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We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model,
by running a suite of N-body cosmological simulations using the ECOSMOG code. Our simulations include
the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the
linear regime, the amplitude of the matter power spectrum increases by ∼ 20% with respect to the standard
ΛCDM model today. The modified expansion rate accounts for ∼ 15% of this enhancement, while the fifth
force is responsible for only ∼ 5%. This is because the effective unscreened gravitational strength deviates
from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime
(k & 0.1hMpc−1), the fifth force leads to only a modest increase (. 8%) in the clustering power on all scales
due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in
other models with the same screening mechanism. The screening also results in the fifth force increasing the
number density of halos by less than 10%, on all mass scales. Our results show that the screening does not ruin
the validity of linear theory on large scales which anticipates very strong constraints from galaxy clustering data.
We also show that, whilst the model gives an excellent match to CMB data on small angular scales (l & 50), the
predicted integrated Sachs-Wolfe effect is in tension with Planck/WMAP results.

I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) [1, 2], type Ia supernovae (SNIa) [3, 4], Hubble con-
stant [5–7], galaxy clustering and the scale of the baryonic
acoustic oscillation (BAO) feature [8–14] now provide com-
pelling evidence that our Universe is going through a period
of accelerated expansion. This suggests the existence of some
form of "dark energy", the fundamental nature of which cur-
rently evades our understanding. Nevertheless, there is no
shortage of possible explanations (see [15–17] for recent re-
views), with the best known and simplest being the cosmolog-
ical constant Λ. In the so called Λ-cold dark matter (ΛCDM)
model, Λ "inflates" the universe due to its negative pressure.
The problem with this model, however, is that its recognized
observational success comes at the expense of requiring a
heavily fine-tuned value of Λ, which is hard to motivate theo-
retically.

An alternative to negative-pressure dark energy is to mod-
ify the standard gravitational law of general relativity (GR).
A recent prominent example is the case of Galileon gravity
[18–20], in which the modifications to GR arise through a
Galilean-invariant scalar field, i.e., it is invariant under the
transformation ∂µϕ→ ∂µϕ+ bµ, where bµ is a constant vec-
tor. The action of the Galileon model was first derived in [18],
by generalizing the four-dimensional effective action of the
Dvali-Gabadadze-Porrati (DGP) model [21–24]. The latter
already had a Galilean degree of freedom which was, how-
ever, plagued by ghost problems [22, 23, 25]. The authors of
[18] found that in four-dimensional Minkowski space, one can
only write five Lagrangian densities that are invariant under
the Galilean-shift transformation and which lead to second-
order field equations of motion, despite nonlinear derivative
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terms that appear in the Lagrangian. The second-order na-
ture of the equations makes the Galileon model a subset of the
more general Horndeski theory [26], and is crucial to avoid
the propagation of Ostrogradsky ghosts [27]. The action of
[18] was subsequently generalized to curved spacetimes in
[19, 20], where it was found necessary to explicitly couple the
Galileon derivatives to curvature tensors. Such terms make
the modifications of gravity highly non-trivial.

The main difficulty in modified gravity theories is to rec-
oncile O(1) modifications on cosmological scales with local
tests of gravity. The former are needed to accelerate the ex-
pansion of the Universe, while the latter constrain gravity to
be very close to GR on small scales [28–31]. Consequently, a
crucial requirement of these models is that they should possess
some form of screening mechanism that suppresses the modi-
fications to gravity1 on the scales where GR is well tested. In
the case of the Galileon model, the screening is realized by
the nonlinear derivative terms of the Lagrangian through an
effect known as the Vainshtein mechanism [32–34]. In this
case, nonlinearities result in interference terms that weaken
the modifications to GR in regions where the matter density
is higher, such as the Solar System. In particular, near mat-
ter sources, nonlinear terms become important and suppress
the spatial gradient of the Galileon field, which corresponds
to the fifth force. Far away from the source, the nonlinear
interference is weak and the fifth force contributes substan-
tially to the total force felt by a test particle. The DGP model,
massive gravity [35–37], Fab-Four [38–41] and kinetic grav-
ity braiding [42–44], are examples of other models where
the Vainshtein mechanism can be implemented (see also [45–
50]). Another way to screen the fifth force in modified grav-
ity theories is via nonlinear interactions of a scalar field with
matter and/or itself. This mechanism, widely known as the

1 Often described as a fifth force.
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"chameleon" effect, works by choosing the nonlinear matter
coupling and potential functions of the models in such a way
that, in high-density environments, they lead to vanishing cou-
pling strengths (e.g. dilaton [51–53] and symmetron [54–57]
models) and/or to very heavy masses of the scalar field (e.g.
Chameleon scalar fields [58, 59] and f(R) [60–65]). The
heavier the scalar field, the harder it is for it to propagate, and
therefore, to mediate any fifth force. Recently, another type of
screening mechanism based on disformal couplings has also
been proposed [66].

The cosmological properties of the Galileon gravity model
have recently been studied at the linear level in perturba-
tion theory [67–78]. In particular, in [67], we have modi-
fied the Boltzmann code CAMB [79] to perform the first study
of the CMB temperature and linear matter power spectra in
the Galileon model. As a follow up of this study, in [68] we
carried out a formal Markov Chain Monte Carlo exploration
of the full cosmological parameter space in the general co-
variant Galileon gravity model of [19]. We have found that
the Galileon model can provide a reasonable fit to the cur-
rent data for the CMB, SNIa and BAO, and in fact, is a better
fit than ΛCDM if only the CMB data is considered. How-
ever, we also have identified some tension in the ability of the
Galileon model to fit both the CMB and galaxy clustering data
(see also [75–77]). In principle, such tension could be used
to place very strong constraints on the model, perhaps even
ruling it out. However, such a conclusion depends critically
on the assumed validity of linear perturbation theory on the
scales probed by the data, which is less obvious in the case of
modified gravity models due to the presence of the nonlinear
screening effects. The screening can have a substantial impact
on scales where linear theory is usually taken to be a good ap-
proximation, as shown in [80–86], via N-body simulations in
the case of chameleon-type models.

Hence, in order to properly constrain Galileon gravity, it
is important to understand the true impact of the Vainshtein
screening on the model, which requires one to go beyond lin-
ear theory. Analytical studies of nonlinear structure formation
are usually limited to special configurations, such as assum-
ing spherical symmetry [87–100]. Therefore, one has to re-
sort to N-body simulations to study the nonlinearities at a cos-
mological level. This is not trivial for models which employ
Vainshtein screening, as the relevant equations are difficult to
solve numerically due to the products of derivative terms. This
is particularly challenging in the case of the Galileon model,
where one can have terms with products of five field deriva-
tives. In this paper, as a first step to understanding the influ-
ence of the Vainshtein screening on nonlinear structure for-
mation in a Galileon cosmology, we consider the special case
of the Cubic Galileon model. This is a theoretically consis-
tent subset of the general theory of [18–20], but in which the
degree of nonlinearity in the equations of motion is smaller.
This makes the equations easier to solve numerically.

The Cubic Galileon model is, in many aspects, similar
to the DGP model, of which a number of N-body studies
have already been performed [101–106]. An important ad-
vantage of the Cubic Galileon model is that it fits the obser-
vational data much better than the DGP model, and that it

can have a self-accelerated solution without the presence of
ghosts [22, 23, 25]. In [107], the authors have simulated a
phenomenological model with equations similar to the DGP
and Cubic Galileon models, but by making a number of as-
sumptions regarding the time evolution of the expansion rate
and the fifth force. In particular, the model of [107] as-
sumes a ΛCDM expansion history, which is not possible in the
Galileon model. Moreover, the evolution of the fifth force is
also different, which, as we will see below, plays an important
role in the growth of structure in the two models. In [106], the
authors reported an upgrade of the ECOSMOG N-body code
[108] to perform high-resolution simulations which include
Vainshtein screening, by taking advantage of the adaptive
mesh refinement (AMR) nature of the code. In this paper, we
use the same N-body code to look at how the Cubic Galileon
model compares to the models simulated in [106, 107], and
what new phenomena could arise.

The outline of the paper is as follows. In Sec. II, we present
the relevant equations for the N-body simulations, derived
under the quasi-static limit approximation. We also look at
the implementation of the Vainshtein mechanism, the CMB
power spectrum of the model and its linear density field evo-
lution. In Sec. III, we briefly describe the N-body algorithm
and the simulations we have performed. The results for the
nonlinear matter power spectrum and halo mass function are
presented in Sec. IV. We conclude in Sec. V.

Throughout this paper we assume the metric convention
(+,−,−,−) and work in units in which the speed of light
c = 1. Greek indices run over 0, 1, 2, 3 and we use 8πG =
κ = M−2

Pl interchangeably, whereG is Newton’s constant and
MPl is the reduced Planck mass.

II. THE GALILEON MODEL

Here, we present the Cubic Galileon model and the equa-
tions that are relevant for the formation of large-scale struc-
ture. A goal of this section is to contrast the Cubic Galileon
model with the DGP braneworld model. We follow a similar
notation to that adopted in [106], to which we refer the reader
for all the relevant DGP expressions.

A. Action and field equations

The action of the Cubic Galileon model, which has no di-
rect coupling between matter and the Galileon field (see how-
ever [37, 67, 73, 109–113]), is given by

S =

∫
d4x
√
−g
[

R

16πG
− 1

2
c2L2 −

1

2
c3L3 − Lm

]
, (1)

where g is the determinant of the metric gµν , R is the Ricci
scalar, the model parameters c2 and c3 are dimensionless con-
stants and L2 and L3 are given by

L2 = ∇µϕ∇µϕ, L3 =
2

M3
�ϕ∇µϕ∇µϕ, (2)
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in which ϕ is the Galileon scalar field and M3 ≡ MPlH
2
0 ,

where H0 is the present-day Hubble expansion rate.
The Einstein and Galileon field equations are given by:

Gµν = κ
[
Tmµν + T c2µν + T c3µν

]
, (3)

0 = c2�ϕ+ 2
c3
M3

[
(�ϕ)2 −∇α∇βϕ∇α∇βϕ

−Rαβ∇αϕ∇βϕ
]
, (4)

where

T c2µν = c2

[
∇µϕ∇νϕ−

1

2
gµν∇αϕ∇αϕ

]
, (5)

T c3µν =
c3
M3

[
2∇µϕ∇νϕ�ϕ+ 2gµν∇αϕ∇βϕ∇α∇βϕ

−4∇λϕ∇(µϕ∇ν)∇λϕ
]
, (6)

and Tmµν is the energy-momentum tensor of all the other en-
ergy species in the universe.

Before proceeding, note that the action of the Cubic
Galileon (Eq. (1)) represents only a sector of the more general
Galileon gravity model [18–20]. The latter contains two more
Lagrangian densities that are quartic and quintic in derivatives
of the scalar field. Nevertheless, as pointed out in [18, 114],
the cubic subset suffers from less serious theoretical prob-
lems related to the smallness of the energy cutoff below which
the phenomenological theory is valid. The general Galileon
model contains also a linear potential term, which is often ne-
glected if one is interested only in cases where cosmic accel-
eration is driven by field kinetic terms.

1. Background equations

We will work with the perturbed Friedmann-Robertson-
Walker (FRW) metric in the Newtonian gauge

ds2 = (1 + 2Ψ) dt2 − a(t)2 (1− 2Φ) γijdx
idxj , (7)

where γij = diag [1, 1, 1] is the spatial sector of the metric,
which is taken here to be flat. The Galileon field, ϕ, as well as
the scalar potentials, Ψ, Φ, are assumed to be functions of time
and space. In the equations below ϕ = ϕ̄(t)+δϕ(t, ~x), where
δϕ is the field perturbation and an overbar denotes background
averaged quantities. Note we shall always use ϕ, and the con-
text should determine whether we refer to ϕ̄ or δϕ.

