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ABSTRACT
In this paper, we present results from the weak-lensing shape measurement GRavitational
lEnsing Accuracy Testing 2010 (GREAT10) Galaxy Challenge. This marks an order of mag-
nitude step change in the level of scrutiny employed in weak-lensing shape measurement
analysis. We provide descriptions of each method tested and include 10 evaluation metrics
over 24 simulation branches.

GREAT10 was the first shape measurement challenge to include variable fields; both the
shear field and the point spread function (PSF) vary across the images in a realistic manner. The
variable fields enable a variety of metrics that are inaccessible to constant shear simulations,
including a direct measure of the impact of shape measurement inaccuracies, and the impact
of PSF size and ellipticity, on the shear power spectrum. To assess the impact of shape
measurement bias for cosmic shear, we present a general pseudo-C� formalism that propagates
spatially varying systematics in cosmic shear through to power spectrum estimates. We also
show how one-point estimators of bias can be extracted from variable shear simulations.

The GREAT10 Galaxy Challenge received 95 submissions and saw a factor of 3 improvement
in the accuracy achieved by other shape measurement methods. The best methods achieve sub-
per cent average biases. We find a strong dependence on accuracy as a function of signal-to-
noise ratio, and indications of a weak dependence on galaxy type and size. Some requirements
for the most ambitious cosmic shear experiments are met above a signal-to-noise ratio of 20.
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These results have the caveat that the simulated PSF was a ground-based PSF. Our results are
a snapshot of the accuracy of current shape measurement methods and are a benchmark upon
which improvement can be brought. This provides a foundation for a better understanding of
the strengths and limitations of shape measurement methods.

Key words: gravitational lensing: weak – methods: statistical – techniques: image processing
– cosmology: observations.

1 IN T RO D U C T I O N

In this paper, we present the results from the GRavitational lEnsing
Accuracy Testing 2010 (GREAT10) Galaxy Challenge. GREAT10
was an image analysis challenge for cosmology that focused on
the task of measuring the weak-lensing signal from galaxies. Weak
lensing is the effect whereby the image of a source galaxy is distorted
by intervening massive structure along the line of sight. In the weak
field limit, this distortion is a change in the observed ellipticity
of the object, and this change in ellipticity is called shear. Weak
lensing is particularly important for understanding the nature of
dark energy and dark matter, because it can be used to measure the
cosmic growth of structure and the expansion history of the Universe
(see reviews by e.g. Albrecht et al. 2006; Bartelmann & Schneider
2001; Hoekstra & Jain 2008; Massey, Kitching & Richards 2010;
Weinberg et al. 2012). In general, by measuring the ellipticities of
distant galaxies – hereafter denoted by ‘shape measurement’ – we
can make statistical statements about the nature of the intervening
matter. The full process through which photons propagate from
galaxies to detectors is described in a previous companion paper,
the GREAT10 Handbook (Kitching et al. 2011).

There are a number of features, in the physical processes and
optical systems, through which the photons we ultimately use for
weak lensing pass. These features must be accounted for when
designing shape measurement algorithms. These are primarily the
convolution effects of the atmosphere and the telescope optics, pix-
elization effects of the detectors used and the presence of noise in
the images. The simulations in GREAT10 aimed to address each
of these complicating factors. GREAT10 consisted of two concur-
rent challenges as described in Kitching et al. (2011): the Galaxy
Challenge, where entrants were provided with 50 million simulated
galaxies and asked to measure their shapes and spatial variation of
the shear field with a known point spread function (PSF) and the
Star Challenge wherein entrants were provided with an unknown
PSF, sampled by stars, and asked to reconstruct the spatial variation
of the PSF across the field.

In this paper, we present the results of the GREAT10 Galaxy
Challenge. The challenge provided a controlled simulation devel-
opment environment in which shape measurement methods could be
tested, and was run as a blind competition for 9 months from 2010
December to 2011 September. Blind analysis of shape measure-
ment algorithms began with the Shear TEsting Programme (STEP;
Heymans et al. 2006; Massey et al. 2007) and GREAT08 (Bridle
et al. 2009, 2010). The blindness of these competitions is critical
in testing methods under circumstances that will be similar to those
encountered in real astronomical data. This is because for weak
lensing, unlike photometric redshifts, for example, we cannot ob-
serve a training set from which we know the shear distribution. [We
can, however, observe a subset of galaxies at high signal-to-noise

ratio (S/N) to train upon, which is something we address in this
paper.]

The GREAT10 Galaxy Challenge is the first shape measurement
analysis that includes variable fields. Both the shear field and the
PSF vary across the images in a realistic manner. This enables a
variety of metrics that are inaccessible to constant shear simulations
(where the fields are a single constant value across the images),
including a direct measure of the impact of shape measurement
inaccuracies on the inferred shear power spectrum and a measure
of the correlations among shape measurement inaccuracies and the
size and ellipticity of the PSF.

We present a general pseudo-C� formalism for a flat-sky shear
field in Appendix A, which we use to show how to propagate general
spatially varying shear measurement biases through to the shear
power spectrum. This has a more general application in cosmic
shear studies.

This paper summarizes the results of the GREAT10 Galaxy Chal-
lenge. We refer the reader to a companion paper that discusses the
GREAT10 Star challenge (Kitching et al., in preparation). Here we
summarize the results that we show, distilled from the wealth of
information that we present in this paper:

(i) Signal-to-noise ratio. We find a strong dependence of the
metrics below S/N = 10. However, we find methods that meet bias
requirements for the most ambitious experiments when S/N > 20.
We note that methods tested here have been optimized for use on
ground-based data in this regime.

(ii) Galaxy type. We find marginal evidence that model-fitting
methods have a relatively low dependence on galaxy type compared
to model-independent methods.

(iii) PSF dependence. We find contributions to biases from PSF
size, but less so from PSF ellipticity.

(iv) Galaxy size. For large galaxies well sampled by the PSF,
with scale radii �2 times the mean PSF size, we find that methods
meet requirements on bias parameters for the most ambitious ex-
periments. However, if galaxies are unresolved, with radii �1 time
the mean PSF size, biases become significant.

(v) Training. We find that calibration on a high-S/N sample can
significantly improve a method’s average biases.

(vi) Averaging methods. We find that averaging ellipticities over
several methods is clearly beneficial, but that the weight assigned
to each method will need to be correctly determined.

In Section 2, we describe the Galaxy Challenge structure and
in Section 3 we describe the simulations. Results are summarized
in Section 4 and we present conclusions in Sections 5 and 6. We
make extensive use of appendices that contain technical information
on the metrics and a more detailed breakdown of individual shape
measurement methods’ performance.

C© 2012 The Authors, MNRAS 423, 3163–3208
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at D
urham

 U
niversity L

ibrary on D
ecem

ber 10, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


GREAT10 Galaxy Challenge 3165

Table 1. A summary of the metrics used to evaluate shape measurement methods for GREAT10. These are given in detail
in Appendices A and B. We refer to m and c as the one-point estimators of bias, and make the distinction between these
and spatially constant terms (m0, c0) and correlations (α, β) only where clearly stated.

Metric Definition Features

m, c, q γ̂ = (1 + m)γ t + c + qγ t|γ t| One-point estimators of bias. Links to STEP

Q 1000 5×10−6∫
d ln �|C̃EE

� −C
EE,γ γ
� |�2

Numerator relates to bias on w0

Qdn 1000 5×10−6∫
d ln �|CEE

� −C
EE,γ γ
� − 〈σ2

n 〉
Nrealization

Nobject|�2
Corrects Q for pixel noise

M � m2 + 2m, A ∝ σ (c)2 C̃EE
� = C

EE,γ γ
� + A + MC

EE,γ γ
� Power spectrum relations

αX m(θ) = m0 + α[X(θ)/X0] Variation of m with PSF ellipticity/size
βX c(θ) = c0 + β[X(θ)/X0] Variation of c with PSF ellipticity/size

2 D E S C R I P T I O N O F T H E C O M P E T I T I O N

The GREAT10 Galaxy Challenge was run as an open competition
for 9 months between 2010 December 3 and 2011 September 2.1

The challenge was open for participation from anyone, the web-
site2 served as the portal for participants, and data could be freely
downloaded.

The challenge was to reconstruct the shear power spectrum from
subsampled images of sheared galaxies (Kitching et al. 2011). All
shape measurement methods to date do this by measuring the ellip-
ticity from each galaxy in an image, although scope for alternative
approaches was allowed. Participants in the challenge were asked
to submit either

(i) Ellipticity catalogues that contained an estimate of the ellip-
ticity for each object in each image; or

(ii) Shear power spectra that consisted of an estimate of the shear
power spectrum for each simulation set.

For ellipticity catalogue submissions, all objects were required to
have an ellipticity estimate, and no galaxies were removed or down-
weighted in the power spectrum calculation; if such weighting func-
tions were desired by a participant, then a shear power spectrum
submission was encouraged.

Participants were required to access 1 TB of imaging data in
the form of FITS images. Each image contained 10 000 galaxies
arranged on a 100 × 100 grid. Each galaxy was captured in a
single postage stamp of 48 × 48 pixels (to incorporate the largest
galaxies in the simulation with no truncation), and the grid was
arranged so that each neighbouring postage stamp was positioned
contiguously, that is, there were no gaps between postage stamps
and no overlaps. Therefore, each image was 4800 × 4800 pixels in
size. The simulations were divided into 24 sets (see Section 3.1)
and each set contained 200 images. For each galaxy in each image,
participants were provided with a functional description of the PSF
(described in Appendix C3) and an image showing a pixelized
realization of the PSF. In addition, a suite of development code were
provided to help read in the data and perform a simple analysis.3

1 Between 2011 September 2 and September 8, we extended the challenge
to allow submissions from those participants who had not met the deadline;
those submissions will be labelled in Section 4.
2 http://www.greatchallenges.info
3 http://great.roe.ac.uk/data/code/

2.1 Summary of metrics

The metric with which the live leaderboard was scored during the
challenge was a quality factor Q, defined as

Q ≡ 1000
5 × 10−6∫

d ln �|C̃EE
� − C

EE,γ γ
� |�2

, (1)

averaged over all sets, a quantity that relates the reconstructed shear
power spectrum C̃EE

� with the true shear power spectrum C
EE,γ γ
� .

We describe this metric in more detail in Appendices A and B. This
is a general integral expression for the quality factor; in the simu-
lations, we use discrete bins in � which are defined in Appendix C.
By evaluating this metric for each submission, results were posted
to a live leaderboard that ranked methods based on the value of Q.
We will also investigate a variety of alternative metrics extending
the STEP m and c bias formalism to variable fields.

The measured ellipticity of an object at position θ can be related
to the true ellipticity and shear,

emeasure(θ ) = γ (θ ) + eintrinsic(θ )

+ c(θ ) + m(θ)[γ (θ ) + eintrinsic(θ )]+
+ q(θ )[γ (θ) + eintrinsic(θ )]|γ (θ ) + eintrinsic(θ)|
+ en(θ ), (2)

with a multiplicative bias m(θ ), an offset c(θ ), and a quadratic term
q(θ ) (this is γ |γ |, not γ 2, since we may expect divergent behaviour
to more positive and more negative shear values for each domain,
respectively), which in general are functions of position due to PSF
and galaxy properties. en(θ) is a potential stochastic noise contri-
bution. For spatially variable shear fields, biases between measured
and true shear can vary as a function of position, mixing angular
modes and power between E and B modes. In Appendix A, we
present a general formalism that allows for the propagation of bi-
ases into shear power spectra using a pseudo-C� methodology; this
approach has applications beyond the treatment of shear systemat-
ics. The full set of metrics are described in detail in Appendix B
and are summarized in Table 1.

The metric with which the live leaderboard was scored was the
Q value, and the same metric was used for ellipticity catalogue sub-
missions and power spectrum submissions. However, in this paper,
we will introduce and focus on Qdn (see Table 1) which for ellip-
ticity catalogue submissions removes any residual pixel-noise error
(nominally associated with biases caused by finite S/N or inherent
shape measurement method noise). For details, see Appendix B.
Note that this is not a correction for ellipticity (shape) noise which
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is removed in GREAT10 through the implementation of a B-mode-
only intrinsic ellipticity field.

The metric Q takes into account scatter between the estimated
shear and the true shear due to stochasticity in a method or spatially
varying quantities, such that a small m(θ ) and c(θ ) do not necessar-
ily correspond to a large Q value (see Appendix B). This is discussed
within the context of previous challenges in Kitching et al. (2008).
Spatial variation is important because the shear and PSF fields vary,
so that there may be scale-dependent correlations between them,
and stochasticity is important because we wish methods to be ac-
curate (such that errors do not dilute cosmological or astrophysical
constraints) as well as being unbiased.

