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Abstract 

 

Flood inundation modelling in developing countries is severely limited by the lack of high 

resolution terrain data and suitable imagery to map flood extents. This study assessed the 

predictive uncertainty of modelled flood extents generated from TELEMAC2D model using 

low-cost, sparse input data commonly available in developing countries. We  studied a river 

reach characterised by anabranching channels and river islands in eastern India. In this complex 

fluvial setting, we analysed computational uncertainty as a function of error in both satellite-

derived flood-extent maps using a Generalised Likelihood Uncertainty Estimation (GLUE)-

based approach. The model performance was quite sensitive to the uncertainty in the inflow 

hydrograph, particularly close to the flood peak. Evaluation of the flood inundation probability 

map, conditioned upon deterministic and probabilistic observed flood extents, reveals that the 

effect of using probabilistic observed data is only evident for portions of the model domain 

where the model output is free from consistent bias (over or under prediction) likely created by 

the imperfect terrain data. 
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1 Introduction 

 

Flooding is one of the most serious natural hazards and disproportionately affects the global 

south due to extreme precipitation events associated with tropical cyclones and monsoon bursts 

(Adhikari et al., 2010). Accurate assessment of flood extent for a given river discharge requires a 

flood inundation model, which in turn depends upon topography along with upstream and 

downstream boundary discharge/stages. Such models are often calibrated and validated against 

inundation extents derived from satellite data (e.g., Horritt, 2000) and gauged water levels (e.g., 

Pappenberger et al., 2005). Most of the required data mentioned above are either non-existent or 

of poor quality in many developing countries (Patro et al., 2009). In these data-sparse areas, 

modelled inundation maps suffer from uncertainties in (1) estimated discharge from stage-

discharge relationships (Di Baldassarre and Claps, 2011; Di Baldassarre and Montanari, 2009), 

(2) topography, (3) assumed state in the model (e.g. steady versus unsteady), (4) boundary 

roughness parameterization, (5) calibration and validation data, and (6) choice of model (1D 

versus 2D) (Jung and Merwade, 2012; Bales and Wagner, 2009). Whilst the uncertainty arising 

from model choice and structure (i.e. different combinations of internal parameters and the way 

they are linked) is a global issue, uncertainties arising from poor-quality inputs are much more 

pronounced in data-sparse regions. Such uncertainties can combine in unforeseen ways. For 

example, while the overall uncertainty in flood risk estimation emanates from superimposition of 

number of sources (Merz et al., 2008), Jung and Merwade (2012) found that topographic 

uncertainty made the model outputs less sensitive to inflow hydrograph uncertainty.  

 

Generalised Likelihood Uncertainty Estimation (GLUE) by Beven and Binley (1992) is the most 

widely used framework for hydrological uncertainty assessment (Montanari, 2006). The GLUE 

procedure searches for sets of parameter values that would give reasonably accurate model 

outputs for a range of model inputs. This method does not require the modeller to maximize any 

objective performance measure for the model. Instead, it derives the performance of parameter 

sets from a likelihood or goodness-of-fit index that broadly resembles the concept of probability. 

 

With the increased availability of remotely-sensed data to capture the extent of inundation, 

binary flood maps have been used to quantify the distributed uncertainty of inundation models 

under the GLUE approach (Aronica et al., 2002). Recognizing the possibility of error in these 
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maps, Schumann et al. (2009) proposed ‘possibility of inundation’ maps rather than deterministic 

binary flood maps.  Di Baldassarre et al. (2009) used this concept to propose a method for 

generating GLUE-based 'flood uncertain inundation maps'. Stephens et al. (2012) noted that the 

selection of uncertain observed data from different areas of the model domain can result in 

considerable differences in overall uncertainties in the inundation modelling outcomes.  

 

Although 1D hydrodynamic models such as HEC-RAS and computationally efficient 1D-2D 

coupled models like LISFLOOD-FP have been widely used to assess predictive uncertainty, 

application of fully 2D models for this purpose is rare, likely due to the high computational cost 

of running a fully 2D model in a Monte Carlo framework (Merz et al., 2008) and the availability 

of very high resolution  topographic data that favours the use of simple models (Bates, 2012) . 