At the cosmological background level (δϕ = Φ = Ψ = 0),
the two Friedmann equations are given by

3H2 = κ
[
ρ̄m +

c2
2
ϕ̇2 + 6

c3
M3

ϕ̇3H
]
, (8)

Ḣ +H2 = −κ
6

[
ρ̄m + 4c2ϕ̇

2

+6
c3
M3

(
ϕ̇3H − ϕ̈ϕ̇2

)]
, (9)

and the Galileon field equation of motion by

FIG. 1. Time evolution of the quantity −β1β2/β, with β = βDGP

(c.f. Eqs. (14), (15) and (18)) (top panel), and of the Vainstein ra-
dius rV (bottom panel) for the Cubic Galileon (solid blue) and DGP
(dashed green) models. In the bottom panel, we have assumed
rc = H−1

0 so that rV can be plotted in the same units for both mod-
els. The Cubic Galileon model plotted is the model of Table I while
the DGP model is the model simulated in [106].

0 = c2 [ϕ̈+ 3ϕ̇H]

+6
c3
M3

[
2ϕ̈ϕ̇H + 3ϕ̇2H2 + ϕ̇2Ḣ

]
, (10)

where ρm is the matter density and we have omitted the con-
tribution from radiation since this is negligible during the late
times probed by our simulations. Eqs. (8), (9) and (10) govern
the background expansion history of the univere, which deter-
mines how the distances between the particles in the simula-
tion change with time.

2. Quasi-static approximation

The quasi-static limit is known to be a good approxima-
tion in the Galileon model for the sub-horizon scales probed
by our simulations [67, 115]. This is the limit in which the
time derivatives of the perturbed quantities can be neglected
compared with their spatial derivatives. Additionally, to fur-
ther simplify the equations, we can also neglect terms that are
suppressed by the Newtonian potentials, Φ and Ψ, and their
first spatial derivatives, Φ,i and Ψ,i, since these quantities are
typically very small (. 10−4) on the scales of interest. For
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instance, (1− 2Φ) ∂i∂iϕ ∼ ∂i∂iϕ or ∂i∂iΦ∂jΦ � ∂i∂
iΦ.

The validity of these assumptions can always be assessed by
checking if the simulation results reproduce the full linear the-
ory predictions on the scales where linear theory should hold.
In our notation, ∂i denotes a partial derivative w.r.t. the i-th
spatial coordinate (i = x, y, z), and the indices are lowered
and raised using the spatial metric γij and its inverse γij , re-
spectively.

Under the above approximations, the Poisson equation (ob-
tained via the (0, 0) component of Eq. (3)) and the Galileon
field equation of motion, Eq. (4), are given, respectively, by

∂2Φ = 4πGa2δρm −
κc3
M3

ϕ̇2∂2ϕ, (11)

2c3
M3

ϕ̇2∂2Ψ =

[
−c2 −

4c3
M3

(ϕ̈+ 2Hϕ̇)

]
∂2ϕ

+
2c3
a2M3

[
(∂2ϕ)2 − (∂i∂jϕ)2

]
. (12)

Eqs. (11) and (12) can be combined in an equation that in-
volves solely the Galileon field and the matter density pertur-
bation:

∂2ϕ+
1

3β1a2M3

[
(∂2ϕ)2 − (∂i∂jϕ)2

]
=

=
MPl

3β2
8πGa2δρm, (13)

where we have used the relation Φ = Ψ in the Cubic Galileon
model, as a consequence of the vanishing anisotropic stress
[67]. Here, ∂2 = ∂i∂

i is the spatial Laplacian differential op-
erator and (∂i∂jϕ)2 = (∂i∂jϕ)(∂i∂jϕ). δρm is the matter
density perturbation, ρm = ρ̄m(t) + δρm(t, ~x). The dimen-
sionless functions β1 and β2 are defined as

β1 =
1

6c3

[
−c2 −

4c3
M3

(ϕ̈+ 2Hϕ̇) + 2
κc23
M6

ϕ̇4

]
, (14)

β2 = 2
M3MPl

ϕ̇2
β1. (15)

Eq. (13) has the same structural form (in terms of the spa-
tial derivatives of the scalar field) as the equation of motion
of the DGP brane-bending mode [116]. The differences lie
only in the distinct time evolution of the functions β1 and β2.
In particular, in the DGP model β1 = β2. To facilitate the
comparison between the different models with equations of
the same form as Eqs. (11) and (13), we can redefine the field
perturbation as

δϕ→ β

β2
δϕ, (16)

where β is a free function. With this redefinition, Eqs. (11)
and (13) become

∂2Φ = 4πGa2δρm −
κc3
M3

β

β2
ϕ̇2∂2ϕ, (17)

∂2ϕ+
1

3 (β1β2/β) a2M3

[
(∂2ϕ)2 − (∂i∂jϕ)2

]
=

=
MPl

3β
8πGa2δρm. (18)

In this way, we can choose β to make the right-hand side of
Eq. (18) look like in a given model, such as the DGP model.
In this case, the differences between the two models in the
scalar field equation are fully captured by the different val-
ues of β1β2/β in the coefficient of the nonlinear derivative
terms. In the top panel of Fig. 1, we show the time evo-
lution of −β1β2/β for the Cubic Galileon (solid blue) and
DGP (dashed green) models taking β = βDGP . Here and
throughout the paper, the DGP model is the self-accelerating
branch that best fits the WMAP 5yr CMB data [117] and
that has been simulated in [106]. Note that in the DGP
model, β1β2/βDGP = βDGP . We see that for both models
the value of −β1β2/βDGP decreases overall but in different
ways. In particular, the value of −β1β2/βDGP in the Cu-
bic Galileon model can be smaller or larger than in the DGP
model throughout cosmic history. Since this term multiplies
the nonlinear derivative terms, its different time evolution in
these two models translates into a different efficiency for the
screening mechanism, as we will see in the next section.

Note however, that besides the different coefficients of the
nonlinear derivative terms, different models can also differ in
the coefficient of ∂i∂iϕ in the Poisson equation Eq. (17). In
particular, in the Cubic Galileon model, such a coefficient is
time-dependent whereas in the DGP model, for instance, it is
simply a constant equal to 1/2.

B. Vainshtein screening

Equation (18) tells us that different models can be com-
pared by the different coefficients of the nonlinear derivative
term responsible for the screening. It is therefore instructive
to understand how such derivative couplings work to suppress
the modifications of gravity. For simplicity, here we look
only at the case of spherically symmetric configurations of the
gravitational and scalar fields. Therefore, assuming that ϕ and
Φ depend only on the radial coordinate, r, Eq. (18) becomes:

1

r2

d

dr

[
r2ϕ,r

]
+

2

3

c3
M3a2 (β1β2/β)

1

r2

d

dr

[
rϕ,2r

]
=
MPl

3β
8πGa2δρ, (19)

which can be integrated once to yield

ϕ,r +
2

3

c3
M3a2 (β1β2/β)

1

r
ϕ,2r =

2MPl

3β

GM(r)

r2
a2, (20)
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where M(r) = 4π
∫ r

0
δρm(ξ)ξ2dξ is the matter contribution

to the mass enclosed within a radius r. Eq. (20) is a second-
order algebraic equation for ϕ,r. Taking for simplicity a top-
hat density distribution of radius R, the physical solutions are
given by:

ϕ,r =
4MPla

2r3

3β2r3
V

[√(rV
r

)3

+ 1− 1

]
GM(r)

r2
, (21)

for r ≥ R and

ϕ,r =
4MPla

2R3

3β2r3
V

[√(rV
R

)3

+ 1− 1

]
GM(r)

r2
, (22)

for r < R. In Eqs. (21) and (22) we have identified a distance
scale, rV , known as the Vainshtein radius, which is given by

r3
V =

8c3MPlrS
9M3β1β2

, (23)

where rS ≡ 2GM(r) is the Schwarzschild radius of a given
matter source. The last term in the modified Poisson equation
(Eq. (17)) represents the fifth force mediated by the Galileon
field:

F5th = − κc3
M3

β

β2
ϕ̇2ϕ,r . (24)

Taking the limits where r � rV and r � rV one has

F5th = − 2c3βa
2ϕ̇2

3M3MPlβ2
2

GM(r)

r2
r � rV , (25)

F5th ∼ 0 r � rV . (26)

Consequently, rV gives a measure of the length scale below
which the screening mechanism starts to operate to recover the
normal general relativistic force law. If β1β2 →∞ then both
the coefficient of the nonlinear derivative terms in Eq. (18) and
rV vanish. In this case, the additional gravitational force is
not suppressed below any distance scale. This shows how the
derivative interactions of the scalar field are able to suppress
the fifth force.

The lower panel of Fig. 1 shows the time evolution of the
Vainshtein radius, rV , for the Cubic Galileon and DGP mod-
els. In the latter we have assumed that rc = H−1

0 , where
rc is the DGP crossover scale2, so that rV could be plotted
for the two models with the same units of rSH−2

0 . At early
times, rV is very small which means that there is no screen-
ing, or that only very small scales are screened. As the uni-
verse expands, the range of the screening increases but it does

2 Very briefly, the crossover scale, rc, is a parameter of the DGP model that
gives a measure of the length scale below which gravity is four-dimensional
and above which it is five-dimensional [21].

TABLE I. Parameters of the Cubic Galileon model that best fits the
data from the WMAP 9yr results [1], the SNLS 3yr sample [3] and
the BAO measurements from the 6dF Galaxy Survey [11], from the
SDSS DR7 [10] and from the SDSS-III BOSS [13]. Ωr0, Ωb0, Ωc0,
h, ns, and τ are, respectively, the present day fractional energy den-
sity of radiation (r), baryons (b) and cold dark matter (c), the dimen-
sionless present day Hubble expansion rate, the primordial spectral
index and the optical depth to reionization. The scalar amplitude
at recombination As refers to a pivot scale k = 0.02Mpc−1. In
this model we assume that the universe is spatially flat. The param-
eters c2, c3 are the dimensionless constants in the Cubic Galileon
Lagrangian (Eq. 1) and ρϕ,i/ρm,i is the ratio of the Galileon and
total matter (m) energy densities at zi. We also show the value of
χ2 = −2logP (where P is the posterior probability obtained from
the data), the Galileon field time derivative at zi, the age of the Uni-
verse and the value of σ8 at z = 0. Only in this table, the subscript
"i" refers to quantities evaluated at z = zi = 106.

Parameter WMAP9+SNLS+BAO

χ2 8006.50
Ωr0h

2 4.28 × 10−5

Ωb0h
2 0.02196

Ωc0h
2 0.1274

h 0.7307
ns 0.953
τ 0.0763
log

[
1010As

]
3.154

log [ρϕ,i/ρm,i] −4.22

c2/c
2/3
3 −5.378

c3 10

˙̄ϕic
1/3
3 1.104 × 10−9

Age (Gyr) 13.748
σ8(z = 0) 0.997

so at different rates in the two models shown. In particular,
at a ≈ 0.5, the Vainshtein radius of a given matter source in
the Cubic Galileon model becomes comparable to that in the
DGP model. From a ≈ 0.5 until the present time, the Vain-
shtein radius in the Cubic Galileon model is larger than in the
DGP model, with the values differing by approximately one
order of magnitude at a = 1. In practice, this means that
in the Cubic Galileon model, the fifth force resulting from a
given matter source at a = 1 is screened out to a distance
which can be about ten times larger than in the DGP model.

