.

The difficulty in unambiguously defining haloes and their associ-
ated mass is in part a consequence of the fact that large haloes do not
form a homogeneous population. In fact, they display considerable
variety in structure and environment. We illustrate this in Fig. 3 by
showing the 15 most massive clusters in the MXXL at z = 0.25,
selected according to M200. Among this group there is considerable
diversity in shape, concentration and the amount of substructure,

Figure 3. Projected dark matter density for the 15 most massive MXXL
haloes (according to M200 at z = 0.25). Each image corresponds to a region
of dimensions 6 × 3.7 h−1 Mpc wide and 20 h−1 Mpc deep. Note the large
variation in shape and internal structure among these clusters. In particular,
the most massive cluster, shown in the top-left corner, has no clear centre
but rather displays several distinct density peaks of similar amplitude.

despite all the objects having very similar virial mass. This already
suggests that careful modelling of mass estimators will be needed
to compare numerical simulations with observed massive clusters
at high redshift. Small changes in the estimated mass of an object
can dramatically change the predicted probability of its existence
within any given cosmological model.

The diversity of massive clusters may also have important con-
sequences for other observational studies. Matched filters are often
applied to data in order to maximize the signal-to-noise ratio of,
for instance, weak lensing or tSZ detections (e.g. Schneider 1996;
Melin, Bartlett & Delabrouille 2006; Rozo et al. 2011). Such filters
use a model for the spatial distribution of the signal as prior infor-
mation (e.g. in the form of density or pressure profiles) but in many
cases (and in particular for the most massive objects) the structure
of individual clusters will not conform to these assumptions. For
instance, the top-left halo in Fig. 3, which is the most massive clus-
ter in the MXXL at z = 0.25, does not have a clear centre. In such
cases, the signal may be seriously misestimated by a matched filter,
potentially biasing cosmological inferences from the measurement.

In Fig. 4, we show power spectra of the mass density field at
the present epoch. The results are a combination of two measure-
ments. Large-scale modes were computed using a global 92163

mesh, whereas the mean amplitude of smaller modes was calcu-
lated by folding the density field 64 times along each direction
and projecting it on to a new 92163 mesh (Jenkins et al. 1998).
This method effectively reaches the same spatial resolution as a
589 8243 mesh. For comparison, we also show results for the MS
and MS-II simulations. Clearly, only the MXXL simulation probes
scales significantly beyond the turnover in the power spectrum. The
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Figure 4. Matter power spectra measured directly in the MXXL, MS and
MS-II (top panel). The black line shows the power spectrum used to generate
the initial conditions, linearly evolved to z = 0. The dashed lines show
the Poisson power level of each simulation, which becomes significant
only at the smallest scales. The Poisson power has been subtracted from
the measured power spectra in this figure. In the bottom panel, we show
the ratio of the measured power spectra to the actual realization of the
linear theory used to generate the initial conditions of each simulation.
This procedure reduces sampling noise due to the finite number of modes
at small wavenumber. The arrows mark the gravitational resolution limits
(2π/softening length) of the three simulations.

MXXL is also the only one among the three runs that provide good
sampling of the BAOs. We note that at low redshift these features
already show clear signs of being affected by nonlinear evolution
(e.g. Angulo et al. 2008), making the MXXL particularly valuable
for studying systematic effects in large-scale galaxy surveys aim-
ing at precise measurements of the BAO features. Throughout the
nonlinear regime, the power spectra of the three MSs show excel-
lent agreement up to the scales where the spatial resolution limits
of each run kick in, manifested as a reduction in power relative to
higher resolution simulations.

2.3 Surrogate observables

Using the DM distribution and halo catalogues described in the
previous section, we have created surrogate observables that mimic
the four main techniques used observationally to discover and char-
acterize large clusters: optical galaxy counts, gravitational lensing,
X-ray emission and the Sunyaev–Zel’dovich signal imprinted on
the microwave background radiation.

Rather than attempting to follow the baryonic physics directly
in the simulation, we have constructed simple proxies for these
observables, based directly on the dark matter distribution. This
necessarily schematic approach avoids the uncertainties of any spe-
cific implementation of baryonic processes such as star and black
hole formation and the associated feedback, while allowing us to
take advantage of the characteristics of the MXXL, namely its com-
bination of very large volume and relatively high-mass resolution.
Our approach can easily be updated as a better understanding of the

relation between the dark matter structure of galaxy clusters and
any particular observable is achieved. Our main goal in this paper
is not to produce accurate a priori predictions for the observables,
but to look for surrogates that correctly rank the expected signal
strengths and represent the scatter and the correlations between
observables in a realistic way. We can then study the diversity of
clusters and quantify the extent to which different methods select
different cluster populations.

We focus our analysis on redshift z = 0.25 because the most
massive halo in the observable Universe should be roughly at that
redshift (Holz & Perlmutter 2012). This redshift also corresponds
to the median redshift of galaxies in the photometric catalogue
of the Sloan Digital Sky Survey (SDSS; York et al. 2000), which
provides one of the largest samples of optically detected clusters
– the MaxBCG catalogue of Koester et al. (2007b), which has
been widely used to compute scaling relations for optically selected
clusters. Our results do not change qualitatively if we pick another
redshift between z = 0 and 1. The largest simulated haloes should
resemble the most massive observable objects because the MXXL
volume is comparable to or exceeds that accessible to real surveys.
In 1000 all-sky light-cones up to z = 0.6 (built by placing observers
randomly on ‘Milky Way’ haloes), we find that the most massive
halo is typically between z = 0.1 and z = 0.3, and has a virial mass
M200 ∼ 4 × 1015 M�, roughly 75 per cent that of the most massive
MXXL halo at z = 0.25, consistent with previous analytic estimates
(Holz & Perlmutter 2012).

Finally, we note that we normalize our surrogates to match ob-
served scaling relations between observables and halo mass (which
we discuss in Section 4). This allows a direct comparison of popula-
tion properties to observational data, side-stepping issues of possible
offsets due to incorrect cosmological parameters, to the schematic
nature of our surrogates or to observational details such as filter
shapes. We now outline how we construct 2D maps from which we
can identify clusters and measure our various surrogate observables.

