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SUMMARY

We present a numerical assessment of coupling conditions in T-junction for water flow in open canals.
The mathematical model is based on the well-established shallow water equations for open channel
flows. In the present work, the emphasis is given to the description of coupling conditions at canal-
to-canal intersections. The accurate prediction of these coupling conditions is essential in order to
achieve good performance and reliable numerical simulations of water canals in networks. There is
exists several theoretical results for coupling conditions in a reduced geometry. The purpose of our
work is to numerically verify these conditions for different water flow regimes. More precisely, we
consider a local zooming of the T-junction resulting in a two-dimensional flow problem at the canals
intersection. A high-order non-oscillatory method is used for solving the governing two-dimensional
equations and the water flow solutions are space-averaged over the junction areas. The obtained
numerical results are thereafter, used for verification and comparison with the theoretical results.
Verifications are conducted for two types of junctions namely the 1-to-2 and 2-to-1 situations.
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1. Introduction

During the last decade, there has been intense research in the field of transportation networks
in the mathematical as well as in the engineering community. Here, we are particularly
interested in networks of open canals and coupling conditions at water way intersections.
Besides work on the dynamics governing the water flow inside a canal, most of the recent
works is focused on the correct modeling and simulation of canal-to-canal junctions based
on the well-established shallow water equations in one space dimension, see for example
[8, 9, 11, 12, 13, 14, 15, 16, 24, 25, 26]. Some of the cited references also include control
aspects for nodal optimization at the canal-to-canal intersections. In all these works the canal
junction is assumed to be a single point (zero length). To obtain a well-posed problem, coupling
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conditions (with and without control action) at the fitting have to be derived. These conditions
are then used as boundary conditions to the one-dimensional shallow water equations. A similar
study has been carried out in the literature for the case of gas flow in pipeline networks governed
by the so-called p-system. Indeed, for γ = 2 one obtains from a mathematical point of view
the same system as the shallow water equations. Therefore, the discussion can be equivalently
applied to gas and water flows in networks. Currently, different conditions have been proposed
and discussed in the case of gas networks [4, 5, 7, 8]. For water networks extensive studies have
been done in [6, 13, 17, 18] among others.

In this work we contribute to this discussion by a numerical study of an extended two-
dimensional model. We investigate the detailed water flow dynamics at the tee fitting of
different canal-to-canal intersections. We assume that the dynamics inside each canal are
given by the shallow water equations and resolve the detailed dynamics inside different types
of canal intersections with a robust numerical scheme as discussed below. The resolution is
achieved by introducing a local zooming of the situation under study. This yields a two-
dimensional domain representing the tee fitting with corresponding initial flow conditions in
each canal. Therein, we simulate the water dynamics for a steady-state equilibrium and finally
average the obtained flow solutions to obtain reference values at the T-junction. The obtained
values are then compared to boundary values commonly used for the one-dimensional shallow
water equations. We compare the simulation results with the analytical solutions which can
be computed for constant states in the literature [14, 9]. Note that in our simulations no gate
control is present and we only focus on intersections with three canals. Therefore the geometry
is different to [6, 13].

In contrast to the comparison study performed for gas pipeline networks in [20], we consider
in the current study the situation of small perturbations of a given initial data. Here, given
an initial distribution of the water flow conditions at each canal, we introduce a perturbation
of the water height and the discharge in one canal for the 1-to-2 situation and in two canals
for the 2-to-1 canal situation. The study of local perturbations is a realistic scenario for large
water canal networks which in general are subject to these perturbations due to rainfall,
opening valves or flooding. We also modify the numerical procedures in order to treat the
shallow water equations compared with the isothermal Euler equations in [20]. The discussion
of the predictions of the theoretical results is modified in order to treat special coupling
conditions appearing in water canals, namely equal water head or equal water pressure. An
important issue is the selection of the numerical scheme, which accurately resolves the two-
dimensional equations in the considered tee fittings. It is well known that the solutions of these
equations present steep fronts, shocks and contact discontinuities, which need to be resolved
accurately in applications and often cause severe numerical difficulties. High-order accurate
schemes have become important in scientific computations because they offer a mean to obtain
accurate solutions with less work that may be required for methods of lower accuracy. The
literature is abundant for development of high-order methods for solving hyperbolic systems
of conservation laws, among others we cite the Weighted Essentially Non-Oscillatory (WENO)
methods, compare [2, 22] among others. In the current work we have implemented a fifth-order
WENO scheme in the relaxation framework. First-order and second-order relaxation schemes
have been studied in [3]. A variety of third-order relaxation schemes have also been developed
in [30, 29, 28] for solving hyperbolic systems. The main advantage in considering combined
relaxation WENO approach lies essentially on the semi-linear structure of the relaxation



ASSESSMENT OF COUPLING CONDITIONS IN WATER WAY INTERSECTIONS 3

system, which can be solved numerically without using Riemann solvers or characteristic
decomposition.

This paper is structured as follows. In section 2 we formulate the governing equations for
the water flow in canals. Section 3 is devoted to the discussion of coupling condition at T-
junction in canal networks. Numerical methods and assessment procedure are briefly described
in section 4. In section 5 we present numerical results for two types of junctions. Section 6
contains concluding remarks and remarks about future work.

2. Governing Equations for Water Flow in Canal Networks

The transient flow of water in canals can be adequately described by the one-dimensional
approach. The basic equations modeling the water flow in canals are the well-established
shallow water equations given by the continuity and momentum equations. For practical
applications, the form of the governing equations varies with respect to the assumptions made.
Simplified models are usually obtained by neglecting certain dynamical aspects of the physical
process. In the current work, to keep the presentation simple, we assume that all canals have
the same diameter D and constant cross-sectional area. Hence, the continuity equation for
water flow in a canal k is given by

∂thk + ∂x (hkuk) = 0, (1)

where hk and uk are the water height and the water velocity in the canal k. The momentum
equation for the water flow is

∂t (hkuk) + ∂x

(

hku
2
k +

1

2
gh2

k

)

= ghk (S0 − Sf ) , (2)

where g is the gravitational acceleration, S0 the bed slope and Sf the friction slope defined as

S0 = −∂xBk, Sf = n2
k

uk|uk|
R

4
3

k

, (3)

with Bk represents the bottom topography of the canal k, nk is the Manning roughness
coefficient at the bed in the canal k and Rk is the hydraulics radius (ratio of cross-sectional
area of the wetted perimeter in the the canal k). for the purpose of the present study, we
assume a steady state friction on all canals and we assume horizontal canals with zero slope.
Thus, the equations (1)-(2) can be reformulated in vector from as

∂tUk + ∂xF (Uk) = 0, (4)

where

Uk =





hk

hkuk



 , F(Uk) =





hkuk

hku
2
k + pk



 ,

with pk is the water pressure defined by

pk =
1

2
gh2

k. (5)
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Figure 1. An illustration of canal-to-canal intersection in a network with i = 1, . . . ,m ingoing canals
and i = m+ 1, . . .K outgoing canals.