C. Model parameters

The Cubic Galileon model we simulate in this paper is the
best-fitting model to a combination of data comprising the
WMAP 9yr results [1], the Supernovae Legacy Survey 3yr
sample [3] and the BAO measurements from the 6df Galaxy
Survey [11], the Sloan Digital Sky Survey (SDSS) DR7 [10]
and the SDSS-III Baryon Oscillation Spectroscopic Survey
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FIG. 2. Cosmic microwave background temperature angular power
spectrum, plotted as function of the multipole moment l = π/θ
(where θ is the angle on the sky), for the Cubic Galileon model of Ta-
ble I (solid blue) together with the WMAP 9yr data (open circles with
errorbars). The power spectra of the best-fitting general Galileon
gravity model to WMAP9+SNLS+BAO data [68] (solid red) and the
ΛCDM model of [1] (dashed black) are also shown for comparison.
At l = 2, from top to bottom, the lines correspond, respectively, to
the Cubic Galileon, ΛCDM and general Galileon model.

(BOSS) [13]3. The model parameters, shown in Table I,
were obtained by following the strategy presented in [68], in
which we placed observational constraints on the most general
Covariant Galileon gravity model by running Monte Carlo
Markov chains, and to which we refer the reader for further
details. In Fig. 2, we show the CMB temperature power spec-
tra of the Cubic Galileon (solid blue) and general Galileon
(solid red) models that best fit the WMAP9+SNLS+BAO data.
We also show the power spectrum of the WMAP 9yr [1]
best-fitting ΛCDM model for comparison. The top panel of
Fig. 3 shows the Hubble expansion rate of the best-fitting Cu-
bic Galileon model.

In [68] we showed that the general Covariant Galileon
model can provide a fit to the data which is of compara-
ble quality to that of the ΛCDM model. In fact, if only
the WMAP9 data is considered in the constraints, then the
Galileon model performs better than the standard ΛCDM.
However, in Fig. 2, we see that the Cubic Galileon model is
not able to provide as good a fit at low l as the more gen-
eral Galileon theory. In the Cubic Galileon model there is
substantially more power on the largest angular scales, where
the integrated Sachs-Wolfe (ISW) effect plays the dominant
role in determining the shape of the spectrum. This seems
to indicate that the success of the general Galileon model in
fitting the observational data may lie in the detailed interplay
of all the different Galileon Lagrangian densities. In other
words, if one does not consider all of the Lagrangian terms,

3 From here on we shall refer to this combined dataset as
WMAP9+SNLS+BAO.

then the model will lose some of its ability to fit the data. In
particular, the difference in χ2 = −2logP (where P is the
posterior probability) between the best-fitting Cubic and the
general Galileon models is χ2

Cubic − χ2
general ≈ 16.5, for the

WMAP9+SNLS+BAO dataset. This fact alone may already
be sufficient to rule out the Cubic Galileon gravity model. A
detailed study of the way the different Lagrangians of the gen-
eral Galileon model "interact" with one another to provide a
reasonable fit to the data is beyond the scope of the present
paper and will be left for future work.

In [67, 68], we showed that, at the linear level in perturba-
tion theory and hence without considering any screening ef-
fects, the general Galileon model typically predicts too much
matter clustering to be compatible with the current data. How-
ever, we pointed out that such results were subject to the va-
lidity of linear theory on the relevant scales. We further ar-
gued that a better understanding of the nonlinearities in the
Galileon model was necessary before making definitive state-
ments about the observational merit of the theory. In the fol-
lowing sections, as an initial step to build intuition about the
more general Galileon model, we study the case of the sim-
pler Cubic Galileon model despite its somewhat poorer per-
formance in fitting the WMAP9+SNLS+BAO data, compared
with the general Galileon model. The study of the nonlineari-
ties in the general Galileon theory will be left for future work.

D. Linear growth of the density field

Since one of our goals is to test the validity of linear per-
turbation theory on sub-horizon scales in the Cubic Galileon
model, it is instructive to first study the evolution of the
density fluctuations in linear perturbation theory. The time
evolution of a small sub-horizon matter density fluctuation
characterized by the density contrast, δ = δρm/ρ̄m =
(ρm − ρ̄m) /ρ̄m, is governed by

δ′′ +

[
3 + a

H ′

H

]
δ′

a
− 3Ωm0H

2
0

2H2

Geff

G

δ

a5
= 0, (27)

where a prime denotes a derivative with respect to the cos-
mic scale factor, a. In the linear regime, each mode of the
perturbed density field evolves independently and the evolu-
tion is determined by the expansion rate, H , the matter den-
sity, Ωm0h

2, and Geff . H is obtained by solving Eqs. (8), (9)
and (10), whereas Geff is the time-dependent effective grav-
itational constant, which can be obtained from the linearized
Poisson equation (β1 →∞, β2 finite):

∂2Φ = 4πGeffa
2δρm, (28)

where

Geff = G

(
1− 2

3

c3ϕ̇
2

MPlM3β2

)
. (29)

In Fig. 3, from the top to the bottom panels, we plot the
time evolution of weff = −1 − 2Ḣ/(3H2), H , Geff and the
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FIG. 3. From top to bottom, the first three panels show, respec-
tively, the time evolution of the effective cosmological equation of
state parameter weff = −1 − 2Ḣ/(3H2), the ratio of the Hubble
expansion rate of the Cubic Galileon (solid blue) and DGP (dashed
green) models to the ΛCDM model (dashed black), H/HΛCDM, and
the time evolution of the effective gravitational constant Geff . The
bottom panel shows the time evolution of the relative difference of
the square of the density contrast in the Cubic Galileon (solid blue),
QCDMCubic (dotted blue), DGP (dashed green) and QCDMDGP

(dotted green) models to the ΛCDM model, (δ/δΛCDM)2 − 1. The
Cubic Galileon model plotted is the model of Table I, the DGP model
is the model simulated in [106] and the ΛCDM model is the best-
fitting model from [1]. In the bottom panel, at a = 1.0, from top
to bottom, the lines correspond to the Cubic Galileon, QCDMCubic,
QCDMDGP and DGP model, respectively.

relative difference of the square of the linear density contrast
compared to that in ΛCDM, (δ/δΛCDM)2 − 1, for the Cu-
bic Galileon (solid blue) and DGP (dashed green) models.
The ΛCDM model used here is the best-fitting model to the
WMAP 9yr data [1]. To solve Eq. (27) we use, for all mod-
els, the initial conditions ai = 0.01, δ(a = ai) = ai and
δ′(a = ai) = 1, which correspond to the matter dominated
era solution, δ ∝ a. We also solve the evolution of δ for two
other models which we call QCDMCubic and QCDMDGP.
In these models Geff = G, but H and Ωm0h

2 are taken to
be those of the Cubic Galileon and DGP models, respectively.

This allows us to disentangle the relative importance of the
modified gravitational strength in changing the growth of the
linear matter density field.

At early times, a . 0.1, Geff ≈ 1 in both models. There-
fore, any differences from ΛCDM are driven by the modified
expansion history, H , and different matter densities Ωm0h

2.
The former acts as a frictional force that slows down linear
structure growth, while the latter has the opposite effect. In
the Cubic Galileon model, both H and Ωm0h

2 are larger than
in ΛCDM, and their effects cancel out. The same thing hap-
pens in the DGP model, but because both H and Ωm0h

2 are
smaller. As a result, for a . 0.1, the relative difference in the
evolution of (δ/δΛCDM)2 − 1 is almost zero for both models.

During the epochs when a & 0.1, the evolution of δ is de-
termined by the interplay of the modifications in H , Ωm0h

2

and Geff . In the lower panel of Fig. 3, we see that the modifi-
cations to gravity enhance structure formation at late times in
the Cubic Galileon model, but suppress it in the DGP model.
Also, the amount by which the growth is enhanced in the Cu-
bic Galileon model is smaller than the amount by which it is
suppressed in the DGP model. In both models, the dominant
role in modifying the growth of the linear density field relative
to ΛCDM is played by the modified matter density. At a = 1,
the difference relative to ΛCDM of the squared density con-
trast is, approximately, 15% and −28% in QCDMCubic and
QCDMDGP, respectively. Taking into account the modified
gravitational strength in the Cubic Galileon model adds only
about 5% to the relative difference to ΛCDM at a = 1. This
happens despite the fast growth of Geff in the Cubic Galileon
model after a ≈ 0.6, with its value being almost twice as
large as the corresponding value in GR at the present day.
In the case of the DGP model, the effect of the gravitational
strength is more pronounced and it accounts for about 10% of
the difference from ΛCDM at a = 1. The reason here is that
the value of Geff/G starts to deviate from unity at much later
times in the Cubic Galileon model (a & 0.5) than in the DGP
model (a & 0.1). As a result, in the Cubic Galileon model,
there is less time for the modified Geff to change the linear
growth of structure by as much as is seen in the DGP model.
These later-time modifications of the gravitational force in the
Cubic Galileon model constitute an important difference rela-
tive to other modified gravity models that have been simulated
recently [106, 107]. As we will see next, this feature plays a
decisive role in determining the efficiency of the screening
mechanism.

III. N-BODY SIMULATIONS

A. N-body equations

The N-body codes RAMSES [118] and ECOSMOG [108] use
"super-comoving" coordinates [119]:

dx̃ =
dx

aL
; dt̃ =

H0dt

a2
;
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ṽ =
av

LH0
; Φ̃ =

a2Φ

(LH0)
2 ;

ρ̃ =
ρa3

ρc0Ωm0
; ϕ̃ =

a2ϕ

(LH0)
2
MPl

, (30)

(quantities with tildes are those in the super-comoving sys-
tem), where dx and dt are the differential interval of physical
space and time, ρc0 = 8πG/(3H2

0 ) is the critical density to-
day and Ωm0 = Ωb0 + Ωc0 is the density of matter (baryons
and cold dark matter) in units of ρc0. v is the particle velocity
and L is the size of the simulation box in units of Mpc/h . In
this coordinate system the background matter density is unity,
˜̄ρ = 1. Note that under such a coordinate transformation all
quantities become dimensionless.

In super-comoving coordinates, Eqs. (17) and (18) are
given, respectively, by:

∂̃2Φ̃ =
3

2
Ωm0a (ρ̃− 1)− κc3

M3

β

β2
ϕ̇2∂̃2ϕ̃, (31)

∂̃2ϕ̃+
1

3 (β1β2/β) a4

[
(∂̃2ϕ̃)2 − (∂̃i∂̃jϕ̃)2

]
=

Ωm0a

β
(ρ̃− 1) . (32)

As in the derivation of Sec. II B, Eq. (32) can be viewed as
a second-order algebraic equation for ∂2ϕ (from here on we
will omit the tildes for ease of notation). To avoid numerical
problems related to the choice of which branch of solutions to
take, we first solve this equation analytically to obtain:

∂2ϕ =
−α±

√
α2 + 4 (1− ε) Σ

2 (1− ε)
, (33)

in which

α ≡ 3 (β1β2/β) a6, (34)

Σ ≡ (∂i∂jϕ)2 +
αΩm0a

3

β
(ρ− 1)− ε

(
∂2ϕ

)
, (35)

and we have followed the strategy of [103, 106], to use
the operator-splitting trick to avoid problems associated with
imaginary square roots and where ε is a free constant coeffi-
cient we choose to be 1/34. The choice of the solution branch
is determined by the condition that the physical result that
∂2ϕ → 0, when ρ → 1, should be recovered, i.e., if there
are no density fluctuations then there should be no fifth force
[106]. As a result, one should choose the sign of the square
root in Eq. (33) to be the sign of α, or equivalently, the sign of
β1β2/β. With such a choice, Eq. (33) can be written as

4 The solution is obtained by solving the equivalent equation (1 −
ε)

(
∂2ϕ

)2
+ α

(
∂2ϕ

)
− Σ = 0.

