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Abstract

An enriched partition-of-unity (PU) finite element method is developed to solve time-
dependent diffusion problems. In the present PU formulation, an exponential solution de-
scribing the spatial diffusion decay is embedded in the finite element shape function. It
results in an enriched approximation, which is in the form of local asymptotic expansion.
The temporal decay in the solution is embedded naturally in the PU expansion so that,
unlike previous works in this area, the same system matrices may be used for every time
step. In comparison with the traditional finite element analysis with p-version refinements,
the present approach is much simpler, more robust and efficient, and yields more accurate
solutions for a prescribed number of degrees of freedom. On the other hand, the notorious
difficulty encountered in the meshless method in satisfying the essential boundary condi-
tions is circumvented. Numerical results are presented for a transient diffusion equation
with known analytical solution. The performance of the method is analysed on two applica-
tions: the transient heat equation with a single source and with multiple sources. The aim
of such a method compared to the classical finite element method is to solve time-dependent
diffusion applications efficiently and with an appropriate level of accuracy.

Keywords. Finite-element method; partition-of-unity method; time-dependent equations;
diffusion problems

1 Introduction

In recent decades, finite element methods have offered a remarkable level of accuracy and robust-
ness required for solving complex potential problems governed by steady-state differential equa-
tions (PDEs) of elliptic type. However, engineering applications often involve time-dependent
partial differential equations which have to be solved on complex geometries, thus suggesting
the use of discretization of both space and time variables. In practice, the focus is on unstruc-
tured meshes where a non-trivial reconstruction scheme is required to have a high-order spatial
accuracy. Most classical finite element methods for unstructured grids proposed to date employ
linear or quadratic elements. However, solving time-dependent diffusion equations using the
finite element methods is still a considerable task in the case of unstructured meshes; particu-
larly when these equations have to be solved in conjunction with PDEs of hyperbolic type. It is
well known that the solutions of these coupled problems present steep fronts, boundary layers,
and even shock discontinuities, which need to be resolved accurately in applications and often
cause severe numerical difficulties.
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Time-dependent diffusion equations are used in many physical and engineering applications,
for example, to describe cooling down of molten glass or heat transfer in enclosures. In glass
manufacturing, a hot melt of glass is cooled down to room temperature. This annealing must be
monitored carefully to avoid excessive temperature differences, which may affect the quality of
the product or even lead to cracking [1]. To control the annealing process, the transient diffusion
equations may be used to predict accurately the temperature evolution in the glass. In addition,
time-dependent diffusion equations are also used to model several problems in thermal radiation
heat transfer [2] and optical tomography [3] among others. In general, thermal radiation has to
be modelled by equations that involve the direction- and frequency-dependent thermal radiation
field due to the energy transport by photons. However, using asymptotic expansions, the full
radiative transfer equation can be replaced by a class of non-stationary diffusion equations
equipped with Robin boundary conditions that depend on space and time but not direction.
Such practical time-dependent diffusion problems are not trivial to simulate since the geometry
can be complex and internal source/sink term may produce steep gradient (solution peaks)
propagating along the computational domain. It is well-known that unstructured grids can
be highly advantageous based on their ability to provide local mesh refinement near important
diffusion features and structures. As a consequence, the ability to provide local mesh refinement
where it is needed leads to improve accuracy for a given computational cost as compared to
methods that use structured meshes.

One solution that has emerged in the literature is the idea of injecting enrichment functions
into the finite element approximation space. These techniques fall under the general heading
of Partition of Unity Methods (PUM) [4], so-called because the partition of unity property of
traditional interpolating shape functions allows enrichment functions to be undistorted through
their combination with these shape functions. The enrichment functions may be of different
characters. Ideally they comprise either the asymptotic solution space or sets of functions
known to be complete for the PDE at hand. An example of taking enrichment functions from
asymptotic fields is found in the eXtended Finite Element Method (XFEM), where a basis for
expressing the displacement found locally around crack tips is found from classical expansions
found in fracture mechanics [5]. There is also a large body of literature in the meshless methods
[6] and boundary element [7] communities using similarly derived enrichment functions for
cracks. An example of taking a set of enrichment functions known to be complete for the PDE
is in expressing wave potential as a linear combination of a set of plane waves. Instances of this
approach are available in the literature for enriched FEM [8, 9, 10], BEM [11] and ultraweak
formulations [12] for the solution of Helmholtz (e.g. acoustic) and elastic wave problems. The
PUM idea has also been presented in the context of the Generalised finite element method
(GFEM) [13]. Formulations are emerging in which the enrichment functions themselves are
determined adaptively [14, 15].