The equations (1)-(2) describe transient water flow inside a canal k where k = 1, . . . ,K, with
K is the total number of canals in the network, compare Figure 1 for an illustration. We
assume that each canal k is represented by an interval [ak, bk] for k = 1, . . . ,K. If a canal
k is incoming or outgoing to the whole network we set ak = −∞ or bk = +∞, respectively.
In addition, to simulate a canal network over a time interval [0, T ], the system (4) has to be
complemented by initial data Uk = (h0

k, u
0
k)

T and appropriate boundary conditions at x = ak
or x = bk. These conditions are subject to our discussion in the following section.

3. Coupling Conditions at the Canal-to-Canal Intersections

Recently, there has been a growth of interest in coupled systems of hyperbolic equations with
applications to gas and water networks, see for example [4, 8, 13, 26, 14] for theoretical studies
and [1, 20, 21] for numerical discussions. So far, the existing theoretical results treat the
one-dimensional situation. In our context this amounts to assume that one each canal k the
flow is governed by the shallow-water equations (4). Due to the finite speed of propagation
the theoretical discussion can be restricted to the case of a single intersection (with some
exceptions [16, 26]). Then, we may parameterize each canal k such that different canals are
connected at x = 0. Typically, at x = 0 algebraic conditions are prescribed which couple the
dynamics on different canals k and l. Examples of commonly used coupling conditions are:

Conservation of mass:
∑

k

hkuk = 0, ∀ t > 0. (6)

Equal water pressure:
1

2
gh2

k =
1

2
gh2

l , ∀ t > 0. (7)

Equal water head:

hk +
u2
k

2g
= hl +

u2
l

2g
, ∀ t > 0. (8)
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Note that due to the parametrization all canals are pointing away from the intersection.
Equivalently, we could parameterize the outgoing canals by (0,∞) and the incoming by
(−∞, 0). Then, condition (6) is equivalent to

∑

k: incoming

(hu)k(0
−, t) =

∑

l: outgoing

(hu)l(0
+, t), ∀ t > 0.

The condition (7) prescribes an equal pressure at the intersection and is commonly used in gas
networks as well as water engineering applications. The condition (8) yields an equal water
head at the intersection. Further conditions, like conservation of momentum can be prescribed
and have been discussed in the case of gas networks for example in [4, 7]. Note that the set of
conditions (6) and (7) or (6) and (8) are imposed a priori. This is the case for the mathematical
discussion as well as the case in all engineering applications [32].

Well-posedness of the different coupling conditions has been analyzed by various authors
and we can only give an incomplete list of references [5, 9, 11, 14, 24] and offer only a partial
discussion of some results. Nowadays, there exists results in two directions. Some works have
been devoted to the case of smooth solutions, see for instance [14, 24, 12, 11, 13, 15, 16, 25, 26].
In this case the differentiation of the flux function is possible and after decomposition into
characteristic variables the definition of incoming and outgoing boundary conditions for
each canal is straightforward, compare for instance [14]. Additional questions of control and
stabilization for the obtained systems in quasi-linear form has then been the major focus of
recent works [24, 12, 13, 15, 16, 25, 26]. On the other hand, if one is interested in non-smooth
solutions, a recent result on well-posedness for general strictly hyperbolic 2 × 2-systems has
been established in [9, 10]. Results for particular coupling conditions can also be found for
example in [5, 4, 7, 8]. In all these approaches the number of incoming and outgoing boundary
conditions depends on the state of the system. The method to obtain a well-posed problem
is then solved by introducing the so-called half-Riemann problems at the intersection. These
problems differ from the classical Riemann problem in the following way: Assume a given

constant initial data U
(0)
k on each canal k and a set of coupling condition as for example

(6) and (7) or (6) and (8). We then seek for intermediate values U∗ fulfilling the coupling
conditions. Furthermore, the values of U∗ are chosen such that the Riemann problem formed
by the equations (4) subject to the initial condition

U(x, 0) =











U∗, if x ≤ 0,

U
(0)
k , if x ≥ 0,

(9)

admits a self-similar solution which consists of a superposition of waves traveling with non-
negative speed. We therefore have U(0+, t) = U∗ for t > 0 and hence the coupling conditions
are satisfied. It has been proven that under suitable assumptions this procedure gives existence,
uniqueness and Lipschitz dependence on the initial data for general 2×2-system of conservation
laws and for rather general coupling conditions, we refer the reader to [9] for more details. The
results of this discussion can be used in modified Riemann solvers for numerical purposes,
see [5, 4, 1, 21] for a situation of two coupled gas pipes with different flux functions. This
approach is similar to the solution of initial-boundary value problems for hyperbolic systems
with the difference being that in the present case we additionally have to satisfy some algebraic
conditions.
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In the current work we are interested in a comparison with a simulation of a numerical
two-dimensional situation. Since the simulations will include shock waves, we only compare
the numerical results with the theoretical predictions obtained from studies of the Riemann
problem at the junction. The aim of the presented simulations is to verify the imposed
conditions (6) and (7) or (6) and (8), respectively. We simulate different inflow configurations
for two types of tee intersections with three connected canals. In the second stage, we average
the computed results to obtain equivalent one-dimensional fluxes, water heads and water
pressures for each canal (referred to as simulation results in the sequel). These values will
be compared with the states U∗ obtained as in the discussion above (referred to as theoretical
results in the sequel). Note that the theoretical results can be found by solving the following

equations for a given state U
(0)
k and given states Up

k . We solve for (h∗

k)i the nonlinear system

∑

k

L−

2

(

h∗

k;
(

h
p
k, L

+
1 (h

p
k;U

(0)
k )
))

= 0,

1

2
g (h∗

k)
2

=
1

2
g (h∗

l )
2
, l 6= k,

in the case of the coupling conditions (6) and (7), and
∑

k

L−

2

(

h∗

k;
(

h
p
k, L

+
1 (h

p
k;U

(0)
k

))

= 0,

h∗

k +

(

L−

2

(

h∗

k;
(

h
p
k, L

+
1 (h

p
k;U

(0)
k )
)))2

2g(h∗

k)
2

= h∗

l +

(

L−

2

(

h∗

l ;
(

h
p
l , L

+
1 (h

p
l ;U

j
0 )
)))2

2g(h∗

l )
2

,

in the case of the coupling conditions (6) and (8), respectively. The states U
p
k are local

perturbations of U
(0)
k and their construction will be discussed below. The functions L±

1,2 are
the forward and reversed 1-Lax curve and 2-Lax curve for the shallow water equations defined
by [8, 27]

L+
1 (h; (h0, h0u0)) =























u0h+ 2h
(

√

gh0 −
√

gh
)

, if h ≤ h0,

u0h− h(h− h0)

√

g

2

(

1

h
+

1

h0

)

, if h > h0,

and

L−

2 (h; (h0, h0u0)) =























u0h− 2h
(

√

gh0 −
√

gh
)

, if h ≤ h0,

u0h+ h(h− h0)

√

g

2

(

1

h
+

1

h0

)

, if h > h0.

