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1 Introduction

Correlation functions of gauge invariant local operators are the natural observables of

any conformal field theory. Over the last few years, there has been rapid progress in the

understanding/computation of correlations functions of N = 4 SYM, see for instance [1–3],

and now explicit results, that would be impossible to obtain by standard Feynman diagram

techniques, are available.

Given an n−point correlation function 〈O(x1) . . .O(xn)〉 an interesting limit to con-

sider is the one where consecutive (after choosing a specific ordering) distances became null

x2i,i+1 → 0, at equal rate. It was argued in [4] that in such a limit one obtains

lim
x2
i,i+1→0

〈O(x1) . . .O(xn)〉
〈O(x1) . . .O(xn)〉tree

= 〈Wn
adj[C]〉 (1.1)

where Wn
adj[C] is a Wilson loop in the adjoint representation, over the null polygonal path C,

with cusps at xi. This relation is quite general and does not require the theory to be planar.

If we focus on a planar theory, as we will do in this paper, then 〈Wn
adj[C]〉 = 〈Wn

fund[C]〉2,
the square of a Wilson loop in the standard fundamental representation.

One can also consider a generalization of the above limit, in which all distances but

one became null. It was argued in [5], see also [6, 7], that in this limit one obtains

lim
x2
i,i+1→0

〈O(x1) . . .O(xn)O(y)〉
〈O(x1) . . .O(xn)〉

=
〈Wn

adj[C]O(y)〉
〈Wn

adj[C]]〉
. (1.2)

On the right hand side we obtain the correlation function of a null Wilson loop with a

local operator. This is a very interesting class of objects, in particular, they interpolate
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between a Wilson loop and a correlation function, and they are finite, since UV divergences

in the numerator and denominator cancel out. The planar limit of a Wilson loop with

operator insertions was discussed in detail in [6], where it was shown that 〈Wn
adj[C]O(y)〉 →

2〈Wn
fund[C]〉〈Wn

fund[C]O(y)〉. Hence, in the planar limit

lim
x2
i,i+1→0

〈O(x1) . . .O(xn)O(y)〉
〈O(x1) . . .O(xn)〉

= 2
〈Wn

fund[C]O(y)〉
〈Wn

fund[C]]〉
(1.3)

In this paper we will focus on the simplest case, where the polygonal null Wilson loop

has four edges, i.e. n = 4. In this case conformal symmetry implies:

〈W 4(x1, x2, x3, x4)O(y)〉
〈W 4(x1, x2, x3, x4)〉

=
|x13x24|2

∏4
i=1 |y − xi|2

F (ζ) , (1.4)

where ζ is the cross-ratio that can be constructed out of the location of the local operator

y and the location of the cusps xi:

ζ =
|y − x2|2|y − x4|2x213
|y − x1|2|y − x3|2x224

. (1.5)

Hence F (ζ) is a function of a single variable ζ, in addition to the coupling constant a = g2N
4π2 .

From the definition of the cross-ratio and cyclic symmetry of the location of the cusps, we

expect F (ζ) to have “crossing” symmetry:

F (ζ) = F (1/ζ) (1.6)

For the case of O = Odil, the operator that couples to the dilaton (i.e. the N = 4

action), this function was computed in [5] at leading order both in the weak and strong

coupling expansions1

F (ζ) = − a

4π2
+ . . . , a ≪ 1 (1.7)

F (ζ) =
ζ

(1− ζ)3
(2(1− ζ) + (ζ + 1) log ζ)

√
a

2π2
+ . . . , a ≫ 1 (1.8)

we can see that both expressions satisfy the crossing symmetry (1.6). The aim of the

present paper is to compute F (ζ) to higher orders in perturbation theory.

A related quantity, namely the four-point correlation function of the stress-tensor mul-

tiplet, has been extensively studied in the past as well as more recently and has now been

explicitly computed at the integrand level to 6 loops [1, 2, 8–11]. This multiplet, in partic-

ular, contains the chiral Lagrangian of N = 4 SYM. Computations of the correlator have

made extensive use of the method of Langrangian insertions. This method relies on the

1In [5] the strong coupling result was found to be F (ζ) = c −ζ

3(1−ζ)3
(2(1 − ζ) + (ζ + 1) log ζ)

√

λ, with

λ = 4π2a. In the appendix we show that c = −3/(4π3) in order for (1.10) to be satisfied. As for the weak

coupling result, one is to set ĉdil = 1/2 in [5] , and further multiply by 1/4, since [5] used a non-standard

convention for traces in the fundamental representation.
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observation that derivatives with respect to the coupling constant of any correlation func-

tion can be expressed in terms of a correlation function involving an additional insertion

of the N = 4 SYM action. For instance,

a
∂

∂a
〈O(x1) . . .O(x4)〉 =

∫

d4x5〈O(x1) . . .O(x4)LN=4(x5)〉 . (1.9)

This method is very powerful: by successive differentiation with respect to the coupling,

it allows one to express the ℓ−loop correction for the four-point correlation in terms of

the integrated tree-level correlation function with ℓ additional insertions of the N = 4

SYM Lagrangian.