Fully 2D finite element flood inundation models such as TELEMAC2D are physically realistic 

and have certain advantages. They are suitable for terrain data with varying resolution (Di 

Baldassarre et al., 2010) and are less sensitive to uncertainties in the terrain data (Cook and 

Merwade, 2009), making them more suitable for settings without high-resolution DEMs. In 

addition, TELEMAC2D was found to be less sensitive to the roughness parameterisation 

(Horritt, 2000) and shows slower drop off in performance with increasing difference from 

calibrated ‘optimum’ parameters (Di Baldassarre et al., 2010). Sanyal et al. (2014) showed that a 

complex model such as TELEMAC2D is more appropriate than 1D-2D models for simulating 

floodplain inundation for complicated anabranching channel networks and low-quality input 

data.  

Here, we estimate the predictive uncertainty of a computationally-demanding 2D finite element 

flood inundation model in an anabranching reach at the highest possible resolution with coarse 

model inputs. Our approach is novel because we explicitly consider inaccuracies in the observed 

validation data and their effect on uncertainty estimation, and we explore whether this 

consideration is important for modelling in data-sparse environments. 

 

2 Study Area 

 

The study area was the lower Damodar River, a tributary of the Hoogly River in the Ganges 

basin, in West Bengal, India (Fig 1). This area is typical of many rivers in the global South. It 

suffers from frequent flooding during the monsoon season and has very limited availability of the 
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datasets that are normally required for inundation modelling. The Mundeswari River, one of the 

main branches of the lower Damodar River, is characterised by numerous channel bifurcations, 

loops, and a major river island. The area is extremely flat with a relief of only 10 to 12 m over 

the model scale. Riverbed material is mostly sand and clay while paddy field is the dominant 

land-use type in the floodplain. Although the study area is mostly drained by the Mundeswari 

River and its branches, during major floods some portion of the eastern and western boundary of 

this area experience influx of moderate amounts of flood water from adjacent river basins. 

 

 

Fig 1 Study area. Inset in the top panel shows the location of the Damodar Basin in India. Locations of 

the surveyed cross-sections on the main channel are shown in the lower panel. 
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3 Data and Methods 

 

3.1 Terrain and hydrologic inputs 

 

Low-cost IRS Cartosat-1 panchromatic stereo images (2.5 m spatial resolution), surveyed cross-

sections and SRTM DEM were used to create a hybrid terrain data set (Fig 2), following Sanyal 

et al. (2014). The terrain data was characterised by higher details for the channels, roads, canals 

and other narrow but hydraulically significant features with progressively lower resolution 

towards the floodplain. 

 

The hydrological data at Harinkhola gauging station, at the upstream boundary of the model 

comprise hourly river stages but lack a rating curve. The stage data were converted into 

discharge (Herschey, 1998) using Manning’s equation: 

 

Q = 
 

 
R

a
 S

0.5
 (1) 

 

where R is the hydraulic radius (m), a is an exponent, n is Manning’s roughness coefficient and S 

is the bed slope (mm
-1

). The hydraulic radius and bed slope were derived from a surveyed cross-

section at the gauging station. The uncertainty in the discharge figures derived with this method 

stems mostly from uncertainty in Manning’s n values for the channel and floodplain at the 

gauging site. 



7 

 

 

Fig 2 The hybrid terrain data resampled to a 10 m grid for the study area shown in the bottom panel of Fig 

1. 

 

 

 

 

 

 

 

 

 

 

Fig 3 The hydrograph of river stage at Harinkhola gauging station at the model inlet and the acquisition 

times of two satellite images that were used for model validation. 
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3.2 Preparing the distributed calibration and validation data 

 

A flood event on 8-15 September 2009 was used for uncertainty assessment. With no available 

radar images, we used two cloud-free multispectral satellite images from IRS Resourcesat-1 

LISS-III (24 m spatial resolution) and Landsat 5 TM for 12 and 15 September, 2009 

respectively. The satellite overpass times with respect to the inflow hydrograph are presented in 

Fig 3. Henceforth, the performance of the flood-inundation model at these two times will be 

referred to as model states 1 and 2, respectively. To extract inundation extents, we used four 

methods: supervised and unsupervised classification, NDVI and NDWI. Normalized Difference 

Vegetation Index (NDVI), computed as (Near Infrared - Red) / (Near Infrared + Red) has been 

commonly used for differentiating flooded area from dry surface (Jain et al., 2006). Likewise, 

Normalized Difference Water Index (NDWI), developed by McFeeters (1996) and calculated as 

(Green - Near Infrared) / (Green + Near Infrared), has been used to demarcate flooded areas (Jain 

et al., 2005).  