The solution h∗

k together with L−

2

(

h∗

k;
(

h
p
k, L

+
1 (h

p
k;U

k
0 )
))

= h∗

ku
∗

k is the theoretical prediction
for the one-dimensional situation. We present results for different perturbations starting from

the steady-state U
(0)
k = (1, 0)T at the junction. The perturbation Up is chosen as follows:

We compute a state Up = (hp, (hu)p)T , such that the solution to a Riemann problem for
the one-dimensional shallow water equations with left state Up and right state U = (1, 0)T
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Figure 2. Characteristic curves through the state U = (1, 0)T for the shallow water equations (4).
States on the black part of the curve can be connected to U by 2-shock waves of non-negative speed.
States on the blue line up to h = 0.5 can be connected to U by 2-rarefaction waves of non-negative
speed. The dotted part of the curves belong to states which are connected to U by rarefaction waves.

contains waves of non-negative speed only. These states are depicted in Figure 2 and belong
to the reversed 2-Lax curve in the phase space (h, hu) which is given by

hu =



















√

gh(h− 1)

√

h+ 1

2
, h > 1,

2
√
gh
(√

h− 1
)

, h < 1,

(10)

and the given (right) state U = (1, 0)T . The solution to the Riemann problem formed by the
equations (4) subject to the initial condition







h(x, 0)

(hu)0(x, 0)






=































(

h∗

(hu)∗

)

, if x ≤ 0,

(

1

0

)

, if x ≥ 0,

(11)

for any state (hp, (hu)p) such that (10) is either a shock wave (hp > 1) or a rarefaction

wave (hp < 1) with speed
√

1
2gh(h+ 1) > 0 or speed u +

√
gh > 0, respectively. Therefore,

the prescribed perturbations will move towards the junction and modify the state there. The
values after the perturbation interacted with the other states at the junction can be computed
analytically in the one-dimensional situation. We report results for different coupling conditions
below. For the numerical simulation of the two-dimensional model, we use the same perturbed
state Up and additionally prescribe the velocity in y-direction to be equal to zero.
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Figure 3. Schematic representation of two types of tee fittings and modeling in the network.
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Figure 4. Zooming at a tee fittings and its corresponding two-dimensional domain.

4. Numerical Methods and Solution Procedure

To keep the presentation simple and to compare later with analytical results we restrict the
discussion to tee fittings. We introduce a zooming of the local situation at the intersection and
consider a local two-dimensional situation. The zooming width parameter to be introduced
later is γ > 0. In the case of the tee fittings in Figure 3 we obtain the schematic picture shown
in Figure 4, where the canal width is of order 2γ.

The governing equations in this T-shaped two dimensional domain are the two-dimensional
frictionless shallow water equations on flat bottom

∂th+ ∂x (hu) + ∂y (hv) = 0,

∂t (hu) + ∂x

(

hu2 +
1

2
gh2

)

+ ∂y (huv) = 0, (12)

∂t (hv) + ∂x (huv) + ∂y

(

hv2 +
1

2
gh2

)

= 0,
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where u and v are the velocity components in x- and y-direction, respectively. This two-
dimensional view is now used to obtain boundary conditions for (4). As in the theory presented
in [5] for the equations (4), we consider constant initial data ρ0k, u

0
k for k = 1, 2 and 3. This

data is used to define initial values for equation (12) as











h0(x, y)

(hu)0(x, y)

(hv)0(x, y)











=





















































































h0
1

(hu)01
0






, if (x, y) ∈ ]−∞, 0[×]0, 2γ[,







h0
3

(hu)03
0






, if (x, y) ∈ ]0,∞[×]0, 2γ[,







h0
2

0

(hu)02






, if (x, y) ∈ ]− γ, γ[×]−∞, 0[.

(13)

Note, that 2γ is the width of the connected canals. We compute the steady-state solutions
h = hγ(x, y), (hu) = (hu)γ(x, y), (hv) = (hv)γ(x, y) of (12)-(13) for fixed γ > 0. Then, we
obtain the states near the intersection by volume averaging

h
γ
1 =

∫ 0

−2γ

∫ 2γ

0

hγ(x, y) dydx,

h
γ
2 =

∫ γ

−γ

∫ 0

−2γ

hγ(x, y) dydx, (14)

h
γ
3 =

∫ 2γ

0

∫ 2γ

0

hγ(x, y) dydx,

and similarly for (hu)γk , k = 1, 2, 3. Finally, we define boundary conditions for hk, (hu)k,
k = 1, 2, 3 in the coupled one-dimensional model as limit of the previously obtained quantities
when γ → 0 i.e.,

h1(b1) := lim
γ→0

h
γ
1 ,

(15)
hk(ak) := lim

γ→0
h
γ
k , k = 2, 3,

and analogously for (hu)1(b1) and (hu)k(ak) with k = 2, 3.

Remark 1. Some remarks are in order:

i. To simplify the computational effort in the considered method, one can also define
boundary conditions for a fixed γ > 0.

ii. The previous discussion focused on constant initial data since we later on compare with
the analytical results, see section 5. However, the approach is not limited to this case.

iii. The presentation has been given for a specific tee only, but is completely analogous in the
other possible case of a tee intersection, as the right plot in Figure 3, or more general
geometries.
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iv. In the equations (12) we may also have friction terms. However, in the network model
(4) canal fittings are considered as points of zero length. To obtain comparable numerical
results we simulate (12) without friction effects, but we emphasize that the proposed
approach is not limited to this case.

4.1. Numerical solution

The equations (12) can be solved using already existing software from computational fluid
dynamics (CFD). Our focus in the present study is on investigating the coupling conditions
described in the previous section rather than developing new numerical method for solving
the partial differential equations (12). Therefore, we shall briefly highlight the schemes used
for numerical solution of (12) and the main part of the present work is devoted to discuss the
procedure used to verify the coupling conditions at canal junctions. Hence, the equations (12)
are rearranged in a compact vector form as

∂tU+ ∂xF (U) + ∂yG (U) = 0, (16)

where

U =

















h

hu

hv

















, F(U) =

















hu

hu2 + p

huv

















, G(U) =

















hv

huv

hv2 + p

















.