2.3.1 Optical maps

The first observational approach we consider is the detection of rich
clusters in optical surveys, which relies on finding large groups of
galaxies in a narrow redshift range and at similar projected positions
on the sky. In order to mimic this, we start by constructing a three-
dimensional galaxy catalogue using a halo occupation distribution
(HOD) model (Kauffmann, Nusser & Steinmetz 1997; Benson et al.
2000; Peacock & Smith 2000) to populate each MXXL halo with
galaxies. We assume that every halo with M200 above 1.4 × 1012 M�
hosts one central galaxy and a number of satellites drawn from a
Poisson distribution with mean equal to the halo mass in units of
5.7 × 1012 M� raised to the 0.9 power. This HOD is similar to
that derived for red galaxies in the SDSS (Zehavi et al. 2011), but
it is tuned to reproduce the observed mass–richness relation for
galaxy clusters as measured by Johnston et al. (2007). The central
galaxy is placed at the minimum of the gravitational potential of
the dominant SUBFIND substructure in the halo, whereas the satellite
galaxies are identified with randomly chosen dark matter particles of
the FoF group. The latter ensures that the effects of halo ellipticity,
alignment and substructure, which are important for reproducing
the small-scale correlations of galaxies (Zu et al. 2008; van Daalen,
Angulo & White 2012), are included in our modelling. The resulting
catalogue at z = 0.25 contains more than 150 million galaxies (50
per cent of which are satellites).
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We note that the basic assumption of this HOD modelling, namely
that the galaxy content of a halo is statistically determined exclu-
sively by its mass, is not expected to hold in detail. Models that fol-
low galaxy formation explicitly predict a dependence of the HOD on
other properties such as the halo formation time (e.g. Gao, Springel
& White 2005; Zhu et al. 2006; Croton, Gao & White 2007). Nev-
ertheless, these effects are weak so we do not expect them to affect
our conclusions. Similarly, moderately different HODs (e.g. models
tuned to reproduce the Rozo et al. (2009) mass–richness relation)
change the average number of galaxies in our clusters but make
little difference to the correlation of optical properties with other
aspects of the halo.

2.3.2 Lensing maps

The second identification approach we consider is weak gravita-
tional lensing. Although direct mass measurements using this effect
are only possible for the most massive individual clusters, lens-
ing can be used to estimate precise mean masses by stacking a
large number of clusters selected according to specific criteria (e.g.
Mandelbaum et al. 2006; Sheldon et al. 2009). It is easy to see that
orientation effects and both correlated and uncorrelated large-scale
structures can play an important role in defining the lensing signal
of an individual cluster. As a result, large N-body simulations where
the full line-of-sight density distribution is properly modelled are
needed to calculate accurately the distribution of expected signals.

Our modelling of lensing maps uses the distant observer approx-
imation. We neglect the evolution of clustering along the line of
sight and assume that all the mass along a line of sight from z = 0
to z = 1.37 (the side length of the MXXL) contributes equally to
the convergence field. Under these assumptions, we create ‘weak
lensing mass maps’ by projecting the simulated mass density of
the z = 0.25 snapshot along one axis. MXXL particles are mapped
on to a 32 7682 mesh using a nearest grid point (NGP) mass as-
signment scheme, yielding an effective transverse spatial resolution
of ∼92 h−1 kpc.

A more realistic approach would vary the weight assigned to
mass at different redshifts assuming a specific redshift distribution
for the background source galaxies. The highest weight would go to
the material which is ‘halfway’ to the sources. Our 4.1 Gpc projec-
tion length will clearly tend to overestimate projection effects from
distant matter. However, it turns out that structures far in front or far
behind the clusters produce only a small fraction of the projection
effects; most come from their immediate surroundings and from the
directional dependence of the projection of their internal structure.
Our simple model can be regarded as treating these aspects quite ac-
curately and as giving an overestimate of the (subdominant) effects
of distant projections.

2.3.3 X-ray maps

Another important route to detecting and characterizing massive
clusters is through X-ray emission from their hot intracluster gas.
The local X-ray emissivity is proportional to the square of the gas
density and (approximately) to the square root of its temperature.
This makes X-rays a particularly sensitive tracer of the inner regions
of clusters, where densities can be thousands of times higher than
in the outskirts. Simulations with high spatial and mass resolution
are needed to probe these inner regions adequately.

We estimate a density local to each particle by using kernel
interpolation over its 32 nearest neighbours, a common method

in smoothed particle hydrodynamics (SPH) calculations, while we
take the local temperature to be proportional to the velocity disper-
sion of the subhalo in which the particle is located. Particles outside
subhaloes are taken to have zero temperature. With these quantities
in hand, we compute a 32 7682 pixel X-ray map by summing up the
density times the square root of the temperature for all the particles
along a given line of sight. We note that our X-ray surrogate corre-
sponds to the total bolometric luminosity of a cluster rather than to
the luminosity in a particular observational band. However, this has
little impact on our results because of the low redshift of our sample
and the fact that we scale our surrogates to match observations.

This surrogate clearly neglects dynamical effects on cluster lu-
minosity during violent cluster mergers. Recent hydrodynamical
simulations (Rasia et al. 2011) suggest that luminosity enhance-
ments during such events can be substantial, particularly for high
Mach number (>2.5) and for equal progenitor masses. On the other
hand, observational data suggest that disturbed, apparently merg-
ing clusters tend to have lower than average X-ray luminosities
for their mass, whereas symmetric equilibrium clusters often have
cold cores and thus higher than average luminosities (Arnaud et al.
2010). Even the sign of merger effects thus seems unclear.

2.3.4 tSZ maps

The final cluster property we consider is their tSZ signal (Sunyaev &
Zeldovich 1972, 1980). This effect causes a characteristic distortion
of the spectral shape of the CMB as a result of inverse Compton
scattering of CMB photons off the electrons in the hot intracluster
plasma. The integrated magnitude of the effect is proportional to
the total thermal energy content of the hot electrons in the cluster,
or, equivalently, to the gas mass times the mean gas temperature.
Along any given line of sight, the effect is proportional to the line
integral of the gas pressure.

In our analysis, we again assume the gas to be distributed like
the dark matter and to be isothermal within each quasi-equilibrium
subhalo, associating a temperature with each simulation particle
proportional to the velocity dispersion of its host subhalo. We then
create a 32 7682 pixel tSZ map by projecting the thermal energies
of all MXXL particles along one of the box axes.

3 RESULTS

In this section, we use our simulated halo catalogues and mock
observational maps to examine various systematic effects that can
have an impact on the scatter and mean amplitude of cluster scal-
ing relations. We cumulatively include effects due to sample selec-
tion, spurious cluster identification resulting from projection effects,
misidentification of cluster centres and contamination by structures
along the line of sight, examining in each case the impact on re-
lations between mean tSZ and optical richness, and between weak
lensing mass and optical richness.

3.1 Cluster catalogues

We first specify how we identify optical clusters in our galaxy map.
We have implemented a group finder similar to that employed to
build the MaxBCG cluster catalogue from SDSS galaxies (Koester
et al. 2007b). We start by measuring N1, the number of galaxies
within a cylinder of radius 1 h−1 Mpc and depth 120 h−1 Mpc cen-
tred on every central galaxy in our catalogues (the depth mimics a
redshift uncertainty of �z ∼ 0.02). Then, we discard those galaxies
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whose cylinder overlaps with that of a central galaxy of a more
massive cluster. This is equivalent to assuming that the luminosity
of the central brightest cluster galaxy (BCG) increases monoton-
ically with mass, and then discarding as potential group centres
those BCGs that are close to a brighter galaxy. After this cleaning
procedure, we use the galaxy counts around the remaining central
galaxies to define a new ‘observed’ cylinder radius R(Nopt), equal
to the mean virial radius of clusters of the same N1 richness. Then,
we repeat the counting and cleaning processes until we reach con-
vergence. We keep all clusters down to a count of one galaxy (i.e.
just the central BCG). We refer to this count as the optical richness
Nopt of the cluster.