∂2ϕ =
−α+ sign(α)

√
α2 + 4 (1− ε) Σ

2 (1− ε)
. (36)

To determine the particle trajectories, the N-body code first
solves the Galileon field equation (Eq. (36)) to determine
∂2ϕ. The solution is then plugged into the Poisson equation
(Eq. (31)), which is solved to obtain the gradient of Φ, which
gives the total force (GR + fifth force) under which the simu-
lation particles move.

The discretization of Eqs. (31) and (36) is identical to the
case of the DGP model (apart from the different coefficients,
c.f. Sec.II A 2). Such equations are lengthy and were already
presented in [106], to which we refer the interested reader.

1. Problems with imaginary square roots

The quadratic nature of Eq. (32) raises the possibility that,
under some circumstances, there might not be real solutions.
If we look again at the case of spherical symmetry, from
Eqs. (21), (22) and (23) we see that the condition for the exis-
tence of real solutions is given by:

∆ ≡ 1 +
1

β1β2

64πGMPlc3
9M3r3

∫ r

0

δρm(ξ)ξ2dξ ≥ 0. (37)

This equation shows that in low density regions, such as voids,
where δρm < 0, it is possible for ∆ to be negative (note that
β1β2 > 0). In fact, this is exactly what we have found in our
simulations of the Cubic Galileon model: for a & 0.8, there
are regions in the simulation boxes for which there are no real
solutions for the fifth force. Such a problem, nevertheless, is
absent from the DGP simulations performed with the same
N-body code [106]. The reason is primarily related to the dif-
ferent time evolution of the quantity β1β2/β (or equivalently
β1β2) in both models. Looking at Eq. (37), one sees that the
smaller the value of β1β2, the easier it is for ∆ to be negative
in low density regions. In Fig. 1, we have seen that at late
times, β1β2 is smaller in the Cubic Galileon model than it is
in the DGP model, which is why the imaginary square root
problem shows up in the former and not in the latter.

This problem is likely to be a consequence of the quasi-
static limit approximation. The terms we have neglected while
deriving the quasi-static field equations in Sec. II A may not be
completely negligible in certain circumstances, such as when
the matter density is low. In particular, such terms might be
the missing contribution to Eq. (36) that prevents the imag-
inary solutions. In the simulations for this paper, we work
our way around this problem by simply setting ∆ = 0 when-
ever this quantity becomes negative. Such a solution, although
crude and not theoretically self-consistent, should not have a
measurable impact on the small scale nonlinear matter power
spectrum and halo mass functions. The reason is that the clus-
tering power on small scales is dominated by the high density
regions where the problem does not appear.
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We stress however that even if the fifth force would not have
become imaginary, one would still have an inaccurate calcu-
lation in low densities because the quasi-static limit is not ex-
pected to be a good approximation there. For instance, this
is the case of the DGP simulations that have been performed
so far [101–106]. The case of the Cubic Galileon is more se-
vere because it forces one to fix some terms in the equations
in an ad hoc way. It should be noted that it is not clear that
our solution to the imaginary fifth force problem is making the
calculation more inaccurate than in the DGP simulations. To
fully address this question one would have to simulate the full
model equations (i.e. without assuming the quasi-static limit),
which is beyond the scope of the present paper.

B. Outline of the code algorithm

In ECOSMOG, the equations are solved on a grid that adap-
tively refines itself in regions where the particle density is
high. The starting point is a fixed regular mesh that fills the en-
tire simulation domain (called the domain grid). This grid gets
refined in regions where the number of matter particles per
cell exceeds a given threshold value, Np,th. The refinement
process only stops after all the cells in the refinements con-
tain a number of particles which is smaller than Np,th. Each
refinement level is used to compute the force on the particles
that are within its domain, with the boundary conditions be-
ing set via interpolation from the coarser grid levels. A good
feature of AMR codes in cosmological simulations is that, in
this way, one can attain sufficiently high resolution in high
matter density regions, while saving computational effort in
low-density regions where the resolution can be lower.

The ECOSMOG code differs from RAMSES by having a
solver for the equations of the extra scalar degree of free-
dom that performs Gauss-Seidel iterative relaxations on the
grid. The algorithm also employs the multigrid technique to
overcome the slow convergence of the relaxations after a few
iterations. In brief, at a given refinement level, the Gauss-
Seidel relaxations are efficient at damping only the Fourier
modes of the error that are comparable to the cell size of
that level. This leads to poor convergence on that level since
the longer-wavelength modes are barely reduced. Using the
multigrid technique, the code interpolates the equations to the
next coarser level on which they are solved. This allows for
the longer wavelength modes of the error to decay much more
quickly. The coarser solution is then interpolated back to the
finer initial level to correct the solution.

The code features that are most relevant for modified grav-
ity simulations are explained in detail in [108].

C. Simulation details

We have simulated three variants of the Cubic Galileon
model, summarized in Table II. The first one is the "full" Cu-
bic Galileon model characterized by Eqs. (8), (9), (10), (17)
and (18). The second one is a linear force model, in which, in-
stead of solving Eqs. (17) and (18), we use the linearized Pois-

TABLE II. Summary of the three variants of the Cubic Galileon
model we simulate in this paper. All models have the same back-
ground expansion history and only differ in the force law.

Model H(a) Total Force

Full Cubic Galileon Cubic Galileon GR + Screened fifth force
Linear Cubic Galileon Cubic Galileon GR + linear fifth force
QCDMCubic Cubic Galileon GR

son equation, Eq. (28). Simulations of these two models allow
us to measure the effectiveness of the Vainshtein mechanism
in suppressing the fifth force. Finally, the third model is the
QCDMCubic model of Fig. 3 (bottom panel, dotted blue line),
where there is no fifth force but the background expansion his-
tory is that of the Cubic Galileon model. As in Sec. II D, the
simulations of this model allow one to isolate the changes in-
troduced by the modified force law, and exclude those arising
from the modified expansion history. The effects of the latter
are small on nonlinear scales and its effects on large scales,
which evolve linearly, have already been shown in Fig. 3.

The initial conditions of the simulations were generated us-
ing the MPGRAFIC software [120] at a = 0.02 (z = 49). To
generate the initial conditions we use the matter power spec-
trum at a = 0.02 of the Cubic Galileon model of Table I5.
All three models use the same initial conditions and thus, the
differences between them are purely due to the differences in
the force calculation and not due to any mismatch between
the phases of the initial density field. We use two box sizes
L = 200Mpc/h and L = 400Mpc/h , with a refinement cri-
teria of Np,th = 8 and Np,th = 6, respectively. For both box
sizes the total number of particles is Np = 5123, and the do-
main grid has 29 = 512 cells in each direction. The finest
refinement level, if it were to cover the whole simulation vol-
ume, would have in each direction, 215 and 216 cells for the
larger and smaller boxes, respectively. To allow for statistical
averaging and overcome the sample variance in the genera-
tion of the initial conditions, for each box we generate five
realizations of the same initial density field by using different
random seeds. We have therefore run 30 simulations in total:
5 per cosmological model per box size. For all these simula-
tions, the convergence criterion of the Gauss-Seidel algorithm
was the same as that used in [106].

5 In the generation of the initial conditions with MPGRAFIC, we have as-
sumed a flat ΛCDM model with the same Ωm0 as in Table I. Using the
CAMB code, we have explicitly checked that the linear matter power spec-
trum of this ΛCDM and Cubic Galileon models is the same at the sub-
percent level.
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FIG. 4. The top panels show the simulation matter power spectrum Pk of the L = 200Mpc/h (dashed lines and open triangles) and L =
400Mpc/h (solid lines and open circles) boxes for three output times (a = 0.6, a = 0.8 and a = 1.0, from left to right) for the Cubic Galileon
(blue), linear-force Cubic Galileon (green) and QCDMCubic (red) models. The bottom panels show the relative difference of the matter power
spectrum of the Cubic Galileon and linear-force Galileon to the QCDMCubic models, ∆Pk/Pk,QCDM ≡ (Pk − Pk,QCDM)/Pk,QCDM. The
dotted black lines correspond to the linear perturbation theory result and were obtained with a modified version of the CAMB code [67, 79]. The
results shown are obtained by averaging over the simulations of the different initial conditions realizations and the errorbars show the standard
deviation over these realizations.

IV. RESULTS

A. Matter power spectrum results

In the top panels of Fig. 4, we show the matter power spec-
tra, Pk = 〈|δk|2〉, measured from the simulations of the Cubic
Galileon model (blue) and of the corresponding linear-force
(green) and QCDM (red) models, for the L = 200Mpc/h
(dashed lines and open triangles) and L = 400Mpc/h (solid
lines and open circles) boxes. The bottom panels show the
relative difference of the Cubic Galileon and linear-force
models to the QCDM model, ∆Pk/Pk,QCDM ≡ (Pk −
Pk,QCDM)/Pk,QCDM. From left to right, the panels cor-
respond to the results at three different epochs: a = 0.6
(z = 0.67), a = 0.8 (z = 0.25) and a = 1 (z = 0). The non-
linear matter power spectrum is measured using the POWMES
code [121].

On the largest scales probed by the simulations, k .
0.1h Mpc−1, we find that there is good agreement between
the nonlinear and the linear theory results. On these scales,
the power spectra of the Cubic Galileon and the linear-force
model agree to within ∼ 5% with linear perturbation theory
(dotted lines). Such an agreement leads to two conclusions.
The first is that it shows that the quasi-static approximation

we applied in deriving the simulation equations in Sec. II A
does not have an impact on large scales, where ‖δ‖ � 1. Oth-
erwise, one would expect the linear-force model (green lines)
to disagree with the linear theory calculation, which does not
happen. The second conclusion relates to the range of valid-
ity of linear theory in the Cubic Galileon model. As we said
above, one of the goals of this paper is to test the degree to
which the inclusion of the screening effects modifies the linear
theory predictions. Figure 4 shows that the power spectrum of
the Cubic Galileon model recovers the linear theory expecta-
tion on scales k . 0.1h Mpc−1, for all of the output times
shown. That is, in the Cubic Galileon model, the screening
mechanism does not affect the large scales typically associ-
ated with linear perturbation theory, which is therefore still a
valid approximation.

On smaller scales (k & 0.1hMpc−1), the different Fourier
modes of the density fluctuations no longer evolve indepen-
dently and linear theory ceases to be valid. It is well known
that the nonlinearities in the density field result in an enhance-
ment of structure formation as can be seen in the top panel of
Fig. 4. Such an enhancement is much more pronounced in the
linear-force model (green lines) due to the large gravitational
strength (c.f. Fig. 3). In Sec. II D, we saw that the modi-
fied Geff had a modest influence over enhancing the growth
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of the linear density field due to the deviations from the stan-
dard value G only appearing at late times. However, on small
scales, the effects of the unscreened fifth force are highly am-
plified by the strong mode-coupling of the density fluctuations
on different scales. For instance, at k = 10hMpc−1, the rel-
ative difference between the linear-force model and QCDM
is ∼ 100% at a = 0.8 and ∼ 300% at a = 1.0 (not shown
in the scales of the bottom middle and bottom right panels).
As a double check of the strong enhancement of the small
scale clustering power in the linear force model, we have re-
simulated one of the initial condition realizations using the
Gadget-2 TreePM code [122] 6. The results of the latter
agree very well with those from ECOSMOG.