 

In order to include uncertainty arising from the choice of image and image processing technique 

in the flood maps, we followed the general principle of the possibility of inundation maps 

proposed by Schumann et al. (2009). However, unlike that study we did not have access to 

multiple, simultaneous images . As the differences in digital image processing techniques are the 

main reason for variation in the output binary flood maps, we added all four binary maps  pixel-

by-pixel and divided the summed map by 4 to produce a simple possibility of inundation map 

(Fig 4), where the pixels represent discrete probabilities (Table 1). Finally, the inundation maps 

derived by unsupervised classification of the LISS III image and supervised classification of the 

Landsat 5 TM image were used as deterministic binary inundation maps (Fig 5). 
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Fig 4 Possibility of inundation maps derived from (a) the LISS-III image on 12 Septemberand (b) the 

Landsat 5 TM image on 15 September, 2009. 

 

Table1 The pixel values and their actual meanings in the possibility of inundation maps. 

 

Pixel Value Characteristics 

0 Pixels not classified as flooded by any of the four methods 

0.25 Pixels classified as wet by one of the four methods 

0.50 Pixels classified as wet by two of the four methods 

0.75 Pixels classified as wet by three of the four methods 

1 Pixels classified as wet by all four methods 
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Fig 5 Deterministic inundation maps derived by (a) unsupervised classification of the LISS-III image on 

12 Septemberand (b) supervised classification of the Landsat 5 TM image on 15 September, 2009. 

 

3.3 Setting up the inundation model 

 

TELEMAC2D is a fully 2D finite element inundation model that solves second-order depth-

averaged partial differential equations for free surface flow. A full description of the equations 

can be found in Hervouet and Van Harn (1996). An unstructured finite element mesh was created 

using Blue Kenue software (NRC Canadian Hydraulics Centre, 2014). We ensured that the mesh 

had approximately equilateral elements on the floodplain to minimize mass balance error, and 

had variable element size to enable concentration of computational resources as necessary. 

Smooth transitions were imposed between smaller element sizes over channel and other narrow 

features and larger element sizes over the floodplain to increase model stability. The node 

spacing in the finite element mesh roughly followed the density of points in the hybrid terrain 

data. 
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3.4 Setting up the GLUE-based uncertainty assessment experiment 

 

The model was composed of 674901 nodes and 1349048 elements and took 50 hours to complete 

one simulation run for the 186 hour flood event using a PC with an Intel i7 8-core processor.  

Clearly, standard workstations are not capable of performing numerous Monte Carlo-type 

simulations for this kind of model, but TELEMAC2D is easily adapted to parallel computing 

architecture used in high performance computing (HPC) hardware.  

 

We used the HPC facility at Durham University to perform our Monte Carlo simulations. Five 

parameters were identified as the primary sources of uncertainty (Table 2): 1)   Manning’s n for 

the channel at the gauging site (InQnch) for converting stage into discharge, 2) Manning’s n for 

the floodplain at the gauging site (InQnfp) for converting stage into discharge, 3) a global 

Manning’s n for the channel (nch), 4) a global Manning’s n for the floodplain (nfp), and 5) the 

solver used for the system of equations (slv). Parameters 1 and 2 were directly related to the 

amount of water entering the model domain, with higher roughness resulting in lower discharge 

for the same stage. Parameters 3 and 4 are conventional sources of uncertainty across the model 

space. Parameter 5 has impacts on both the computational time and the model solution. The four 

solvers used were 1) the conjugate gradient method (CG), 2) the conjugate residual method (CR), 

3) the normal equation method (NE), and 4) the squared conjugate gradient method (SCG). The 

Monte Carlo approach for deriving numerous flood-extent maps from TELEMAC2D model 

outputs is presented in Fig 6.  

 

Table 2 Range of variation of the uncertain parameters applied in the Monte Carlo simulation. 