For variable fields, we can complement the linear biases, m(θ )
and c(θ ), with a component that can be correlated with any spatially
varying quantity X(θ ), for example, PSF ellipticity or size:

m(θ) = m0 + α

[
X(θ )

X0

]
, c(θ ) = c0 + β

[
X(θ)

X0

]
, (3)

with spatially constant terms m0 and c0 and correlation coefficients
α and β; X0 is a constant reference value that ensures that the
units of α and β are dimensionless: for ellipticity this is set to
unity, X0 = 1, and for PSF size squared, this is the mean PSF size
squared, X0 = 〈r2

PSF〉. Only ellipticity catalogue submissions can
have m0, c0, α and β values calculated because these parameters
require individual galaxy ellipticity estimates (in order to calculate
the required mixing matrices, see Appendices A and B). Throughout
we will refer to m and c as the one-point estimators of bias and
make the distinction between spatially constant terms m0 and c0

and correlations α and β only where clearly stated. Finally, we also
include a non-linear shear response (see Table 1); we do not include
a discussion of this in the main results, because qγ |γ | ≈ 0 for most
methods, but show the results in Appendix E.

To measure biases at the power spectrum level, we define constant
linear bias parameters (see Appendix A, equation A13),

C̃EE
� = C

EE,γ γ
� + A + MC

EE,γ γ
� , (4)

which relate the measured power spectrum to the true power spec-
trum. These are approximately related to one-point shear bias m,
and the variance of c, by M/2 � m for values of m 	 1 and√A � σ (c). These parameters can be calculated for both ellipticity
and power spectrum submissions.

3 D ESCRIPTION O F THE SIMULATIONS

In this section, we describe the overall structure of the simulations.
For details on the local modelling of the galaxy and star profiles and
the spatial variation of the PSF and shear fields, we refer the reader
to Appendix C.

3.1 Simulation structure

The structure of the simulations was engineered such that, in the
final analysis, the various aspects of performance for a given shape
measurement method could be gauged. The competition was split
into sets of images, where one set was a ‘fiducial’ set and the
remaining sets represented perturbations about the parameters in
that set. Each set consisted of 200 images. This number was justified
by calculating the expected pixel-noise effect on shape measurement
methods (see Appendix B) such that when averaging over all 200
images this effect should be suppressed (however, see also Section 4
where we investigate this noise term further).

Participants were provided with a functional description and a
pixelated realization of the PSF at each galaxy position. The task of
estimating the PSF itself was set a separate ‘Star Challenge’ which
is described in a companion paper (Kitching et al., in preparation).

The variable shear field was constant in each of the images within
a set, but the PSF field and intrinsic ellipticity could vary such that
there were three kinds of sets:

(i) Type 1. ‘Single epoch’, fixed CEE
� , variable PSF, variable

intrinsic ellipticity.
(ii) Type 2. ‘Multi-epoch’, fixed CEE

� , variable PSF, fixed intrinsic
ellipticity.

(iii) Type 3. ‘Stable single epoch’, fixed CEE
� , fixed PSF, variable

intrinsic ellipticity.

The default, fiducial, type being one in which both PSF and intrinsic
ellipticity vary between images in a set. This was designed in part
to test the ability of any method that took advantage of stacking
procedures, where galaxy images are averaged over some popula-
tion, by testing whether stacking worked when either the galaxy
or the PSF was fixed across images within a set. Stacking meth-
ods achieved high scores in GREAT08 (Bridle et al. 2010), but in
actuality were not submitted for GREAT10. For each type of set,
the PSF and intrinsic ellipticity fields are always spatially varying,
but this variation did not change within a set; when we refer to a
quantity being ‘fixed’, it means that its spatial variation does not
vary between images within a set.

Type 1 (variable PSF and intrinsic field) sets test the ability of
a method to reconstruct the shear field in the presence of both a
variable PSF field and variable intrinsic ellipticity between images.
This nominally represents a sequence of observations of different
patches of sky but with the same underlying shear power spectrum.
Type 2 sets (variable PSF and fixed intrinsic field) represent an
observing strategy where the PSF is different in each exposure of
the same patch of sky (a typical ground-based observation), the so-
called ‘multi-epoch’ data. Type 3 sets (fixed PSF) represent ‘single-
epoch’ observations with a highly stable PSF. These were only
simple approximations to reality, because, for example, properties
in the individual exposures for the ‘multi-epoch’ sets were not
correlated (as they may be in real data), and the S/N was constant
in all images for the single and multi-epoch sets. Participants were
aware of the PSF variation from image to image within a set but
not of the intrinsic galaxy properties or shear. Thus, the conclusions
drawn from these tests will be conservative with regard to the testing
between the different set types, relative to real data, where in fact this
kind of observation is known to the observer ab initio. In subsequent
challenges, this hidden layer of complexity could be removed.

In Appendix D, we list in detail the parameter values that define
each set, and the parameters themselves are described in the sections
below. InTable 2, we summarize each set by listing its distinguishing
feature and parameter value.

There were two additional sets that used a pseudo-Airy PSF
which we do not include in this paper because of technical reasons
(see Appendix F).

Training data were provided in the form of a set with exactly the
same size and form as the other sets. In fact the training set was
a copy of Set 7, a set which contained high-S/N galaxies. In this
way, the structure was set up to enable an assessment of whether
training on high-S/N data is useful when extrapolating to other do-
mains, in particular low-galaxy-S/N regime. This is similar to being
able to observe a region of sky with deeper exposures than a main
survey.
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Table 2. A summary of the simulation sets with the parameter or function that distinguishes each
set from the fiducial one. In the third column, we list whether the PSF or intrinsic ellipticity field
(Int) was kept fixed between images within a set. rb and rd are the scale radii of the bulge and disc
components of the galaxy models in pixels and b/d is the ratio between the integrated flux in the
bulge and disc components of the galaxy models. See Appendices C and D for more details.

Set number Set name Fixed PSF/intrinsic field Distinguishing parameter

1 Fiducial – –
2 Fiducial PSF –
3 Fiducial Int –
4 Low S/N – S/N = 10
5 Low S/N PSF S/N = 10
6 Low S/N Int S/N = 10
7 High-S/N training data – S/N = 40
8 High S/N PSF S/N = 40
9 High S/N Int S/N = 40
10 Smooth S/N – S/N distribution, Rayleigh
11 Smooth S/N PSF S/N distribution, Rayleigh
12 Smooth S/N Int S/N distribution, Rayleigh
13 Small galaxy – rb = 1.8, rd = 2.6
14 Small galaxy PSF rb = 1.8, rd = 2.6
15 Large galaxy – rb = 3.4, rd = 10.0
16 Large galaxy PSF rb = 3.4, rd = 10.0
17 Smooth galaxy – Size distribution, Rayleigh
18 Smooth galaxy PSF Size distribution, Rayleigh
19 Kolmogorov – Kolmogorov PSF
20 Kolmogorov PSF Kolmogorov PSF
21 Uniform b/d – b/d ratio [0.3, 0.95]
22 Uniform b/d PSF b/d ratio [0.3, 0.95]
23 Offset b/d – b/d offset variance 0.5
24 Offset b/d PSF b/d offset variance 0.5

3.2 Variable shear and intrinsic ellipticity fields

In the GREAT10 simulations, the key and unique aspect was that the
shear field was a variable quantity and not a static scalar value (as
for all previous shape measurement simulations; STEP1, STEP2,
GREAT08). To make a variable shear field, we generated a spin-2
Gaussian random field from a 	 cold dark matter weak-lensing
power spectrum (Hu 1999):

C
γγ
� =

∫ rH

0
dr WGG

ii (r)Pδδ

(
�

r
; r

)
, (5)

where Pδδ is the matter power spectrum, and the lensing weight can
be expressed as

WGG
ii (r) = qi(r)qi(r)

r2
, (6)

where the kernel is

qi(r) = 3H 2
0 �mr

2a(r)

∫ rH

r

dr ′ pi(r
′)

(r ′ − r)

r ′ . (7)

We have assumed a flat Euclidean geometry throughout and rH

is the horizon size. pi(r) refers to the redshift distribution of the
lensed sources in redshift bin i; this expression can be generalized
to an arbitrary number (even a continuous set) of redshift bins (see
Kitching, Heavens & Miller 2011). For these simulations, we have
a single redshift bin with a median redshift of zm = 1.0 and a delta
function probability distribution pi(r′) = δD(r − ri). We assume an
Eisenstein & Hu (1999) linear matter power spectrum with a Smith
et al. (2003) non-linear correction. The cosmological parameter
values used were �m = 0.25, h = H0/100 = 0.75, ns = 0.95 and
σ 8 = 0.78. In order to add a random component to the shear power
spectrum, so that participants could not guess the functional form,

we added a series of Legendre polynomials Pn(x) up to fifth order,
such that

C
EE,γ γ
� → C

EE,γ γ
� + 2 × 10−9

5∑
n=1

cnPn(xL), (8)

where the variable xL = −1 + 2(� − 1)/(�max − 1) is contained
within the range [−1, 1] as � varies from �min to �max. The shear
field generated has an E-mode power spectrum only. The size of the
shear field was θimage = 2π/�min and to generate the shear field we
set θ image = 10◦, such that the range in � we used to generate the
power was � = [36, 3600] from the fundamental mode to the grid
separation cut-off; the exact � modes used are given in Appendix C.
Note that the Legendre polynomials add fluctuations to the power
spectra; this is benign in the calculation of the evaluation metrics
but would not be expected from real data.

The shear field is generated on a grid of 100 × 100 pixels, which
is then converted into an image of galaxy objects via an image
generation code4 with galaxy properties described in Appendix C.
When postage stamps of objects are generated, they point-sample
the shear field at each position, and a postage stamp is generated.
The postage stamps are then combined to form an image.

Throughout, the intrinsic ellipticity field had a variation that con-
tained B-mode power only (in every image and when also averaged

4 To generate the image simulations, we used a Monte Carlo code
that simulates the galaxy model and PSF stages at a photon level;
this code is a modified version of that used for the GREAT08
simulations (Bridle et al. 2010). The modified code is available at
http://great.roe.ac.uk/data/code/image_code; the original code was devel-
oped by Konrad Kuijken, later modified by STB and SB for GREAT08, and
then modified by TDK for GREAT10.

C© 2012 The Authors, MNRAS 423, 3163–3208
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at D
urham

 U
niversity L

ibrary on D
ecem

ber 10, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3168 T. D. Kitching et al.

over all images in a set), as described in the GREAT10 Handbook.
This meant that the contribution from intrinsic ellipticity correla-
tions, as well as from intrinsic shape noise, to the lensing shear
power spectra was zero.

4 R ESULTS

In total, the challenge received 95 submissions from nine separate
teams and 12 different methods. These were as follows:

(i) 82 submissions before the deadline
(ii) 13 submissions in the post-challenge period

which were split into

(i) 85 ellipticity catalogue submissions
(ii) 10 power spectrum submissions

We summarize the methods that analysed the GREAT10 Galaxy
Challenge in detail in Appendix E. The method that won the chal-
lenge, with the highest Q value at the end of the challenge period,
was ‘fit2-unfold’ submitted by the DeepZot team (formed by au-
thors DK and DM).

During the challenge a number of aspects of the simulations were
corrected (we list these in Appendix F). Several methods generated

low scores due to misunderstanding of simulation details, and in
this paper we summarize only those results for which these errata
did not occur. In the following, we choose the best performing entry
for each of the 12 shape measurement method entries.

4.1 One-point estimators of bias: m and c values

In Appendix B, we describe how the estimators for shear biases on
a galaxy-by-galaxy basis in the simulations – what we refer to as
‘one-point estimators’ of biases – can be derived, and how these
relate to the STEP m and c parameters (Heymans et al. 2006). In
Fig. 1 and Table 3, we show the m and c biases for the best perform-
ing entries for each method (those with the highest quality factors).
In Appendix E, we show how the m and c parameters, and the dif-
ference between the measured and true shear, γ̂ − γ t, vary for each
method as a function of several quantities: PSF ellipticity, PSF size,
galaxy size, galaxy bulge-to-disc ratio and galaxy bulge-to-disc an-
gle offset. We show in Appendix E that some methods have a strong
m dependence on PSF ellipticity and size [e.g. Total Variation Neu-
ral Network (TVNN) and method04]. Model-fitting methods (gfit,
im3shape) tend to have fewer model-dependent biases, whereas the
KSB-like methods (DEIMOS, KSB f90) have the smallest average
biases.

Figure 1. In the left-hand panel, we show the multiplicative m and additive c biases for each ellipticity catalogue method, for which one-point estimators can
be calculated (see Appendix B). The symbols indicate the methods with a legend in the right-hand panel. The central panel expands the x- and y-axes to show
the best performing methods.

Table 3. The quality factors, Q, with denoising and training, and the m and c values for each method (not available
for power spectrum submissions) that we explore in detail in this paper, in alphabetical order of the method name.
A ‘(ps)’ indicates a power spectrum submission; in these cases, Qdn & trained = Qtrained; all others were ellipticity
catalogue submissions. An ∗ indicates that this team had knowledge of the internal parameters of the simulations, and
access to the image simulation code. A † indicates that this submission was made in the post-challenge time period.