A serious systematic in optical cluster catalogues may be caused
by misidentification of the BCG, and hence of the centre of the
corresponding dark matter halo (Rozo et al. 2011). This effect is re-
ferred to as ‘miscentring’. In fact, 20 to 40 per cent of the MaxBCG
groups (depending on the cluster richness) suffer from this effect
according to Johnston et al. (2007). In order to mimic this in our
analysis, we have carried out our cluster identification procedure
after randomly displacing 30 per cent of our candidate cluster cen-
tres according to a 2D Gaussian with a mean shift of 0.4 h−1 Mpc.
This distribution of offsets is based on Johnston et al. (2007), who
applied the MaxBCG algorithm to mock catalogues built from the
Hubble simulation (Evrard et al. 2002). The functional form and
parameters we use to describe the effect are also consistent with the
distribution of projected distances between the position of the dom-
inant subhalo and that of the second most massive subhalo within
haloes of MXXL simulation (see also fig. 2 of Hilbert & White
2010). We caution that the miscentring fraction and the displace-
ment parameters are uncertain and are sensitive to details of the
cluster-finding algorithm. In Planck Collaboration et al. (2011a),
the large X-ray cluster compilation of Piffaretti et al. (2011) was
matched to the maxBCG catalogue, finding a median offset between
X-ray centre and BCG position of about 100 kpc for the 189 clusters
in common; ∼15 per cent are offset by more than 400 kpc (Melin,
private communication). This agrees reasonably with the result of
Johnston et al. (2007). We will see below that few of our results
are sensitive to miscentring because it generally causes cluster ob-
servables to be perturbed parallel to the scaling relations which link
them. Since we retain a flag which notes which of our clusters have
had their centres displaced, we can construct a cluster sample based
on ‘true’ centres simply by ignoring these objects.

Our catalogue contains 594 399 objects with Nopt above 10, cor-
responding roughly to haloes with M200 > 4 × 1013 h−1 M�. There
are 1988 objects with more than 100 members, corresponding to
M200 > 7 × 1014 h−1 M�. For each cluster, we compute asso-
ciated surrogate observables, the X-ray luminosity LX, the weak
lensing mass Mlens and the tSZ flux YSZ, by integrating the cor-
responding 2D maps around the apparent (i.e. after ‘miscentring’)
centre out to R(Nopt). For each signal, we subtract the contribution
of the background, which we estimate using an annulus of radius
1.5×R(Nopt) < r < 2×R(Nopt). Naturally, this is not the approach
that one would follow for individual well-observed clusters, where
one can directly identify the peak of the X-ray, tSZ or weak lensing
signals and estimate an individual virial radius from a profile built
around this centre. It is, however, closely analogous to the proce-
dure followed when estimating scaling relations (mean values of
Mlens, LX or YSZ as a function of optical richness) by stacking large
samples of optically selected clusters.

In our analysis below, we consider two types of cluster samples
that mimic catalogues from large-scale optical and X-ray surveys.
By comparing results from these samples, we hope to assess the

impact of the observational selection method on derived scaling
relations (cf. Section 3.2). Koester et al. (2007a) show that to a good
approximation and over a wide range of richness, their maxBCG
catalogue can be considered to be selected over a fixed volume of
about 0.5 Gpc3. We thus take ‘optically selected’ samples to be
selected uniformly from the full MXXL volume, independently of
their properties.

Current large ‘representative’ surveys of X-ray clusters are based
primarily on the ROSAT All Sky Survey (RASS; Voges et al. 1999)
and on serendipitous discovery in fields observed for other reasons
by the ROSAT , Chandra and XMM–Newton satellites. The largest
compilations, such as the 1800-cluster MCXC of Piffaretti et al.
(2011), are built by combining subcatalogues each of which is ef-
fectively X-ray flux limited, and so surveys a substantially larger
volume for X-ray bright clusters than for X-ray faint ones. For each
subcatalogue, and so for the compilation as a whole, the volume
surveyed scales approximately as L1.5

X because the apparent lumi-
nosity decreases as distance squared whereas the volume increases
as distance cubed. This over-representation of luminous objects is
known as the Malmquist bias, and we incorporate it in our ‘X-ray
flux limited’ samples by retaining all objects in the MXXL volume
but weighting each by the 3/2 power of LX.

3.2 Scalings with mass

In Fig. 5, we present the relations between cluster virial mass M200

and each of our four surrogate observables for optically detected
clusters. Specifically, Nopt corresponds to optical richness, YSZ and
LX to the projected tSZ and X-ray fluxes, and Mlens to weak lensing
mass, all integrated within the projected virial radius corresponding
(in the mean) to its estimated richness and surrounding its apparent
centre (i.e. after ‘miscentring’ perturbations). The symbols in each
panel correspond to the mean of the M200 distribution at the given
value of the surrogate observable and the red dashed lines contain
the central 68 per cent of this distribution. The straight blue lines
show the linear fit to the individual cluster data (in logarithmic
space) which minimizes the rms residuals in the vertical direction.

For comparison, green dot–dashed lines indicate the scaling ex-
pected naively given our assumptions about the relations between
baryonic and dark matter properties. In the optical case, this comes
directly from the HOD model used to build the galaxy catalogues
(Nopt ∝ M0.9), in the X-ray and tSZ cases from standard self-similar
scaling (LX ∝ M4/3 and YSZ ∝ M5/3, respectively) and in the case of
lensing it is direct proportionality (Mlens ∝ M). In all four panels, the
slope of the measured regression, shown in the legend, is similar but
not identical to the expectation. These deviations can be explained
by the relative impact for the different surrogates of internal halo
structure and of contamination along the line of sight, as well as
of miscentring. All these can depend systematically on halo mass.
The largest discrepancy is found for the lensing surrogate, followed
by the optical richness. The smallest are found for the X-ray and
tSZ signals. This is consistent with the fact that the stronger the
dependence of a surrogate on mass, the less sensitive it is to con-
tamination and to other projection effects, since these are typically
produced by less massive systems.