 

 Parameter Range        Increment No. of choices 

 InQnch  0.026-0.038  0.001  13 

 InQnfp  0.030, 0.035, 0.038 -  3 

 nch  0.024-0.038  0.001  15 

 nfp  0.030, 0.035, 0.038 -  3 

 Solver   CG, CR, NE, SCG -  4 
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Sources of uncertainty 

1. Manning’s n for the channel at the gauging site 

for converting stage into discharge (InQnch) 

2. Manning’s n for the floodplain at the gauging 

site for converting stage into discharge (InQnfp) 

3. Global Manning’s n for the channel during 

computation (nch) 

4. Global Manning’s n for the floodplain during 

computation (nfp) 

5. Solvers for the system of equations (slv) 

 

1000 model 

runs using a 

Linux Cluster 

40 Cores used 

for each run 

Solutions not 

converged for 

514 cases 

486 successful model 

scenarios for 

computation of flood 

indices 
Water depth extracted for each finite element node in X Y Z format 

from native TELEMAC2D result files. 

X Y = UTM Coordinates of finite element nodes 

Z = Computed water depth 

Interpolation in ArcGIS to create 486 

flood-depth maps in raster format 

Apply threshold depth of 20 cm for 

each pixel to identify the flooded 

pixels and produce flood-extent 

maps 

 

Fig 6 Flow diagram showing the methodology of deriving multiple flooding scenarios for uncertainty 

assessment using Monte Carlo principles. 

 

We used a GLUE-based framework to quantify the predictive uncertainty in TELEMAC2D 

outputs by employing two types of observed inundation maps for conditioning the likelihood 

weights. The deterministic binary inundation maps (Fig 5) were used following the method 

proposed by Aronica et al. (2002), and the possibility of inundation maps (Fig 4) were used to 

incorporate uncertainty in satellite-observed flood extents following the methodology of Di 
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Baldassarre et al. (2009). As both approaches produce probability maps of predicted inundation, 

we compared the differences in their spatial patterns. 

 

First, the performance of TELEMAC2D  model was measured against the deterministic 

inundation maps with the objective function of Horritt and Bates (2001):  

 

F = (Ow ∩ Mw / Ow ∪ Mw) × 100     (2) 

 

where Ow is the number of observed wet pixels and Mw is the number of modelled wet pixels. A 

likelihood weight Li was assigned to each successful Monte Carlo simulation i using  

 

Li = Fi - Min (F) / Max(F) - Min(F)     (3) 

 

where Fi is the performance score of the ith simulation, and Max(F) and Min(F) are the 

maximum and minimum performance scores in the ensemble. 

 

The weighted average flood state Xj for  the jth computational cell was derived as 

   
       

    
       (4) 

where mij is the model output for the jth cell, which takes a value of 1 for wet and 0 for dry. 

Applying Equation 4 to all cells yields the probability of predicted inundation map. The entire 

process was automated using MATLAB. 

 

Second, following Di Baldassarre et al. (2009), we used a reliability diagram (Horritt, 2006), 

where for each simulation i we counted the number of simulated wet cells falling in each of the 

probability regions in the possibility of inundation map (0, 0.25, 0.5, etc.). Horritt (2006) argued 

that the reliability diagram of a perfectly accurate model would result in a 1:1 relationship 

between the probability (in our case the figures in the possibility of inundation map) and the 

model proportion (the proportion of modelled wet cells in that probability region). The accuracy 

of any given simulation run can be measured by calculating the RMSE deviation from that 1:1 

line. For each simulation, the model proportion for the probability regions (pj) of 0, 0.25, 0.50, 

0.75 and 1 were calculated. Then, we derived the RMSE as the deviation from the ideal 

relationship between the possibility of inundation and model proportion (Fig. 7).  
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Fig 7  A schematic scatter diagram of model proportion and possibility of inundation. The 1:1 line 

representing a perfect model is shown with the dashed line. 

 

A MATLAB routine was developed to perform this task for all the successful Monte Carlo 

simulation runs. The RMSE for each simulation was weighted by the number of cells in that 

class, ignoring the dry areas where pj = 0.  

 

The likelihood value (Li) for each simulation was derived from the RMSE values as  

 

Li =  Max(RMSE) - RMSEi / Max(RMSE) - Min(RMSE)  (5) 

 

where Max(RMSE) and Min(RMSE) are the maximum and minimum RMSE values for all 

successful Monte Carlo simulation runs. The weighted average flood state for each cell was 

calculated with Equation 4, yielding a flood uncertain inundation map which illustrates the 

predictive uncertainty in the modelled inundation map derived from uncertainties in the observed 

flood extent. 