Method Q Qdn Qdn & trained m c/10−4 M/2
√A/10−4

†ARES 50/50 105.80 163.44 277.01 −0.026 483 0.35 −0.018 566 0.0728
†cat7unfold2 (ps) 152.55 150.37 0.021 409 0.0707
DEIMOS C6 56.69 103.87 203.47 0.006 554 0.08 0.004 320 0.6329
fit2-unfold (ps) 229.99 240.11 0.040 767 0.0656
gfit 50.11 122.74 249.88 0.007 611 0.29 0.005 829 0.0573
∗im3shape NBC0 82.33 114.25 167.53 −0.049 982 0.12 −0.053 837 0.0945
KSB 97.22 134.42 166.96 −0.059 520 0.86 −0.037 636 0.0872
∗KSB f90 49.12 102.29 202.83 −0.008 352 0.19 0.020 803 0.0789
†MegaLUTsim2.1 b20 69.17 75.30 52.62 −0.265 354 −0.55 −0.183 078 0.1311
method04 83.52 92.66 116.02 −0.174 896 −0.12 −0.090 748 0.0969
†NN23 func 83.16 60.92 17.19 −0.239 057 0.47 −0.015 292 0.0982
shapefit 39.09 63.49 84.68 0.108 292 0.17 0.049 069 0.8686
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GREAT10 Galaxy Challenge 3169

Figure 2. In the left-hand panel, we show M and A for each method for each set. The colour scale represents the logarithm of the quality factor Qdn. In the
right-hand panel, we show the metrics M, A and Qdn for each method averaged over all sets. For a breakdown of these into dependence on set type, see Fig. 4.

4.2 Variable shear

In the left-hand panel of Fig. 2, we show the values of the linear
power spectrum parameters M and A for each method for each set,
and display by colour code the quality factor Qdn. In Table 3, we
show the mean values of these parameters averaged over all sets.
We find a clear anticorrelation among M, A and Qdn, with higher
quality factors corresponding to smaller M and A values. We will
explore this further in the subsequent sections. We refer the reader
to Appendix B where we show how the M, A and Qdn parameters
are expected to be related in an ideal case. In the right-hand panel
of Fig. 2, we also show the M, A and Qdn values for each method
averaged over all sets.

In the left-hand panel of Fig. 3, we show the effect that the pixel
noise denoising step has on the quality factor Q. Note that the way
in which the denoising step is implemented here uses the variance of
the true shear values (but not the true shear values themselves). This
is a method which was not available to power spectrum submissions
and indeed part of the challenge was to find optimal ways to ac-
count for this in power spectrum submissions. The final layer used
to generate the ‘fit2-unfold’ submission performed power spectrum
estimation and used the model-fitting errors themselves to deter-
mine and subtract the variance due to shape measurement errors,
including pixel noise. We find as expected that Q in general in-
creases for all methods when pixel noise is removed, by a factor of
�1.5, such that a method that has Q � 100 has Qdn � 150. When

Figure 3. In the left-hand panel, we show the unmodified quality factor Q (equation 1) and how this relates to the quality factor with pixel (shape measurement)
noise removed Qdn and the quality factor obtained when high-S/N training is applied to each submission (equation 9). Methods that submitted power spectra
could not be modified to remove the denoising in this way, so only the training values are shown. The right-hand panel shows the Qdn for those sets with fixed
intrinsic ellipticities (‘multi-epoch’; Type 2) or a fixed PSF (‘stable single epoch’; Type 3) over all images compared to the quality factor in the variable PSF
and intrinsic ellipticity case (‘single epoch’; Type 1).

C© 2012 The Authors, MNRAS 423, 3163–3208
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at D
urham

 U
niversity L

ibrary on D
ecem

ber 10, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3170 T. D. Kitching et al.

this correction is applied, the method ‘fit2-unfold’ still obtains the
highest quality factor, and the ranking of the top five methods is
unaffected.

4.2.1 Training

Several of the methods used the training data to help debug and test
code. For example, and in particular, ‘fit2-unfold’ used the data to
help build the galaxy models used and to set initial parameter values
and ranges in the maximum-likelihood fits. This meant that ‘fit2-
unfold’ performed particularly well in sets similar to the training
data (Sets 7, 8 and 9) at high S/N; for details see Appendix D and
Fig. E8, where ‘fit2-unfold’ has smaller combined M and A values
than any other method for some sets.

To investigate whether using high-S/N training data is useful for
methods, we investigate a scenario where training on the power
spectra had been used for all methods. This modification was po-
tentially available to all participants if they chose to implement it.
To do this, we measure the M and A values from the high-S/N Set
7 (see Table 2) and apply the transformation to the power spectra,
which is to first order equivalent to an m and c correction,

C� → C� − ASet=7

1 + MSet=7
, (9)

to calibrate the method using the training data. In Fig. 3, we show
the resulting quality factors when we apply both a denoising step
and a training step and when we apply a training step only. When
both steps are applied, we find that the quality factor improves by a
factor of �2 and some methods perform as well as the ‘fit2-unfold’
method (if not better). In particular, ‘DEIMOS C6’ achieves an
average quality factor of 316 (see Table 3). We find that the increase
in the quality factor is uniform over all sets, including the low-S/N
sets.

We conclude that it was a combination of model calibration on
the data and using a denoised power spectrum that enabled ‘fit2-
unfold’ to win the challenge. We also conclude that calibration of
measurements on high-S/N samples, that is, those that could be
observed using a deep survey within a wide/deep survey strategy,
is an approach that can improve shape measurement accuracy by
about a factor of 2. Note that using this approach is not doing shear
calibration as it is practised historically because the true shear is
not known. This holds as long as the deep survey is a representative
sample and the PSF of the deep data has similar properties to the
PSF in the shallower survey.

4.2.2 Multi-epoch data

In Fig. 3, we show how Qdn varies for each submission averaged
over all those sets that had a fixed intrinsic ellipticity field (Type 2)
or a fixed PSF (Type 3), described in Section 3.1. Despite the sim-
plicity of this implementation, we find that for the majority of
methods, this variation, corresponding to multi-epoch data, results
in an improvement of approximately 1.1–1.3 in Qdn, although there
is large scatter in the relation. In GREAT10, the coordination team
made a decision to keep the labelling of the sets private, so that
participants were not explicitly aware that these particular sets had
the same PSF (although the functional PSFs were available) or the
same intrinsic ellipticity field. These were designed to test stacking
methods; however, no such methods were submitted. The approach
of including this kind of subset can form a basis for further investi-
gation.

In brief, we show in Fig. 4 how the population of the M, A and
Qdn parameters for each of the quantities that were varied between

the sets, for all methods (averaging over all the other properties of
the sets that were kept constant between these variations). In the
following sections, we will analyse each behaviour in detail.

4.2.3 Galaxy signal-to-noise ratio

In the top row of Fig. 5, we show how the metrics for each method
change as a function of the galaxy S/N. We find a clear trend for
all methods to achieve better measurements on higher S/N galaxies,
with higher Q values and smaller additive biases A. In particular,
‘fit2-unfold’, ‘cat2-unfold’, ‘DEIMOS’, ‘shapefit’ and ‘KSB f90’
have a close-to-zero multiplicative bias for S/N > 20. Because S/N
has a particularly strong impact, we tabulate the M and A values
in Table 4. We also show in the lower row of Fig. 5 the breakdown
of the multiplicative and additive biases into the components that
are correlated with the PSF size and ellipticity (see Table 1). We
find that for the methods with the smallest biases at high S/N (e.g.
‘DEIMOS’, ‘KSB f90’, ‘ARES’) the contribution from the PSF size
is also small. For all methods, we find that the contribution from
PSF ellipticity correlations is subdominant for A.

4.2.4 Galaxy size

In Fig. 6, we show how the metrics of each method change as a
function of the galaxy size – the mean PSF size was �3.4 pixels.
Note that the PSF size is statistically the same in each set, such that
a larger galaxy size corresponds to either a case where the galaxies
are larger in a given survey or a case where observations are taken
where the pixel size and PSF size are relatively smaller for the same
galaxies.

We find that the majority of methods have a weak dependence
on the galaxy size, but that at scales of �2 pixels, or size/mean PSF
size � 0.6, the accuracy decreases (larger M and A and smaller
Qdn). This weak dependence is partly due to the small (but realistic)
dynamical range in size, compared to a larger dynamical range in
S/N. The exceptions are ‘cat7unfold2’, ‘fit2-unfold’ and ‘shapefit’
which appear to perform very well on the fiducial galaxy size and
less so on the small and large galaxies – this is consistent with the
model calibration approach of these methods, which was done on
Set 7 which used the fiducial galaxy type. The PSF size appears
to have a small contribution at large galaxy sizes, as one should
expect, but a large contribution to the biases at scales smaller than
the mean PSF size. We find that the methods with largest biases
have a strong PSF size contribution. Again the PSF ellipticity has
a subdominant contribution to the biases for all galaxy sizes for
A.

4.2.5 Galaxy model

In Fig. 7, we show how each method’s metrics change as a func-
tion of the galaxy type. The majority of methods have a weak
dependence on the galaxy model. The exceptions, similar to the
galaxy size dependence, are ‘cat2-unfold’, ‘fit2-unfold’ and ‘shape-
fit’ which appear to perform very well on the fiducial galaxy model
and less so on the small and large galaxies – this again is consistent
with the model calibration approach of these methods. Again the
contribution to A from the PSF size dependence is dominant over
the PSF ellipticity dependence, and is consistent with no model
dependence for the majority of methods, except those highlighted
here. We refer to Section 4.4 and Appendix E for a breakdown of m
and c behaviour as a function of galaxy model for each method.
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GREAT10 Galaxy Challenge 3171

Figure 4. In each panel, we show the metrics, M, A and Qdn, for each of the parameter variations between sets, for each submission; the colour scale labels
the logarithm of Qdn as shown in the lower right-hand panel. The first row shows the S/N variation, the second row shows the galaxy size variation, the third
row shows the galaxy model variation (the galaxy models are: uniform bulge-to-disc ratios where each galaxy has a bulge-to-disc ratio randomly sampled from
the bulge-to-disc ratio range [0.3, 0.95] with no offset (Uniform B/D No Offset), a 50 per cent bulge-to-disc ratio = 0.5 with no offset (50/50 B/D No Offset)
and a 50 per cent bulge-to-disc ratio = 0.5 with a bulge-to-disc centroid offset (50/50 B/D Offset), and the fourth row shows PSF variation with and without
Kolmogorov (KM) PSF variation.
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3172 T. D. Kitching et al.

Figure 5. In the top panels, we show how the metrics, M, A and Qdn, for submissions change as the S/N increases; the colour scale labels the logarithm of
Qdn. In the lower panels, we show the PSF size and ellipticity contributions α and β. In the bottom left-hand panel, we show the key that labels each method.

Table 4. The metrics M/2 � m and
√A � σ (c) for each of the S/N values used in the simulations.

Method S/N = 10 S/N = 20 S/N = 40
M/2

√A/10−4 M/2
√A/10−4 M/2

√A/10−4

†ARES 50/50 −0.028 320 0.140 511 −0.036 322 0.063 551 −0.006 060 0.034 517
†cat7unfold2 (ps) −0.041 280 0.116 732 −0.002 803 0.058 890 0.001 880 0.016 527
DEIMOS C6 0.005 676 0.128 678 −0.006 533 0.061 440 0.017 020 0.021 269
fit2-unfold (ps) 0.148 242 0.093 275 −0.002 501 0.073 071 0.002 228 0.012 961
gfit −0.033 046 0.123 692 0.026 172 0.045 710 0.019 359 0.026 773
∗im3shape NBC0 −0.089 984 0.167 280 −0.068 486 0.071 842 −0.036 627 0.061 176
KSB −0.065 856 0.175 017 −0.046 715 0.068 038 −0.024 967 0.046 845
∗KSB f90 −0.009 688 0.147 320 0.005 480 0.065 486 −0.001 810 0.033 502
†MegaLUTsim2.1 b20 −0.380 576 0.224 465 −0.131 563 0.119 239 −0.174 472 0.117 005
method04 −0.099 330 0.168 536 −0.091 481 0.084 571 −0.077 907 0.048 824
†NN23 func −0.009 595 0.086 018 0.015 145 0.104 664 0.072 641 0.152 932
shapefit 0.142 251 0.198 852 −0.003 768 0.070 808 0.001 568 0.033 164

4.2.6 PSF model

In Fig. 8, we show the impact of changing the PSF spatial variation
on the metrics for each method. We show results for the fiducial PSF,
which does not include a Kolmogorov (turbulent atmosphere) power
spectrum, and one which includes a Kolmogorov power spectrum
in PSF ellipticity. We find that the majority of methods have a weak
dependence on the inclusion of the Kolmogorov power. However, it
should be noted that participants knew the local PSF model exactly
in all cases.