The scatter in halo mass at a given value of an observable can be
roughly described by a log-normal distribution and depends weakly
on the actual value of the observable we study here. It is indicated in
each panel and ranges from 20 to 40 per cent. The tSZ signal shows
the least scatter and the lensing the largest. The values we find are
consistent with previous studies, but note that our estimators are not
optimal (cf. Melin et al. 2006; Rykoff et al. 2012). Note also that
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Figure 5. Virial masses (M200) for a simulated volume-limited sample of optically detected galaxy clusters at z = 0.25 as a function of our surrogate
observables. Darker regions correspond to a larger number density of clusters. Explicitly, Nopt corresponds to a maxBCG-like optical richness, LX to projected
X-ray luminosity, YSZ to projected tSZ signal and Mlens to weak lensing mass. All these signals are integrated values within the virial radius, calculated as
described in the text, using cluster centres that are randomly displaced 30 per cent of the time from the true potential minima. The dot–dashed lines indicate
the expected ‘self-similar’ scalings, while the blue solid lines indicate the regressions (in log–log space) of halo mass against each surrogate. These have the
slopes listed in each panel which differ from the self-similar expectation. The circles show the mean virial mass for a series of narrow logarithmic bins of each
surrogate, while the dashed red lines indicate the region containing the central 68 per cent of the clusters in each bin. The fractional scatter in halo mass at a
given surrogate value is given in each panel.

our catalogues do not include all possible sources of scatter, so even
larger values may apply to real data. On the other hand, we consider
that our results should yield a reliable upper limit on the size of
uncorrelated projection effects, given the very large box size of the
MXXL. In particular, for tSZ our scatter estimates agree with those
reported from full hydrodynamical simulations of smaller volumes
(Battaglia et al. 2011; Kay et al. 2012) and for optical richness, with
those directly inferred from the data for optical clusters (Rozo et al.
2009). This is a reassuring confirmation that our assumptions are
reasonable.

An interesting corollary of the considerable dispersion in these
relations is that it is unlikely that the cluster with the largest value
for any particular observable will actually correspond to the most
massive halo in the survey which identified it. We have explicitly
checked that this perhaps counterintuitive situation does indeed
hold. In the insets of Fig. 1, we show the most extreme cluster in our
simulation as identified by each of our four surrogate observables,
i.e. the cluster with the largest tSZ signal, X-ray flux, gravitational
lensing signal and optical richness count. These clusters turn out all
to be different. The cluster with the largest richness is, in fact, the

one with the largest M200 at z = 0.25 and is notable also for the fact
that it does not even have a well-defined centre. This makes clear that
considerable care is needed to draw cosmological inferences from
the observed properties of the most extreme cluster in any particular
survey. Statistically meaningful constraints can be obtained only
with a complete and accurate treatment of the scatter in the mass–
observable relation, including any possible dependence on cluster
mass.

An important point for our subsequent analysis is that while some
sources of scatter affect primarily, or even exclusively, one specific
observable, most affect several simultaneously. For instance, at fixed
M200 the HOD is expected to correlate with halo formation time be-
cause older and more relaxed haloes tend to have more dominant
BCGs. Since formation time correlates strongly with concentration
but only weakly with virial temperature, X-ray luminosity is also
expected to increase with halo age, whereas integrated SZ strength
(and also lensing mass) should be age independent. It has long been
clear observationally that at given richness more regular and relaxed
clusters (hence ‘older’ clusters) do indeed have more dominant cD
galaxies, and it is now clear that they are also more X-ray luminous.

C© 2012 The Authors, MNRAS 426, 2046–2062
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at D
urham

 U
niversity L

ibrary on A
ugust 20, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Scaling relations for clusters in the MXXL 2055

In contrast, variations in baryon fraction are expected to affect LX

and YSZ similarly, but to have little effect on Mlens and to correlate
in a model-dependent and uncertain way with Nopt. In addition,
orientation is expected to have little effect on the measured X-ray
luminosity of a cluster but to produce correlated variations in its
measured SZ flux, richness and lensing mass. Finally, misidentifi-
cation of the centre and misestimation of the virial radius of a given
cluster will induce variations in all its observables. Generically, such
effects imply that deviations from the various mass–observable re-
lations are not independent. Rather, there is a non-zero covariance
which reflects common sensitivities to halo structure, orientation,
environment and foreground/background superposition – surrogates
which are similarly sensitive to these factors are expected to exhibit
a high degree of correlation (see also Stanek et al. 2010).

We quantify this effect in Fig. 6 which shows scatter plots of the
deviations from the mean at given M200 in the logarithms of the

values of observables for individual clusters. Here we include all
clusters with 1 × 1015 > M200 > 4 × 1014 M�. In each panel, we
give explicitly the Pearson correlation coefficient, r, which charac-
terizes the correlation between the deviations.

The strongest correlation is that between the deviations in lens-
ing mass and YSZ, presumably because they are similarly sensitive
to cluster orientation, projection, miscentring and misestimation of
R200. The second strongest is between LX and YSZ, the two quanti-
ties sensitive to our estimates of gas density and temperature. The
weakest is between richness and LX, perhaps because the X-ray
luminosity is dominated by the dominant central concentration of
clusters while Nopt is influenced substantially by orientation and
projection effects. The other three correlations are all of similar
strength.

While Fig. 6 illustrates the correlated scatter in observ-
ables among clusters of given ‘true’ mass, the more relevant

Figure 6. Correlations among deviations of observables in galaxy clusters with mass in the range 4 × 1014 M� < M200 < 1 × 1015 M�. Data correspond to
logarithmic deviations, i.e. � log (s) ≡ log (s) − 〈log (s)〉, where the mean is computed for clusters in narrow mass bins (� log M200 = 0.2). The intensity
of the background 2D histogram is proportional to the number of haloes in the corresponding region of the plot, with a darker grey-scale indicating a larger
number density of objects. The red circles correspond to the average y value in bins along the x axis. The linear correlation coefficient r for each pair of
observables is given in the legend of each panel.
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correlations for the effects discussed in the next section are those at
fixed observed richness, Nopt. These are shown as scatter plots for
44 < Nopt < 50 in Fig. 7. We have checked and found quite similar
results for other richness ranges. The scatter in each observable is
considerably larger at fixed Nopt than at fixed M200 and the correla-
tions are substantially stronger in Fig. 7 than in Fig. 6, reaching r =
0.85 for the particularly relevant case of YSZ versus LX.

Despite the different degrees of covariance among our surrogate
observables, we note that we measure a positive correlation in all
cases. This means that a cluster with an abnormally high signal in
one surrogate is likely to have a high signal in the other three as well,
especially those where the relevant correlation is strong. Hence, dif-
ferent observables do not provide independent measurements of the
true mass of any given cluster, and any analysis which assumes that
they do is likely to be at least partially in error. Another implication
is that a group of clusters selected using one of these observables
will not form an unbiased sample of the underlying cluster popula-
tion with respect to any of the other observables. As a result, both
the mean scaling relations for such a sample and the scatter around
these relations may differ from those for the full underlying cluster
population. We will see, for example, that the mass–observable and
observable–observable relations derived from an optically selected
cluster catalogue will differ in general from those derived from an
X-ray selected catalogue.