 

Following Di Baldassarre et al. (2009), we computed a quantity Dj for model state 1 in order to 

investigate the difference between the possibility of inundation map and the flood uncertain 

inundation map. For the jth computational cell the quantity Dj was computed as the flood 

uncertain inundation figure minus the possibility of inundation figure. However, unlike Di 

Baldassarre et al. (2009) we did not consider all cells in the model domain for computing Dj as 

there were many dry cells (value = 0) in both flood uncertain inundation map and possibility of 

inundation map. Hence, a direct subtraction would result in a large number of spurious 0 values 
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that would falsely indicate a condition of little bias. In order to resolve this problem we ignored 

all cells that had a value of 0 in the possibility of inundation and flood uncertain inundation 

maps, so that the 0 values of Dj correctly depicted a scenario of perfect non-bias.   

 

4 Results 

 

More than 51% of the total model runs failed, 78% of which were due to the use of the NE 

solver. After discounting the NE solver simulations, we found that the percentage of model 

failure was approximately 4 times higher (up to ~ 80%) for a low channel roughness value of 

0.024  compared to typical values of 0.029-0.035  for straight sand-bed rivers (Chow, 1959).  

Fig 8 indicates the performance of the Monte Carlo simulations against the deterministic 

inundation maps in relation to four of the five uncertain parameters; note that performance was 

not sensitive to the floodplain Manning’s n values at the inflow hydrograph (InQnfp), so this 

parameter is not shown. Considerable equifinality for all the uncertain parameters was noticed, 

indicating that similar accuracy in the predicted output was achieved using a range of values 

within each parameter. Despite this, Fig 8a illustrates that a lower roughness coefficient for the 

channel (0.026 to 0.030) generally had less cases with poor model performance.  

None of the cases that used higher roughness coefficients (0.035 - 0.038) attained a goodness-of-

fit of more than 0.36. However, this trend is not found for InQnch at model state 2, when the 

river level was down to almost the pre-flood level (Fig 3). The performance of the model at state 

2 was quite poor with a maximum goodness-of-fit figure of 0.28, but the model showed less 

equifinality and the advantage of using a smaller InQnch value is evident (Fig 8e). 

 

The channel Manning’s roughness coefficient (nch) shows some equifinality, but a trend of 

higher goodness-of-fit against deterministic observed inundation maps with higher nch values is 

evident in both model states (Fig 8b, f). The model outputs were found to be completely 

insensitive to the floodplain Manning’s roughness coefficient (nfp) and to the choice of solver in 

TELEMAC2D at both states (Fig 8c-d, g-h). The probability of inundation maps (Fig 9) show 

that at both model states the inundated surface is patchy and not necessarily found adjacent to the 

channels. A substantial portion of the total area under flooding has been modelled as inundated 

in majority of the Monte Carlo realisations.  
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Fig 8 Dotty plots showing the performance of the TELEMAC2D model at model state 1 (panels a-d) and 

model state 2 (panels e-h)  in relation to (a, e) channel Manning’s n for deriving the inflow hydrograph 

from stage data (InQnch), (b, f) Manning’s n for the channels (nch), (c, g) Manning’s n for the floodplain 

(nfp), and (d, h) the solver used for solving the system of equations.  
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The flood uncertain inundation maps created by incorporating the uncertainty of satellite-

observed flood extents show similar patterns as the deterministic probability of inundation maps 

(Fig 9) and are not presented. However, there are systematic spatial differences in the likelihood 

of flooding in the two maps. To examine the nature and causes of these differences at model state 

1, the probability of inundation map was subtracted from the flood uncertain inundation map to 

produce Fig 10. The differences are most pronounced in three areas: 1) at the periphery of the 

areas with a very high likelihood of being modelled as flooded, 2) where complex hydraulic 

processes take place such as the river island at the centre, and 3) areas in the extreme south and 

the northeast corner, where the possibility of inundation map (Fig 4a) indicates lower level of 

confidence in the observed inundation data.  In general, these areas fall outside the highly likely 

modelled inundation zones, and have higher uncertainty in the observed inundation data.   

 

The histogram of Dj values (Fig 11) was created to test the tendency of bias in the model output 

for model state 1. It shows a bimodal distribution with one peak around 0 and another around -1. 

The peak around 0 is a sign of little or no bias between the modelled and observed probability of 

inundation. The other peak at -1 is an indication that a substantial portion of the observed 

flooded area (1 in the possibility of inundation map) was simulated as dry by the model (0 in 

modelled output), indicating systematic underestimation of the flooded area.  