It is easy to verify that the system (16) is hyperbolic with distinct eigenvalues given by

λ− = u−
√

gh, λ0 = u, λ+ = u+
√

gh,
(17)

µ− = v −
√

gh, µ0 = v, µ+ = u+
√

gh.

To discretize the equations in space we consider, for simplicity in presentation, a uniform
control volume [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] with mesh sizes ∆x = xi+1/2 − xi−1/2 and
∆y = yj+1/2 − yj−1/2 in x- and y-direction, respectively. Integrating (16) over the control
volume and keeping the time continuous we obtain the following semi-discrete system

dUi,j

dt
+

F
(

Ui+1/2,j

)

− F
(

Ui−1/2,j

)

∆x
+

G
(

Ui,j+1/2

)

−G
(

Ui,j−1/2

)

∆y
= 0, (18)

where Ψi,j is the space average of a generic function Ψ in the control volume [xi−1/2, xi+1/2]×
[yj−1/2, yj+1/2] defined as

Ψi,j =
1

∆x

1

∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

Ψ(t, x, y)dxdy,

whereas, Ψi+1/2j = Ψ(t, xi+1/2, yj) and Ψij+1/2 = Ψ(t, xi, yj+1/2) are the intermediate
solutions used for numerical fluxes in (18) at (xi+1/2, yj) and (xi, yj+1/2), respectively. The
spatial discretization is complete when a numerical reconstruction of the fluxes in (18) is
chosen.
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Figure 5. Spatial domain used for two-dimensional simulations.

Let the time interval [0, T ] be divided into subintervals [tn, tn+1] of length ∆t such that
tn = n∆t and we use the notation Ψn

i,j = Ψi,j(tn). The procedure to advance the numerical
solution of (18) from the time tn to the next time tn+1 can be carried out as

U
(1)
i,j = U

n
i,j +∆tR

(

U
n
i,j

)

,

U
(2)
i,j =

3

4
U

n
i,j +

1

4
U

(1)
i,j +

1

4
∆tR

(

U
(1)
i,j

)

, (19)

U
n+1
i,j =

1

3
U

n
i,j +

2

3
U

(2)
i,j +

2

3
∆tR

(

U
(2)
i,j

)

,

where R stands for the right-hand side in (18) i.e.,

R (Ui,j) = −F
(

Ui+1/2,j

)

− F
(

Ui−1/2,j

)

∆x
− G

(

Ui,j+1/2

)

−G
(

Ui,j−1/2

)

∆y
.

This class of explicit time integration schemes has become popular in CFD algorithms, see for
example [31, 19]. The scheme (19) is TVD, third-order accurate in time, and stable under the
usual Courant-Friedrichs-Lewy (CFL) condition.

In order to reconstruct the numerical fluxes in the semi-discrete system (18), we consider
a relaxation-based method. This method reconstructs the fluxes without relying on Riemann
problem solvers and can be used with arbitrary order of accuracy. The first-order and second-
order relaxation methods were first proposed in [23] to solve hyperbolic systems of conservation
laws. A third-order relaxation scheme has also been proposed in [3] and intensively tested in
[28, 29, 30] for a wide hyperbolic systems of conservation laws. The third-order method in
the above mentioned references reconstructs the fluxes in (18) using linear combination of
small stencils such that the overall combination preserves the third-order accuracy. In the
present work, we formulate a fifth-order reconstruction for the numerical fluxes in (18). The
key idea is to replace the linear weights in the third-order reconstruction by nonlinear weights
capable of reducing the spurious oscillations that usually develop in regions with discontinuous
derivatives. For the sake of completeness, the reconstruction of the numerical fluxes in (18) is
detailed in the appendix.
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4.2. Solution procedure

The numerical method described in the previous section is used to solve the two-dimensional
shallow water equations (12) in the computational domain shown in Figure 5. Here, using the
canal diameter D as a reference length, the domain is 4D high and 7D wide. Initial conditions
are taken as
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


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
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












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
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


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
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P1

0






, in Canal 1,







h2

P2

0






, in Canal 2,







h3

0

Q3






, in Canal 3,

(20)

where the water discharges are

P = h u and Q = h v.

Other canal intersections can be handled in a similar manner. No-slip boundary conditions
are imposed on the solid walls and homogeneous characteristic conditions are used for the
open boundaries. The no-slip boundary condition is used to obtain a similar situation as in
the one-dimensional test cases. The condition represents the fact that the velocity of the water
is close to zero a the boundaries of the canals and is commonly used for viscous fluids. The
characteristic speeds Ai+1/2,j and Bi,j+1/2 in (33) and (34) can be chosen based on rough
estimates of eigenvalues (17). Other choice is to calculate the characteristic speeds locally at
each control volume [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] as

Ai+1/2,j = max
{

∣

∣λL
i+1/2,j

∣

∣,
∣

∣λR
i+1/2,j

∣

∣

}

, Bi,j+1/2 = max
{

∣

∣µL
i,j+1/2

∣

∣,
∣

∣µR
i,j+1/2

∣

∣

}

, (21)

where λ and µ are the eigenvalues (17) approximated according to (30). It should be stressed
that larger values of Ai+1/2,j and Bi,j+1/2 usually add more numerical dissipation to the
relaxation scheme.

The aim of the presented simulations is to verify the coupling conditions which are commonly
imposed in many engineering applications. We simulate different inflow configurations for
two types of tee intersections with three connected canals. We stop the two-dimensional
simulation whenever a wave exists the computational domain. This corresponds to the
analytical discussion where only waves of negative (respectively positive) speed emerge from
the canal-to-canal intersection. In the second stage, we average the computed results to obtain
equivalent one-dimensional fluxes and pressures for each canal (referred to as simulation
results in the sequel) and compare these values with the analytical results obtained in [5].
Due to additional geometry effects in the two-dimensional simulation we do not expect a full
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coincidence in the analytical and simulation results. But we are looking for a verification of
the underlying principle of conservation of mass and equal water head or water pressure at the
tee intersections. Furthermore, we expect both the analytical and simulation results to behave
in a similar way when changing the initial conditions.