3.3 Systematic effects in measured scaling relations

We now consider how the tSZ signal is related to optical richness for
cluster samples selected in various ways. In Fig. 8, we display results
where each MXXL cluster is assigned equal weight in order to
mimic volume-limited samples like the optically selected maxBCG
survey. For comparison, in Fig. 9 we show results where each cluster
is weighted by L

3/2
X , mimicking cluster samples like the MCXC

which is constructed from a number of X-ray surveys, each of
which is effectively X-ray flux limited. The upper panels in these
plots show mean YSZ for clusters of given Nopt, while the lower
panels show the rms scatter about these relations expressed as a
fraction of the mean signal. Lines in the upper panels thus represent
the mean tSZ signals expected if clusters from optical or X-ray
surveys are stacked as a function of their optical richness.

The solid red lines in Fig. 8 show the ‘intrinsic’ relation which
is obtained if both YSZ and Nopt are calculated in 3D by integrating
over a sphere centred on the potential minimum and with radius
R200. The properties of real clusters are, of course, measured from
2D maps. The dotted lines labelled ‘observed’ in both figures show
the relations obtained for uncontaminated clusters when both YSZ

and Nopt are integrated over a disc around the potential minimum
with radius given by the true R200. Here ‘uncontaminated’ means
that at least 90 per cent of the galaxies contributing to Nopt have to
lie in a single FoF halo. Although, by definition, our estimates of
Nopt and YSZ both increase for any individual object in going from
3D to 2D, they increase by similar amounts, with the result that the
apparent relation does not change significantly over the full range
of richness probed here. The scatter, on the other hand, is greatly
increased for poor clusters, where it can double the intrinsic value,
but is little affected for rich clusters.

For the dashed blue lines labelled ‘+contaminated’ in Figs 8 and
9, we relax the requirement that the clusters be uncontaminated.
We also use an observational estimate of R200 for each cluster when
estimating its richness and its tSZ signal, as described earlier in this
section. Line-of-sight superposition effects then contribute to the
values of all the observables. Because the superposed objects are

Figure 7. Correlations among deviations in LX, YSZ and Mlens for objects
with optical richness in the range 44 < Nopt < 50. The intensity of the
background 2D histogram is proportional to the number of haloes in the
corresponding region of the plot, with a darker grey-scale indicating a larger
number density of objects. The linear correlation coefficient r for each pair
of observables is given in the legend of each panel.
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Figure 8. tSZ signal YSZ as a function of the optical richness Nopt for a
volume-limited sample of ∼500 000 clusters from the MXXL. The upper
panel shows the mean relation and the lower panel the ratio of the scatter to
the mean. In each panel, the red curve shows the ‘intrinsic relation’ where
both the tSZ signal and richness are computed in 3D within a sphere of
radius R200 centred on the potential minimum. For the ‘observed’ lines,
both YSZ and Nopt are computed in projection about these true centres using
the true R200 and using only uncontaminated clusters, defined to be those
where at least 90 per cent of the galaxies are members of a single FoF halo.
The ‘+contaminated’ lines refer to samples where this latter condition is
eliminated and where the virial radius for each object is estimated iteratively
from Nopt as is done for real data. Finally, the ‘+miscentred’ curves refer
to samples where the projected position of the centre has been offset for 30
per cent of the clusters as described in the text.

usually of lower mass (and hence lower temperature) than the main
cluster, they typically inflate Nopt (which scales approximately as
M0.9) more than they do YSZ (which scales approximately as M5/3).
As a result, the ‘+contaminated’ relations lie slightly to the right
of the ‘uncontaminated’ ones. The effect is smaller in Fig. 9 than
in Fig. 8. The scatter is further increased by contamination in the
volume-limited case but is relatively little affected for flux-limited
samples.

The final observational systematic we study is miscentring. The
dot–dashed purple curves labelled ‘+miscentring’ in Figs 8 and 9
show the relations found when the centres assigned to a random
30 per cent of the clusters are offset from their potential minima
as described above. This results in a surprisingly small shift in the
mean relation in both cases. Again, this is because such offsets
induce shifts in the estimated values of Nopt and YSZ that are largely
parallel to the mean relation.

These ‘+miscentring’ curves give our most realistic estimate of
the relations expected for real clusters in the two cases. We repeat

Figure 9. SZ signal YSZ as a function of the optical richness Nopt for an
X-ray flux limited sample of ∼500 000 clusters from the MXXL. This is
directly analogous to Fig. 8 and was constructed in the same way except each
cluster is weighted by the 3/2 power of its X-ray luminosity. The ‘observed’,
‘+contaminated’ and ‘+miscentred’ lines refer to the same cluster sets as
in Fig. 8, differing only because of this weighting. The red lines labelled
‘volume limited’ repeat the ‘+miscentred’ results from Fig. 8. Malmquist
effects substantially enhance the amplitude of the mean relation, reduce the
scatter and make the relation insensitive to superposition and miscentring
effects.

these (dot–dashed purple) curves from Fig. 8 as solid red curves
in Fig. 9 in order to emphasize the most important result of this
section. The average YSZ signal for X-ray flux-limited samples is
boosted by a factor of 3.5 in the low richness tail and by a factor
of 1.25 at high richness, relative to the volume-limited case. This
is a consequence of the strong correlation between LX and YSZ at
fixed Nopt which is visible in the top panel of Fig. 7. In samples
selected above a limiting X-ray flux, clusters of given Nopt which
are X-ray underluminous are down-weighted and these tend also to
be the objects with the smallest YSZ signals. This is a manifestation
of the Malmquist bias.

A second important consequence of X-ray selection is that the
scatter about the mean YSZ–Nopt relation is greatly reduced. The
lower panel of Fig. 9 shows that we predict it to be only about half
that for a complete volume-limited sample of clusters. Although
much of this difference is due to a reduced sensitivity to contam-
ination and miscentring, the scatter is even lower than that shown
in Fig. 8 for uncontaminated and properly centred clusters. If not
corrected, this could lead to over-optimistic estimates of the per-
formance of mass estimators when tested on X-ray-selected cluster
samples. Such samples are clearly more homogeneous in internal
structure at given mass than volume-limited samples. We expect
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Figure 10. Mean lensing mass as a function of optical richness for clusters
in the MXXL simulation. ‘Lensing mass’ is defined as the mass within a
properly centred sphere of radius R200 (M200, the red solid curve labelled
‘intrinsic’) or projected within a circle of radius given by an Nopt-based es-
timate of R200 and centred either on the true potential minimum (‘observed’
and ‘+contaminated’ cases) or on an offset centre in 30 per cent of the
cases (‘+miscentred’). Nopt is defined within these same regions. The upper
panel shows the mean relations while the lower one gives the fractional
scatter about these relations. The ‘X-ray flux limited’ curves refer to the
‘+miscentred’ case with haloes weighted by L

3/2
X .

biases of this kind to be present in any cluster catalogue selected ac-
cording to a specific observable, and they must be corrected in order
to infer correctly, for example, the volume abundance of clusters
as a function of M200, the quantity normally used to draw cosmo-
logical conclusions from the cluster population. Robust constraints
require not only that the mean transformation from observable to
mass be determined accurately and without bias, but also that the
scatter between these quantities be known to high precision.