 

 

 

Fig 9 Probability of inundation maps derived from the deterministic binary inundation maps showing the 

likelihood of the model predicted inundation area on (a) model state 1 and (b) state 2. 
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Fig 10 Difference in probabilities derived by subtracting probability of inundation from flood uncertain 

inundation values for model state. 

 

Fig 11 Histogram of Dj values. The peak around 0 shows a lack of bias in the flood uncertain probability 

map but the peak around -1 illustrates that a substantial portion of the observed flooded area is 

underpredicted by the model. 
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5 Discussion 

 

InQnch and nch values affected the performance of TELEMAC2D in different ways. An increase 

in the value of InQnch results in less discharge for a given river stage, and the overall accuracy 

of predictions for model state 1 decreased steadily with a reduction in the inflow of water in the 

model domain (Fig 8a). At a later stage of the flood (model state 2), however, the model was 

found to be less sensitive to the variation of inflow discharge and performed with equal accuracy 

for a range of inflow hydrographs produced by different values of InQnch (Fig 8e). There are 

two possible reasons for this model behaviour. First, at very high river stages in state 1, slight 

differences in the channel roughness coefficient led to considerable increases in the computed 

discharge values. A decrease in the supply of water at the inlet possibly amplified the problem of 

underprediction, particularly in the western section of the model domain, resulting in decline in 

the model performance score. Secondly, during the model state 2 when stage was well below 

bankfull, the change in discharge values had little impact on the modelled flood extent maps. At 

this stage the model efficiency mostly depends on the strength of its wetting and drying 

algorithm which is also very much dependent on the resolution and accuracy of the input terrain 

data. 

 

The areas represented in dark tones in the probability of inundation maps (Fig 9) do not imply a 

high actual probability of inundation, but are instead highly likely to be modelled as inundated 

by the existing modelling setup. A comparison of Fig 9 with Fig 5 reveals that the drying process 

of the model could not fully reproduce the actual pattern of drying between the two stages of this 

flooding event. The model showed little sensitivity to declining inflow from 12 to 15 September 

when simulating inundation at the extreme upper portion of the image. This was probably due to 

the coarse quality of the terrain data, especially over the farmlands which were mostly derived 

from the SRTM DEM. The existence of large flat areas with small variations in relief was 

probably responsible for the poor performance of TELEMAC2D in terms of draining shallow 

water from parts of the floodplain. This overestimation of the flooded area is also manifested in 

Fig 11. It shows a considerable number of pixels with a Dj value of 1, indicating that they were 

modelled as wet but not classified as inundated using any of the image processing techniques.  

 

Running numerous Monte Carlo simulations in TELEMAC2D is a computationally intensive 

task, and therefore it is beneficial to avoid unstable model runs that may use considerable 
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computational resources. We found that low nch values had a high incidence of instability and 

that their use did not lead to best model performance, at least near the peak of the flood (Fig 8b). 

We acknowledge that model stability depends on the complex interplay between the chosen 

parameter space, model inputs and the physical characteristics of the model domain. Due to these 

factors every inundation modelling experiment will have a unique pattern of model stability. 

However, a small but representative subset of the entire range of parameters may be used to 

perform some pilot runs to understand the incidence of instability with reference to the choice of 

parameter space. 

 

6 Conclusion 

 

We undertook a GLUE-based uncertainty assessment of simulated flood extents at two stages of 

the descending limb of a flood hydrograph using TELEMAC2D. The uniqueness of this study 

lies in adapting the existing techniques of uncertainty assessment for data-poor regions. The 

spatial distribution of uncertainties in an area with anabranching channels depends on 1) the state 

of the flood under consideration in relation to the occurrence of the flood peak, and 2) the 

amount of consistent bias in the model output arising from the sparse nature of the model inputs . 

We observed that portions of the modelled flood-extent maps were less sensitive to changes in 

important inputs, such as the inflow hydrograph. This type of model behaviour can be attributed 

to the lack of detailed floodplain topography for portions of the model domain. 

 

The probabilistic observed data have an increased computational cost when compared to 

deterministic flood maps.  However, the resulting uncertainty estimation is not significantly 

different and we therefore recommend the use of deterministic flood-extent maps for uncertainty 

assessment in data-sparse study sites. The uncertainty assessment of a fully 2D finite element 

model has never been attempted with sparse inputs in areas of multiple channel bifurcations. 

Hence, the findings of this paper will be helpful in judging the limitations of a similar modelling 

task where ideal model inputs and validation data do not exist. 
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