From the discussion above it is clear that a particular limit of those integrands will

produce the integrands for 〈O(x1) . . .O(x4)LN=4(x5)〉 in the particular null limit we are

interested in. This will give integrand expressions for loop corrections to 〈W 4LN=4(x5)〉.
In the next section we start by writing down those integral expressions. Then we com-

pute the one-loop correction to F (ζ) (proportional to a2) and show that the two-loop cor-

rection (proportional to a3) is finite. This is to be expected, but it is far from obvious from

the integral expressions, since each integral diverges as 1
ǫ4

in dimensional-regularization.

Before proceeding, let us finish with a brief comment. The insertion procedure in

particular implies an integral constraint on F (ζ), namely

x213x
2
24

∫

d4y
F (ζ)

∏4
i=1 |y − xi|

= a∂a log〈W 4〉 (1.10)

One can check that this equation is indeed satisfied by the leading results at weak and at

strong coupling, and we do so in the appendix.

2 Explicit results

2.1 General expressions and one-loop result

Following [1, 13, 14] we introduce

〈O(x1) . . .O(x4)〉 = G4 =

∞
∑

ℓ=0

aℓG
(ℓ)
4 (1, 2, 3, 4)

〈O(x1) . . .O(x4)L(x5)〉 = 1/4

∫

d4ρ5G5;1 = 1/4
∞
∑

ℓ=0

aℓ+1

∫

d4ρ5G
(ℓ)
5;1(1, 2, 3, 4, 5)

here ρ is a Grassmann variable, O is the lowest component of the stress-tensor multiplet

and L is the component proportional to ρ4. We define the ’tHooft coupling constant

a = g2N/(4π2). The object we want to compute is then simply given by

〈O(x1) . . .O(x4)L(x5)〉
〈O(x1) . . .O(x4)〉

=

∫

d4ρ5G5;1

4G4
(2.1)

Expressions for G
(ℓ)
4 and G

(ℓ)
5;1 (in terms of certain functions to be defined bellow), can be

found in [1]. In general, those depend on the insertion points, together with certain auxiliary
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harmonic variables yi. In the null limit considered in this paper, however, the dependence

on the harmonic variables factors out, and goes away when taking the ratio (2.1). In the

null limit we obtain

G
(ℓ)
4 (1, 2, 3, 4) =

1

ℓ!

2x213x
2
24

(−4π2)ℓ
G

(0)
4

∫

d4x5 . . . d
4x4+ℓf

(ℓ)(x1, . . . , x4+ℓ) (2.2)

∫

d4ρ5G
(ℓ)
5;1 =

8

ℓ!

x213x
2
24

(−4π2)ℓ+1
G

(0)
4

∫

d4x6 . . . d
4x5+ℓf

(ℓ+1)(x1, . . . , x5+ℓ) (2.3)

which is consistent with the insertion formula

a
∂

∂a
G4 = 1/4

∫

d4x5

∫

d4ρ5G5;1 . (2.4)

Finally we also need expressions for the f functions. These have a remarkably simple

form [1]. At 1, 2, 3 loops these are given by2

f (1)(x1, . . . , x5) =
1

x215x
2
25x

2
35x

2
45

,

f (2)(x1, . . . , x6) =

1
48

∑

σ∈S6
x2
σ(1)σ(2)x

2
σ(3)σ(4)x

2
σ(5)σ(6)

(x215x
2
25x

2
35x

2
45)(x

2
16x

2
26x

2
36x

2
46)x

2
56

(2.5)

f (3)(x1, . . . , x7) =
1
20

∑

σ∈S7
x4σ1σ2

x2σ3σ4
x2σ4σ5

x2σ5σ6
x2σ6σ7

x2σ7σ3

(x215x
2
25x

2
35x

2
45)(x

2
16x

2
26x

2
36x

2
46)(x

2
17x

2
27x

2
37x

2
47)(x

2
56x

2
57x

2
67)

.