Fig. 10 is analogous to the previous two figures but now focuses
on the relation between gravitational lensing mass and richness.
As was the case for YSZ–Nopt, we find that the slopes of the mean
relations are similar in all the volume-limited cases, and that the
effects of contamination and miscentring are quite modest. In con-
trast to Johnston et al. (2007), who find that miscentring decreases
the normalization of the Mlens–Nopt relation by 15–40 per cent (see
their tables 3 and 8), it barely changes the mean relation in our data.
This is because of the strong correlation between our estimators of
optical richness and lensing mass. If the centre of a halo is misiden-
tified, both Nopt and Mlens are underestimated, and the change is, on
average, almost parallel to the mean relation. The stronger effect
seen by Johnston et al. (2007) may reflect their different estimators

for the lensing mass, or possibly a failure to account consistently for
the implied change in richness. We note that this richness reduction
implies that at any given Nopt, fewer than 30 per cent of clusters will
actually be miscentred, both because cluster abundances increase
steeply with decreasing richness and because poor clusters are more
likely to be rejected by our algorithm in favour of richer overlapping
systems. Note also that the mean lensing mass is biased high by the
Malmquist effect in X-ray flux-limited cluster samples because at
given richness more luminous clusters are usually more massive.

The various biases examined here depend both on the intrinsic
properties of the cluster population and on the specific technique
used to measure each observable. For instance, the smaller the scat-
ter between X-ray luminosity and optical richness, the smaller the
impact of Malmquist bias on the amplitude of the YSZ–Nopt relation.
In the limiting case of no scatter, the relations for flux-limited and
volume-limited samples would be identical. The same would be true
if there were no correlation between LX and YSZ at fixed Nopt. The
substantial effects found above are due to the strong correlations
we predict. The details of the observational procedures matter be-
cause they can enhance or suppress the impact of different aspects
of the data. For instance, an optimal filter based on expected cluster
profiles will be more sensitive to miscentring than a top-hat filter
of large size; the shear profile scheme which Johnston et al. (2007)
used to estimate lensing masses may be yet differently sensitive.
Such effects must be taken into account properly if any particular
survey is to place reliable constraints on cosmological parameters.
This also applies to inferences from the properties of extreme ob-
jects. Cosmological inferences require a full understanding of the
scatter in the observable–mass relation and an accurate knowledge
of the selection function, otherwise one may arrive at seriously
erroneous conclusions.

4 SC A L I N G R E L AT I O N S F O R PLANCK
CLUSTERS

In the previous section, we showed that cluster scaling relations are
strongly and systematically affected by the way in which cluster
samples are selected. This is a consequence of the substantial scat-
ter in mass–observable and observable–observable relations, and
the fact that deviations of different observables from the mean re-
lations are strongly correlated because of common sensitivities to
cluster structure, orientation, environment, and line-of-sight projec-
tion. The resulting distortion of scaling relations depends on how
clusters are detected and their observables measured, so precise cor-
rection requires detailed modelling of each individual experiment.
Our catalogues based on surrogate observables are nevertheless re-
alistic enough to examine whether effects of this kind might explain
some apparent inconsistencies recently highlighted by the Planck
Collaboration.

There are three pieces to the puzzle presented by the Planck
Collaboration. First, the mean tSZ signal for stacks of maxBCG
clusters of given optical richness is about half of that predicted by
scaling relations derived from the much smaller REXCESS sample
for which individual X-ray profiles are available (Böhringer et al.
2007). The hot gas structure of the REXCESS sample is well described
by the almost self-similar scaling of a ‘universal’ pressure profile
which resembles that predicted by hydrodynamical simulations of
cluster formation (Arnaud et al. 2010). The REXCESS scaling relations
do, however, agree well with the mean YSZ measured when clusters
from the large MCXC compilation (Piffaretti et al. 2011) are stacked
as a function of LX (Planck Collaboration et al. 2011b). Note that
comparison with the stacked YSZ–Nopt relation for the maxBCG
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sample requires an estimate of cluster mass as a function of Nopt

for which Planck Collaboration et al. (2011c) used weak lensing
results for stacked maxBCG clusters (Johnston et al. 2007; Rozo
et al. 2009).

The second piece of the puzzle is that if the maxBCG sample is
restricted to clusters which are also in the MCXC, the stacked YSZ–
Nopt relation lies well above (a factor of 2 at Nopt = 50) that for the
sample as a whole and appears consistent with the REXCESS scaling
relations. The third and final piece is that the relation between
mean YSZ and mean LX signals for stacks of the full maxBCG
binned by Nopt is consistent both with that between mean (stacked)
YSZ and LX in the MCXC and with that between YSZ and LX for
individual clusters in the REXCESS sample. All these facts led the
Planck Collaboration to speculate that a subset of optically detected
clusters might have very weak tSZ and X-ray signals, presumably
because they contain many galaxies but rather little hot gas.

We now examine these issues using suitably selected cluster cat-
alogues from the MXXL. To mimic the full maxBCG catalogue,
we use volume-limited samples (cf. Koester et al. 2007a) and we
measure a ‘maxBCG-like’ richness for each as detailed in Sec-
tion 3.1. To mimic the MCXC, we will use ‘X-ray flux-limited’
samples which weight each object by L

3/2
X , since Piffaretti et al.

(2011) built the MCXC by combining a number of X-ray surveys,
most of which are effectively flux limited. We are also interested in
the overlap between these two observational samples. At high X-ray
luminosity, clusters are detected in the RASS to distances beyond
the limit of the maxBCG catalogue, so that the combined sample is
effectively volume limited. At low X-ray luminosity, on the other
hand, the maxBCG limit is well beyond the distance at which RASS
can detect clusters and the overlap sample is flux limited. As we
will see below, the effects of this change in sample selection are
directly visible in the behaviour of the stacked YSZ signal of the
overlap sample.

We begin by considering the mean X-ray luminosity and mean
tSZ signal as functions of optical richness for MaxBCG clusters.
These data are displayed in Fig. 11 as red circles. In the left-hand
panel, we show X-ray measurements from Rykoff et al. (2008)
which correspond to the average X-ray luminosity within R500 for
stacks of RASS maps centred on MaxBCG clusters. We convert their
luminosities, originally measured within R200, to ones measured
within R500 by multiplying them by 0.91. We also scale these values
to their z = 0 equivalent by assuming a self-similar scaling of the
luminosities. In the right-hand panel, we show the average tSZ
signal in Planck maps within R500 for the same richness-binned
MaxBCG clusters. Note that the mass–richness relation from Rozo
et al. (2009) was used to set the size of the matched filter when
measuring the YSZ signals, but that this has little impact on the
result and is unimportant for our discussion here.