Such an enhancement in the amplitude of clustering is very
hard to reconcile with the current observations, a conclusion
which highlights the vital role that screening mechanisms play
in modified gravity theories. Here, in the particular case of the
Cubic Galileon model, we see that the screening mechanism
works very effectively to restrain the fifth force from boosting
the formation of structure by a significant factor. For instance,
at a = 1 (a = 0.8), the screened fifth force (blue lines) is only
responsible for a relative increase which is less than ∼ 8%
(∼ 5%) on all scales. This efficiency of the screening is tied to
the fact that the fifth force only starts to become important at
relatively late times (c.f. Fig. 3), when the Vainshtein radius is
sufficiently large (c.f. Fig. 1) for the fifth force to be screened
on scales k & 0.1hMpc−1.

At a = 1, on scales 0.1hMpc−1 . k . 0.8hMpc−1, we
see that the relative differences in the power of the full model
predicted using the two boxes (bottom right panel, blue lines)
do not show the same level of agreement seen at other epochs
or scales. In particular, the fifth force is better screened in
the smaller box (L = 200Mpc/h), and a possible explanation
lies in resolution effects. On these mildly nonlinear scales,
the density field is smoother than on smaller scales, and there-
fore, the density peaks are not as pronounced. The smaller box
has a higher mass resolution, and consequently, is expected to
resolve better the lower density peaks on these scales. The ef-
fects of the screening are then more accurately captured in the
smaller box, which results in a slightly lower clustering ampli-
tude. 7. Although less significantly, at a = 0.8, there is also
the same trend for the smaller box to have a better screened
fifth force.

In the bottom panels of Fig. 4, we see that the relative dif-
ference of the Cubic Galileon model to QCDMCubic increases
from large to small scales until it reaches a peak, decreas-
ing thereafter. This is because the fifth force is screened on
smaller scales, and therefore, can only increase the power on
larger scales 8. In particular, the smallest scales probed by the

6 This was done by interpolating the values of H and Geff/G from a table
in Gadget.

7 On smaller scales, the density peaks are more pronounced, and therefore,
easier to resolve. This explains why on smaller scales the two boxes agree
much better.

8 On scales larger than the peak, from large to small scales, the relative dif-
ference increases due to the fact that the effects of the (unscreened) fifth
force are more pronounced on smaller scales.

simulations, k & 20h Mpc−1, have always been screened,
and as a result, the relative difference barely evolves with
time. On these small scales, standard gravity is always re-
covered. In addition, in Fig. 4 one also sees that the position
of the peak of the relative difference moves from smaller to
larger scales with time. The reason now is related to a com-
bination of two factors. The first one is that, over time, the
nonlinear mode-coupling effects become progressively more
important at larger scales, which therefore will cluster faster.
The second factor relates to the time evolution of the Vain-
shtein radius, which becomes larger with time (c.f. Fig. 1). As
a result, scales that were previously affected by the fifth force
will eventually become screened. These two factors together
move the peak from smaller to larger scales.

Recently, [106, 107] have performed high-resolution N-
body simulations of two models similar to the Cubic Galileon
model. In these works, it was found that the effects of the
fifth force were more pronounced than in the case presented
here. In particular, in [107] it was found that the screened
fifth force leads to an increase of the clustering on small scales
(k ∼ 1 hMpc−1) that can be as large as 50% by the present
time (c.f. Fig. 4 therein). A similar result is found in the
case of the DGP model [106], where the screened fifth force
can decrease the clustering by ∼ 18% at the present time (c.f.
Fig. 3 therein). The reason why the screening mechanism is
not as effective in these models as it is in the Cubic Galileon
model is once again related to the fact that, in the latter, the
fifth force becomes important only at late times. In the case of
the models simulated in [106] and [107], the linear fifth force
represents a sizeable fraction of the total force at very early
times (a ∼ 0.1), when the Vainshtein radius is still not large
enough to screen scales of order k ∼ 1hMpc−1. Hence, the
fifth force can increase the clustering power until the epoch
when the screening starts to become effective on those scales.
On the other hand, in the Cubic Galileon model, when the fifth
force becomes important, those scales are already within the
Vainshtein radius, and therefore, the effects of the fifth force
are more effectively screeened. This happens independently
of the fact that, at late times, the Geff in the Cubic Galileon
model is larger than in the models of [106, 107].

B. Halo mass function

In Fig. 5 we show, in the top panels, the cumulative number
density of halos with mass greater than M , n (> M), for the
L = 200Mpc/h (dashed lines and open triangles) and L =
400Mpc/h (solid lines and open circles) boxes. The bottom
panels show the difference relative to QCDM, ∆n/nQCDM =
(n− nQCDM) /nQCDM, and from left to right the panels are
for three different epochs as in Fig. 4. The two vertical dashed
lines give an estimate of the threshold mass below which res-
olution effects become important in the two simulation boxes,
and which we define as Mth ∼ 100mp = 100ΩmρcL

3/Np.
Figure 5 shows the good agreement between the two boxes
results in the range where both of them should not be affected
by resolution effects.

To identify the halos in our simulations we use the pub-
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FIG. 5. The top panels show the cumulative halo mass function n (> M) for the Cubic Galileon model (blue) and its linear-force (green) and
QCDM (red) variants. The vertical black dashed lines give an estimate of the mass resolution threshold Mth of the L = 200Mpc/h (dashed
lines and open triangles; left vertical dashed line) and L = 400Mpc/h (solid lines and open circles; right vertical dashed line) boxes, where
Mth ∼ 100mp = 100ΩmρcL

3/Np. The bottom panels show the relative difference to QCDM, ∆n/nQCDM = (n− nQCDM) /nQCDM.
From left to right the panels correspond to a = 0.6, a = 0.8 and a = 1.0, respectively. The results shown are obtained by averaging over the
simulations of the different initial conditions realizations and the errorbars show the standard deviation over these realizations. In the bottom
panels we do not show the relative difference at M200 & 2× 1014M�/h and M200 & 1015M�/h for L = 200Mpc/h and L = 400Mpc/h ,
respectively, since for these mass ranges the number of halos is of order unity, which makes the errorbars too large.

licly available phase space halo finder ROCKSTAR [123].
The ROCKSTAR code is a friends-of-friends (FoF) based halo
finder, but it also computes, for each halo, the equivalent mass

M200c =
4π

3
R3

200200ρc, (38)

which is that enclosed in a region of radius R200 that corre-
sponds to the spherically averaged density characterized by
δ = 200ρc. This is the halo mass definition we use in this
paper (see [124, 125] for a comparison and review of halo
finding techniques).

The halo mass function results of Fig. 5 show that the
screening mechanism is once again very efficient in suppress-
ing the effects of the fifth force. For instance, in the linear
force model, one can have an approximately 45% (35%) in-
crease in the number density of halos with masses equal or
larger than 1014M�/h at a = 1 (a = 0.8). On the other hand,
the corresponding increase in the full model is at most∼ 10%
(∼ 5%) at a = 1 (a = 0.8).

The way the halo abundance responds to the modified force
law in the Cubic Galileon model differs considerably from
the way it responds, for instance, in the phenomenological
model of [107]. In the latter, the authors found that even

when the screening is present, the number density of halos
with masses of about 1015M�/h can be∼ 100% larger, com-
pared to a model without fifth force (see Fig. 2 therein). Such
an enhancement is comparable to the one we find for the
linear-force model. Once more, the reason behind this dis-
crepancy can be traced back to the different time evolution
of the magnitude of the fifth force in the two models. In the
Cubic Galileon model, by the time the fifth force becomes
non-negligible (a ∼ 0.5), the length scales relevant for halo
formation

(
k ∼ O(1)hMpc−1

)
are already within the Vain-

shtein radius, and therefore, the fifth force affects them only
marginally. But even if there is no screening present, in be-
tween a = 0.5 and today, the fifth force does not have time
to produce an overabundance of halos which is significantly
larger than 100% at any mass scale. On the other hand, in the
model of [107], the fifth force becomes important at much ear-
lier times (a ∼ 0.1), when the Vainshtein screening has little
impact, and hence, the fifth force has enough time to help en-
hance structure formation (e.g. see [126] for early fifth-force
effects on halo abundance). A similar thing happens in sim-
ulations of normal-branch DGP models (positive fifth force)
[102].

At the low-mass end of the mass function, although already
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inside the region where the results may be affected by resolu-
tion effects, it seems that there is a trend for the linear-force
model simulations to develop a deficiency of low-mass halos
with time. This can be explained by the fact that smaller halos
in the linear-force model simulations form and virialize ear-
lier, as a consequence of the enhanced gravitational strength.
These smaller halos then merge to form larger and more mas-
sive halos, which explains why the number of smaller halos
decreases with time. A similar result was also found in the
simulations of a phenomenological modified gravity model
with a Yukawa-like potential fifth force [127–129]. Neverthe-
less, due to the uncertainties related to the resolution effects
on these low-mass scales, we remain cautious in deriving a
definite conclusion. In future work we plan to address this
issue with more detail.

V. CONCLUSION

Using the ECOSMOG code, we have performed the first
N-body simulations of Cubic Galileon cosmologies to study
the formation of structure in both the linear and nonlinear
regimes. This model is a theoretically consistent subset of the
most general covariant Galileon theory. As such, it employs
the Vainshtein mechanism to screen the modifications of grav-
ity on small scales. The Cubic Galileon model is in many as-
pects similar to the DGP braneworld model. For instance, the
equations solved in the N-body code have the same structure
in terms of the spatial derivatives, differing only in the time
evolution of the coefficients. An important advantage of the
Cubic Galileon, however, is that it can explain the present-day
accelerated expansion of the Universe without any ghost-like
instabilities, which are known to plague the DGP model.

At the linear level, we have shown that the modified ex-
pansion history plays the dominant role compared to the fifth
force, in terms of modifying the amplitude of the matter power
spectrum. The fifth force, which starts to be important at rel-
atively late times (a & 0.5), is only responsible for a 5% in-
crease in δ2 relative to ΛCDM. This is smaller than the 15%
change caused by the modified Hubble expansion rate (c.f.
Fig. (3)).

We derived the equations to be solved by ECOSMOG by us-
ing the quasi-static approximation, but have identified and cir-
cumvented a problem with this procedure. We have shown
that in underdense regions, such as voids, there might not
be any real solutions for the magnitude of the fifth force
(c.f. Eq. (37)). This is also a problem in the DGP model
which, however, is not as bad as in the Galileon model due
to the different time evolution of the coefficients of the spa-
tial derivatives (c.f. Fig. 1). In our simulations, to overcome
this problem, we have adopted the simple strategy of fixing
to zero the values of the square roots that would have become
imaginary. This solution, which may appear artificial, is not
expected to have a significant impact on the small scale non-
linear power spectrum. The reason we think this is the case
is because the power spectrum on small scales is dominated
by high density regions where the problem does not appear.
Moreover, we have also pointed out that it is not clear that

our solution to this problem is making the fifth force calcu-
lation inaccurate. We noted that the problem appears in re-
gions where the quasi-static limit is not expected to be a good
approximation, and therefore, the calculation would still be
inaccurate even if the solutions would be kept real. To clar-
ify the true impact of our solution to the problem, and also
of the quasi-static approximation, one would need to simulate
the equations derived without any assumptions. This inves-
tigation is much more challenging and we leave it for future
work.