4.3 Averaging methods

In order to reduce shape measurement biases, one may also wish to
average together a number of shape measurement methods. In this
way, any random component, and any biases, in the ellipticity esti-
mates may be reduced. In fact the ‘ARES’ method (see Appendix E)
averaged catalogues from DEIMOS and KSB and attained better

quality metrics. Doing this exploited the fact that DEIMOS had in
some sets a strong response to the ellipticity, whereas KSB had a
weak response.

To test this, we averaged the ellipticity catalogues from the entries
with the best metrics for each method that submitted an ellipticity
catalogue (ARES 50/50, DEIMOS C6, gfit, im3shape NBC0, KSB,
KSB f90, MegaLUTsim2.1 b20, method04, shapefit):

〈ei〉 =
∑

methods em,iwm,i∑
methods wm,i

, (10)

where i labels each galaxy and in general wm,i is some weight
that depends on the method, galaxy and PSF properties. We wish
to weight methods that perform better, and so choose the quality
factor from the high-S/N training set (Set 7) as the weight wm,i =
Qdn,m(Set 7) applied over all other sets. This is close to an inverse
variance weight on the noise induced on the shear power spectrum
(∝ 1/σ 2

sys). We leave the determination of optimal weights for future
investigation.
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GREAT10 Galaxy Challenge 3173

Figure 6. In the top panels, we show how the metrics, M, A and Qdn, for submissions change as the galaxy size increases; the colour scale labels the logarithm
of Qdn. In the lower panels, we show the PSF size and ellipticity contributions α and β. In the bottom left-hand panel, we show the key that labels each method.
The mean PSF is the mean within an image not between all sets.

Figure 7. In the top panels, we show how the metrics, M, A and Qdn, for submissions change as the galaxy model changes; the colour scale labels the
logarithm of Qdn. The galaxy models are: uniform bulge-to-disc ratio, each galaxy has, randomly sampled from the range [0.3, 0.95] with no offset (Uni.), a
50 per cent bulge-to-disc ratio = 0.5 with no offset (50/50.) and a 50 per cent bulge-to-disc ratio = 0.5 with a bulge-to-disc centroid offset (w/O). In the lower
panels, we show the PSF size and ellipticity contributions α and β. In the bottom left-hand panel, we show the key that labels each method.
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3174 T. D. Kitching et al.

Figure 8. In the top panels, we show how the metrics, M, A and Qdn, for submissions change as the PSF model changes; the colour scale labels the logarithm
of Qdn, the PSF models are the fiducial PSF, and the same PSF except with a Kolmogorov power spectrum in ellipticity added. In the lower panels, we show
the PSF size and ellipticity contributions α and β. In the bottom left-hand panel, we show the key that labels each method.

We find that the average quality factors over all sets for this
approach are Q = 131 and Qdn = 210, which are slightly smaller on
average than some of the individual methods. However, we find that
for the fiducial S/N and large galaxy size the quality factor increases
(see Fig. 9). This suggests that such an averaging approach can
improve the accuracy of an ellipticity catalogue but that a weight
function should be optimized to be a function of S/N, galaxy size
and type; however, averaging many methods with a similar over- or
under-estimation of the shear would not improve in the combination.
If we take the highest quality factors in each set, as an optimistic
case where a weight function had been found that could identify
the best shape measurement in each regime, we find an average
Qdn = 393.

4.4 Overall performance

We now list some observations of method accuracy for each method
by commenting on the behaviour of the metrics and dependences
discussed in Section 4 and Appendix E. Words such as ‘relative’ are

with respect to the other methods analysed here. This is a snapshot
of method performance as submitted for GREAT10 blind analysis.

(i) KSB. It has low PSF ellipticity correlations, and a small galaxy
morphology dependence; however, it has a relatively large absolute
m bias value.

(ii) KSB f90. It has small relative m and c biases on average, but
a relatively strong PSF size and galaxy morphology dependence, in
particular on the galaxy bulge fraction.

(iii) DEIMOS. It has small m and c biases on average, but a rela-
tively strong dependence on galaxy morphology, again in particular
on the bulge fraction, similar to KSB f90. Dependence on galaxy
size is low except for small galaxies with size smaller than the mean
PSF.

(iv) im3shape. It has a relatively large correlation between PSF
ellipticity and size, a small galaxy size dependence for m and c but
a stronger bulge fraction dependence.

(v) gfit. It has relatively small average m and c biases, and a
small galaxy morphology dependence; there is a relatively large
correlation between PSF ellipticity and biases m and c. This was

Figure 9. The quality factor as a function of S/N (left-hand panel), galaxy size (middle panel) and galaxy type (right-hand panel) for an averaged ellipticity
catalogue submission (red, using the averaging described in Section 4.3), compared to the methods used to average (black).
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the only method to employ a denoising step at the image level,
suggesting that this may be partly responsible for the small biases.

(vi) method 4. It has relatively strong PSF ellipticity, size and
galaxy type dependence.

(vii) fit2-unfold. It has strong model dependence, but relatively
small m and c biases for the fiducial model type, and also a relatively
low correlation between PSF ellipticity and m and c biases.

(viii) cat2-unfold. It has strong model dependence, in particular,
on galaxy size, but relatively small m and c biases for the fiducial
model type, and also a relatively low PSF ellipticity correlation.

(ix) shapefit. It has a relatively low quality factor, and a strong
dependence on model types and size that are not the fiducial values,
but small m and c biases for the fiducial model type.

To make some general conclusions, we find the following:

(i) Signal-to-noise ratio. We find a strong dependence of the
metrics below S/N = 10 especially for additive biases; however, we
find methods that meet bias requirements for the most ambitious
experiments when S/N > 20.

(ii) Galaxy type. We find marginal evidence that model-fitting
methods have a relatively low dependence on galaxy type com-
pared to KSB-like methods, but that this is only true if the model
matches the underlying input model (note that GREAT10 used sim-
ple models). We find evidence that if one trains on a particular
model, then biases are small for this subset of galaxies.

(iii) PSF dependence. Despite the PSF being known exactly, we
find contributions to biases from PSF size, but less so from PSF
ellipticity. The methods with the largest biases have a strong PSF
ellipticity–size correlation.

(iv) Galaxy size. For large galaxies well sampled by the PSF,
with scale radii �2 times the mean PSF size, we find that meth-
ods meet requirements on bias parameters for the most ambitious
experiments. However, if galaxies are unresolved with scale radii
�1 time the mean PSF size, the PSF size biases become significant.

(v) Training. We find that calibration on a high-S/N sample can
significantly improve a method’s average biases. This is true irre-
spective of whether training is a model calibration or a more direct
form of training on the ellipticity values of power spectra them-
selves.

(vi) Averaging methods. We find that averaging methods are
clearly beneficial, but that the weight assigned to each method needs
to be correctly determined. An individual entry (ARES) found that
this was the case, and we find similar conclusions when averaging
over all methods.

Note that statements on required accuracy are only on biases, and not
on the statistical accuracy on shear that a selection in objects with
a particular property (e.g. high S/N) would achieve. Such selection
is dependent on the observing conditions and survey design for a
particular experiment, so we leave such an investigation for future
work.

5 A S T RO C ROW D S O U R C I N G

The GREAT10 Galaxy Challenge was an example of ‘crowdsourc-
ing’ astronomical algorithm development (‘astrocrowdsourcing’).
This was part of a wider effort during this time period, which in-
cluded the GREAT10 Star Challenge and the sister project Mapping
Dark Matter (MDM)5 (see companion papers for these challenges).

5 Run in conjunction with Kaggle, http://www.kaggle.com/c/mdm

Figure 10. The cumulative submission number as a function of the chal-
lenge time, which started on 2010 December 3 and ran for 9 months.

In this section, we discuss this aspect of the challenge and list some
observations.

GREAT10 was a major success in its effort to generate new ideas
and attract new people into the field. For example, the winners of
the challenge (authors DK and DM) were new to the field of gravi-
tational lensing. A variety of entirely new methods have also been
attempted for the first time on blind data, including the Look Up Ta-
ble (MegaLUT) approach, an autocorrelation approach (method04
and TVNN), and the use of training data. Furthermore, the TVNN
method is a real pixel-level deconvolution method, a genuine de-
convolution of data used for the first time in shape measurement.

The limiting factor in designing the scope of the GREAT10
Galaxy Challenge was the size of the simulations which was kept
below 1 TB for ease of distribution; a larger challenge could have
addressed even more observational regimes. In the future, executa-
bles could be distributed that locally generate the data. However,
in this case, participants may still need to store the data. Another
approach might be to host challenges on a remote server where
participants can upload and run algorithms. However, care should
be taken to retain the integrity of the blindness of a challenge, with-
out which results become largely meaningless as methods could
be tuned to the parameters or functions of specific solutions if
those solutions are known a priori. We require algorithms to be of
high fidelity and to be useful on large amounts of data, which re-
quires them to be fast: an algorithm that takes a second per galaxy
needs �50 CPU years to run on 1.5 × 109 galaxies (the number
observable by the most ambitious lensing experiments e.g. Euclid,6

Laureijs et al. 2011); a large simulation generates innovation in this
direction.

In Fig. 10, we show the cumulative submission of the GREAT10
Galaxy Challenge as a function of time, from the beginning of the
challenge to the end and in the post-challenge submission period.
All submissions (except one made by the GREAT10 coordination
team) were made in the last 3 weeks of the 9 month period. For
future challenges, intrachallenge milestones could be used to en-
courage early submissions. This submission profile also reflects the
size and complexity of the challenge; it took time for participants to
understand the challenge and to run algorithms over the data to gen-
erate a submission. For future challenges, submissions on smaller
subsets of data could be enabled, with submission over the entire
data set being optional.

We note that the winning team (DK and DM) made 18 sub-
missions during the challenge, compared to the mean submission

6 http://www.euclid-ec.org
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number of 9. The winners also recognized from the information
provided that the submission procedure was open to power spec-
trum and ellipticity catalogue submissions. The leaderboard was
designed such that accuracy was reported in a manner that was
indicative of performance, but that this information could not be
trivially used to directly calibrate methods (e.g. if m and c were pro-
vided a simple ellipticity catalogue submission, correction could
have been made).

Many of these issues were overcome in the sister MDM challenge
(see the MDM results paper, Kitching et al., in preparation) which
received over 700 entries, over 2000 downloads of the data and
a constant rate of submission. It also used an alternative model
for leaderboard feedback where the simulated data were split into
public and private sets, and useful feedback was provided only for
the public sets.

For a discussion of the simplifications present in GREAT10,
we also refer the reader to sections 5 of the GREAT10 Handbook
(Kitching et al. 2011).

6 C O N C L U S I O N S

The GREAT10 Galaxy Challenge was the first weak-lensing shear
simulation to include variable fields: both the PSF and the shear
field varied as a function of position. It was also the largest shear
simulation to date, consisting of over 50 million simulated galaxies,
and a total of 1 TB of data. The challenge ran for 9 months from 2010
December to 2011 September, and during that time approximately
100 submissions were made.

In this paper, we define a general pseudo-C� methodology for
propagating shape measurement biases into cosmic shear power
spectra and use this to derive a series of metrics that we use to
investigate methods. We present a quality factor Q that relates the
inaccuracy in shape measurement methods to the shear power spec-
trum itself. Q = 1000 denotes a method that could measure the dark
energy equation-of-state parameter w0 with a bias less than or equal
to the predicted statistical error from the most ambitious planned
weak-lensing experiments (for a more general expression, we refer
to Massey et al., in preparation). We show how one can correct such
a metric to account for pixel noise in a shape measurement method.
During the challenge, submissions were publicly ranked on a live
leaderboard and ranked by this metric Q.

We show how a variable shear simulation can be used to deter-
mine the m and c parameters (Heymans et al. 2006) which are a
measure of bias between the measured and true shear (those param-
eters used in constant shear simulations, STEP and GREAT08) on
an object-by-object basis. We link the quality factor to linear power
spectrum biases including a multiplicative M ≈ 2m and additive
bias A ∝ σ (c)2 that are approximately related to the STEP one-
point estimators of shape measurement bias. The equality is only
approximate because in general M and A are a measure of spatially
varying method biases. We introduce further metrics that allow an
assessment of the contribution to the multiplicative and additive bi-
ases from correlations between the biases and any spatially variable
quantity (in this paper, we focus on PSF size and ellipticity).

The simulations were divided into sets of 200 images each con-
taining a grid of 10 000 galaxies. In each set, the shear field was
spatially varying but constant between images. The challenge was
to reconstruct the shear power spectrum for each set. Participants
could submit either catalogues of ellipticities, one per image, or
power spectra, one for each set, and were provided with an exact
functional description of the PSF and the positions of all objects to
within half a pixel.