A further classification of enrichment includes the use of functions that approximate the
solution in some way. While this may be less rigorous mathematically, these methods are
attractive for practical use in cases in which no suitable analytical solution space is available to
form the enrichment basis. We give evidence in this paper that such approximate enrichment
functions allow for improved accuracy for a prescribed number of degrees of freedom. All of these
PUM methods are easy to formulate and implementation in existing codes may be carried out
without large-scale restructuring of the code. Some care needs to be taken to avoid (or at least
ameliorate) problems of ill-conditioning which are reported in many PUM works. However,
in spite of the potential for ill-conditioned systems, these approaches have been consistently
shown to reduce errors in comparison with conventional piecewise polynomial bases. Enrichment
functions have recently been applied to problems involving thermal transients. van der Meer
et al. [16] developed a set of algorithms to study time-dependent geothermal problems using
enrichment functions that approximate the solution at each time step. The evolution of thermal
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gradients with time is considered by updating the shape functions so that they remain optimal
at each time. O’Hara et al. [17] presented a global-local GFEM formulation for transient heat
transfer, in which a linear interpolative basis is augmented by an exponential function of space
or space and time as well. Time dependent shape functions are used to handle the transient
nature of the problem, and these are supplemented by local analysis using various techniques
in regions of high thermal gradient.

In the current work, we introduce a PUM approach for the solution of transient diffusion
problems which uses a multiplicity of approximate enrichment functions. We use Gaussian
functions of varying standard deviations as enrichment, and these are used in combination with
a piecewise linear Lagrangian polynomial finite element space so that the global Gaussian sur-
faces are modulated locally. A notable feature of the approach is that the same (enriched)
approximation space is used at each time step. The more rapidly varying enrichment functions
are useful for early time steps around localised thermal sources, while other (flatter) enrich-
ment functions become important both in the far-field and more generally as a steady state
is approached. This means that there is no requirement for time-dependent shape functions,
and the same system matrix may be reused at every time step. Further, the approach may be
generalised by locating different Gaussian functions at different centres, allowing the efficient
solution of problems with multiple sources.

This paper is organised in the following fashion. In section 2 we introduce the governing
PDE for transient diffusion, the initial and boundary conditions and the transformation to the
weak form. The Partition of Unity enrichment is presented in section 3, and its effectiveness is
demonstrated for a range of numerical test cases in section 4. We close in section 5 with some
concluding remarks.

2 Boundary value problem and weak form

Given an open bounded domain Ω ⊂ R2 with a boundary Γ and a given time interval [0, T ],
we are interested in this paper to study the following transient diffusion equations: find u :
]0, T [×Ω −→ R2 such that

∂u

∂t
− λ∇2u = f(t,x), (t,x) ∈ ]0, T [×Ω (1)

where x = (x, y)T denotes the spatial coordinates, t is the time variable, λ is the diffusion
coefficient, and f represents the effects of internal sources/sinks. We consider an initial condition

u(t = 0,x) = u0(x), x ∈ Ω (2)

where u0 is a prescribed initial field. The above equations are to be solved subject to the
boundary condition

αu+
∂u

∂n
= g(t,x), (t,x) ∈ ]0, T [×Γ (3)

where n is the outward unit normal on the boundary Γ, and g is a given boundary function.

To integrate the equations (1)-(3) we divide the time interval into Nt subintervals [tn, tn+1]
with length ∆t = tn+1 − tn for n = 0, 1, . . . , Nt. We use the notation wn to denote the value
of a generic function w at time tn. We may consider a θ-time stepping integration scheme, in
which the semi-discrete formulation of the diffusion problem (1) is given by

un+1 − un

∆t
− (1− θ)λ∇2un+1 − θλ∇2un = (1− θ)fn+1 + θfn (4)

3



where the parameter θ has to be chosen depending on the time stepping scheme; by taking θ = 0
the equation (4) is the first-order Backward Euler scheme, whereas use of θ = 1

2 in equation (4)
yields the second-order Crank-Nicolson scheme. Note that second-order Crank-Nicolson scheme
is unconditionally stable for linear problems, so that the choice of ∆t may be based on accuracy
considerations. To find the solution un+1 from (4) one has to solve, at each time level, a linear
system of algebraic equations. When θ = 0 the equation (4) becomes

un+1 − un

∆t
− λ∇2un+1 = fn+1 (5)

This can be rearranged as
un+1 − λ∆t∇2un+1 = F (6)

where F is defined as
F = ∆tfn+1 + un (7)

We may proceed as in conventional finite element formulations by multiplying equation (6) by
a weighting function, W , and then integrating over Ω, yielding∫

Ω
Wun+1dΩ−

∫
Ω
λ∆tW∇2un+1dΩ =

∫
Ω
WFdΩ (8)

