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1Laboratoire d’Informatique Théorique et Appliquée,
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Abstract. The k-Coloring problem is to decide whether a graph can
be colored with at most k colors such that no two adjacent vertices receive
the same color. The List k-Coloring problem requires in addition that
every vertex u must receive a color from some given set L(u) ⊆ {1, . . . , k}.
Let Pn denote the path on n vertices, and G + H and rH the disjoint
union of two graphs G and H and r copies of H, respectively. We show
that List k-Coloring is fixed-parameter tractable for graphs with no
induced rP1 + P2 when parameterized by k + r, and that k-Coloring
restricted to such graphs allows a polynomial kernel when parameter-
ized by k. Finally, we show that List k-Coloring is fixed-parameter
tractable for graphs with no induced P1 + P3 when parameterized by k.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by inte-
gers called colors such that no two adjacent vertices receive the same color. The
corresponding k-Coloring problem is to decide whether a graph can be colored
with at most k colors. Because k-Coloring is NP-complete for any fixed k ≥ 3,
there has been considerable interest in studying its complexity when restricted to
certain graph classes. One of the most well-known results in this respect is due to
Grötschel, Lovász, and Schrijver [11] who show that k-Coloring is polynomial-
time solvable for perfect graphs. More information on this classic result and on
the general motivation, background and related work on coloring problems re-
stricted to special graph classes can be found in several surveys [24, 26] on this
topic. In this paper we consider graph classes defined by a forbidden induced
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subgraph, and focus on the parameterized complexity, in contrast to previous
papers on this topic [3–6, 8, 10, 12, 15–19, 21, 23, 27]. Before we summarize these
results and explain our new results, we first state the necessary terminology and
notations.

1.1 Terminology

We only consider finite undirected graphs G = (V,E) without loops and multiple
edges. We sometimes denote the vertex set of G by VG. We write G[U ] to denote
the subgraph of G induced by the vertices in U , i.e., the subgraph of G with
vertex set U and an edge between two vertices u, v ∈ U if and only if uv ∈ E. A
subset D ⊆ V is a dominating set of G if every vertex in G belongs to D or is
adjacent to a vertex of D. In that case we also say that G[D] is dominating. A
subset X ⊆ V is independent if there is no edge between any two vertices of X.

We refer to the textbook by Bondy and Murty [2] for any undefined graph
terminology.

The graph Pn denotes the path on n vertices. The disjoint union of two
graphs G and H is denoted G + H, and the disjoint union of r copies of G is
denoted rG. A linear forest is the disjoint union of a collection of paths. Let
H be a graph. We say that a graph G is H-free if G has no induced subgraph
isomorphic to H.

A (vertex) coloring of a graph G = (V,E) is a mapping φ : V → {1, 2, . . .}
such that φ(u) 6= φ(v) whenever uv ∈ E. Here, φ(u) is referred to as the color
of u. A k-coloring of G is a coloring φ of G with φ(V ) ⊆ {1, . . . , k}. Here, we
used the notation φ(U) = {φ(u) | u ∈ U} for U ⊆ V . If G has a k-coloring,
then G is called k-colorable. Recall that the problem k-Coloring is to decide
whether a given graph admits a k-coloring. Here, k is fixed, i.e., not part of the
input. If k is part of the input then we denote the problem as Coloring. The
optimization version of this problem is to determine the chromatic number of a
graph, i.e., the smallest k such that G has a k-coloring. A list assignment of a
graph G = (V,E) is a function L that assigns a list L(u) of so-called admissible
colors to each u ∈ V . If L(u) ⊆ {1, . . . , k} for u ∈ V , then L is also called a k-list
assignment. Equivalently, L is a k-list assignment if |

⋃
u∈V L(u)| ≤ k. We say

that a coloring φ : V → {1, 2, . . .} respects L if φ(u) ∈ L(u) for all u ∈ V . For
a fixed integer k, the List k-Coloring problem has as input a graph G with a
k-list assignment L and asks whether G has a coloring that respects L.

We finish this section with a short introduction into parameterized com-
plexity; for a more in-depth discussion we refer to Downey and Fellows [9] and
Niedermeier [22]. In parameterized complexity theory, we consider the problem
input as a pair (I, k), where I is the main part and k the parameter. The com-
plexity class XP consists of parameterized decision problems Π such that for
each instance (I, k) it can be decided in O(f(k)|I|g(k)) time whether (I, k) ∈ Π,
where f and g are computable functions depending only on the parameter k, and
|I| denotes the size of I. So XP consists of parameterized decision problems which
can be solved in polynomial time if the parameter is a constant. A problem is
fixed-parameter tractable if an instance (I, k) can be solved in time O(f(k)|I|c),
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where f denotes a computable function and c a constant independent of k. The
class FPT ⊆ XP is the class of all fixed-parameter tractable decision problems.