The simulations were structured in such a way that conclusions
could be made about a shape measurement method’s accuracy as
a function of galaxy S/N, galaxy size, galaxy model/type and PSF
type. The simulations also contained some ‘multi-epoch’ sets in
which the shear and intrinsic ellipticities were fixed between images
in a set but where the PSF varied between images, and some ‘static
single-epoch’ sets where the PSF was fixed between images in a set
but the intrinsic ellipticity field varied between images. All fields
were always spatially varying. Participants were provided with true
shears for one of the high-S/N sets that they could use as a training
set.

Despite the simplicity of the challenge, making conclusions about
which aspects of which algorithm generated accurate shape mea-
surement is difficult due to the complexity of the algorithms them-
selves (see Appendix E). We leave investigations into tunable as-
pects of each method to future work. We can, however, make some
statements about the regimes in which methods perform well or
poorly.

The best methods submitted to GREAT10 scored an average Q �
300 with m � 7 × 10−3 and c � 10−5. The best performing non-
stacking method at S/N = 20, using the GREAT10/SEXTRACTOR

definition, in GREAT08 was KSBf90 (CH) which had an m =
0.0095 ± 0.003 and c � 8 × 10−4, and we find a similar perfor-
mance on GREAT10. Comparing this benchmark against methods
here, we find at least a factor of 3 improvement in performance
by methods tested on blind simulations (we refer to Table 3 where
the mean improvement over KSBf90 is 2.6 ± 1.6 over all met-
rics). The methods that won the challenge (scoring the highest Q
on the leaderboard) employed a maximum-likelihood model-fitting
method. Several methods used the training data to test code, and
we find that by directly training on a high-S/N set the majority of
methods achieve a factor of 2 increase in the average value of Q.
We find some evidence that shape measurement inaccuracies can
be reduced by averaging methods together, but conclude that for
such a method to be useable an optimal weight for each method as
a function of S/N and galaxy properties would have to be found.

For S/N of 40 the best methods achieved Q � 1000, m < 1 × 10−3

and c < 1 × 10−5; the majority of methods have an accuracy that is
strongly dependent on S/N with Q � 100 and �50 for S/N of 20 and
10, respectively. However, the dependence on galaxy model (bulge-
to-disc ratio or bulge-to-disc offset) and size is not strong. There
is a contribution to the multiplicative bias m from PSF ellipticity–
size correlations for the majority of methods over all sets, but a
smaller contribution from PSF ellipticity dependence (as expected
from theoretical calculations e.g. Massey et al., in preparation).

The testing of shape measurement methods by GREAT10 sug-
gests methods now exist which can be used for cosmic shear surveys
covering up to a few thousand square degrees (�3000 deg2, that re-
quire m � 6 × 10−3; Kitching et al. 20087) to measure cosmological
parameters in an unbiased fashion. We find that on the additive bias
c methods already meet requirements for even the most ambitious
surveys (c < 1 × 10−3) over all simulated conditions, and that in the
high-S/N regime (�40) methods already meet the most ambitious
requirements on the multiplicative bias (m < 2 × 10−3; Kitching
et al. 2008). Now that such accuracy has been demonstrated in
the high-S/N regime, it is now plausible that such accuracy may

7 The scaling formula from this paper can be rewritten for the max-
imum applicable area of a survey for a given bias m as Amax �
20 000[(0.001/m)2.4/0.17/10β ]1/1.5 deg2, assuming that the redshift be-
haviour is m ∝ (1 + z)β .
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GREAT10 Galaxy Challenge 3177

be possible at lower S/N, in principle. However, we note that the
requirements are on all galaxies in a survey and that the demonstra-
tion here is averaged over a simulation with particular properties, in
particular, the fiducial S/N is 20. Therefore, these conclusions have
a caveat that the GREAT10 simulations were intentionally simplis-
tic in some respects, so that clear statements about methods could
be made, but they provide a foundation for shape measurement
development to continue to increase in realism and complexity.
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APPENDIX A : PSEUDO-C� ESTIMATO RS FOR W EAK LENSI NG

In this section, we describe a formalism for the evaluation of variable shear systematics in weak lensing. We note that this has a more general
application than that described here, such that any mask in general could be accounted for in weak-lensing power spectrum estimation. This
closely follows the pseudo-C� formalism described in Memari (2010) and Brown, Castro & Taylor (2005) which has been applied in cosmic
microwave background studies, for survey masks.

We start by defining a generalized shear systematic response where

emeasure(θ) = γ (θ ) + eintrinsic(θ ) + c(θ ) + m(θ )[γ (θ) + eintrinsic(θ )] + q(θ )[γ (θ ) + eintrinsic(θ)]|γ (θ ) + eintrinsic(θ )|, (A1)

where all variables are a function of position on the sky, and all are complex quantities (e.g. γ (θ ) = γ1(θ ) + iγ2(θ )). We expect that m(θ )
will in general depend on spatially varying quantities including PSF ellipticity and size or galaxy properties such as S/N, so that one could
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write m(θ ) → m(PSF(θ ), Galaxy(θ )) or m(ePSF(θ ), rPSF(θ ), S/N (θ ), . . .), for example, but this does not qualitatively change the following
treatment. We note also that in general the systematic terms can also be complex, m(θ ) = |m(θ )|eiφ[θ ], where we assume a scalar spatially
varying quantity, and will investigate further generalization in future work.

The E- and B-mode decomposition of the spin-2 field emeasure(θ ) can be written in general as a rotation in Fourier space (see GREAT10
handbook) such that

E(�) ± iB(�) = �∗�∗|�|−2
[
e1,measure(�) + ie2,measure(�)

]
,

E(�) ± iB(�) = e∓2iφ�
[
e1,measure(�) + ie2,measure(�)

]
, (A2)

where emeasure(�) is the Fourier transform of emeasure(θ ).
When creating a power spectrum, the autocorrelations of the first three terms of equation (A1) have a simple interpretation, but the fourth

term has an effective weight map as a function of position such that (only focusing on the contribution from the fourth term) the estimated
E- and B-mode terms are

Ẽ(�) ± iB̃(�) =
∫

d2�′

(2π)2
e∓2iφ�′ Wm(� − �′)

[
E(�′) ± iB(�′)

]
, (A3)

where Wm is 2D Fourier transform of the m(θ ) field. Equivalently for the E-mode part only we have

Ẽ(�) =
∫

d2�′

(2π)2
Wm(� − �′)

[
cos(2(φ� − φ�′ ))E(�′) − sin(2(φ� − φ�′ ))B(�′)

]
, (A4)

where this equation has the interpretation of a rotation of E and B to ellipticity in Fourier space, a convolution with the window/weight
function and then a rotation back to E and B. We now wish to compute the effect that the weight map has on the E-mode power. In Fourier
space, the auto-power and cross-power are defined as〈
Xi(�)X∗

j (�′)
〉

= (2π)2C
XiXj

� δD(� − �′), (A5)

where isotropy of the field is assumed. This means that an unbiased estimator can be written in the flat sky limit as an average over angle in �

space:〈
C

XiXj

�

〉
=
∫

dφ�

(2π)

〈
Xi(�)X∗

j (�′)
〉
. (A6)

Hence by taking the correlation function of equation (A4) we can calculate the estimated power spectrum in the presence of a systematic
weight map. This follows the calculations of Memari (2010); the resulting expressions for the EE power and BB power are given below, and
we include the EB expression for completeness (however, in the flat sky limit, there is no EE, BB and EB mixing; there is between EE and
BB though):〈
C̃EE

�

〉
=
∫

d2�′

(2π)2

{∫
dLL

Wmm(L)

��′ sin η

(
[1 + cos 4η]

〈
CEE

�′
〉 + [1 − cos 4η]

〈
CBB

�′
〉)}

,

〈
C̃EB

�

〉
=
∫

d2�′

(2π)2

{∫
dLL

Wmm(L)

��′ sin η
2 cos 4η

〈
CEB

�′
〉}

,

〈
C̃BB

�

〉
=
∫

d2�′

(2π)2

{∫
dLL

Wmm(L)

��′ sin η

(
[1 − cos 4η]

〈
CEE

�′
〉 + [1 + cos 4η]

〈
CBB

�′
〉)}

, (A7)

where the additional L mode forms a triangle with � and �′ (|� − �′| < L < � + �′) with cos η = (�2 + �′2 − L2)/2��′ and similarly for sin η,
and Wmm is the angle average of the modulus squared of the weight function

Wmm(L) ≡
∫

dφ�

(2π)
|Wm(L)|2. (A8)

In the discrete case, we can write equations (A7) in a compact form using mixing matrices such that⎛⎜⎝
〈
C̃EE

�

〉
〈
C̃BB

�

〉
⎞⎟⎠ =

∑
�′

(
MEE,mm

��′ MBB,mm
��′

MBB,mm
��′ MEE,mm

��′

)(〈
CEE

�

〉〈
CBB

�

〉 ) , (A9)

where

MEE,mm
��′ ≡ ��′�′

(2π)2

∑
L

�LLWmm(L)
1 + cos 4η

��′ sin η
,

MBB,mm
��′ ≡ ��′�′

(2π)2

∑
L

�LLWmm(L)
1 − cos 4η

��′ sin η
, (A10)

and similarly for the EB power; ��′ is the separation between the discrete �′ modes. These expressions assume that the systematic fields are
uncorrelated with the shear and intrinsic ellipticity fields. This may not be the case in real data (e.g. selection effects over galaxy populations
may have particular biases), but for GREAT10 selection effects are not investigated and the biases are quoted as averages over populations.
We leave a generalization of this formalism to correlated systematic-ellipticity fields for future work.
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Using this we can write a power spectrum estimate of the quantities in equation (A1) (we drop the angular brackets over φ� for clarity)
including the γ I cross-term as

C̃EE
� = (1 + 2m�)

[
C

EE,γ γ
� + CEE,II

� + C
EE,γ I
�

]
+ AEE

�

+
∑

�′

(
MEE,mm

��′
[
C

EE,γ γ

�′ + CEE,II
�′ + C

EE,γ I

�′
]

+ MBB,mm
��′

[
C

BB,γ γ

�′ + CBB,II
�′ + C

BB,γ I

�′
])

, (A11)

where A� is the angle-averaged power spectrum of the c(θ ) variation; here, through isotropy, it is assumed that the power contains all
relevant information. This could be generalized to include non-isotropic variation in all terms, that is, not taking the angle averages. m� is the
angle-averaged Fourier transform of m(θ ). Our notation, for example, CEE,AB

� , refers to the EE power corresponding to correlations between
quantities A and B as a function of �. We do not include terms from the quadratic q(θ) contribution. For GREAT10, the γ field is E mode
only and the intrinsic ellipticity field is B mode only, with no γ I term, so we have a simpler expression

C̃EE
� = (1 + 2m�)CEE,γ γ

� + AEE
� +

∑
�′

(
MEE,mm

��′ C
EE,γ γ

�′ + MBB,mm
��′ CBB,II

�′
)

. (A12)

These expressions are general for a wide class of shape measurement biases, and are trivially extendable, for example, to include cross-terms
that may appear in real data (e.g. 〈cm〉 cross terms), if required.

Equation (A12) represents in general how shape measurement inaccuracies in GREAT10 can propagate through to the shear power
spectrum. In the case that the weight map is constant [m(θ ) = constant = m0, and c(θ ) = c0 with some associated error σ (c)], the Fourier
transform becomes a delta function and the mixing matrices become MEE,mm

�� = IN�
× m2

0 and MBB,mm
��′ = 0. This leads to

C̃EE
� = C

EE,γ γ
� + A + MC

EE,γ γ
� , (A13)

where M = 2m0 + m2
0 and A = σ (c)2 are constant functions of scale. In general, the mixing matrices are not only dependent on a single

� (i.e. diagonal M��) except in the case that the systematic is isotropic or constant. Unfortunately, this is likely not to be the case in weak
lensing where, for example, PSF ellipticity and size are often coherent but not constant across a field of view. Massey et al. (in preparation)
will discuss requirements on these parameters, M and A, and how they relate to uncertainty in PSF parameters.

We note that this formalism means that we only need to recover the statistical properties of the varying m(θ ) field (the power spectrum and
mixing matrix) in order to propagate its impact through to the shear power spectrum. In addition, as shown in Appendix B, this formalism
can also be used to generate expressions for correlation coefficients between the systematic m(θ ) and c(θ ) fields and any spatially varying
quantity. Given these definitions and formalisms, we can now proceed to outline the metrics used in this paper, taking into account some
practicalities such as pixel noise removal.

A P P E N D I X B : D E S C R I P T I O N O F T H E E VA L UAT I O N M E T R I C S

The variable shear nature of the simulations enables a variety of metrics to be calculated, each of which allows us to infer different properties
of the shape measurement method under scrutiny. In this paper, we define a variety of metrics that we explain in detail in this section.