Our results show that the Vainshtein mechanism can work
very effectively to suppress the effects of the fifth force. At
scales of the order of k ∼ 1hMpc−1, the unscreened fifth
force, which is roughly twice as strong as normal gravity at the
present time (c.f. Fig. 3), leads to an increase of the clustering
power of ∼ 300% at a = 1. On the other hand, if one turns
on the screening, the fifth force does not increase the power,
at any scale or time, by more than ∼ 8%. To our knowledge,
of all the models with the Vainshtein mechanism whose non-
linear structure formation has been studied with N-body sim-
ulations so far [101–104, 106, 107], the Cubic Galileon is the
model in which the screening has been found to be the most
effective. This is due to the (unscreened) fifth force becom-
ing relevant only at late times, when the Vainshtein radius of
individual matter sources is sufficiently large for the screen-
ing mechanism to be very efficiently implemented on scales
k & 0.1hMpc−1.

The same effectiveness of the Vainshtein mechanism was
found in the results for the halo mass function. For instance, at
a = 1, the number density of halos with masses& 1014M�/h
is ∼ 45% larger in the linear force model than in the QCDM
model. The same difference, however, becomes only less than
about 10%, if the screening is implemented (c.f. Fig. 5). As
before, the success of the Vainshtein mechanism in screening
the fifth force is related to the late time deviation from unity
of the ratio Geff/G. Our results also show a deficiency in the
number of low-mass halos in the linear-force model simula-
tions. However, the mass of such small halos falls below the
mass resolution of our simulations, and therefore, we leave for
future work a better investigation of this result.

Our work shows that the presence of the screening mech-
anism does not change the predictions from linear perturba-
tion theory on large scales k . 0.1hMpc−1. As a result,
the ∼ 20% (a = 1, c.f. Fig. 3) increase of the amplitude of
the power spectrum on these scales compared to ΛCDM an-
ticipates that galaxy clustering measurements can place very
strong constraints on the Cubic Galileon model. In addition,
we have also shown that the Cubic Galileon model fails to pro-
vide a good fit to the low-l (l . 50) region of the CMB tem-
perature power spectrum, although it fits the higher multipoles
as well as ΛCDM. The best-fitting Cubic Galileon model to a
combination of data from the CMB, SNIa and BAO, has too
much ISW power on the largest angular scales to be compat-
ible with the observations (c.f. Fig. (2)). With respect to the
general Galileon model, which is able to provide a good fit to
the CMB data [68], the Cubic Galileon model is disfavoured
by χ2

Cubic−χ2
general ≈ 16.5. This hints that the success of the

Galileon model may require all of the Lagrangian terms to be
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at play, rather than just a subset of them. Such an investigation
is left for future work. For now, the conclusion is that, as it
stands, the Cubic Galileon model is already in tension with the
current data. This fact, combined with the stability and strong
coupling problems that have been associated with the higher
order Galileon Lagrangian terms [18, 114], may also represent
a serious problem to the general Galileon gravity model.

We stress that although the Cubic Galileon model is in some
tension with the current data, it is still valuable to investigate
the impact that different modified gravity models can have on
nonlinear structure formation. This allows for a better under-
standing of the ways to distinguish between different mod-
ified gravity theories and also for a more robust interpreta-
tion of the data from current and future large scale structure
surveys, such as the forthcoming BigBOSS [130] and Euclid
[131, 132] missions. In the future, we plan to continue to
study more large scale structure properties of this model, in
particular, halo bias, redshift space distortions and the BAO
scale feature.

ACKNOWLEDGMENTS

AB is supported by FCT-Portugal through grant
SFRH/BD/75791/2011. BL is supported by the Royal Astro-
nomical Society and Durham University. WAH acknowledges
the support received from the Polish National Science Center
through grant no. DEC-2011/01/D/ST9/01960 and ERC
Advanced Investigator grant of C. S. Frenk, COSMIWAY.
This work has been partially supported by the European
Union FP7 ITN INVISIBLES (Marie Curie Actions, PITN-
GA-2011- 289442) and STFC. The N-body simulations
presented in this paper were run on the ICC Cosmology
Machine, which is part of the DiRAC Facility jointly funded
by STFC, the Large Facilities Capital Fund of BIS, and
Durham University.

[1] G. Hinshaw, D. Larson, E. Komatsu, D. Spergel, C. Bennett,
et al.(2012), arXiv:1212.5226 [astro-ph.CO]

[2] P. Ade et al. (Planck Collaboration)(2013), arXiv:1303.5076
[astro-ph.CO]

[3] J. Guy, M. Sullivan, A. Conley, N. Regnault, P. Astier, et al.,
Astron.Astrophys. 523, A7 (2010), arXiv:1010.4743 [astro-
ph.CO]

[4] N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah,
et al., Astrophys.J. 746, 85 (2012), arXiv:1105.3470 [astro-
ph.CO]

[5] A. G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl,
et al., Astrophys.J. 699, 539 (2009), arXiv:0905.0695 [astro-
ph.CO]

[6] A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Fer-
guson, et al., Astrophys.J. 730, 119 (2011), arXiv:1103.2976
[astro-ph.CO]

[7] W. L. Freedman, B. F. Madore, V. Scowcroft, C. Burns,
A. Monson, et al., Astrophys.J. 758, 24 (2012),
arXiv:1208.3281 [astro-ph.CO]

[8] G. Efstathiou et al. (2dFGRS Collaboration),
Mon.Not.Roy.Astron.Soc. 330, L29 (2002), arXiv:astro-
ph/0109152 [astro-ph]

[9] A. G. Sanchez, M. Crocce, A. Cabre, C. Baugh, and E. Gaz-
tanaga(2009), arXiv:0901.2570 [astro-ph.CO]

[10] W. J. Percival et al. (SDSS Collaboration),
Mon.Not.Roy.Astron.Soc. 401, 2148 (2010), arXiv:0907.1660
[astro-ph.CO]

[11] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, et al., Mon.Not.Roy.Astron.Soc. 416, 3017 (2011),
arXiv:1106.3366 [astro-ph.CO]

[12] B. A. Reid, L. Samushia, M. White, W. J. Percival, M. Manera,
et al.(2012), arXiv:1203.6641 [astro-ph.CO]

[13] L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blan-
ton, et al., Mon.Not.Roy.Astron.Soc. 428, 1036 (2013),
arXiv:1203.6594 [astro-ph.CO]

[14] A. G. Sanchez, C. Scoccola, A. Ross, W. Percival, M. Manera,
et al.(2012), arXiv:1203.6616 [astro-ph.CO]

[15] E. J. Copeland, M. Sami, and S. Tsujikawa,
Int. J. Mod. Phys. D 15, 1753 (2006), arXiv:hep-th/0603057

[16] M. Li, X.-D. Li, S. Wang, and Y. Wang, Commun.Theor.Phys.
56, 525 (2011), arXiv:1103.5870 [astro-ph.CO]

[17] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Phys.Rept. 513, 1 (2012), arXiv:1106.2476 [astro-ph.CO]

[18] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D 79,
064036 (2009)

[19] C. Deffayet, G. Esposito-Farèse, and A. Vikman, Phys. Rev. D
79, 084003 (2009)

[20] C. Deffayet, S. Deser, and G. Esposito-Farese, Phys.Rev. D80,
064015 (2009), arXiv:0906.1967 [gr-qc]

[21] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485,
208 (2000), arXiv:hep-th/0005016

[22] M. A. Luty, M. Porrati, and R. Rattazzi, JHEP 2003, 029
(2003)

[23] A. Nicolis and R. Rattazzi, JHEP 2004, 059 (2004)
[24] C. de Rham, Comptes Rendus Physique 13, 666 (2012),

arXiv:1204.5492 [astro-ph.CO]
[25] D. Gorbunov, K. Koyama, and S. Sibiryakov, Phys. Rev. D 73,

044016 (2006)
[26] G. W. Horndeski, Int.J.Theor.Phys. 10, 363 (1974)
[27] R. P. Woodard, Lect.Notes Phys. 720, 403 (2007), arXiv:astro-

ph/0601672 [astro-ph]
[28] T. Damour, G. W. Gibbons, and C. Gundlach, Phys. Rev. Lett.

64, 123 (1990)
[29] S. Baeßler, B. R. Heckel, E. G. Adelberger, J. H. Gundlach,

U. Schmidt, and H. E. Swanson, Phys. Rev. Lett. 83, 3585
(1999)

[30] C. M. Will, Living Rev.Rel. 9, 3 (2006), arXiv:gr-qc/0510072
[gr-qc]

[31] D. Kapner, T. Cook, E. Adelberger, J. Gundlach, B. R.
Heckel, et al., Phys.Rev.Lett. 98, 021101 (2007), arXiv:hep-
ph/0611184 [hep-ph]

[32] A. Vainshtein, Phys. Lett. B 39, 393 (1972), ISSN 0370-2693
[33] E. Babichev and C. Deffayet(2013), arXiv:1304.7240 [gr-qc]
[34] K. Koyama, G. Niz, and G. Tasinato(2013), arXiv:1305.0279

[hep-th]
[35] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys.Rev.Lett.

106, 231101 (2011), arXiv:1011.1232 [hep-th]
[36] F. Sbisa, G. Niz, K. Koyama, and G. Tasinato, Phys.Rev. D86,

http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5076
http://dx.doi.org/10.1051/0004-6361/201014468
http://arxiv.org/abs/1010.4743
http://arxiv.org/abs/1010.4743
http://dx.doi.org/10.1088/0004-637X/746/1/85
http://arxiv.org/abs/1105.3470
http://arxiv.org/abs/1105.3470
http://dx.doi.org/10.1088/0004-637X/699/1/539
http://arxiv.org/abs/0905.0695
http://arxiv.org/abs/0905.0695
http://dx.doi.org/10.1088/0004-637X/732/2/129, 10.1088/0004-637X/730/2/119
http://arxiv.org/abs/1103.2976
http://arxiv.org/abs/1103.2976
http://dx.doi.org/10.1088/0004-637X/758/1/24
http://arxiv.org/abs/1208.3281
http://arxiv.org/abs/astro-ph/0109152
http://arxiv.org/abs/astro-ph/0109152
http://arxiv.org/abs/0901.2570
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://arxiv.org/abs/0907.1660
http://arxiv.org/abs/0907.1660
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://arxiv.org/abs/1106.3366
http://arxiv.org/abs/1203.6641
http://dx.doi.org/10.1093/mnras/sts084
http://arxiv.org/abs/1203.6594
http://arxiv.org/abs/1203.6616
http://dx.doi.org/10.1142/S021827180600942X
http://arxiv.org/abs/arXiv:hep-th/0603057
http://dx.doi.org/10.1088/0253-6102/56/3/24
http://arxiv.org/abs/1103.5870
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://arxiv.org/abs/1106.2476
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.084003
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://arxiv.org/abs/0906.1967
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://arxiv.org/abs/arXiv:hep-th/0005016
http://dx.doi.org/10.1016/j.crhy.2012.04.006
http://arxiv.org/abs/1204.5492
http://dx.doi.org/10.1103/PhysRevD.73.044016
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1007/978-3-540-71013-4_14
http://arxiv.org/abs/astro-ph/0601672
http://arxiv.org/abs/astro-ph/0601672
http://dx.doi.org/10.1103/PhysRevLett.64.123
http://dx.doi.org/10.1103/PhysRevLett.83.3585
http://arxiv.org/abs/gr-qc/0510072
http://arxiv.org/abs/gr-qc/0510072
http://dx.doi.org/10.1103/PhysRevLett.98.021101
http://arxiv.org/abs/hep-ph/0611184
http://arxiv.org/abs/hep-ph/0611184
http://dx.doi.org/10.1016/0370-2693(72)90147-5
http://arxiv.org/abs/1304.7240
http://arxiv.org/abs/1305.0279
http://arxiv.org/abs/1305.0279
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://arxiv.org/abs/1011.1232
http://dx.doi.org/10.1103/PhysRevD.86.024033


15

024033 (2012), arXiv:1204.1193 [hep-th]
[37] C. de Rham and L. Heisenberg, Phys.Rev. D84, 043503