A well-known technique to show that a parameterized problem Π is fixed-
parameter tractable is to find a reduction to a problem kernel. This technique
replaces an instance (I, k) of Π with a reduced instance (I ′, k′) of Π called a
(problem) kernel, such that the following three conditions hold:

(i) k′ ≤ k and |I ′| ≤ g(k) for some computable function g;
(ii) the reduction from (I, k) to (I ′, k′) is computable in polynomial time;
(iii) (I, k) is a Yes-instance of Π if and only if (I ′, k′) is a Yes-instance of Π.

An upper bound g(k) of |I ′| is called the kernel size, and a kernel is called poly-
nomial if the kernel size is polynomial in k. It is well known that a parameterized
problem is fixed-parameter tractable if and only if it is kernelizable (cf. [22]).

1.2 Related work

Král’, Kratochv́ıl, Tuza and Woeginger [17] completely determined the com-
putational complexity of Coloring for graph classes characterized by a forbid-
den induced subgraph and achieved the following dichotomy.

Theorem 1 ([17]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1+P3, then Coloring can be solved in polynomial
time for H-free graphs; otherwise it is NP-complete for H-free graphs.

Theorem 1 justifies a study into the computational complexity of the k-
Coloring problem forH-free graphs. Combining results of Holyer [13], Kamiński
and Lozin [15] and Leven and Galil [20] imply the following theorem (cf. [10]).

Theorem 2. For any k ≥ 3, the k-Coloring problem is NP-complete for the
class of H-free graphs whenever H is not a linear forest.

We now consider the case when H is a linear forest. It is known that 4-
Coloring is NP-complete for P8-free graphs [4] and that 6-Coloring is NP-
complete for P7-free graphs [3]. On the positive side, combining results of the
papers by Broersma et al. [4], Couturier et al. [7], Hoàng et al. [12], and Ran-
derath and Schiermeyer [23] leads to the following theorem (cf. [10]).

Theorem 3. The k-Coloring problem can be solved in polynomial time for
H-free graphs if

• H = rP1 + P2 + P4 for all k ≤ 3 and all r ≥ 0
• H = rP1 + P6 for all k ≤ 3 and all r ≥ 0
• H = rP3 for all k ≤ 3 and all r ≥ 0
• H = P2 + P3 for all k ≤ 4
• H = rP1 + P5 for all k ≥ 0 and all r ≥ 0
• H = rP2 for all k ≥ 0 and all r ≥ 0.
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In Theorem 3 we also used the known result that k-Coloring is polynomial-
time solvable on sP2-free graphs for any two integers k and s by combining a
result of Balas and Yu [1] on the maximal number of independent sets in an
sP2-free graph with a result from Tsukiyama et al. [25] on the enumeration of
such sets. Moreover, we note that k-Coloring is polynomial-time solvable on
H ′-free graphs whenever it is so on H-free graphs for some graph H containing
H ′ as an induced subgraph.

As a matter of fact, all cases in Theorem 3 also hold for the List k-Coloring
problem except in the case when H = P2 + P3 and k = 4. The computational
complexity of List 4-Coloring for (P2 + P3)-free graphs is still open. Also
all aforementioned NP-completeness results for k-Coloring on H-free graphs
carry over to List k-Coloring. In addition, it is known that List 5-Coloring
is NP-complete for P6-free graphs [3] and for (P2 + P4)-free graphs [7].

1.3 Our results

The aim of our paper is to initiate a parameterized complexity study for the k-
Coloring and List k-Coloring problem restricted to H-free graphs, when H
is some fixed linear forest, in order to obtain a more subtle classification for those
graphs H, for which these problems are NP-complete. We prove the following
three results:

(i) List k-Coloring is fixed-parameter tractable for (rP1 + P2)-free graphs
when parameterized by k + r;

(ii) k-Coloring restricted to (rP1 +P2)-free graphs allows a polynomial kernel
when parameterized by k;

(iii) List k-Coloring is fixed-parameter tractable for (P1 + P3)-free graphs
when parameterized by k.