We now compare these results to our simulation. Red lines show
the mean relation predicted by ‘observational’ catalogues which in-
clude both contamination and miscentring. They have been shifted
vertically to fit the maxBCG data as well as possible, thus de-
termining the scaling coefficients used consistently in our LX and
YSZ proxies throughout this paper. After this normalization, the
YSZ−N200 and LX−N200 relations are predicted remarkably well.
The latter relation in the MXXL is slightly shallower than observed.
This reflects the well-known fact that the observed LX–TX relation
is steeper than that expected from the self-similar model on which
we built our surrogates, apparently indicating a systematic variation
in gas fraction or concentration with cluster mass. The agreement
nevertheless appears good enough to validate our approximate mod-
elling of gas physics, suggesting that it is adequate to capture the

statistical correlations underlying the influence of selection bias on
cluster scaling relations.

The second set of observations in Fig. 11 refer to the set of 189
maxBCG clusters which are also in the MCXC. The blue dots in
the left-hand panel show LX as a function of Nopt for the individual
clusters, whereas blue squares in both the panels give average values
for stacks of these clusters around their maxBCG centres, using the
same Nopt bins as for the full maxBCG sample (Planck Collaboration
et al. 2011c). In both cases, we plot the z = 0 equivalent value, using
the measured redshift for each cluster and assuming a self-similar
scaling of the signals. This allows a consistent comparison of all
data sets.

As noted by the Planck Collaboration, stacked tSZ fluxes are
systematically larger for MCXC clusters than for the full MaxBCG
sample, except possibly for the richest systems. The left-hand panel
of Fig. 11 indicates that their X-ray luminosities are also systemati-
cally higher, again with the possible exception of the richest clusters.
The blue dashed lines in both panels indicate the mean relations we
predict for X-ray flux-limited samples. The Malmquist bias offset
from the volume-limited relation explains part of the difference be-
tween the blue squares and the red circles in the left-hand panel,
and it explains almost completely the discrepancy in the right-hand
panel. As discussed in the previous section, the latter is caused by a
strong correlation between the deviations of individual clusters from
the mean LX–Nopt and YSZ–Nopt relations. This causes Malmquist
bias to propagate from X-ray selection into the YSZ–Nopt relation.3

This suggests not only that the correlated scatter between LX and
YSZ at given Nopt is well represented in our model, but also that there
are sources of scatter which only affect LX that are not accounted
for in our analysis which would increase the difference between
X-ray scaling relations derived from volume and X-ray flux-limited
samples without affecting the YSZ signal.

Finally, we reiterate that both relations have considerable scatter.
At given Nopt, our model indicates that the fractional uncertainty
in LX and YSZ for volume-limited samples is about 40 per cent for
Nopt ∼ 200 and rises to 130 per cent for Nopt ∼ 10. These numbers
are broadly consistent with the intrinsic scatter reported by Planck
Collaboration et al. (2011c) for the SZ measurement of MaxBCG
clusters. The corresponding fractional scatters are about 40 per cent
for both LX and YSZ in our X-ray flux-limited samples.

We now move to another observable scaling relation reported
by the Planck Collaboration: that between YSZ and LX. We display
simulation results for both volume-limited and X-ray flux-limited
catalogues in Fig. 12. Clusters were stacked as a function of Nopt

and then the mean YSZ of each stack was plotted against its mean
LX. Although both YSZ and LX are substantially larger at given
Nopt in flux-limited stacks, the two relations are almost identical.
Malmquist bias has a negligible impact because the shifts are almost
parallel to the mean relation.

The same relation can be constructed for the (almost) volume-
limited maxBCG catalogue by stacking RASS and Planck data
for clusters binned by Nopt. This exercise was carried out by Planck
Collaboration et al. (2011c) and their result is overplotted in Fig. 12.
We also include, as a green dotted line, the relation predicted by
the X-ray model built by Planck Collaboration et al. (2011c) based
on observations of REXCESS clusters and an observational Nopt–Mlens

calibration. Despite the relations being built from different samples,
they are very similar to each other and to our MXXL predictions,

3 Rykoff et al. (2008) give extensive discussion of various bias effects when
the maxBCG catalogue is combined with X-ray cluster surveys.
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Figure 11. Comparison of scaling relations between observed and simulated clusters. The left-hand panel shows X-ray luminosity as a function of optical
richness. The red circles with error bars show the mean luminosity of stacks of MaxBCG clusters as measured by Rykoff et al. (2008), while the blue points
indicate individual maxBCG clusters which are also in the MCXC compilation of Piffaretti et al. (2011). The right-hand panel shows the tSZ signal as a function
of optical richness. Here, the red circles indicate mean values for stacks of the entire maxBCG catalogue, while the blue circles are for stacks of maxBCG
clusters that are also in the MCXC (Planck Collaboration et al. 2011c). All observational data correspond to the equivalent of measurements within R500 and
at z = 0. Predictions from the MXXL simulation are shown by red lines for a volume-limited sample and by blue lines for an X-ray flux-limited sample. Note
that the normalizations of our LX and YSZ proxies are set by shifting the red lines vertically to give the best possible fit to the red circles in these two plots.

showing not only that the YSZ–LX relation is insensitive to details
of sample definition, but also that our proxies continue to represent
the observables well in this plane.

An YSZ–LX relation for the effectively flux-limited MCXC–
maxBCG overlap is also shown in Fig. 12. For the richest optical
bins, it is compatible with all other relations, but the LX signal is
considerably larger for poor clusters. The relatively small number
of systems per bin leaves room for this to be a statistical fluctuation
(and indeed, we find that the median per bin agrees much better
with the expected relation). However, if real, it indicates that the
differences in YSZ and LX at fixed Nopt cannot be explained by the ex-
istence of a subpopulation devoid of hot gas, as suggested by Planck
Collaboration et al. (2011c), since this would move the points in
Fig. 12 along a line of slope unity and so could not bring them back
on to the relation for the full maxBCG sample. On the other hand,
all data can be simultaneously explained by the Malmquist bias,
together with an extra source of scatter affecting only LX (e.g. the
presence or absence of cool cores in the gas distributions). Note that
this requires correlated scatter in observables of the kind illustrated
in Figs 6 and 7 and does not work in simpler treatments of the same
puzzle, as that of Biesiadzinski et al. (2012) which does not fully
incorporate all such correlations.