These functions satisfy certain symmetries. Upon multiplication by the product of all

external kinematic invariants (x212x
2
13x

2
14x

2
23x

2
24x

2
34) and for generic (non-null-separated)

points, these functions are completely symmetric under interchange of any two points and

can be written as
P (ℓ)(x1,...,x4+ℓ)∏

1≤i<j≤4+ℓ x
2
ij

, where P (ℓ) is a homogeneous polynomial in x2ij of uniform

weight −(ℓ−1) at each point. These properties hold at all loops in perturbation theory [1].

When taking the null limit the functions f (ℓ) will have fewer terms, but some symmetries

will be lost.

Let us now consider the ratio (2.1) order by order in perturbation theory

∫

d4ρ5G5;1

G4
=

∫

d4ρ5

{

a

[

G
(0)
5;1

G
(0)
4

]

+ a2

[

G
(1)
5;1

G
(0)
4

−
G

(0)
5;1

G
(0)
4

G
(1)
4

G
(0)
4

]

+ a3

[

G
(2)
5;1

G
(0)
4

−
G

(1)
5;1

G
(0)
4

G
(1)
4

G
(0)
4

−
G

(0)
5;1

G
(0)
4

G
(2)
4

G
(0)
4

+
G

(0)
5;1

G
(0)
4

(

G
(1)
4

G
(0)
4

)2 ]

+ . . .

}

(2.6)

Hence, at leading order in perturbation theory (proportional to a) we find

(〈W 4L〉
〈W 4〉

)(0)

=
a

8

∫

d4ρ5G
(0)
5;1

G
(0)
4

=
a x213x

2
24

(−4π2)
× f (1)(x1, . . . , x5)

=
a

(−4π2)

x213x
2
24

x215x
2
25x

2
35x

2
45

, (2.7)

2Note that the functions f (ℓ) are multiplied by the overall factor (x2
12x

2
13x

2
14x

2
23x

2
24x

2
34) compared to the

definition in [1].
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which precisely agrees with the leading order result found in [5]. At next order we find

(〈W 4L〉
〈W 4〉

)(1)

=
a2

(−4π2)2
× x213x

2
24 ×

[ ∫

d4x6f
(2)(x1, . . . , x5, x6)

− 2x213x
2
24f

(1)(x1, . . . , x5)

∫

d4x6f
(1)(x1, . . . , x4, x6)

]

(2.8)

In the light-like limit the numerator of f (2) becomes simply

1

48

∑

σ∈S6

x2σ(1)σ(2)x
2
σ(3)σ(4)x

2
σ(5)σ(6)

= x213x
2
24x

2
56 + x215x

2
36x

2
24 + x225x

2
46x

2
13 + x235x

2
16x

2
24 + x245x

2
26x

2
13 (2.9)

When integrating over x6 in (2.8) we recognize two kinds of contributions

F (1, 2, 3, 4) = − 1

4π2

∫

d4x6
x213x

2
24

x216x
2
26x

2
36x

2
46

(2.10)

F (1, 2, 3, 5) = − 1

4π2

∫

d4x6
x213x

2
25

x216x
2
26x

2
36x

2
56

(2.11)

The first is the conformal massless box function, while the second is the two mass hard

box function (since x51 and x53 are not null).3 To be more precise, we have

(〈W 4L〉
〈W 4〉

)(1)

=
a2

(−4π2)
× x213x

2
24

x215x
2
25x

2
35x

2
45

(2.12)

×
(

F (1, 2, 3, 5)+F (4, 1, 2, 5)+F (3, 4, 1, 5)+F (2, 3, 4, 5)−F (1, 2, 3, 4)
)

.

The first (f (2)) term in (2.8) contributes a similar expression with all coefficients +1 whereas

the second term in (2.8) subtracts a term proportional to 2F (1, 2, 3, 4) thus swapping the

sign of the last term.

The explicit expression for the box functions can be found for instance in [16, 17],

where dimensional regularization is used. Even though each box function is divergent, the

above combination is finite. Furthermore this combination is dual conformally invariant

(see for example (2.23,2.22) of [15] for the divergences and conformal variation of the box

functions in dimensional regularization). Plugging the analytic expressions for the box

functions and expanding up to finite terms we obtain

(〈W 4L〉
〈W 4〉

)(1)

=
a2

(−4π2)
× x213x

2
24

x215x
2
25x

2
35x

2
45

×
(

−1

4

)

(

log2 ζ + π2
)

(2.13)

F (ζ) =
a2

(−4π2)

(

−1

4

)

(

log2 ζ + π2
)

(2.14)

This result has homogeneous degree of transcendentality and the correct

symmetry F (ζ) = F (1/ζ).