2 (rP1 + P2)-free graphs

First we consider (rP1 + P2)-free graphs. Theorem 1 tells us that already Col-
oring is NP-complete for (rP1 + P2)-free graphs whenever r ≥ 2. For a graph
G = (V,E), we let N(u) = {v ∈ V | uv ∈ E} denote the set of neighbors of a
vertex u ∈ V , N(S) = {v ∈ V \ S | uv ∈ E for some u ∈ S} denotes the set of
neighbors of a set S ⊆ V , and N [S] = N(S) ∪ S.

We use the following lemma.

Lemma 1 ([7]). Let G be an (rP1+P`)-free graph for integers r ≥ 1 and ` ≥ 1.
If G contains an induced P`, then G contains a dominating induced sP1 +P` for
some s < r.

We also need the following lemma.

Lemma 2. Let G = (V,E) be an (rP1 + P2)-free graph for some r ≥ 0. If S is
an independent set with |S| ≥ r, then X = V \N(S) is a maximal independent
set. Moreover, X is the unique maximal independent set containing S.
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Proof. Suppose that S is an independent set with at least r vertices. Let X =
V \ N(S). Because G is (rP1 + P2)-free and S is independent, V \ N [S] is
independent as well. Because a neighbor of a vertex of S does not belong to
any independent set that contains S, we find that X is the unique maximal
independent set containing S. This completes the proof of Lemma 2. ut

Let G be a graph with a k-list assignment L. Let G = {G1, . . . , Gp} be a set
of graphs, where each Gi has a (k − 1)-list assignment Li. Then we say that G
and G are (k − 1)-compatible if the following holds: G has a coloring respecting
L if and only if there exists a graph Gi ∈ G that has a coloring respecting Li.

We now prove the following two lemmas.

Lemma 3. Let k ≥ 2 and r ≥ 1. Let G = (V,E) be an (rP1 + P2)-free graph
on n vertices with a k-list assignment L. If G has a maximal independent set X
with at least (r − 1)k + 1 vertices, then it is possible to find in O(k2n) time a
(k − 1)-compatible set G that consists of at most k induced subgraphs of G.

Proof. Let X be a maximal independent set with at least (r − 1)k + 1 vertices.
We perform the following procedure for every color 1 ≤ i ≤ k.

1 For each vertex v ∈ X, we check whether i ∈ L(v). If so, then we color v by
i and delete v afterwards. If not, we set Li(v) = L(v).

2 For each vertex v ∈ V \X, we set Li(v) = L(v) \ {i}.

In this way we compute a set G = {G1, . . . , Gk} of at most k induced subgraphs
of G, where each Gi has a (k − 1)-list assignment Li. The running time of this
procedure is O(k2n). We are left to show that G and G are (k − 1)-compatible.

First suppose that G has a coloring respecting L. Then at least r vertices
in X must have the same color. Suppose that this color is i, and let S be the
set of all vertices of X colored by i. Because S is an independent set with at
least r vertices and X is a maximal independent set containing S, we find that
X = V \ N(S) due to Lemma 2. Because every vertex in S has color i, every
vertex in N(S) cannot be colored with color i. This means that we can remove
color i from the list of every vertex in N(S). Then every vertex v ∈ X \ N [S]
with i ∈ L(v) can safely be recolored by i if it was not colored by i already. So,
in the end, every vertex in X with color i in its list gets color i, and we have
removed i from the list of every vertex not in X. This means that we obtain the
subgraph Gi after deleting all vertices with color i from G.

To prove the reverse implication, suppose that G contains a graph Gi that
has a coloring respecting Li. By construction of Gi, there is no vertex of Gi that
has color i in its list. Hence, color i is not used on Gi. Because we only deleted
vertices from G that were independent and that had color i in their list, we can
safely color these deleted vertices by color i. In this way we obtain a coloring of
G that respects L. ut

Lemma 4. Let k ≥ 2 and r ≥ 1. Let G be an (rP1 + P2)-free graph with

n ≥ (r + 1)k−1((r − 1)k + 1) + (r + 1) (r+1)k−1−1
r vertices and m edges. Then
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either G has a clique of size k + 1 or a maximal independent set X of size at
least (r − 1)k + 1. Moreover, it is possible to find such a clique or independent
set in O(k(n+m)) time.