B1 Quality factor

In general for a variable field we define the power spectrum as the Fourier transform of the correlation function as described in Appendix A.
We wish to compare the power reconstructed from the submissions against the true shear power spectrum and so define a baseline evaluation
metric, the quality factor (Q), as

Q = 1000
5 × 10−6∫

d ln �
∣∣∣C̃EE

� − C
EE,γ γ
�

∣∣∣ �2
. (B1)

The numerator 5 × 10−6 is calculated by generating Monte Carlo realizations of a mock submitted power spectrum and calculating the bias
in the dark energy equation-of-state parameter w0 (Linder 2003) which would occur if such an observation were made (using the functional
form filling formalism described in Kitching et al. 2009) over a survey of 20 000 deg2 using the same redshift distribution as described in
Section 3.2. In Fig. B1 we show the result of this procedure for GREAT10 [where the numerator in equation (B1) is labelled as σ 2

sys], where
we take a threshold value of bias-to-error ratio of 1. This is in fact conservative as shown in Massey et al. (in preparation). The factor of
1000 normalizes the metric such that a good method should achieve Q � 1000. A factor (1/2π) could be included in the denominator, but we
absorb this into the factor 5 × 10−6. This was the quality factor used in the online leaderboard during the challenge.

B2 Pixel-noise-corrected quality factor

In general we can express the measured total ellipticity by including a noise term in equation (A1), where en is some inaccuracy in this
estimator due to stochastic terms in shape measurement methods, or due to pixel noise in the images (finite S/N). In the simulations, for
ellipticity catalogue submissions, we averaged over Nrealization realizations of the noise. In this averaging, the mean of the noise contribution
is assumed to be zero, 〈en〉 = 0, over realizations, but where there is an error on this mean that remains. By propagating this through to the
power spectrum, we recover

C̃EE
� → C̃EE

� + σ 2
n

NrealizationNobject
, (B2)
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Figure B1. Monte Carlo realizations of submitted shear power spectrum where σ 2
sys is the denominator in equation (B1), and the calculated bias in dark energy

parameter with respect to its error.

where the noise term is white noise (constant over all scales) with a variance σ 2
n , which is a sum of the e1 and e2 components. The noise term

is now averaged over the number of realizations and the number of objects. For values of Nrealization = 200 and Nobject = 104 the expected
fractional contribution to the measured power σ 2

n /(NrealizationNobject〈C�,estimated〉) ≈ (σ/0.05)2.
The measured power spectra inferred from the ellipticity catalogue submissions and used in the quality factor (Q) defined in equation (B1)

therefore include this noise term. However, for an error induced by noise on ellipticity estimates of σ � 0.05 the impact on the metric should
be subdominant. It is commonly assumed that such noise terms could be removed in real data (this is trivial for correlation functions, but is
more complex for power spectrum estimates; that requires an estimate of σ n from data – the full covariance of the shear estimators, see also
e.g. Schneider, Eifler & Krause 2010), and some power spectrum submissions (see Section E) did employ techniques to remove this term
from the submitted power spectrum. Hence, we here introduce a quality factor that accounts for this noise term,

Qdn = 1000
5 × 10−6∫

d ln �
∣∣∣C̃EE

� − C
EE,γ γ
� − 〈σ 2

n 〉
NrealizationNobject

∣∣∣ �2
, (B3)

where〈σ 2
n 〉 is an estimated value of the pixel noise term from the ellipticity catalogue submissions.

To estimate the value of 〈σ 2
n 〉 from the simulations, we have to separate the E-mode shear field from the B-mode-only intrinsic ellipticity

field; otherwise, the variance of the ellipticities from a submitted entry will be dominated by the variance of the intrinsic ellipticities. This is
done using the rotations described in Appendix A; here, we describe this pedagogically. [We also use explicit Cartesian coordinates θ = (x, y)
and � = (�x, �y) for clarity.] We make a 2D discrete Fourier transform of the submitted ellipticity values such that

εmeasure(�x, �y) = FT[emeasure(x, y)], (B4)

where the measured ellipticity is averaged over all noise realizations before transformation. We then rotate this field such that

εrot,measure(�x, �y) = (�∗�∗/|�2|)εmeasure(�x, �y) (B5)

and then inverse Fourier transform to real space

κ(x, y) + iβ(x, y) = iFT[εrot,measure(�x, �y)], (B6)

where we now have a κ(x, y) field which contains E-mode power only and a β(x, y) field that contains B-mode power only. The simulations
have been set up such that the intrinsic ellipticity field has B-mode power only, such that we can now take the κ(x, y) map and generate an
E-mode-only ellipticity catalogue that should only contain the estimated shear values and the noise term:

κ(x, y) → eE,measure(x, y) ≈ γ̂ (x, y) + en(x, y), (B7)

where γ̂ is the estimate shear for each position (object) in field. We do this by following the inverse steps of transformations from equations
(B4) to (B6), and assume noise is equally distributed between E and B modes. The expression is only approximate because of position-
dependent biases (see Appendix A and section B5), which can mix E and B modes, but for the majority of methods presented in this paper
this effect seems to be subdominant. By taking the normal variance of eE,measure(x, y) we find that

σ 2
E,measure = σ 2

γ + σ 2
n (B8)

and so our estimate of the noise variance is

σ 2
n = σ 2

E,measure − σ 2
γ . (B9)

To calculate this we use the true shear values to find σ 2
γ ; this is unrealistic but note that the true individual shear values are not used directly

only to calculate the variance. For real data, as done by ‘fit2-unfold’ we expect that noise estimates from each galaxy will be used to calculate
this correction. Indeed part of the challenge, demonstrable by the ‘fit2-unfold’ submissions, was to develop optimal estimates for σ 2

n .
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GREAT10 Galaxy Challenge 3181

Figure B2. A simulation of the effect on Q (black line) and Qdn (green line) as the noise in a mock submission (containing only noise and the true shear
values) increases. Lines at Q = 1000 and σ n = 0.1 are to guide the reader.

To test that such a correction works, we simulated a submission by taking the true shear values and adding random normally distributed
numbers to each of the 10 000 × 200 × 24 shear values. We show results in Fig. B2. We find as expected that as the noise increases, the value
of Q (equation B1) decreases, but that including the noise correction (equation B3) increases the value. Note that due to the finite size of the
simulations any estimation of σ 2

n is itself noisy which means the corrected value of Qdn < ∞ even in this ideal case.

B3 One-point estimator shear relations

As well as metrics that integrate over the measured power spectra, we can also investigate a number of metrics that encapsulate a relation
between the measured and true shears for individual objects. This ties the quality factor metrics to the STEP (Heymans et al. 2006) m and c
values where

γ̂i = (1 + mij )γ t
j + ci, (B10)

where γ t
i is the true shear and γ̂i is the measured shear for each component; this is a simplification of equation (A1), and that used for all

constant shear simulations (with no position dependence). We also add a quadratic non-linear term to this relation (q1/2
ij γj |γ |kq1/2

ki ):

γ̂i = (1 + mij )γ t
j + ci + q

1/2
ij γj |γ |kq1/2

ki (B11)

which contains γ |γ |, not γ 2, since we may expect divergent behaviour to more positive and more negative shear values for each domain,
respectively. In general mij and qij could be non-diagonal matrices; however, in this paper, we assume that they are diagonal and take an
average over the two shear components to give

γ̂ = (1 + m)γ t + c + qγ |γ |, (B12)

where all quantities are averaged over γ 1 and γ 2.
In a variable shear simulation, calculating m, c and q by regressing emeasure and (γ + eintrinsic) would result in a noisy estimator dominated by

intrinsic ellipticity noise. However, we can calculate m, c and q directly by finding the estimated shear for each galaxy individually, removing
the intrinsic ellipticity contribution (equation B7). This is for every galaxy a noisy estimate of the shear; we then average these estimates over
bins in γ t. This enables the m, c and q parameters to be recovered, and in fact the variable field simulations allow for a flexible binning as a
function of any other spatially varying quantity (see Appendix E), and an exact removal of shape noise (through the B-mode intrinsic power).
This method of calculating the m, c and q parameters is a one-point estimate of the shape measurement biases and makes no assumption about
spatially correlated effects.

B4 Power spectrum relations

As described in Appendix A, we can write an expression for the estimated power using two linear parameters M and A, taking into account
the pixel noise removal,[
CEE

� − C
EE,γ γ
� − 〈σ 2

n 〉
NrealizationNobject

]
= MC

EE,γ γ
� + A. (B13)

This can be related to the m and c parameters:

M � m2 + 2m ≈ 2m,

A � σ (c)2, (B14)

where σ (c) is the variance of the c parameter, but only approximately because of the assumption of some form of spatial variation (constant
in this case).

In Fig. B3 we show how Qdn, M, A and the point estimators m and c are related. To create this, we explore the (M, A) plane and using the
fiducial power spectrum calculate Qdn for each value. We also show a realization where random components have been added, M(1 + R),
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3182 T. D. Kitching et al.

Figure B3. An exploration of the (M, A), (m, c) and (m, σ (c)) planes, where at each point the quality factor is calculated using a noise-free fiducial power
spectrum. The colour scale shows the logarithm of the quality factor. This can be compared to Fig. 2.
where R is a uniform random number, and similarly for A, at each point in parameter space to simulate a more realistic submission. We
find that there is a degenerate line in Qdn where an offset A can be partially cancelled by a negative M yielding the same Qdn, and a more
straightforward relation for M ≥ 0. As expected, the c parameter does not impact the quality factor but the variance of c does. There is a
similar degeneracy among m, σ (c) and Qdn to that among the linear power spectrum parameters, as expected from equation (B14), except
that for large negative m the quadratic m2 term begins to become important.

B5 Correlations with spatially varying quantities

To relax the assumption of constant m and c in power spectrum analysis, we can assume that each of these is correlated with some spatially
varying parameter X(θ ):

m(θ) = m0 + α

[
X(θ )

X0

]
,

c(θ ) = c0 + β

[
X(θ )

X0

]
, (B15)

with the correlation coefficients α and β; X0 is a constant reference value to ensure that the units of α and β are dimensionless: for ellipticity,
this is set to unity, and for PSF size squared, this is the mean PSF size squared. This is a simple relation and could be made significantly more
complex.

We explain in a correlation function notation how these propagate through, for pedagogical purposes, but for the full treatment one should
refer to the pseudo-C� methodology which we present in Appendix A. A simple correlation function approximation of the measured shear
can be written as〈
〈emeasure〉n〈emeasure〉∗n

〉
= (α/X0)2〈XX∗〉

[
〈γ γ ∗〉 +

〈
〈eintrinsic〉n〈eintrinsic〉∗n

〉]
+ [2(1 + m0)(α/X0)〈X〉 + (1 + m0)2]

[
〈γ γ ∗〉 +

〈
〈eintrinsic〉n〈eintrinsic〉∗n

〉]
+ (β/X0)2〈XX∗〉, (B16)

not including the pixel noise term. We can also take the cross-correlation between the measured ellipticity and these quantities:〈
〈emeasure〉nX

∗
〉

= 〈
((1 + m0 + (α/X0)X)(γ + 〈eintrinsic〉n) + c0 + (β/X0)X) X∗〉 ,

= (1 + m0)〈(γ + 〈eintrinsic〉n)X∗〉 + (α/X0)〈X(γ + 〈eintrinsic〉n)X∗〉 + (β/X0)〈XX∗〉 + c0〈X∗〉,
≈ (1 + m0)〈(γ + 〈eintrinsic〉n)X∗〉 + (β/X0)〈XX∗〉 + c0〈X∗〉, (B17)
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which results in an expression that is not dependent on α, assuming that third-order correlations and noise–X correlations are zero.
The corresponding full expressions for the pseudo-C� power spectrum, including the noise correction term (which we assume is uncorrelated

with all other terms), are[
C̃EE

� − C
EE,γ γ
� −

〈
σ 2

n

〉
NrealizationNobject

]
= (

m2
� + 2m�

)
C

EE,γ γ
� + (α/X0)2

∑
�′

[
MEE,XX

��′ C
EE,γ γ

�′ + MBB,XX
��′ CBB,II

�′
]

+ (α/X0)(1 + m�)〈X〉CEE,γ γ
� + (β/X0)2CXX

� ,[
C̃EX

� − C
γX
� − CIX

�

]
= m�

(
C

γX
� + CIX

�

)
+ (β/X0)CXX

� + c0〈X�〉. (B18)

The second expression has cross-power spectra on both sides. The matrices MXX are the mixing matrices for the spatially varying quantity
X. In general, the variation of X is not isotropic – PSF ellipticity, for example, can have a preferred direction in an image; however, here we
make the assumption of isotropy in defining the power CXX

� .
To calculate these from the simulations, we find the best-fitting α and β values (using a minimum least-squares estimator over the � range

defined in Appendix E) for X = PSF size squared and PSF ellipticity. Because this calculation is done on sets that are averaged over noise
realizations, this can only be calculated for those sets in which the PSF is fixed for a set (for the PSF correlations).