3These integrals are of course infrared divergent and need regularisation. The combination of these

integrals we consider below will be finite however and so we do not specify a regulator. In practise we will

use dimensional regularisation (where the x’s are interpreted as dual momenta).
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I1

1
4x

2
13x

4
24

5

1

2

3

1
2x

4
13x

2
25

I2

5

3

2

1

1
2x

2
13x

4
25

I3

Figure 1. All contributing double box integrals at 2 loops with the corresponding numerator.

5

2

1

3

4

I4

7

x217x
2
24x

2
35x

2
25

Figure 2. The 2 mass pentabox which contributes at 2 loops with the corresponding numerator.

2.2 Two-loop result

At O(a3) we have

(〈W 4L〉
〈W 4〉

)(2)

=
1

2

a3x213x
2
24

(−4π2)3
×
∫

d4x6d
4x7×

×
[

f (3)(x1, . . . , x6, x7)− 4x213x
2
24f

(2)(x1, . . . , x6)f
(1)(x1, . . . , x4, x7)

− 2x213x
2
24f

(1)(x1, . . . , x5)f
(2)(x1, . . . , x4, x6, x7)

+ 8(x213x
2
24)

2f (1)(x1, . . . , x5)f
(1)(x1, . . . , x4, x6)f

(1)(x1, . . . , x4, x7)

]

(2.15)

The integrals which arise from this are a 2-mass pentabox, 2-mass (2 types) and massless

double boxes, and products of massless and 2 mass boxes. All of these are illustrated in

the figures.

More specifically we have

∫

d4x6d
4x7

f (3)(x1, . . . , x6, x7)

f (1)(x1, . . . , x5)
=

∑

16 perms

(

I1 + I2 + I3 + I4 + I6 + I7

)

x213x
2
24x

2
13x

2
24

f (1)(x1, . . . , x5)

∫

d4x6d
4x7f

(2)(x1, . . . , x6)f
(1)(x1, . . . , x4, x7) =

∑

16 perms

(

I5 +
1

2
I6

)

– 6 –
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1 3

2

4

1 3

2

4

I5

×

1
16x

4
13x

4
24

1 3

2

4
1
2x

2
13x

4
24x

2
35

I6

3

2

4

× 5

3

2

4

× 5

1
4x

2
15x

4
24x

2
35

1

2

4

5

I7

Figure 3. The 3 types of products of boxes which contribute at two loops with the correspond-

ing numerator.

x213x
2
24

∫

d4x6d
4x7f

(2)(x1, . . . , x4, x6, x7) =
∑

16 perms

(

I1 + I5

)

(x213x
2
24)

2

∫

d4x6d
4x7f

(1)(x1, . . . , x4, x6)f
(1)(x1, . . . , x4, x7) =

∑

16 perms

I5 (2.16)

where the sum over 16 permutations indicates that we must sum over 16 permutations

generated by cycling the external points x1, x2, x3, x4, parity (x1 ↔ x4, x2 ↔ x3) together

with swapping the internal coordinates x6, x7. These permutations will not always produce

a different integrand (for example I5 is completely symmetric under all such permutations).

We have divided by the corresponding symmetry factor in the definition of the integral

(see figures).

Putting this all together into (2.15) gives

(〈W 4L〉
〈W 4〉

)(2)

=
1

2

x213x
2
24

x215x
2
25x

2
35x

2
45

× a3

(−4π2)3
×

∑

16 perms

(

− I1+I2+I3+I4+2I5−I6+I7

)

.