Using the divergence theorem one may write∫
Ω
W∇2un+1dΩ =

∫
Γ
W∇un+1 · ndΓ−

∫
Ω
∇W · ∇un+1dΩ (9)

Substituting (9) into (8) results in∫
Ω
Wun+1dΩ−

∫
Γ
λ∆tW∇un+1 · ndΓ +

∫
Ω
λ∆t∇W · ∇un+1dΩ =

∫
Ω
WFdΩ (10)

or ∫
Ω

(λ∆t∇W · ∇un+1 +Wun+1)dΩ−
∫

Γ
λ∆tW∇un+1 · ndΓ =

∫
Ω
WFdΩ (11)

Substituting the boundary condition in equation (3) gives us the statement of the problem to
be solved in weak form, i.e. find u ∈ H1(Ω) such that:∫

Ω
(λ∆t∇W · ∇un+1 +Wun+1)dΩ+∮

Γ
λ∆tW (αun+1 − gn+1)dΓ =

∫
Ω
WFdΩ , ∀W ∈ H1(Ω) (12)

where H1(Ω) is the Sobolev space. It well-known that the considered time stepping method is
unconditionally stable such that the selection of the time steps ∆t is based only on the accuracy
to achieved in the computed solutions.

3 Partition of unity enriched finite element method

To solve the weak form (12) with the finite element method, first the domain Ω is discretized.
To perform this step, we generate a quasi-uniform partition Ωh ⊂ Ω of Ne elements Tj that
satisfy the following conditions:

(i) Ωh =

Ne⋃
j=1

Tj .
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(ii) If Ti and Tj are two different elements of Ωh, then

Ti ∩ Tj =


Pij , a mesh point, or

Γij , a common side, or

∅, empty set.

(iii) There exists a positive constant k such that for all j ∈ {1, · · · , Ne}, rj
hj
> k (hj ≤ h),

where rj is the radius of the circle inscribed in Tj and hj is the largest side of Tj .

The conforming finite element space for the solution that we use is defined as

Vh =
{
uh ∈ C0(Ω) : uh

∣∣
Tj
∈ P (Tj), ∀ Tj ∈ Ωh

}
(13)

with

P (Tj) =
{
p(x) : p(x) = p̂ ◦ Y −1

j (x), p̂ ∈ Pm(T̂ )
}
,

where p̂(x) is a polynomial of degree ≤ m defined on the element T̂j and Pm(T̂ ) is the set of
polynomials of degree ≤ m defined on the element of reference T̂ . Here Yj : T̂ −→ Tj is an
invertible one-to-one mapping.

Next, we formulate the finite element solution to un(x) as

un(x) ' unh(x) =

Nd∑
j=1

Cn
j Nj(x) (14)

where Nd is the number of solution mesh points in the partition Ωh. The functions Cn
j are the

corresponding nodal values of unh(x). They are defined as Cn
j = unh(xj) where {xj}Nd

j=1 are the

set of solution mesh points in the partition Ωh. In (14), {Nj}Nd
j=1 are the set of global nodal

basis functions of Vh characterized by the property Ni(xj) = δij with δij denoting the Kronecker
symbol. We introduce {x1, · · · ,xM} as the set of M nodal points in the element Tj . We also
define {ϕj}Mj=1 as the set of element basis coefficients for Tj in Vh characterized by the property
ϕi(xj) = δij . Hereafter, unless otherwise stated, the subscripts h and j are used to refer to
coefficients associated with the whole mesh Ωh and a mesh element Tj , respectively. Note that
the set {ϕj}Mj=1 is a local restriction on the element Tj of the set of the global basis functions

{Nj}Mj=1. The solution space is then defined as

Ṽ 0
h = span

Nh, uh =
M∑
j=0

ujNj


Using the partition of unity method [4] it is possible to enrich the solution space with basis
functions that have better approximation properties than the conventional polynomial basis
functions. To solve an elliptic partial differential equation similar to the one considered here,
X. Li proposed a set of exponential functions [18]. Here we propose using the following sum of
exponential basis functions to enrich the solution space

Fenr =

Q∑
q=1

Gq (15)
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where

Gq =

exp

(
−
(
R2

0

C2

)q
)
− exp

(
−
(
R2

c

C2

)q
)

1− exp

(
−
(
R2

c

C2

)q
) (16)

with R0 :=| x − xc | being the distance from the function control point xc to the point x.
The constants Rc and C control the shape of the exponential function Gq. The number of
enrichment functions used is Q. It should be mentioned that a similar function to Gq were used
in [19] as a weight function in the context of meshless methods when solving the linear Poisson
equation. From the above, the nodal values might be rewritten as