5. NUMERICAL RESULTS

In this section we examine the accuracy of the proposed method for several different situations
and verify the coupling conditions at junctions in canal networks. We test the ability of our
scheme to verify the coupling conditions for two types of junctions in a canal network. All the
results presented in this section are obtained using the local characteristic speeds (21) and a
variable time step adjusted according to the stability condition

∆t = Crmin





∆x
∣

∣

∣A2
i+1/2,j

∣

∣

∣

,
∆y

∣

∣

∣B2
i,j+1/2

∣

∣

∣



 , (22)

where the Courant number Cr is fixed to 0.8. This section is devoted to numerically verify the
coupling conditions described in the present work. In the sequel, we consider the two types of
tee fittings illustrated in Figure 3, namely, one canal with ingoing water flow and two canals
with outgoing water flow (referred to as 1-to-2 situation) for the first example. For the second
example, two canals with ingoing water flow and one canal with outgoing flow (referred to
as 2-to-1 situation) are considered. Except otherwise stated, the canal diameter is fixed to
D = 0.5 in all our computations and the parameter γ = D in the equations (13) and (14).

5.1. Grid dependence study

In this section we examine the grid effects on the computed two-dimensional solutions. To this
end we consider the 1-to-2 situation subject to the following initial conditions:
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1
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0
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1

0

0


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
, if (x, y) ∈ ]− γ, γ[×]−∞, 0[.

(23)

In the first runs for this test example we consider a series of uniform meshes with ∆x = ∆y. In
Figure 6 we show the grid effects on profiles of water height and velocity field at the mid-width
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Figure 6. Cross sections of water height (left) and water velocity (right) for the 1-to-2 situation at
time t = 0.25 using four different meshes.
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of each canal at time t = 0.25 using four different meshes with ∆x = ∆y = 0.04, 0.02, 0.01
and 0.005. It is easy to see that solutions obtained using the mesh with ∆x = ∆y = 0.04 are
far from those obtained by the other meshes. Decreasing the spatial stepsize, results for the
mesh with ∆x = ∆y = 0.01 and the mesh with ∆x = ∆y = 0.005 are roughly similar. As
can be observed, there is little differences between the last two mesh levels. For instance, we
have found that the discrepancies in the maximum and minimum values of the water height
and the water velocity on the mesh ∆x = ∆y = 0.02 and the mesh ∆x = ∆y = 0.005 are less
than 7%. These differences become less than 0.2% on the mesh ∆x = ∆y = 0.01 and the mesh
∆x = ∆y = 0.005. Similar behavior has been observed for the results, not reported here, for
the 2-to-1 situation. These results ensure grid independence of the numerical results. Therefore,
bearing in mind the slight change in the results from the mesh with ∆x = ∆y = 0.01 and the
mesh with ∆x = ∆y = 0.005 at the expense of rather significant increase in the computational
cost, the mesh with ∆x = ∆y = 0.01 is believed to be adequate to obtain the results free of
grid effects. Hence, the results presented herein are based on the mesh with ∆x = ∆y = 0.01.

5.2. Verification of coupling conditions

We first consider the two-dimensional dynamics in the 1-to-2 situation. Figure 7 illustrates the
water height at four different times t = 0.1, 0.25, 0.5 and 1 using the initial conditions (23). The
associated flow fields are presented in Figure 8. As can be seen from these results, the water
flow enters the first canal and generates a moving shock and a rarefaction wave. Once it reaches
the junction, the water is distributed in the two outflowing canals. Small recirculation zones
can also be observed in the flow field in the upper and backward walls. At the final time, the
water flow exhibits a steady-state pattern. It is evident that our high-order relaxation-based
scheme captures accurately the evolution of the interface in the computational domain without
diffusing the fronts or introducing oscillations near steep gradients. To further demonstrate
the flow dynamics, we plot in Figure 9 the time evolution of the volume averaging for the flow
variables using the procedure (14) in the tee intersection. Here we show the time evolution of
the volume averaging for the water height, water pressure, water head and water discharge.
For the considered flow conditions, only the water height, water pressure and water head at
each canal seem to converge to the same values for long time simulation. A huge discrepancy
is detected for the volume averaging of the water discharge at each canal. It should be stressed
that similar flow trends have been observed for numerical results, not included here, for the
2-to-1 situation.

Next we turn to the comparison of analytical and numerical results for the averaged flow
variables as explained in Section 3 for different initial conditions. We give analytical results
for the 1-to-2 situation in Table I and our two-dimensional numerical results in the lower part
of Table I. The initial data in canal two and three is as in equation (23). In canal one we use
the values (h,Q) of Table I i.e., we prescribe for the two-dimensional simulations
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Figure 7. Water free-surface for the 1-to-2 situation at four different times.

For all perturbations, the equal head condition does produce slightly higher water heads at the
node which is justified by the numerical situations. The predicted heads and pressures show a
similar trend for all perturbations. The values for water head differ possibly due to additional
geometric effects up to 60% for strong perturbations and about 40% for small perturbations.
The prediction for the water height are more reliable and they differ by only up to 10%
compared with the equal head condition. We observe that in case of strong perturbations the
water discharge Q is not correctly predicted by both the equal pressure and the equal head
conditions. The values for the water discharge in the numerical simulation are very small and
therefore the sign of the discharge is not reliable. Since the water height is correctly predicted
we conclude that the velocity distribution in the two-dimensional situation does not allow for
a simple average procedure to obtain the one-dimensional velocity fields.

Our next concern is to verify the coupling conditions for the 2-to-1 situation. As in the
previous situation we display in Figure 10 the water height at four different times t = 0.1,
0.25, 0.5 and 1. The corresponding flow fields are presented in Figure 11. In contrast to the
previous situation, the water flow in this case enters the tee intersection from two canals
generating a strong and weak shocks at the junction. The initial condition in canal one and
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Table I. Analytical results for coupling conditions at the junction in the 1–to–2 junction. Here, the
terminal values at the node are listed at time t = 1 in the different canals. We display the conservation
of mass condition (6) and the additional condition as indicated and numerical results, respectively.

Initial values in canal one are given in the first column.