Given that our simulation appears to reproduce consistently all
the measured observable–observable relations for the maxBCG and
MCXC catalogues, it is interesting to discuss why the Planck Col-
laboration’s modelling gave a prediction which was inconsistent
with the measured YSZ–Nopt relation for the maxBCG sample. The
answer appears to lie in the way cluster masses were used to relate
the population identified in X-ray surveys to the maxBCG clusters.
Since values of Nopt are not available for most of the clusters in
bright and well-studied X-ray samples, this richness measure must
be calibrated against another observable if the hot gas properties of
such samples are to be used to predict the mean YSZ signal from
maxBCG stacks. X-ray luminosity could have been used, since
Rykoff et al. (2008) provide mean LX values as a function of Nopt,

and the YSZ–LX relation is not only theoretically robust but also
observationally well determined (see Fig. 12). This route (Nopt →
LX → YSZ) predicts mean YSZ values for maxBCG stacks which
agree well with those measured directly. However, the Planck Col-
laboration decided instead to follow a different route (Nopt → M500

→ YSZ) using the mean weak lensing masses measured as a func-
tion of Nopt for stacked maxBCG clusters by Johnston et al. (2007)
and Rozo et al. (2009) who in addition corrected Mlens upwards to
account for an improved model for the redshift distribution of the
source galaxy population. Both these studies made substantial up-
ward corrections to the directly measured mean masses to account
for the effects of line-of-sight contamination and miscentring, but
they failed to make consistent corrections to Nopt, thus ignoring the
correlated deviations of individual clusters from the mean Nopt–
M200 and Mlens–M200 relations which are visible in the lower-left
panel of Fig. 6. Thus, the reported scaling relations correspond to
the relationship between the true mass of a cluster and its miscentred
optical richness, and so predict the YSZ signal expected for well-
centred clusters as a function of their miscentred richness. These
predictions should not be compared against Planck data, unless the
YSZ is corrected for miscentring in a similar way to the weak lensing
data.

An alternative is to use the uncorrected measurements, because
the correlation among observables results in an apparent Nopt–Mlens

relation almost identical to that of well-centred and uncontaminated
clusters. In fact, if the original ‘raw’ masses obtained by Johnston
et al. (2007) are used instead of the ‘corrected’ masses to predict
mean YSZ as a function of Nopt, the discrepancy with the directly
measured values almost disappears.

5 C O N C L U S I O N S

Throughout this paper, and in particular in the previous section,
we have emphasized the importance of understanding how sur-
vey methods influence the scaling relations measured in the galaxy
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Figure 12. Average tSZ flux as a function of average X-ray luminosity for
clusters stacked according to optical richness. The red solid and blue dashed
lines give MXXL results for our volume-limited and X-ray flux-limited
samples, respectively, and refer to the same set of Nopt bins. Both LX and
YSZ are larger for the flux-limited sample, but the shift is almost parallel
to the mean relation so that Malmquist bias has little visible effect. The
red circles are taken from Planck Collaboration et al. (2011c) and refer to
maxBCG clusters, whilst the blue squares are the results for the subset of
clusters present in the MCXC catalogue. In both cases, the data are binned
according to Nopt. The error bars indicate bootstrap uncertainties in the mean
LX and YSZ signals in each richness bin. The green dotted line shows the
predictions of the X-ray model build by Planck Collaboration et al. (2011c).

cluster catalogues they produce. We have argued that this is crucial
both for proper statistical analysis of the physical properties of the
cluster population and for deriving meaningful cosmological con-
straints from the estimated masses of the extreme clusters identified
in any given survey.

In order to illustrate these points, we have used the dark matter
distribution in the MXXL simulation, the largest high-resolution
cosmological calculation to date, to construct sky maps from which
clusters can be catalogued using proxies for four different observ-
ables: optical richness as measured in deep photometric redshift
surveys, X-ray luminosity, tSZ signal and weak lensing mass. Al-
though our treatment of these observables is necessarily simplified,
it is sufficient to explore the scatter in the relation between each
observable and cluster mass, as well as the correlations between
the scatter for different observables caused by common sensitivities
to the internal structure, orientation, environment and background
contamination of clusters. This is essential to understand the system-
atic biases imposed by specific observational strategies for detecting
clusters and measuring their properties.

We employed these catalogues to show that there are a number
of effects that systematically alter the slope, amplitude and scatter
of scaling relations among the observables. Structural complexities,
orientation variations, superposition both of surrounding large-scale
structure and of unrelated foreground/background objects, and mis-
centring all increase the scatter in the YSZ, LX, Mlens and Nopt signals
for given cluster mass. Relations between these observables, for ex-
ample, the Mlens–Nopt or YSZ–LX relations, can, however, be much
less affected because clusters scatter roughly parallel to the mean
relation. In addition, Malmquist’s effects in flux-limited surveys

not only bias the amplitude and reduce the scatter in the mass–
observable relation for the observable used to select the sample,
but also in those for other observables which have correlated scat-
ter. The strength of such effects depends substantially on survey
strategy and on the operational definition of the observables.

Ignoring these bias effects can lead to serious difficulties in in-
terpreting cluster data. As an example, we have considered a dis-
crepancy recently highlighted by the Planck Collaboration which
concerns the mean tSZ and X-ray signals measured for stacks of
clusters identified from optical and X-ray surveys. Both signals are
lower for optically selected clusters than predicted for their weak
lensing estimated masses by a model which fits both individually
observed and stacked X-ray-selected clusters. Our results suggest
that the data are nevertheless in good agreement with predictions for
a concordance �CDM universe, even if the gas properties of clusters
are assumed to scale in a simple self-similar way with cluster mass.
The discrepancy appears to reflect the Malmquist bias propagating
from the X-ray luminosities to the tSZ signal through covariance
in their scatter at fixed cluster mass. The Malmquist bias has rather
little impact on the mean YSZ−LX relation, since clusters scatter
almost along it. The discrepancy appears to have been exacerbated
by applying a substantial miscentring correction to the mean Mlens

for the stacked clusters without applying a corresponding correc-
tion to the mean values of the other relevant observables. Our model
suggests that together these effects may resolve the apparent puzzle.

Although our analysis appears to explain the discrepancy both
qualitatively and quantitatively, our explanation should still be re-
garded as provisional because of the detailed dependence of the ef-
fects on how the observables were obtained from the observational
data. A firmer conclusion can only be reached through considerably
more detailed modelling of the particular surveys involved. This
should address not only the survey design and cluster identification
issues, but also the specific algorithms (matched filters, etc.) used
to measure the observables. Additional uncertainty comes from our
schematic treatment of the baryonic physics, which undoubtedly
misses important aspects of the relation between the visible mate-
rial and the underlying mass. It is nevertheless clear that precision
cosmology with clusters will be impossible without carefully tai-
lored surveys with calibration strategies that fully account for the
multidimensional scatter between all the relevant observables and
the fiducial cluster mass. Furthermore, linking the observations to
the underlying cosmological model will require simulations that
model all these statistical and astrophysical aspects to the required
level of precision. Even with its limited treatment of the relevant as-
trophysics, the remarkable size and statistical power of the MXXL
gives a foretaste of what should be possible in the future.
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