Proof. The case m = 0 is trivial. Suppose that m ≥ 1. We apply Lemma 1 for ` =
2. This yields a dominating sP1 +P2 of G for some s < r. The vertex set of this
subgraph is a dominating set of G that has size s+2 ≤ r+1. Hence, it contains a

vertex v of degree at least n−(r+1)
r+1 ≥ (r+1)k−2((r−1)k+1)+(r+1) (r+1)k−2−1

r .
We can apply the same arguments inductively for the subgraph of G induced by
N(v). Then after at most k−1 steps we either obtain a clique of size k+1, or else
we find that we cannot apply Lemma 1 any longer. The latter case means that the
graph under consideration has no edges. Then its vertices form an independent
set Y of size at least (r − 1)k + 1 ≥ r, as k ≥ 2. Hence, X = V \ N(Y ) is a
maximal independent set due to Lemma 2. By the same lemma, X contains Y ,
and as such X has size at least (r − 1)k + 1.

Because a vertex of maximum degree can be found in O(n + m) time, the
total running time of our procedure is O(k(n+m)). This completes the proof of
Lemma 4. ut

Now we are ready to prove the following result.

Theorem 4. The List k-Coloring problem is in FPT for (rP1 + P2)-free
graphs when parameterized by k and r.

Proof. Let G be an (rP1 + P2)-free graph on n vertices that has a k-list as-
signment L. If k ≤ 2, then we can solve the problem in polynomial time. If

n < f(k, r) = (r + 1)k−1((r − 1)k + 1) + (r + 1) (r+1)k−1−1
r , then we can solve

it in O(f(k, r)k) time by brute force. Otherwise, by Lemma 4, we either find a
clique of size k + 1 or a maximal independent set of size at least (r − 1)k + 1
in O(k(n + m)) time. In the first case, G has no coloring respecting L. In the
second case, we construct in O(k2n) time a (k − 1)-compatible set G of at most
k subgraphs of G by using Lemma 3. We branch on each of them and repeat
the same steps. Since the depth of the search tree is bounded by k, the desired
result follows. ut

If we only choose k as the parameter, then we can improve our result for the
k-Coloring problem as follows. Here, we assume that r ≥ 2 because Coloring
can be solved in polynomial time for (rP1 + P2)-free graphs with r ≤ 1, due to
Theorem 1.

Theorem 5. For any fixed integer r ≥ 2, the k-Coloring problem restricted
to (rP1 +P2)-free graphs has a kernel of size k2(r− 1) when parameterized by k.

Proof. Let k be a positive integer, and let G = (V,E) be an (rP1 + P2)-free
graph for some fixed integer r ≥ 2. If k ≤ 2 then we can solve k-Coloring in
polynomial time. Suppose that k ≥ 3. If G has at most k2(r−1) vertices, then we
are done. Suppose that G has at least k2(r−1)+1 vertices. We check if G has an
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independent set S of r vertices such that V \N(S) contains at least k(r− 1) + 1
vertices. If not then we output No. Otherwise we give every vertex in V \N(S)
color k. We then delete V \N(S) from G and check if the resulting graph G′ has
a (k− 1)-coloring recursively. In this way, we either solve the problem or get an
instance (G′, k′) of k′-Coloring where k′ is an integer that is at most k and G′

is a graph that has at most k′2(r − 1) vertices, as desired.
We now prove that the above approach is correct. Suppose that G has at least

k2(r−1)+1 vertices. For every k-coloring of G, there must exist an independent
set X with at least k(r−1)+1 vertices in G that all get the same color. We may
without loss of generality assume that X is a maximal independent set. Because
k ≥ 3, we find that k(r− 1) + 1 ≥ r. Hence, X contains an independent set S of
size r. By Lemma 2, we find that V \N(S) is the unique maximal independent
set containing S. Because X is maximal as well and S ⊆ X, we deduce that
X = V \N(S). Hence, G has no k-coloring if G has no independent set S with
|S| = r and |V \N(S)| ≥ k(r − 1) + 1. Suppose that we find such a set S. Let
X = V \N(S). Then, for any k-coloring of G, there exists a set S′ ⊆ X of vertices
that get the same color, because X contains at least k(r − 1) + 1 vertices. We
may assume without loss of generality that this color is k. By Lemma 2, we find
that V \ N(S′) is the unique maximal independent set containing S′. Because
X contains S′ as well, we find that X = V \ N(S′). Because every vertex in
S′ received color k, no vertex in N(S′) will receive color k. This means that we
can safely color every vertex in X \ S′ with color k as well. Consequently the
graph G′ obtained after deleting X must have a (k− 1)-coloring, should G have
a k-coloring.