Equal pressure at the junction (7)
Perturb canal 1 Water height h Water pressure p Water head H Water discharge Q

h Q Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3
+0.500 -0.9261 +0.6473 +0.6473 +0.6473 +2.0948 +2.0948 +2.0948 +0.9529 +0.7237 +0.7237 -1.6004 -0.8002 -0.8002

+0.700 -0.7232 +0.7940 +0.7940 +0.7940 +3.1524 +3.1524 +3.1524 +0.8889 +0.8178 +0.8178 -1.0940 -0.5470 -0.5470

+0.900 -0.2921 +0.9327 +0.9327 +0.9327 +4.3501 +4.3501 +4.3501 +0.9421 +0.9351 +0.9351 -0.4036 -0.2018 -0.2018

+1.100 +0.3399 +1.0661 +1.0661 +1.0661 +5.6834 +5.6834 +5.6834 +1.0746 +1.0683 +1.0683 +0.4391 +0.2195 +0.2195

+1.300 +1.1600 +1.1959 +1.1959 +1.1959 +7.1507 +7.1507 +7.1507 +1.2663 +1.2135 +1.2135 +1.4196 +0.7098 +0.7098

+1.500 +2.1630 +1.3231 +1.3231 +1.3231 +8.7527 +8.7527 +8.7527 +1.5063 +1.3689 +1.3689 +2.5331 +1.2665 +1.2665

Equal head at the junction (8)
Perturb canal 1 Water height h Water pressure p Water head H Water discharge Q

h Q Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3
+0.500 -0.9261 +0.5668 +0.7647 +0.7647 +1.6062 +2.9240 +2.9240 +0.7962 +0.7962 +0.7962 -1.2141 -0.6071 -0.6071

+0.700 -0.7232 +0.7616 +0.8242 +0.8242 +2.9005 +3.3965 +3.3965 +0.8412 +0.8412 +0.8412 -0.9606 -0.4803 -0.4803

+0.900 -0.2921 +0.9286 +0.9353 +0.9353 +4.3118 +4.3736 +4.3736 +0.9374 +0.9374 +0.9374 -0.3894 -0.1947 -0.1947

+1.100 +0.3399 +1.0613 +1.0681 +1.0681 +5.6316 +5.7046 +5.7046 +1.0704 +1.0704 +1.0704 +0.4529 +0.2265 +0.2265

+1.300 +1.1600 +1.1394 +1.2106 +1.2106 +6.4915 +7.3279 +7.3279 +1.2309 +1.2309 +1.2309 +1.5408 +0.7704 +0.7704

+1.500 +2.1630 +1.0210 +1.3572 +1.3572 +5.2118 +9.2103 +9.2103 +1.4126 +1.4126 +1.4126 +2.8575 +1.4288 +1.4288

Numerical results obtained by averaging at time t = 1
Perturb canal 1 Water height h Water pressure p Water head H Water discharge Q

h Q Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3
+0.500 -0.9261 +0.5100 +0.5102 +0.5101 +1.3005 +1.3017 +1.3012 +0.5102 +1.0207 +1.0211 -0.0337 -0.0081 -0.0156

+0.700 -0.7232 +0.8222 +0.8222 +0.8221 +3.3805 +3.3800 +3.3794 +0.8222 +1.6444 +1.6442 +0.00394 +0.0099 +0.0005

+0.900 -0.2921 +0.9261 +0.9261 +0.9261 +4.2890 +4.2886 +4.2884 +0.9261 +1.8522 +1.8522 +0.0001 +0.0031 -0.0000

+1.100 +0.3399 +1.0094 +1.0094 +1.0094 +5.0948 +5.0948 +5.0953 +1.0094 +2.0188 +2.0189 -0.0013 -0.0035 -0.0001

+1.300 +1.1600 +1.1171 +1.1171 +1.1170 +6.2395 +6.2397 +6.2394 +1.1171 +2.2342 +2.2341 -0.0034 +0.0013 -0.0005

+1.500 +2.1630 +1.2074 +1.2074 +1.2074 +7.2891 +7.2891 +7.2890 +1.2074 +2.4148 +2.4148 -0.0030 +0.0038 -0.0005
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Figure 8. Velocity field (u, v) for the 1-to-2 situation at four different times.

three are given by the values of (h,Q) of the first column in Table II. We have
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(24)

Again, at the final simulation time the water system stabilizes to an equilibrium state. As can
be seen, the proposed relaxation method accurately solves this flow problem and captures the
correct water flow features. We should mention that the performance of the relaxation method
is very attractive since the computed solution remains stable and accurate even when coarse
meshes are used without requiring complicated Riemann problem solvers.

We now consider varying initial data and check for qualitative agreement between numerical
and theoretical results. Hence, the obtained results for the 2-to-1 situation are discussed in
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Figure 9. Time evolution of the volume averaging for the water flow components at each canal.
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Figure 10. Water free-surface for the 2-to-1 situation at four different times.

Table II for the analytically computed coupling conditions and also for the numerical values.
Here, we observe similar effects as in the previous 1–to–2 situation. The prediction of the water
discharge is not correct and the absolute values as well as the trend differs between numerical
and analytical study. Since the prediction of the water height is within a similar range than
for the 1-to-2 situation, this again suggests that the velocity profile within the intersection is
very different to a one-dimensional approach.

Summarizing, in both situations we observe a mismatch of predicted water velocity profiles.
The following reasons might lead to these results. Most likely geometry effects have to be
included in the one-dimensional model by either modified conditions at the junction or by
replacing the coupling conditions with the above given tables. The study of perturbations of a
steady-state solution is more realistic in terms of applications but the strength of realistic
perturbations remain unclear. Even so the water discharge is not predicted well for the
considered flow cases and therefore, there is still some values in the one-dimensional simulations
due to the good forecast of water heights which allow e.g., to conduct flooding predictions.

Our final concern is to check the influence of the canal dimensions on the obtained numerical
results. To this end we perform numerical simulations with varying the length and the diameter
of the canal in the 1–to–2 situation. Table III presents results for simulations obtained for canal
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Table II. Analytical results for coupling conditions at the junction in the 2–to–1 junction. Here, the
terminal values at the node are listed at time t = 1 in the different canals. We display the conservation
of mass condition (6) and the additional condition as indicated and numerical results, respectively.

Initial values in canal one are given in the first column.

Equal pressure at the junction (7)

Perturb canal 1 Water height h Water pressure p Water head H Water discharge Q

h Q Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3

+0.500 -0.9261 +0.3715 +0.3715 +0.3715 +0.6899 +0.6899 +0.6899 +0.4477 +0.6765 +0.4477 -0.4587 -0.9175 -0.4587

+0.600 -0.8554 +0.4892 +0.4892 +0.4892 +1.1968 +1.1968 +1.1968 +0.5344 +0.6699 +0.5344 -0.4650 -0.9299 -0.4650

+0.700 -0.7232 +0.6119 +0.6119 +0.6119 +1.8718 +1.8718 +1.8718 +0.6356 +0.7067 +0.6356 -0.4214 -0.8428 -0.4214

+0.800 -0.5342 +0.7383 +0.7383 +0.7383 +2.7253 +2.7253 +2.7253 +0.7482 +0.7779 +0.7482 -0.3286 -0.6573 -0.3286