(2011), arXiv:1106.3312 [hep-th]
[38] C. Charmousis, E. J. Copeland, A. Padilla, and P. M. Saffin,

Phys.Rev.Lett. 108, 051101 (2012), arXiv:1106.2000 [hep-th]
[39] C. Charmousis, E. J. Copeland, A. Padilla, and P. M. Saffin,

Phys.Rev. D85, 104040 (2012), arXiv:1112.4866 [hep-th]
[40] J.-P. Bruneton, M. Rinaldi, A. Kanfon, A. Hees, S. Schlogel,

et al.(2012), arXiv:1203.4446 [gr-qc]
[41] E. J. Copeland, A. Padilla, and P. M. Saffin(2012),

arXiv:1208.3373 [hep-th]
[42] C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman, JCAP

1010, 026 (2010), arXiv:1008.0048 [hep-th]
[43] O. Pujolas, I. Sawicki, and A. Vikman, JHEP 1111, 156

(2011), arXiv:1103.5360 [hep-th]
[44] R. Kimura, T. Kobayashi, and K. Yamamoto, Phys.Rev. D85,

123503 (2012), arXiv:1110.3598 [astro-ph.CO]
[45] S. A. Appleby, A. De Felice, and E. V. Linder, JCAP 1210,

060 (2012), arXiv:1208.4163 [astro-ph.CO]
[46] E. Babichev, C. Deffayet, and R. Ziour, Int.J.Mod.Phys. D18,

2147 (2009), arXiv:0905.2943 [hep-th]
[47] T. Kobayashi, H. Tashiro, and D. Suzuki, Phys.Rev. D81,

063513 (2010), arXiv:0912.4641 [astro-ph.CO]
[48] T. Kobayashi, Phys.Rev. D81, 103533 (2010),

arXiv:1003.3281 [astro-ph.CO]
[49] G. Leon and E. N. Saridakis(2012), arXiv:1211.3088 [astro-

ph.CO]
[50] F. P. Silva and K. Koyama, Phys.Rev. D80, 121301 (2009),

arXiv:0909.4538 [astro-ph.CO]
[51] P. Brax, C. van de Bruck, A.-C. Davis, and D. Shaw, Phys.Rev.

D82, 063519 (2010), arXiv:1005.3735 [astro-ph.CO]
[52] P. Brax, A.-C. Davis, and B. Li(2011), arXiv:1111.6613

[astro-ph.CO]
[53] P. Brax, A.-C. Davis, B. Li, and H. A. Winther(2012),

arXiv:1203.4812 [astro-ph.CO]
[54] K. Hinterbichler, J. Khoury, A. Levy, and A. Matas, Phys.Rev.

D84, 103521 (2011), arXiv:1107.2112 [astro-ph.CO]
[55] K. Hinterbichler and J. Khoury, Phys.Rev.Lett. 104, 231301

(2010), arXiv:1001.4525 [hep-th]
[56] A.-C. Davis, B. Li, D. F. Mota, and H. A. Winther, Astro-

phys.J. 748, 61 (2012), arXiv:1108.3081 [astro-ph.CO]
[57] P. Brax, C. van de Bruck, A.-C. Davis, B. Li, B. Schmauch,

et al., Phys.Rev. D84, 123524 (2011), arXiv:1108.3082 [astro-
ph.CO]

[58] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026 (2004)
[59] P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury, and A. Welt-

man, Phys. Rev. D 70, 123518 (2004)
[60] T. P. Sotiriou and V. Faraoni, Rev.Mod.Phys. 82, 451 (2010),

arXiv:0805.1726 [gr-qc]
[61] A. De Felice and S. Tsujikawa, Living Rev.Rel. 13, 3 (2010),

arXiv:1002.4928 [gr-qc]
[62] S. M. Carroll, A. De Felice, V. Duvvuri, D. A. Eas-

son, M. Trodden, et al., Phys.Rev. D71, 063513 (2005),
arXiv:astro-ph/0410031 [astro-ph]

[63] P. Brax, C. van de Bruck, A.-C. Davis, and D. J. Shaw,
Phys.Rev. D78, 104021 (2008), arXiv:0806.3415 [astro-ph]

[64] B. Li and J. D. Barrow, Phys.Rev. D75, 084010 (2007),
arXiv:gr-qc/0701111 [gr-qc]

[65] W. Hu and I. Sawicki, Phys.Rev. D76, 064004 (2007),
arXiv:0705.1158 [astro-ph]

[66] T. S. Koivisto, D. F. Mota, and M. Zumalacarregui,
Phys.Rev.Lett. 109, 241102 (2012), arXiv:1205.3167 [astro-
ph.CO]

[67] A. Barreira, B. Li, C. M. Baugh, and S. Pascoli, Phys.Rev.

D86, 124016 (2012), arXiv:1208.0600 [astro-ph.CO]
[68] A. Barreira, B. Li, A. Sanchez, C. M. Baugh, and S. Pas-

coli(2013), arXiv:1302.6241 [astro-ph.CO]
[69] R. Gannouji and M. Sami, Phys.Rev. D82, 024011 (2010),

arXiv:1004.2808 [gr-qc]
[70] N. Chow and J. Khoury, Phys. Rev. D 80, 024037 (2009)
[71] A. De Felice and S. Tsujikawa, Phys.Rev.Lett. 105, 111301

(2010), arXiv:1007.2700 [astro-ph.CO]
[72] S. Nesseris, A. De Felice, and S. Tsujikawa, Phys.Rev. D82,

124054 (2010), arXiv:1010.0407 [astro-ph.CO]
[73] S. A. Appleby and E. V. Linder, JCAP 1203, 043 (2012),

arXiv:1112.1981 [astro-ph.CO]
[74] A. Ali, R. Gannouji, and M. Sami, Phys. Rev. D 82, 103015

(2010)
[75] J. Neveu, V. Ruhlmann-Kleider, A. Conley, N. Palanque-

Delabrouille, P. Astier, et al.(2013), arXiv:1302.2786 [gr-qc]
[76] S. A. Appleby and E. V. Linder(2012), arXiv:1204.4314

[astro-ph.CO]
[77] H. Okada, T. Totani, and S. Tsujikawa(2012),

arXiv:1208.4681 [astro-ph.CO]
[78] N. Bartolo, E. Bellini, D. Bertacca, and S. Matarrese(2013),

arXiv:1301.4831 [astro-ph.CO]
[79] A. Lewis, http://camb.info/
[80] H. Oyaizu, M. Lima, and W. Hu, Phys.Rev. D78, 123524

(2008), arXiv:0807.2462 [astro-ph]
[81] P. Brax, A.-C. Davis, B. Li, H. A. Winther, and G.-B.

Zhao(2012), arXiv:1206.3568 [astro-ph.CO]
[82] P. Brax, C. van de Bruck, A.-C. Davis, B. Li, and D. J. Shaw,

Phys.Rev. D83, 104026 (2011), arXiv:1102.3692 [astro-
ph.CO]

[83] E. Jennings, C. M. Baugh, B. Li, G.-B. Zhao, and
K. Koyama(2012), arXiv:1205.2698 [astro-ph.CO]

[84] B. Li, W. A. Hellwing, K. Koyama, G.-B. Zhao, E. Jennings,
et al.(2012), arXiv:1206.4317 [astro-ph.CO]

[85] P. Brax, A.-C. Davis, B. Li, H. A. Winther, and G.-B. Zhao,
JCAP 1304, 029 (2013), arXiv:1303.0007 [astro-ph.CO]

[86] W. A. Hellwing, B. Li, C. S. Frenk, and S. Cole(2013),
arXiv:1305.7486 [astro-ph.CO]

[87] E. Bellini, N. Bartolo, and S. Matarrese, JCAP 1206, 019
(2012), arXiv:1202.2712 [astro-ph.CO]

[88] R. Kimura, T. Kobayashi, and K. Yamamoto, Phys.Rev. D85,
024023 (2012), arXiv:1111.6749 [astro-ph.CO]

[89] E. Babichev, C. Deffayet, and G. Esposito-Farese,
Phys.Rev.Lett. 107, 251102 (2011), arXiv:1107.1569
[gr-qc]

[90] A. De Felice, R. Kase, and S. Tsujikawa, Phys.Rev. D85,
044059 (2012), arXiv:1111.5090 [gr-qc]

[91] T. Hiramatsu, W. Hu, K. Koyama, and F. Schmidt(2012),
arXiv:1209.3364 [hep-th]

[92] C. Burrage and D. Seery, JCAP 1008, 011 (2010),
arXiv:1005.1927 [astro-ph.CO]

[93] L. Iorio, JCAP 1207, 001 (2012), arXiv:1204.0745 [gr-qc]
[94] P. Brax, C. Burrage, and A.-C. Davis, JCAP 1109, 020 (2011),

arXiv:1106.1573 [hep-ph]
[95] C. de Rham, A. J. Tolley, and D. H. Wesley(2012),

arXiv:1208.0580 [gr-qc]
[96] C. de Rham, A. Matas, and A. J. Tolley(2012),

arXiv:1212.5212 [hep-th]
[97] S. Garcia-Saenz, Phys.Rev. D87, 104012 (2013),

arXiv:1303.2905 [hep-th]
[98] L. Berezhiani, G. Chkareuli, and G. Gabadadze(2013),

arXiv:1302.0549 [hep-th]
[99] L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze, and