We are left to show that the running time of our kernelization algorithm is
polynomial. This follows from the following observations. First, there are at most
|V |r sets of size r and r is fixed. Hence, we can check in polynomial time if G
contains an independent set S of size r. Second, checking if V \ N(S) contains
at least k(r − 1) + 1 vertices and removing V \N(S) if this is the case can also
been done in polynomial time. This completes the proof of Theorem 5. ut

3 (P1 + P3)-free graphs

In this section we consider (P1 + P3)-free graphs. Recall that Coloring is
polynomial-time solvable for (P1 + P3)-free graphs due to Theorem 1. However,
Jansen and Scheffler [14] showed that List k-Coloring is NP-complete when k
is part of the input, already for complete bipartite graphs which form a subclass
of the class of (P1 + P3)-free graphs. We will show that List k-Coloring is
fixed-parameter tractable for (P1 + P3)-free graphs when parameterized by k.
We must first introduce some extra terminology.

Let G = (V,E) be a graph with a dominating set D. Suppose that we have
ordered the vertices of D as d1, . . . , dp. Then we can define (possibly empty) sets
Fi for i = 1, . . . , p as follows. Let F1 be the set of vertices in V \D adjacent to
d1, and for i = 2, . . . , p, let Fi be the set of vertices in V \D adjacent to di but
not to any dh with h ≤ i− 1. The sets F1, . . . , Fp are called fixed sets for D. By
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this definition and because D is dominating, every vertex in V \ D belongs to
exactly one fixed set Fi. We note, however, that D can have several collections
of fixed sets, depending on the ordering of the vertices of D. Fixed sets have
been introduced by Hoàng et al. [12] to prove that k-Coloring can be solved in
polynomial time for P5-free graphs for all fixed k ≥ 1. We use them in a different
way to prove the following result.

Theorem 6. The List k-Coloring problem is in FPT for (P1+P3)-free graphs
when parameterized by k.

Proof. Let G = (V,E) be a (P1 +P3)-free graph with a k-list assignment L. If G
is disconnected then we consider each connected component separately. Hence,
we may assume without loss of generality that G is connected.

First suppose that G has no induced P3. Then V is a clique. If V has at
least k + 1 vertices, then G has no coloring that satisfies L. If V has at most k
vertices, then we try to color V in every possible way by brute force.

Now suppose thatG contains an induced P3 = d1d2d3. BecauseG is (P1+P3)-
free, D = {d1, d2, d3} is a dominating set. We construct fixed sets F1, F2, F3 for
D and prove a number of properties of these sets by a sequence of four claims.

Claim 1. If G has a coloring that respects L, then F3 is a clique on at most k−1
vertices.

We prove Claim 1 as follows. We assume that G has a coloring that respects L.
First suppose that F3 is not a clique. Then there exist two vertices x and y in
F3 that are not adjacent. Consequently, d1 and the path xd3y form an induced
P1 +P3, which is not possible. Hence F3 is a clique. Now suppose that |F3| ≥ k.
Then F3 ∪ {d3} is a clique on at least k + 1 vertices implying that G has no
coloring respecting L. This is not possible either. Hence, |F3| ≤ k − 1. This
completes the proof of Claim 1.

Claim 2. If G has a coloring that respects L, then G[F2] is a disjoint union of
complete graphs, each of which has as most k − 1 vertices.

We prove Claim 2 as follows. We assume that G has a coloring that respects
L. First suppose that G[F2] contains a connected component with two non-
adjacent vertices. Then this component contains an induced P3. However, d1 is
not adjacent to any vertex of F2. Consequently, this induced P3 and d1 form
an induced P1 + P3, which is not possible. Hence, G[F2] is a disjoint union of
complete graphs. Now suppose that G[F2] contains a connected component F
of size at least k. Then F ∪ {d2} is a clique on at least k + 1 vertices implying
that G has no coloring respecting L. This is not possible either. Hence, every
connected component of G[F2] has as most k − 1 vertices. This completes the
proof of Claim 2.

Let X ⊆ F1 be the set of all vertices of F1 that are not adjacent to any vertex
of F2.

Claim 3. If G has a coloring that respects L and F2 6= ∅, then X is a clique on
at most k − 1 vertices.
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We prove Claim 3 as follows. We assume that G has a coloring that respects L
and that F2 6= ∅. First suppose that X contains two non-adjacent vertices x and
y. Because F2 6= ∅, there exists a vertex z ∈ F2. Then z and the path xd1y form
an induced P1 + P3, which is not possible. Hence, X is a clique. Now suppose
that |X| ≥ k. Then X ∪ {d1} is a clique on at least k + 1 vertices implying that
G has no coloring respecting L. This is not possible either. Hence, |X| ≤ k − 1.
This completes the proof of Claim 3.