The relation to the linear power relations M and A is not straightforward because of the non-diagonal mixing matrix in general. Therefore,
in the results section (Section 4), we will quote values for the correlation coefficients αe, αR2 , βe, βR2 for ellipticity and PSF size squared (the
square of the size is the most relevant quantity for propagated PSF-shear behaviour, see Massey et al., in preparation and Paulin-Henriksson
et al. 2008). Note that α and β are unitless and scaled by a reference value X0 = [〈X〉]: for PSF size correlations, this means units of X0 =
3.42 = 11.56 pixel2, and for ellipticity correlations the quantities are unitless, X0 = 1. If one were to expand the bias in terms of a different
scaling, a natural expansion one may use, for example, is as a function of RPSF/Rgalaxy, and then a scaling can be applied to results presented
in this paper.

A P P E N D I X C : SI M U L AT I O N M O D E L L I N G

In this section, we provide some further details of the variable shear and PSF field, as well as the local modelling of the galaxies and stars.

C1 Scaling of the shear field

We note that in performing the process of sampling the shear field discretely and then generating a postage stamp for each sampling the
inter-postage stamp separation in the final image has a distance of θ image/100, but this is not necessarily related to the pixel scale of the postage
stamps, that is, θpixel × 48 × 100 �= θimage in general. As a result, the number density of the galaxies can be scaled as

n0

arcmin2
= 104

3600θ2
image

= 2.77

θ2
image

(C1)

and the maximum � set by the grid separation of the galaxies scales as

�max = 0.5
2

θ2
image/180/100

= 18 000

θimage
, (C2)

where 100 is the number of grid positions on a side. However, note that the true underlying simulated shear field is always fully sampled in
every case.

For the case of θ image = 10◦, this gives values of n0 = 0.0277 and �max = 1800. The images, however, can be scaled to match a variety
of other configurations, with the caveat that the absolute value of the shear power is constant; θ image = 1◦ gives a scaling of n0 = 2.77 and
�max = 18 000, and θ image = 0.◦5 gives a scaling of n0 = 11.1 and �max = 36 000. In each case the absolute amplitude of the calculated shear
power also needs to be scaled. It is then fair to match the simulations to either of these cases, which span a reasonable expected dynamical
range in the number density of objects but with a coupled increase in the maximum � range. The � values used for the Q metrics are � =
(233, 415, 600, 789, 977, 1162, 1350, 1538). These are specified as follows: (i) defining the maximum and minimum � modes, we do not
generate � modes above that corresponding to the grid separation, and avoid the smallest � modes where the S/N is low; (ii) we choose eight
bins linearly spaced in � between these limits; (iii) we define a grid in (�x,�y) for the power spectrum calculation, defined with �� = 36; and
(iv) we integrate over this grid and take the mean � value from the grid points in each of the eight � bins. The bins were originally defined
under the assumption that an equivalent accuracy of Q � 1000 in each � bin independently is desirable; see Fig. B2 where, given the size of
the simulation (200 noise realizations), and assuming that σ n ∼ 0.01 for a good method, we find Q ∼ 1000 at σn = 0.01 × √

(200/8) = 0.05,
although this is only an estimated number for any given method. Eight � bins were also defined for computational speed. We caution
here that accuracy statements will be dependent on the maximum and minimum � ranges, and on the shape of the power spectrum in
general.

We could replace the integrals in the Q factor definitions with sums for the discrete � case where
∫

d� →∑
� = (233,415,600,789,977,1162,1350,1538)��, but we keep the integral version in the text to maintain a general expression and for clarity. The

power CEE�2 is binned, and compared to the binned equivalent of the true/input power spectrum – the power spectrum of the actual realization
of the shear field – calculated in exactly the same way as the submitted power (one may refer to this as the ‘sample’ input power spectrum).
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C1.1 � integration

Here we briefly discuss a technical issue with regard to the � integral accuracy used for the Q factor calculation. The Q value is defined via

QN

Q
=
∫ log �max

log �min

d(log �) f (�) =
∫ �max

�min

d�

�
f (�) (C3)

with QN = 0.005 and

f (�) ≡ |C̃EE
� − C

EE,γ γ
� |�2 . (C4)

We can rewrite equation (C3) without any approximations as

QN

Q
=

Nbins∑
i=1

Ii with Ii ≡
∫ �i

�i−1

d�

�
f (�) . (C5)

For concreteness, we assume equally spaced bins that are linear in �: �i ≡ �min + i�� with i = 1, 2, . . ., Nbins and �� = (�max − �min)/Nbins.
We calculate the integral over the difference in the power using Monte Carlo integration of the average value of �2C

EE,γ γ
� for �i −1 < � ≤ �i

based on the ellipticities associated with a single realization of C̃EE
� , and similarly for �2C̃EE

� . Therefore, we have a quantity that is related to
Ii which can be written as

Ĩi � 1

��

∫ �i

�i−1

d� f (�) . (C6)

Working to second order in �� to evaluate different schemes for estimating the value of equation (C3), we have

fi(�) = fi−1/2 + f ′
i−1/2(� − �i−1/2) + 1

2
f ′′

i−1/2(� − �i−1/2)2 + O(��)3 (C7)

with

�i−1/2 ≡ �i − ��

2
, fi−1/2 ≡ fi−1/2(�i−1/2), etc., (C8)

then

Ii = fi−1/2

�i−1/2
+ ��2

�3
i−1/2

[
fi−1/2 − f ′

i−1/2�i−1/2 + 1

2
f ′′

i−1/2�
2
i−1/2

]
+ O(��)3 (C9)

and

Ĩi � fi−1/2 + ��2

24
f ′′

i−1/2 + O(��)3 . (C10)

We are now in a position to calculate the numerical approximation errors inherent in different schemes for combining values of Ĩi to estimate
the value of equation (C3).

Linear scheme

A straightforward implementation of the integration over � in equation (C3) in terms of a finite sum yields 1/�i −1/2 weights and is accurate
to second order:

Nbins∑
i=1

1

�i−1/2
Ĩi � QN

Q
+ ��2

12

Nbins∑
i=1

f ′
i−1/2�i−1/2 − fi−1/2

�3
i−1/2

. (C11)

Log scheme

We can also implement the integration over log � (first equality in equation C3) as a straightforward finite sum approximation, which implies
log (�i/�i −1)/�� weights and is also formally accurate to second order:

Nbins∑
i=1

log(�i/�i−1)/�� Ĩi � QN

Q
+ ��2

12

Nbins∑
i=1

f ′
i−1/2

�2
i−1/2

. (C12)

Comparing the two schemes above, both are accurate to second order (there are further schemes that are only accurate to first order). In
order to compare the two methods, we need to assume something about how the error in each bin, Ĩi � fi−1/2, grows with �, and then compare

f ′
i−1/2�i−1/2 − fi−1/2

�3
i−1/2

with
f ′

i−1/2

�2
i−1/2

. (C13)
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Suppose that the leading term in the Taylor expansion of f (�) is c�n, then we can calculate the leading behaviour for the ratio of equation (C11)
to (C12) explicitly as(

f ′
i−1/2�i−1/2 − fi−1/2

�3
i−1/2

)(
�2

i−1/2

f ′
i−1/2

)
= n − 1

n
. (C14)

Therefore, we conclude that the linear scheme is generally more accurate, and that the log scheme is only competitive in the unlikely scenario
that f (�) depends very strongly on �. Since we find empirically that f (�) ∝ �2 (i.e. |C̃EE

� − C
EE,γ γ
� | is approximately constant over bins), n =

2 is a good approximation and the linear scheme is then roughly twice as accurate as the log scheme.

C2 The galaxy models

Here we describe how the individual galaxies are modelled. Each galaxy is composed of a bulge and a disc, defined as radial intensity profiles
with

I (r) = Ii exp

[
−
(

K
r

ri

)1/n
]

, (C15)

where K = 2n − 0.331 with n = 4 for the bulge and n = 1 for the disc and i = {b, d} for bulge and disc, respectively. Both are Sérsic profiles
(the latter being an exponential profile). The intensity is normalized to match the S/N, and the scale radii for the disc and bulge, rd and rb,
respectively, are in general free parameters; fiducial values for these parameters were set to be rb = 2.3 and rd = 4.8 pixels. In Bridle et al.
(2010), and for the code used for this challenge, the values of radii r are the half-light radius for both bulges and discs. The disc exponential
scalelengths and half-light scale radii differ by a factor of 1.669.

In most sets, the size distribution over objects was a compact Gaussian, with a variance of σ R = 0.01:

p(r) ∝ exp

[
− (r − rb)2

2σ 2
R

]
, (C16)

and similarly for the disc distribution. In three sets (see Section 3.1), the galaxy size varied for each galaxy in the set; in these cases, the
functional form for the S/N variation was a Rayleigh distribution:

P (r) ∝ r

σ 2
R

exp

[
− (r − rb)2

σ 2
R

]
, (C17)

where σ R = 2.0 for these sets, and rb and rd are the fiducial values. There is a caveat that the sizes referred to here (and in the GREAT08
simulations) refer to the pre-sheared radii of the objects, as such there is a ellipticity–size correlation that was present in the simulations.

The bulge and disc in general can be miscentred; however, in all but two sets, the bulge and disc profiles were co-centred. Object positions
were centred in each postage stamp with a Gaussian error position with a standard deviation of 0.5 pixels. This means that the distribution of
centroids is not uniform across pixels but (unrealistically) clustered symmetrically towards the centre; this is one of the simplifying aspects
of GREAT10 designed to militate against biases caused by centroiding errors in methods.

The bulge-to-disc ratio was 50 per cent for the majority of sets, that is, the flux in the bulge and disc was equal. In those sets in which this
varied, we used a uniform distribution of bulge-to-disc ratios over the range b/d = [0.3, 0.95], to avoid very low and very high fractions.

The bulge and disc components of the galaxies in the simulations had different intrinsic ellipticity distributions, each described by

Pi(e) = e cos
(πe

2

)
exp

[
−2

(
e

Bi

)C

i

]
, (C18)

where B = 0.09 and C = 0.577 for the bulges and B = 0.19 and C = 0.702 for the discs (these values are taken from the APM survey,
Crittenden et al. 2001). To remove any very highly elliptical galaxies from the sample, we truncated this distribution at e = 0.8. This model
was slightly more complex than the Bridle et al. (2010) model by allowing for non-coelliptical profiles (i.e. the bulge and disc were allowed
to have different ellipticities). This was done so that the ellipticity distributions in equation (C18) were conserved. As an example, we show
the distribution of the disc and bulge angles in Fig. C1.

The S/N was implemented by calculating the noise-free model flux by integrating over the galaxy model and then adding a constant
Gaussian noise with a variance of unity and rescaling the galaxy model to yield the correct S/N. The S/N was scaled to match the default
SEXTRACTOR (Bertin & Arnouts 1996) flux_auto–flux_err_auto parameter combination. The galaxy S/N distribution was a compact
Gaussian in the majority of sets, with a variance of σ S = 0.1, centred on (S/N)i = 20 for the fiducial set:

p(S/N ) ∝ exp

[
− (S/N − (S/N )i)2

2σ 2
S

]
. (C19)

In three sets (see Section 3.1), the S/N varied for each galaxy in the set with a functional form for the S/N variation that was a Rayleigh
distribution:

P (S/N ) ∝ S/N

σ 2
S

exp

[
− (S/N − (S/N )i)2

σ 2
S

]
, (C20)

where (S/N)i = 20 and σ S = 5.0 for these sets.
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3186 T. D. Kitching et al.

Figure C1. The distributions of bulge and disc ellipticities for a typical image within the fiducial set. The left-hand panels show the distribution of ellipticities
for bulge and disc. The top right-hand panel shows the uniform distribution of disc position angles, and the bottom right-hand panel shows the difference
between the bulge and disc positions angles.

C3 The PSF models

The PSF model consisted of a static component that modelled the local PSF functional form and a spatially varying kernel that mapped the
parameters of this local model across the image plane. The local functional form was a Moffat profile:

I (r) =
[

1 +
(

r

rd

)2
]−β

, (C21)

where the scale radius rd was a variable quantity across each image, related to the full width at half-maximum (FWHM), and the power β =
3 for all images. After generating a circular PSF, it was made into an elliptical shape by distortion using the shear matrix given in Kitching

Figure C2. Each panel shows an entire simulated image, showing the typical PSF pattern for an image in a set (image 100 in set 1) with no random Kolmogorov
component (upper panels) and for an image in a set (image 100 in set 19) with a random Kolomogorov component (lower panels). The 100 × 100 grid has
been downsampled to 30 × 30 in these panels for clarity. The left-hand panels show the amplitude of the ellipticity in the colour scale, and the orientation of
the PSF denoted by the whiskers. The right-hand panels show the size of the PSF in the colour scale in units of pixels. In each image in a set, these patterns
changed, except in those sets where the PSF spatial variation was fixed (see Appendix D).
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et al. (2011) such that there were three parameters which locally describe the PSF (rd, e1, e2), where similarly to the galaxies the size was the
pre-sheared size of the PSF.