A. Tolley(2013), arXiv:1305.0271 [hep-th]

http://arxiv.org/abs/1204.1193
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://arxiv.org/abs/1106.3312
http://dx.doi.org/10.1103/PhysRevLett.108.051101
http://arxiv.org/abs/1106.2000
http://dx.doi.org/10.1103/PhysRevD.85.104040
http://arxiv.org/abs/1112.4866
http://arxiv.org/abs/1203.4446
http://arxiv.org/abs/1208.3373
http://dx.doi.org/10.1088/1475-7516/2010/10/026
http://arxiv.org/abs/1008.0048
http://dx.doi.org/10.1007/JHEP11(2011)156
http://arxiv.org/abs/1103.5360
http://dx.doi.org/10.1103/PhysRevD.85.123503
http://arxiv.org/abs/1110.3598
http://dx.doi.org/10.1088/1475-7516/2012/10/060
http://arxiv.org/abs/1208.4163
http://dx.doi.org/10.1142/S0218271809016107
http://arxiv.org/abs/0905.2943
http://dx.doi.org/10.1103/PhysRevD.81.063513
http://arxiv.org/abs/0912.4641
http://dx.doi.org/10.1103/PhysRevD.81.103533
http://arxiv.org/abs/1003.3281
http://arxiv.org/abs/1211.3088
http://arxiv.org/abs/1211.3088
http://dx.doi.org/10.1103/PhysRevD.80.121301
http://arxiv.org/abs/0909.4538
http://dx.doi.org/10.1103/PhysRevD.82.063519
http://arxiv.org/abs/1005.3735
http://arxiv.org/abs/1111.6613
http://arxiv.org/abs/1111.6613
http://arxiv.org/abs/1203.4812
http://dx.doi.org/10.1103/PhysRevD.84.103521
http://arxiv.org/abs/1107.2112
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://arxiv.org/abs/1001.4525
http://dx.doi.org/10.1088/0004-637X/748/1/61
http://dx.doi.org/10.1088/0004-637X/748/1/61
http://arxiv.org/abs/1108.3081
http://dx.doi.org/10.1103/PhysRevD.84.123524
http://arxiv.org/abs/1108.3082
http://arxiv.org/abs/1108.3082
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.70.123518
http://dx.doi.org/10.1103/RevModPhys.82.451
http://arxiv.org/abs/0805.1726
http://arxiv.org/abs/1002.4928
http://dx.doi.org/10.1103/PhysRevD.71.063513
http://arxiv.org/abs/astro-ph/0410031
http://dx.doi.org/10.1103/PhysRevD.78.104021
http://arxiv.org/abs/0806.3415
http://dx.doi.org/10.1103/PhysRevD.75.084010
http://arxiv.org/abs/gr-qc/0701111
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://arxiv.org/abs/0705.1158
http://dx.doi.org/10.1103/PhysRevLett.109.241102
http://arxiv.org/abs/1205.3167
http://arxiv.org/abs/1205.3167
http://dx.doi.org/10.1103/PhysRevD.86.124016
http://arxiv.org/abs/1208.0600
http://arxiv.org/abs/1302.6241
http://dx.doi.org/10.1103/PhysRevD.82.024011
http://arxiv.org/abs/1004.2808
http://dx.doi.org/10.1103/PhysRevD.80.024037
http://dx.doi.org/10.1103/PhysRevLett.105.111301
http://arxiv.org/abs/1007.2700
http://dx.doi.org/10.1103/PhysRevD.82.124054
http://arxiv.org/abs/1010.0407
http://arxiv.org/abs/1112.1981
http://dx.doi.org/10.1103/PhysRevD.82.103015
http://arxiv.org/abs/1302.2786
http://arxiv.org/abs/1204.4314
http://arxiv.org/abs/1204.4314
http://arxiv.org/abs/1208.4681
http://arxiv.org/abs/1301.4831
http://camb.info/
http://dx.doi.org/10.1103/PhysRevD.78.123524
http://arxiv.org/abs/0807.2462
http://arxiv.org/abs/1206.3568
http://dx.doi.org/10.1103/PhysRevD.83.104026
http://arxiv.org/abs/1102.3692
http://arxiv.org/abs/1102.3692
http://arxiv.org/abs/1205.2698
http://arxiv.org/abs/1206.4317
http://dx.doi.org/10.1088/1475-7516/2013/04/029
http://arxiv.org/abs/1303.0007
http://arxiv.org/abs/1305.7486
http://dx.doi.org/10.1088/1475-7516/2012/06/019
http://arxiv.org/abs/1202.2712
http://dx.doi.org/10.1103/PhysRevD.85.024023
http://arxiv.org/abs/1111.6749
http://dx.doi.org/10.1103/PhysRevLett.107.251102
http://arxiv.org/abs/1107.1569
http://arxiv.org/abs/1107.1569
http://dx.doi.org/10.1103/PhysRevD.85.044059
http://arxiv.org/abs/1111.5090
http://arxiv.org/abs/1209.3364
http://dx.doi.org/10.1088/1475-7516/2010/08/011
http://arxiv.org/abs/1005.1927
http://dx.doi.org/10.1088/1475-7516/2012/07/001
http://arxiv.org/abs/1204.0745
http://dx.doi.org/10.1088/1475-7516/2011/09/020
http://arxiv.org/abs/1106.1573
http://arxiv.org/abs/1208.0580
http://arxiv.org/abs/1212.5212
http://dx.doi.org/10.1103/PhysRevD.87.104012
http://arxiv.org/abs/1303.2905
http://arxiv.org/abs/1302.0549
http://arxiv.org/abs/1305.0271


16

[100] A. Ali, R. Gannouji, M. W. Hossain, and M. Sami, Phys.Lett.
B718, 5 (2012), arXiv:1207.3959 [gr-qc]

[101] F. Schmidt, Phys.Rev. D80, 043001 (2009), arXiv:0905.0858
[astro-ph.CO]

[102] F. Schmidt, Phys.Rev. D80, 123003 (2009), arXiv:0910.0235
[astro-ph.CO]

[103] K. Chan and R. Scoccimarro, Phys.Rev. D80, 104005 (2009),
arXiv:0906.4548 [astro-ph.CO]

[104] J. Khoury and M. Wyman, Phys.Rev. D80, 064023 (2009),
arXiv:0903.1292 [astro-ph.CO]

[105] F. Schmidt, W. Hu, and M. Lima, Phys.Rev. D81, 063005
(2010), arXiv:0911.5178 [astro-ph.CO]

[106] B. Li, G.-B. Zhao, and K. Koyama(2013), arXiv:1303.0008
[astro-ph.CO]

[107] M. Wyman, E. Jennings, and M. Lima(2013),
arXiv:1303.6630 [astro-ph.CO]

[108] B. Li, G.-B. Zhao, R. Teyssier, and K. Koyama, JCAP 1201,
051 (2012), arXiv:1110.1379 [astro-ph.CO]

[109] S. V. Sushkov, Phys.Rev. D80, 103505 (2009),
arXiv:0910.0980 [gr-qc]

[110] G. Gubitosi and E. V. Linder, Phys.Lett. B703, 113 (2011),
arXiv:1106.2815 [astro-ph.CO]

[111] K. Van Acoleyen and J. Van Doorsselaere, Phys.Rev. D83,
084025 (2011), arXiv:1102.0487 [gr-qc]

[112] M. Zumalacarregui, T. S. Koivisto, and D. F. Mota(2012),
arXiv:1210.8016 [astro-ph.CO]

[113] L. Amendola, Phys.Lett. B301, 175 (1993), arXiv:gr-
qc/9302010 [gr-qc]

[114] C. Burrage, N. Kaloper, and A. Padilla(2012),
arXiv:1211.6001 [hep-th]

[115] A. De Felice, R. Kase, and S. Tsujikawa, Phys.Rev. D83,
043515 (2011), arXiv:1011.6132 [astro-ph.CO]

[116] K. Koyama and F. P. Silva, Phys.Rev. D75, 084040 (2007),

arXiv:hep-th/0702169 [HEP-TH]
[117] W. Fang, S. Wang, W. Hu, Z. Haiman, L. Hui, et al., Phys.Rev.

D78, 103509 (2008), arXiv:0808.2208 [astro-ph]
[118] R. Teyssier, Astron.Astrophys. 385, 337 (2002), arXiv:astro-

ph/0111367 [astro-ph]
[119] H. Martel and P. R. Shapiro, Mon.Not.Roy.Astron.Soc. 297,

467 (1998), arXiv:astro-ph/9710119 [astro-ph]
[120] S. Prunet, C. Pichon, D. Aubert, D. Pogosyan, R. Teyssier,

et al.(2008), arXiv:0804.3536 [astro-ph]
[121] S. Colombi, A. H. Jaffe, D. Novikov, and C. Pichon(2008),

arXiv:0811.0313 [astro-ph]
[122] V. Springel, Mon.Not.Roy.Astron.Soc. 364, 1105 (2005),

arXiv:astro-ph/0505010 [astro-ph]
[123] P. S. Behroozi, R. H. Wechsler, and H.-Y. Wu, Astrophys.J.

762, 109 (2013), arXiv:1110.4372 [astro-ph.CO]
[124] A. Knebe, S. R. Knollmann, S. I. Muldrew, F. R. Pearce, M. A.

Aragon-Calvo, et al.(2011), arXiv:1104.0949 [astro-ph.CO]
[125] A. Knebe, F. R. Pearce, H. Lux, Y. Ascasibar, P. Behroozi,

et al.(2013), arXiv:1304.0585 [astro-ph.CO]
[126] W. A. Hellwing, S. R. Knollmann, and A. Knebe,

Mon.Not.Roy.Astron.Soc. 408, L104 (Oct. 2010),
arXiv:1004.2929 [astro-ph.CO]

[127] W. A. Hellwing, S. Knollmann, A. Knebe, and
R. Juszkiewicz(2011), arXiv:1111.7257 [astro-ph.CO]

[128] W. A. Hellwing and R. Juszkiewicz, Phys.Rev. D80, 083522
(2009), arXiv:0809.1976 [astro-ph]

[129] W. A. Hellwing, Annalen der Physik 19, 351 (2010),
arXiv:0911.0573

[130] D. Schelgel et al. (BigBoss Experiment)(2011),
arXiv:1106.1706 [astro-ph.IM]

[131] R. Laureijs et al. (EUCLID Collaboration)(2011),
arXiv:1110.3193 [astro-ph.CO]

[132] L. Amendola et al. (Euclid Theory Working Group)(2012),
arXiv:1206.1225 [astro-ph.CO]

http://dx.doi.org/10.1016/j.physletb.2012.10.009
http://arxiv.org/abs/1207.3959
http://dx.doi.org/10.1103/PhysRevD.80.043001
http://arxiv.org/abs/0905.0858
http://arxiv.org/abs/0905.0858
http://dx.doi.org/10.1103/PhysRevD.80.123003
http://arxiv.org/abs/0910.0235
http://arxiv.org/abs/0910.0235
http://dx.doi.org/10.1103/PhysRevD.80.104005
http://arxiv.org/abs/0906.4548
http://dx.doi.org/10.1103/PhysRevD.80.064023
http://arxiv.org/abs/0903.1292
http://dx.doi.org/10.1103/PhysRevD.81.063005
http://arxiv.org/abs/0911.5178
http://arxiv.org/abs/1303.0008
http://arxiv.org/abs/1303.0008
http://arxiv.org/abs/1303.6630
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://arxiv.org/abs/1110.1379
http://dx.doi.org/10.1103/PhysRevD.80.103505
http://arxiv.org/abs/0910.0980
http://dx.doi.org/10.1016/j.physletb.2011.07.066
http://arxiv.org/abs/1106.2815
http://dx.doi.org/10.1103/PhysRevD.83.084025
http://arxiv.org/abs/1102.0487
http://arxiv.org/abs/1210.8016
http://dx.doi.org/10.1016/0370-2693(93)90685-B
http://arxiv.org/abs/gr-qc/9302010
http://arxiv.org/abs/gr-qc/9302010
http://arxiv.org/abs/1211.6001
http://dx.doi.org/10.1103/PhysRevD.83.043515
http://arxiv.org/abs/1011.6132
http://dx.doi.org/10.1103/PhysRevD.75.084040
http://arxiv.org/abs/hep-th/0702169
http://dx.doi.org/10.1103/PhysRevD.78.103509
http://arxiv.org/abs/0808.2208
http://dx.doi.org/10.1051/0004-6361:20011817
http://arxiv.org/abs/astro-ph/0111367
http://arxiv.org/abs/astro-ph/0111367
http://arxiv.org/abs/astro-ph/9710119
http://arxiv.org/abs/0804.3536
http://arxiv.org/abs/0811.0313
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://arxiv.org/abs/astro-ph/0505010
http://dx.doi.org/10.1088/0004-637X/762/2/109
http://arxiv.org/abs/1110.4372
http://arxiv.org/abs/1104.0949
http://arxiv.org/abs/1304.0585
http://dx.doi.org/10.1111/j.1745-3933.2010.00940.x
http://arxiv.org/abs/1004.2929
http://arxiv.org/abs/1111.7257
http://dx.doi.org/10.1103/PhysRevD.80.083522
http://arxiv.org/abs/0809.1976
http://arxiv.org/abs/0911.0573
http://arxiv.org/abs/1106.1706
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1206.1225

	Nonlinear structure formation in the Cubic Galileon gravity model
	Abstract
	I Introduction
	II The Galileon model
	A Action and field equations
	1 Background equations
	2 Quasi-static approximation

	B Vainshtein screening
	C Model parameters
	D Linear growth of the density field

	III N-body simulations
	A N-body equations
	1 Problems with imaginary square roots

	B Outline of the code algorithm
	C Simulation details

	IV Results
	A Matter power spectrum results
	B Halo mass function

	V Conclusion
	 Acknowledgments
	 References