Claim 4. If G[F2] has at least two connected components, then every vertex of
F2 is adjacent to every vertex of F1 \X.

We prove Claim 4 as follows. We assume that G[F2] has at least two connected
components. Suppose that there is a vertex x ∈ F2 that is not adjacent to a
vertex y ∈ F1 \X. Because y /∈ X, we find that y is adjacent to a vertex z ∈ F2.
If xz /∈ E, then the path zyd1 and the vertex x would form an induced P1 +P3.
This is not possible. Hence, xz ∈ E. So, y can only be adjacent to the vertices of
the connected component of G[F2] that contains x. Recall that G[F2] has at least
two connected components. Let v be a vertex of another connected component of
G[F2]. Then v and the path xzy form an induced P1 +P3, which is not possible.
Hence, every vertex of F2 is adjacent to every vertex of F1 \X. This completes
the proof of Claim 4.

We are now ready to describe our algorithm. We first branch by coloring the
vertices of F3 and the vertices d1, d2, d3. We then consider the following three
cases.

Case 1. F2 = ∅.
For each vertex v ∈ F1, we remove those colors from its list L(v) that are a color
of a neighbor of v in F3 ∪ {d1, d2, d3}. We remove all vertices not in F1 from G.

Case 2. F2 6= ∅ and G[F2] is connected.
We branch by coloring the vertices of F2. Then we do the same as in Case 1.

Case 3. G[F2] has at least two components.
We first find the set X and then branch by coloring the vertices of X. Then we
branch by choosing a set C of colors that will be used for the coloring of the
vertices of F2. For each vertex u ∈ F2, we remove those colors from its list L(u)
that are not a color of C or that are a color of a neighbor of u in F3 ∪ {d2, d3}.
For each vertex v ∈ F1 \ X we remove those colors from its list L(v) that are
a color in C or that are a color of a neighbor of v in F3 ∪X ∪ {d1, d2, d3}. We
remove all vertices not in (F1 \X) ∪ F2 from G.

Afterwards, we consider G[F2] and G[F1 \ X] independently and repeat the
procedure above; note that G[F2] or X may be empty, depending on which case
we are in.

We now prove that our algorithm is correct. By construction, we consider
all possible colorings of the vertices of F3 ∪ {d1, d2, d3}. Moreover, we consider
all possible colorings of the vertices of F2 if Case 2 applies. We also consider
all possible colorings of the vertices of X if Case 3 applies. In the latter case
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we must also show that we consider all possible colorings of F2 and F1 \X by
choosing the color set C to be used on the vertices of F2. This follows from Claim
4, which tells us that every vertex of F2 is adjacent to every vertex of F1 \ X.
Hence, a vertex in F1 \X does not have the same color as a vertex in F2 in any
coloring of G. By construction of our algorithm, we find that F2 and F1 \X are
separated, i.e., L(u) ∩ L(v) = ∅ for all u ∈ F2 and v ∈ F1 \ X. Hence we may
indeed consider G[F2] and G[F1 \X] independently.

In order to show that our algorithm runs in FPT time, we consider Case 3,
which is the worst case. In this case we have chosen a coloring of d1, d2, d3, F3, X
and a set of colors C that are to be used on the colors of F2. Note that there are
at most 2k different sets C. By Claims 1 and 3 we find that F3 ∪{d1, d2, d3}∪X
consists of at most 2k + 1 vertices. Hence, there are at most k2k+1 · 2k choices
to branch on. For each branch we solve the problem for G[F2] in O(kk−1|F2|)
time, due to Claim 2. Because d1 is adjacent to all vertices of F1, at least one
color cannot be used on F1. Hence, we must solve the List (k − 1)-Coloring
problem with input G[F1 \X] in every branch. Then, because the depth of the
search tree is bounded by k, the desired result follows. This completes the proof
of Theorem 6. ut

4 Future Work

Jansen and Scheffler [14] showed that List k-Coloring is in FPT for P4-free
graphs when parameterized by k. This result together with Theorems 4 and 6
implies that the two smallest open cases parameterized by k are the cases H =
2P2 and H = 2P1 + P3.

1. Is List k-Coloring parameterized by k in FPT for 2P2-free graphs?
2. Is List k-Coloring parameterized by k in FPT for (2P1 +P3)-free graphs?
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