Numerical results obtained by averaging at time t = 1

Perturb canal 1 Water height h Water pressure p Water head H Water discharge Q

h Q Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3

+0.500 -0.9261 +0.1797 +0.1797 +0.1708 +0.1616 +0.1616 +0.1462 +0.1805 +0.3618 +0.3503 +0.0073 -0.0317 +0.0003

+0.600 -0.8554 +0.3858 +0.3859 +0.3855 +0.7444 +0.7446 +0.7432 +0.3859 +0.7720 +0.7718 +0.0079 -0.0177 +0.0018

+0.700 -0.7232 +0.5837 +0.5837 +0.5838 +1.7038 +1.7040 +1.7043 +0.5837 1.1676 1.1677 +0.0061 -0.0036 +0.0008

+0.800 -0.5342 +0.7328 +0.7328 +0.7328 +2.6851 +2.6852 +2.6853 +0.7328 +1.4657 1.4657 +0.0034 +0.0000 +0.0002
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Figure 11. Velocity field for the 2-to-1 situation at four different times.

diameter D = 0.25, 0.5 and 0.75. The length of the canal is chosen such that the total area
is constant. Note that the terminal time is set to t = 1 in all cases and no scaling has been
included in the perturbations. As in the previous simulations, water height, pressure, head and
discharge are obtained by averaging for each test case. These computed water variables are
summarized in Table III. It is evident from the presented results that the canal dimensions
do affect the simulated results for all considered cases. For instance, we have observed that
there is a strong dependence on the specific layout of the canal of the terminal values. In
particular for the canal with largest diameter neither water pressure nor water head are equal
at the node. Among the possible reasons for these detected discrepancies are the fact that the
computed solutions need more time to evolve.

6. SUMMARY

We have presented a method to compute coupling conditions in T-junction for water way or
canal intersections. The governing equations are based on the canonical shallow water equations
for open channel flows. The method is based on a local refined view on the dynamics close
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Table III. Numerical results for coupling conditions at the junction in the 1–to–2 junction using
different canal diameter and lengths. Here (1), (2) and (3) are numerical results obtained for canals
with diameter D = 0.25 and length 9D, diameter D = 0.5 and length 4.5D, and diameter D = 0.75

and length 3D, respectively

Perturb canal 1 Water height h Water pressure p Water head H Water discharge Q

h Q Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3 Canal 1 Canal 2 Canal 3

+0.5000 -0.9261 (1) +0.5356 +0.5245 +0.5303 +1.3221 +1.3210 +1.3233 +0.5354 +1.0256 +1.0251 -0.0365 -0.0089 -0.0177

(2) +0.5100 +0.5102 +0.5101 +1.3005 +1.3017 +1.3012 +0.5102 +1.0207 +1.0211 -0.0337 -0.0081 -0.0156

(3) +0.6069 +0.9796 +0.9947 +1.5346 +2.4862 +2.5113 +0.6082 +1.9700 +1.9605 -0.0402 -0.0155 -0.0300

+0.700 -0.7232 (1) +0.8301 +0.8302 +0.8301 +3.3985 +3.3979 +3.3903 +0.8301 +1.6507 +1.6600 +0.0045 +0.0101 +0.0006

(2) +0.8222 +0.8222 +0.8221 +3.3805 +3.3800 +3.3794 +0.8222 +1.6444 +1.6442 +0.0039 +0.0099 +0.0005

(3) +0.1603 +1.5868 +1.5702 +6.4906 +6.4896 +6.5053 +1.5786 +3.1737 +3.1569 +0.0074 +0.0192 +0.0009

+0.900 -0.2921 (1) +0.9277 +0.9277 +0.9277 +4.2898 +4.2891 +4.2890 +0.9277 +1.8565 +1.8565 +0.0002 +0.0035 -0.0000

(2) +0.9261 +0.9261 +0.9261 +4.2890 +4.2886 +4.2884 +0.9261 +1.8522 +1.8522 +0.0001 +0.0031 -0.0000

(3) +1.7874 +1.7781 +1.7994 +8.1920 +8.1483 +8.2852 +1.7781 +3.5747 +3.5859 +0.0003 +0.0060 -0.0001

+1.100 +0.3399 (1) +1.0098 +1.0098 +1.0098 +5.0971 +5.0972 +5.0969 +1.0098 +2.0197 +2.0198 -0.0015 -0.0037 -0.0002

(2) +1.0094 +1.0094 +1.0094 +5.0948 +5.0948 +5.0953 +1.0094 +2.0188 +2.0189 -0.0013 -0.0035 -0.0001

(3) +1.9481 +1.9683 +1.9615 +9.6801 +9.7056 +9.7881 +1.9280 +3.8963 +3.9050 -0.0025 -0.0067 -0.0003

+1.300 +1.1600 (1) +1.1187 +1.1187 +1.1187 +6.2399 +6.2399 +6.2399 +1.1187 +2.2355 +2.2355 -0.0037 +0.0019 -0.0006

(2) +1.1171 +1.1171 +1.1170 +6.2395 +6.2397 +6.2394 +1.1171 +2.2342 +2.2341 -0.0034 +0.0013 -0.0005

(3) +2.1783 +2.1560 +2.1582 +11.7927 +11.7244 +11.8361 +2.1672 +4.3567 +4.3453 -0.0065 +0.0025 -0.0009

+1.500 +2.1630 (1) +1.2083 +1.2083 +1.2083 +7.2899 +7.2899 +7.2897 +1.2083 +2.4157 +2.4157 -0.0034 +0.0040 -0.0006

(2) +1.2074 +1.2074 +1.2074 +7.2891 +7.2891 +7.2890 +1.2074 +2.4148 +2.4148 -0.0030 +0.0038 -0.0005

(3) +2.3424 +2.3061 +2.3462 +13.6306 +13.5577 +13.6698 +2.3182 +4.6847 +4.6383 -0.0059 +0.0073 -0.0010
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to the canal-to-canal intersection point. There a two-dimensional formulation of the shallow
water equations have been numerically discretized and solved using a high-order relaxation
method. The proposed method replaces the nonlinear shallow water equations by a semi-
linear hyperbolic system with linear characteristic speeds and easy to solve without relying
on Riemann problem solvers or characteristic decomposition. The presented results show
good shock resolution with high accuracy in smooth regions and without any non-physical
oscillations near the shock areas. The numerical method has been used for verification and
comparison with the theoretical results. Verifications are conducted for two types of junctions
namely the 1-to-2 and 2-to-1 situations. For small perturbations of steady-state flow the
numerically obtained results have been compared with the equal pressure and equal head
conditions. Depending on the strength of the perturbation good agreement in the water height
predictions could be observed. The averaged water velocity profiles however do not agree with
the one-dimensional computation possibly due to the strong influence of the geometry.