(2.17)
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2.3 Finiteness of the two-loop result

We wish to check that the combination of (divergent) two-loop integrals (2.17) is finite. To

do this at the level of the integrand we have to first understand where the divergences come

from, and then see if they cancel. As is well-known there are two overlapping sources of

infrared divergences for massless integrals, soft (when the internal momentum between two

massless external legs vanishes) and collinear (when the integration momentum becomes

collinear to a massless external leg) [18]. We make these divergences explicit in the current

situation, by changing integration variables. Firstly we perform a transformation and

Lorentz transformation to put x1 = 0 and x2 = (b/2, b/2, 0, 0). Next transform to the

following variables (φ, ǫ, x̂6) and (φ′, ǫ′, x̂7) where

xµ6 =







φ(1 + ǫ2)/2

φ(1− ǫ2)/2

φǫx̂6






xµ7 =







φ′(1 + ǫ′2)/2

φ′(1− ǫ′2)/2

φ′ǫ′x̂7






. (2.18)

Thus when ǫ → 0 we have x61 collinear with x12 whereas when φ → 0 we have x71 → 0, so

that the collinear and soft singularities occur when ǫ = 0 and φ = 0 respectively. Similarly

for ǫ′ and φ′ with x7. Making this change of variables, and focusing only on the potential

divergences as ǫ, ǫ′, φ, φ′ → 0, a generic two-loop integral takes the form

finite×
∫

dǫ

ǫ

dφ

φ

dǫ′

ǫ′
dφ′

φ′

numerator(ǫ, ǫ′, φ.φ′)

x267

(

1 +O(ǫ, ǫ′, φ, φ′)
)

(2.19)

where

x267 = φ2ǫ2(1 + x̂26) + φ′2ǫ′2(1 + x̂27) + φφ′
(

ǫ2 + ǫ′2 + 2ǫǫ′x̂6 · x̂7
)

(2.20)

and where the numerator term is generically 4th order in ǫ, ǫ′, φ, φ′. So for example for the

two loop ladder diagram we have

numeratorladder ∼
(

ǫ2φ2 + ǫ′2φ′2
)(

1 +O(ǫ, ǫ′, φ, φ′)
)

, (2.21)

where in defining the integrand we always sum over permutations of the integration vari-

ables, giving the two terms here. We then see that the integral diverges as

ladder ∼ finite×
∫

dǫdφ
dǫ′

ǫ′
dφ′

φ′

ǫφ

x267

(

1 +O(ǫ, ǫ′, φ, φ′)
)

(2.22)

∼ finite×
∫

dǫdφ
dǫ′

ǫ′
dφ′

φ′

1

ǫφ

(

1 +O(ǫ, ǫ′, φ, φ′)
)

, (2.23)

where to get the second line we use that x267 = φ2ǫ2(1 + x̂26) + O(ǫ′, φ′) an approximation

we can make, since there are poles in ǫ′ and φ′. We thus see the expected log4 divergence

of the two-loop ladder.

Now, before addressing the case of interest, we consider another interesting two-loop

integral, namely the logarithm of the amplitude at 2-loops. We know that this has a

reduced infrared divergence, and it is interesting to see how this manifests itself at the
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level of the integrand. Again, performing the change of variables above we find that the

numerator for the log of the amplitude takes the form

numeratorlog of amplitude ∼ ǫφǫ′φ′ ×
(

1 +O(ǫ, ǫ′, φ, φ′)
)

. (2.24)

Notice that this vanishes in any collinear (ǫ → 0) or soft (φ → 0) limit in distinction

with the ladder diagram alone above. This shows that it must have a reduced divergence

compared to the ladder diagram. Indeed this simple fact (that the numerator vanishes

when the loop integration becomes collinear with a massless external momentum) was

used to great effect recently for determining high-loop four-point amplitudes [19, 20] and

correlation functions [1]. Here we go slightly further and consider the exact degree of

divergence in this case.

Implementing the change of integration variables, the log of the amplitude takes

the form

log of amplitude ∼ finite×
∫

dǫdφdǫ′dφ′ 1

x267

(

1 +O(ǫ, ǫ′, φ, φ′)
)

. (2.25)

To see the degree of divergence in this integral, it is useful to change variable once more,

and let ǫ′ = ǫα, φ′ = φβ. Then the potential divergences occur at ǫ, φ, α, β → 0 (also when

α, β → ∞ but we have symmetrized the integration variables, allowing us to concentrate

on the former case). In these variables, from (2.20)

x267 = ǫ2φ2
(

1 + x̂26 + α2β2(1 + x̂27) + β
(

1 + α2 + 2βx̂6 · x̂7
)

)

(2.26)

dǫ dφ dǫ′ dφ′ → dǫ dφ dα dβ × ǫφ . (2.27)

Then one can see there are no singularities when α, β → 0 (unlike in the two-loop ladder

case), and so the log of the amplitude takes the form

log of amplitude ∼ finite×
∫

dǫdφ
1

ǫφ

(

1 +O(ǫ, α, φ, β)
)

, (2.28)

and we identify the log2 divergence.