Cn
j =

Q∑
q=1

Aq
jGq (17)

The finite element method is now used to find the values of the new set of unknowns Aq
j instead

of the nodal values Cn
j as before. Using (17) to rewrite (14) we obtain

un =

M∑
j=1

Q∑
q=1

Aq
jNjGq (18)

For simplicity the multiplication of Fenr with the polynomial shape function is considered to
be the new shape function L(j−1)Q+q defined by

L(j−1)Q+q = NjGq (19)

The new solution space then becomes

Ṽ 1
h = span

Lh, uh =

M∑
j=1

Q∑
q=1

Aq
jNjGq


The derivatives of the new shape function are then given by

∂L(j−1)Q+q

∂x
= Gq

∂Nj

∂x
−

exp

(
−
(
R2

0

C2

)q
)

1− exp

(
−
(
R2

c

C2

)q
)R2(j−1)

0 Nj(x− x0) (20)

∂L(j−1)Q+q

∂y
= Gq

∂Nj

∂y
−

exp

(
−
(
R2

0

C2

)q
)

1− exp

(
−
(
R2

c

C2

)q
)R2(j−1)

0 Nj(y − y0) (21)

It is worth remarking that the enrichment functions Fenr are written in terms of the global
coordinates x, but that they are multiplied by the nodal shape functions Nj . In this sense the
additional enrichment takes on a local character. The change in the form of the approximation
from (14) to (18) is only made locally in the vicinity of a feature of interest, such as source or
sink zones.
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4 Numerical Results

In this section we examine the accuracy and performance of the proposed PU method using
three test examples. The first example solves a transient diffusion equation with analytical
solution that can be used to quantify errors in the PU method. The second and third examples
consider a problem of heat transfer with single and multiple sources, respectively. These last
examples are used to qualify the considered PU method for more complicated time-dependent
diffusion problems.

In what follows, we shall use the terminology FEM, PUFEM, PUFEM4DoFs, PUFEM6DoFs
and PUFEM8DoFs to refer to the standard finite element method, the partition-of-unity finite
element method, PUFEM with the number of enrichment functions Q = 4, 6 and 8, respectively.
All the computations are made on an Intel R©Xeon R©PC with one processor of 24 GB of RAM
and 2.93 GHz. The codes only take the default optimization of the machine, i.e. they are not
parallel codes.

4.1 Accuracy test problem

As a first test example we consider a diffusion problem with a manufactured exact solution in
a squared domain Ω = [0, 2] × [0, 2]. We solve the transient equation (1)-(3) with the reaction
term f , the boundary function g and the initial condition u0 are explicitly calculated such that
the exact solution of the problem (1)-(3) is given by

U(x, y, t) = xkyk (2− x)k (2− y)k
(

1− exp (−λt)
)

(22)

where k is parameter set to 20 in our simulations. Note that in order to avoid having the exact
solution (22) as a subset of the enrichment space, the solution does not include exponential
parts in the space domain. The initial condition is calculated from the analytical solution (22)
while homogeneous Dirichlet boundary conditions are imposed on Γ. To quantify the errors in
this test example we consider the L2-norm error defined as

ε2 =
‖u− U‖L2(Ω)

‖U‖L2(Ω)
(23)

where ‖ · ‖L2(Ω) is the L2 norm, u and U are respectively, the computed and exact solutions. In
all computations presented the parameter α = 1, the time step ∆t = 0.1 and the diffusion coef-
ficient λ is selected to take the values 0.1 and 0.01. The aim of this test example is to compare
the results obtained using the proposed partition-of-unity finite element method (PUFEM) to
those obtained using the standard finite element method (FEM). To this end we consider three
numbers of enrichment functions Q = 4, 6 and 8 in the PUFEM referred to as PUFEM4DoFs,
PUFEM6DoFs and PUFEM8DoFs, respectively. To study the convergence, each of these en-
richment numbers is considered with further h-refinements. The same problem is solved with
the FEM using h-refinement. Figure 1 and Figure 2 show, respectively the convergence and
the conditioning of the proposed method for an increasing number of degrees of freedom when
λ = 0.1. The top three plots of Figure 1 compare the convergence of the PUFEM for an in-
creased number of enrichment functions Q while the bottom figures compare the convergence of
the PUFEM for Q = 6 to the FEM. The numerical results correspond to the simulation times
T = 0.1,1 and 10 sec. A similar set of results for λ = 0.01 are shown in Figure 3 and Figure 4.

In the above set of results and for both values of λ, it is clear that the PU converges much
faster compared to the FEM. More than 10000 degrees of freedom are needed with the FEM to
achieve an error of about ε2 = 0.001 whereas with the PUFEM and using 6 enrichment functions

7