Future work will concentrate on simulation of water flow in large networks such as irrigation
systems. For example, using the coupling conditions summarized in the tables reported in this
study, the resolution in the one-dimensional flow system may be improved.

APPENDIX

Associated with the equations (16) a relaxation approximation is

∂tU+ ∂xV + ∂yW = 0,

∂tV +A
2∂xU = −1

ε
(V − F(U)) , (25)

∂tW +B
2∂yU = −1

ε
(W −G(U)) ,

where V ∈ R
3 and W ∈ R

3 are relaxation variables, A2 and B
2 are diagonal matrices in

R
3×R

3 where their entries A2
l and B2

l are characteristic speeds of (16). The relaxation system
(25) has a typical semi-linear structure with linear characteristic variables defined by

F± = V ±AU and G± = W ±BU. (26)

Formally, in the zero relaxation limit ε −→ 0, we recover the original system (16) provided the
subcharacteristic condition [23],

|F′

l(U)|
Al

+
|G′

l(U)|
Bl

≤ 1, ∀ l = 1, 2, 3, (27)

holds in (25). It is easy to verify that if we project the relaxation variables into the local
equilibrium

V = F(U) and W = G(U), (28)

then the first equation in (25) reduces to the original conservation laws (16). From a numerical
view point, it is simpler to solve the system (25) than the original equations (16). Here, our
fifth-order reconstruction is applicable directly to the linear characteristic variables (26). In
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what follows we only formulate Ui+1/2,j and Vi+1/2,j , and expressions for other fluxes are
obtained in an entirely analogous manner.

Since the variables F+ and F− travel respectively, along constant characteristics with speeds
+A and −A, a WENO reconstruction can be easily applied to them. Thus, the numerical fluxes
F±

i+1/2,j at the cell boundary (xi+1/2, yj) are defined as left and right extrapolated values

F+,L
i+1/2,j and F−,R

i+1/2,j by

F+
i+1/2,j = F+,L

i+1/2,j , F−

i+1/2,j = F−,R
i+1/2,j . (29)

These extrapolated values are obtained from cell averages by means of high-order WENO
polynomial reconstruction. Here, we use the fifth-order WENO reconstruction proposed in [22].
Higher-order reconstructions are also possible, such as those developed in [2]. For a generic
function Ψ(x, y) the fifth-order accurate left boundary extrapolated value ΨL

i+1/2,j is defined
as

ΨL
i+1/2,j = ω0V0 + ω1V1 + ω2V2, (30)

where Vr is the extrapolated value obtained from cell averages in the rth stencil (i− r, i− r+
1, i− r + 2) in x-direction

V0 =
1

6
(−Ψi+2,j + 5Ψi+1,j + 2Ψi,j) ,

V1 =
1

6
(−Ψi−1,j + 5Ψi,j + 2Ψi+1,j) ,

V2 =
1

6
(2Ψi−2,j − 7Ψi−1,j + 11Ψi,j) ,

and ωr, r = 0, 1, 2, are nonlinear WENO weights given by

ωk =
αk

∑2
l=0 αl

, α0 =
3

10(τ + IS0)2
, α1 =

3

5(τ + IS1)2
, α2 =

1

10(τ + IS2)2
. (31)

Here the parameter τ is introduced to guarantee that the denominator does not vanish and is
empirically taken to be 10−6. The smoothness indicators ISr, r = 0, 1, 2, are given by [22]

IS0 =
13

12
(Ψi,j − 2Ψi+1,j +Ψi+2,j)

2
+

1

4
(3Ψi,j − 4Ψi+1,j +Ψi+2,j)

2
,

IS1 =
13

12
(Ψi−1,j − 2Ψi,j +Ψi+1,j)

2
+

1

4
(Ψi−1,j −Ψi+1,j)

2
,

IS2 =
13

12
(Ψi−2,j − 2Ψi−1,j +Ψi,j)

2
+

1

4
(Ψi−2,j − 4Ψi−1,j + 3Ψi,j)

2
.

The right value ΨR
i+1/2,j is obtained by symmetry as

ΨR
i+1/2,j = ω0V0 + ω1V1 + ω2V2, (32)

where

V0 =
1

6
(2Ψi+3,j − 7Ψi+2,j + 11Ψi+1,j) ,

V1 =
1

6
(−Ψi+2,j + 5Ψi+1,j + 2Ψi,j) ,

V2 =
1

6
(−Ψi−1,j + 5Ψi,j + 2Ψi+1,j) .
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The corresponding weights and smoothness indicators are given by (31) with

IS0 =
13

12
(Ψi+1,j − 2Ψi+2,j +Ψi+3,j)

2
+

1

4
(3Ψi+1,j − 4Ψi+2,j +Ψi+3,j)

2
,

IS1 =
13

12
(Ψi,j − 2Ψi+1,j +Ψi+2,j)

2
+

1

4
(Ψi,j −Ψi+2,j)

2
,

IS2 =
13

12
(Ψi−1,j − 2Ψi,j +Ψi+1,j)

2
+

1

4
(Ψi−1,j − 4Ψi,j + 3Ψi+1,j)

2
.

Once F+
i+1/2,j and F−

i+1/2,j are reconstructed in (29), the numerical fluxes Ui+1/2,j and

Vi+1/2,j in the relaxation system are obtained from (26) by

Ui+1/2,j =
1

2Ai+1/2,j

(

F+
i+1/2,j −F−

i+1/2,j

)

, Vi+1/2,j =
1

2

(

F+
i+1/2,j + F−

i+1/2,j

)

. (33)

Analogously, the numerical fluxes Ui,j+1/2 and Wi,j+1/2 are obtained from G+
i,j+1/2 and

G−

i,j+1/2 as

Ui,j+1/2 =
1

2Bi,j+1/2

(

G+
i,j+1/2 + G−

i,j+1/2

)

, Wi,j+1/2 =
1

2

(

G+
i,j+1/2 + G−

i,j+1/2

)

. (34)

Note that the above local auxiliary variables, introduced to approximate the derivatives of the
solution, are superficial and can be easily removed for linear problems. Clearly, the accuracy
of the relaxation method will depend on the choice of the characteristic speeds Ai+1/2,j and
Bi,j+1/2 in (33) and (34), respectively.
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3. M. Banda and M. Seäıd. Higher-Order Relaxation Schemes for Hyperbolic Systems of Conservation Laws.
J. Numer. Math., 13:171–196, 2005.

4. M.K. Banda and M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal
Euler equations., NHM, 1(2006), pp. 295-314.

5. M.K. Banda and M. Herty and A. Klar, Gas Flow in Pipeline Networks., NHM, 1(2006), pp. 41-56.
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