Finally then, we consider the case of interest, the two-loop integral defined in (2.17).

Making the change of variables we find that this time the numerator is of degree 6 in the

ǫ, ǫ′, φ.φ′ variables, in particular

numerator ∼ ǫǫ′φφ′
(

Aǫφ+B ǫ′φ′
)

×
(

1 +O(ǫ, ǫ′, φ, φ′)
)

. (2.29)

for some finite A,B.

Let us then consider the degree of divergence of such an integral. Plugging into (2.19)

and changing to the α, β variables the numerator ∼ ǫ3φ3αβ
(

a + bαβ
)

and there are then

no poles at all as ǫ, φ, α, β → 0 and thus the integral is completely finite there.

While perhaps not a completely rigorous proof of finiteness, the above argument

gives a strong indication that the above integral is finite.4 Furthermore it provides an

integrand-level criterion for obtaining finite integrals: they must have numerators of the

form form (2.29). Indeed implementing this criterion on an arbitrary linear combination

of the integrals I1, . . . I7 gives the unique solution (2.17).

4Furthermore, numerical results are consistent with a cancelation of the two leading poles.
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3 Conclusions

In this paper we considered the correlation function of a local operator (the N = 4 La-

grangian) with a four cusped null Wilson loop 〈W 4O(y)〉
〈W 4〉 in perturbation theory. This

correlation function is expected to be finite, and conformal symmetry implies that the non-

trivial dependence is encoded in a function F (ζ) of a single cross-ratio and the coupling

constant. By using previous results on correlation functions, we computed F (ζ) at one-loop

in perturbation theory, obtaining

F (ζ) = − a

4π2

(

1− 1

4
(log2 ζ + π2)a+ . . .

)

. (3.1)

Our result is consistent with crossing-symmetry F (ζ) = F (1/ζ) and furthermore has the

expected degree of transcendentality. Furthermore, we have given an integral representation

for the two-loop contribution to F (ζ). This is given in terms of seven integrals, including

double boxes and pentaboxes, plus permutations. Even though each contribution diverges

as 1/ǫ4 in dimensional regularization, we argue that this particular combination is finite.

This claim is also supported by a numerical analysis of the integrals. We hope to come

back in the future with a more detailed analysis, and hopefully an analytic answer, of the

two-loop result.

Finally, let us mention that the computation of F (ζ) should be simpler in certain

limits. For instance, if the insertion point is null separated to one of the cusps (but not to

the other) ζ vanishes (or becomes infinity), hence it should be possible to understand this

limit in terms of the light-cone OPE for correlation functions. We hope to go back to this

question in the future.
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A Integration over the insertion point

A.1 Tree level

In this appendix we will explicitly check that the normalization of the tree level result is

consistent with (1.10). At tree-level we have obtained F = − a
4π2 , hence, we should consider

I = −s t a

4π2

∫

d4y
1

∏4
i=1 |y − xi|

(A.1)

where we have introduced s = x213 and t = x224. This is the usual massless scalar box

function, and it has been computed in dimensional regularization, for instance, in [16]. At

leading order in ǫ we obtain

I = −a
1

ǫ2
+ . . .
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We need to compare this with the divergent part of the right-hand-side of (1.10). This is

a ∂a log〈W 4〉div = −ℓ aℓ
Γ
(ℓ)
cusp

ǫ2
(A.2)

since Γcusp = a+ . . ., we obtain the desired result.

A.2 Strong coupling

Let us now consider (1.10) at strong coupling. The unintegrated left hand side is the result

of an integral over the world-sheet variables (u, v) [5]

x213x
2
24

F (ζ)
∏4

i=1 |y − xi|2

= 2c

∫ ∞

−∞

(

(coshu sinh v)−1

1 + y2 − 2y1 tanhu− 2y2 tanh v + 2y0 tanhu tanh v

)4

dudv (A.3)

where the world-sheet corresponds ends on the regular polygon with four edges. If we

integrate over the world-sheet coordinates (u, v) we obtain F (ζ) at strong coupling, quoted

in the body of the text. On the other hand, we could also integrate over the location of

the insertion point y. The integrals are quite elementary and we obtain

x213x
2
24

∫

d4y
F (ζ)

∏4
i=1 |y − xi|2

= 2c
π2

6

∫ ∞

−∞
dudv (A.4)

If we set c = −3/(4π3), the right hand side coincides exactly with the action of the regular

polygon with four edges found in [21].
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