The PSF spatial variation consisted of the following three components:

(i) Static component. This was spatially constant across the image and consisted of (1) a Gaussian smoothing kernel that added to the PSF
size; this had a variance of 0.1 present in all images; and (2) a static additive ellipticity component of 0.05 in e1,PSF and e2,PSF to simulate
tracking error.

(ii) Deterministic component. This was to simulate the impact of the telescope on the PSF size and ellipticity. We used the Jarvis, Schecter
& Jain (2008) model to simulate this with fiducial parameters (a0 = 0.014, a1 = 0.0005, d0 = −0.006, d1 = 0.001, c0 = −0.010), which is
dominated by primary astigmatism (a0), primary de-focus (d0) and coma (c0).

(iii) Random component. To simulate the random turbulent effect of the atmosphere in some of the sets, we additionally included a random
Gaussian field in the ellipticity only with a Kolmogorov power spectrum of C� = �−11/6 (see Rowe 2010; Heymans et al. 2012 for discussion
on this kind of power spectrum PSF variation seen in optical weak-lensing images).

In Fig. C2 we show a typical PSF pattern for an image in a set with no random Kolmogorov variation and one in which there is a random
Kolmogorov component. As described in Section 2, participants were provided with the PSF as an exact functional form, consisting of
tabulated numbers for (rd, e1, e2) at the position of each galaxy and as a pixelated stellar image.

APPENDIX D : SET DESCRIPTION

In the table below, we provide the parameter values that define each set in the GREAT10 Galaxy Challenge simulations.

A P P E N D I X E : D E S C R I P T I O N O F T H E M E T H O D S

Here we briefly summarize the methods that took part in the challenge. We encourage the reader to refer to the methods’ own papers for more
details.

For each method, we show three figures. These are as follows:

(i) A reconstruction of the shear power spectrum for each set comparing the submitted power, true power and pixel-noise-corrected power,
and the M, A and Qdn values for all sets.

(ii) The measured minus true shear on an object-by-object basis as a function of the true shear γ t, the PSF ellipticity and size, the bulge-to-
disc angle and ratio, and the bulge size; for γ t the gradient and offset of this fit are m and c; in all cases, we make 10 bins the variable quantity.
We also show a value for q, a non-linear shear response for each metric keeping m and c fixed at their best-fitting values (see equation B12).

(iii) The m and c values as a function of PSF ellipticity and size, bulge-to-disc angle and ratio, and bulge size. In all cases, we make 10
bins the variable quantity.

Table D1. A summary of the variables that define each set in the GREAT10 Galaxy Challenge simulations. The variables in bold are those that distinguish
each set from the fiducial one. The third columns lists those fields that were fixed over each image in each set. Columns 4 and 9 list the distribution used for
the S/N and galaxy sizes, respectively. Column 8 shows the variance of the offset between the bulge and disc components in pixels squared.

Set name Fixed S/N S/N distribution rb/pixels rd /pixels Bulge-to-disc ratio Bulge-to-disc offset/pixel2 r distribution Kolmogorov power

1 Fiducial – 20 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
2 Fiducial PSF 20 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
3 Fiducial Int 20 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
4 Low S/N – 10 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
5 Low S/N PSF 10 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
6 Low S/N Int 10 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
7 High S/N – 40 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
8 High S/N PSF 40 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
9 High S/N Int 40 Gaussian 2.3 4.8 0.5 0.0 Gaussian None
10 Smooth S/N – 20 Rayleigh 2.3 4.8 0.5 0.0 Gaussian None
11 Smooth S/N PSF 20 Rayleigh 2.3 4.8 0.5 0.0 Gaussian None
12 Smooth S/N Int 20 Rayleigh 2.3 4.8 0.5 0.0 Gaussian None
13 Small galaxy – 20 Gaussian 1.8 2.6 0.5 0.0 Gaussian None
14 Small galaxy PSF 20 Gaussian 1.8 2.6 0.5 0.0 Gaussian None
15 Large galaxy – 20 Gaussian 3.4 10.0 0.5 0.0 Gaussian None
16 Large galaxy PSF 20 Gaussian 3.4 10.0 0.5 0.0 Gaussian None
17 Smooth galaxy – 20 Gaussian 2.3 4.8 0.5 0.0 Rayleigh None
18 Smooth galaxy PSF 20 Gaussian 2.3 4.8 0.5 0.0 Rayleigh None
19 Kolmogorov – 20 Gaussian 2.3 4.8 0.5 0.0 Gaussian Yes
20 Kolmogorov PSF 20 Gaussian 2.3 4.8 0.5 0.0 Gaussian Yes
21 Uniform bulge-to-disc ratio – 20 Gaussian 2.3 4.8 [0.3, 0.95] 0.0 Gaussian None
22 Uniform bulge-to-disc ratio PSF 20 Gaussian 2.3 4.8 [0.3, 0.95] 0.0 Gaussian None
23 Offset bulge-to-disc ratio – 20 Gaussian 2.3 4.8 0.5 0.5 Gaussian None
24 Offset bulge-to-disc ratio PSF 20 Gaussian 2.3 4.8 0.5 0.5 Gaussian None
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3188 T. D. Kitching et al.

Figure E1. The true shear power (green) for each set and the shear power for the ‘ARES 50/50’ submission (red). We also show the ‘denoised’ power spectrum
(blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the bottom
right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label the set
number.

Because these figures contain a wealth of information for the latter two, we plot the gradient and offset values for a linear fit through the
points and display these values in the figures. In the top right-hand corner of each of the subplots, we show the difference in the reduced χ2

between the best linear fit and the best constant fit (gradient equal to zero), �χ2 = χ2(gradient, offset) − χ2(offset); this can be used as an
indicator of the significance of any linearly varying behaviour.

For power spectrum submissions, the latter two plots (concerned with individual one-point shear biases) will not be shown.
We have also provided postscript files of all figures in this appendix online at http://great.roe.ac.uk/data/galaxy_article_figures.

E1 ARES: Peter Melchior

Comparing the results of DEIMOS and KSB, we found several sets where the ellipticities measured with either method strongly and
consistently disagreed, with relative deviations of up to 25 per cent. With additional simulations we investigated when such discrepancies
between KSB and DEIMOS occur, and concluded that mainly very small, that is, badly resolved, galaxies are responsible for large relative
deviations, with KSB having a too weak and DEIMOS a too strong response to galactic ellipticities. Hence, a linear combination of the shear
estimates of KSB and DEIMOS appeared advantageous. With the results of our simulations, a weighting scheme was defined that aims to
minimize the mean squared error on the ellipticity of each galaxy. For GREAT10, the weight for each set was adjusted independently.

E2 cat-unfold: David Kirkby, Daniel Margala

See the fit-unfold description (Appendix E4).
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GREAT10 Galaxy Challenge 3189

Figure E2. The measured minus true shear for the ‘ARES 50/50’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy bulge-to-disc
offset angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top left-hand
panel, these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners show
�χ2 = χ2(gradient, offset) − χ2(offset).

Figure E3. The STEP m and c values for the ‘ARES 50/50’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle, galaxy
bulge-to-disc ratio and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity; the average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).
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3190 T. D. Kitching et al.

E3 DEIMOS: Peter Melchior, Massimo Viola, Julia Young, Kenneth Patton

DEIMOS (Melchior et al. 2011) measures the second-order moments of the light distribution using an elliptical Gaussian weight function,
whose width is adjusted such as to maximize the S/N of the measurement. The centroid of the galaxy and ellipticity of the weight function
are iteratively matched to the apparent (i.e. PSF-convolved) galaxy (the method has first been described by Bernstein & Jarvis 2002). The
application of the weight function to the image is then corrected by considering higher order moments. These corrections become increasingly
accurate with increasing width of the weight function, or the correction order. For GREAT10 we used correction of the order of 4–8, that is,
considering the effect of weighting on the moments of the order of 6–10. This correction scheme has been shown to introduce very small
biases of the order of 1 per cent, mostly for very small galaxies. After the deweighting, we deconvolve the galactic moments from the moments
of the PSF, for which we have established an exact and analytic approach. The PSF has been measured with a weight function of the same
width as the galaxy, but the ellipticity of the weight function was allowed to match the ellipticity of the PSF. From the deconvolved moments,
we determine the complex ellipticity ε, which theoretically provides an unbiased estimator of the gravitational shear and thus does not need
any susceptibility or responsivity corrections.

The only free parameter is the choice of the correction order, which we varied from 4 to 8 (e.g. ‘DEIMOS C6’), and the range of weight
function widths. No model of either galaxy or PSF is employed. The pixel values are taken at centre-pixel positions; an interpolation to
subpixel resolution is not applied.

E4 fit-unfold, cat-unfold, shapefit : David Kirkby, Daniel Margala

Each of these names refer to different submissions from the same underlying software. fit-unfold and cat-unfold were power spectrum
submissions. The DeepZot analysis pipeline consists of four layers of software, implemented as C++ libraries, that were used for both the
GREAT10 Galaxy Challenge and the MDM Challenge (Kitching et al., in preparation). The first layer provides a uniform interface to the
GREAT10 and MDM data sets. The next layer performs PSF and galaxy shape estimation using a maximum-likelihood model-fitting method.
A half-trace approximation KSB method is also implemented for comparison with earlier work and to provide a fast bootstrap of the model
fit. The model-fitting code incorporates an optimized image synthesis engine and uses the MINUIT minimization library to calculate full

Figure E4. The true shear power (green) for each set and the shear power for the ‘cat2-unfold’ submission (red). The y-axes are C��
2 and the x-axis is �. In

the bottom right-hand corner, we show M/2,
√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point

label the set number.
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Figure E5. The true shear power (green) for each set and the shear power for the ‘DEIMOS C6’ submission (red). We also show the ‘denoised’ power spectrum
(blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the bottom
right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label the set
number.

covariance matrices. The third layer provides supervised machine learning when a suitable training set is available, and is based on the TMVA

package. The best results in the MDM Challenge were obtained with a 13-input neural network which derives ellipticity corrections from
a combination of model-fitted parameters, covariance matrix elements, and KSB results. The final layer of the DeepZot software pipeline
performs power spectrum estimation and uses the model-fitting errors to determine and subtract the variance due to shape measurement
errors. The main computational bottleneck in the DeepZot pipeline is the model fit which currently requires about 500 ms per galaxy on a
single Intel Xeon core for a typical fit to a 19-parameter galaxy model in which seven parameters are floating and a full covariance matrix is
obtained.

E5 gfit : Marc Gentile, Frederic Courbin, Guldariya Nurbaeva

The gfit shear measurement method is a simple forward model-fitting method where the underlying galaxy is modelled using a seven-parameter
Sérsic profile. The model parameters are the Sérsic index and radius (n, re), the galaxy two-component ellipticity (e1, e2), the centroid (xc, yc)
and the flux intensity (I0) at r = 0. The galaxy and PSF centroids were estimated using SEXTRACTOR (Bertin & Arnouts 1996).

For GREAT10, gfit used a different minimizer from that based on Levenberg–Marquardt previously used in GREAT08. The minimizer
was developed at the Laboratory of Astrophysics of EPFL (LASTRO) with GREAT10 in mind. It has proven more robust and more accurate
when fitting low-S/N images.

The ‘gfit den cs’ version of gfit submitted in GREAT10 involved an experimental implementation of the new DWT-Wiener wavelet-based
denoising method, also developed at LASTRO. DWT-Wiener proved very successful in all other methods we submitted in the GREAT10
Galaxy Challenge (TVNN, MegaLUT). In the case of gfit, the Q factor was boosted by an estimated factor of 1.5. More details about the
DWT-Wiener method can be found in Nurbaeva et al. (2011).

E6 im3shape: Sarah Bridle, Tomasz Kacprzak, Barney Rowe, Lisa Voigt, Joe Zuntz

im3shape fitted a sum of co-elliptical and co-centred Sérsic profiles. In this implementation, two Sérsic profiles were used with the Sérsic
indices fixed to 1 (disc like) and 4 (bulge like) and a bulge-to-disc scale radius ratio set to 0.9. The functional form for the PSF was provided,
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3192 T. D. Kitching et al.

Figure E6. The measured minus true shear for the ‘DEIMOS C6’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy bulge-to-disc
offset angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top left-hand
panel, these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners show
�χ2 = χ2(gradient, offset) − χ2(offset).

Figure E7. The STEP m and c values for the ‘DEIMOS C6’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle, galaxy
bulge-to-disc ratio and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity; the average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).
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Figure E8. The true shear power (green) for each set and the shear power for the ‘fit2-unfold’ submission (red). The y-axes are C��
2 and the x-axis is �. In the

bottom right-hand corner, we show M/2,
√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label

the set number.

and the convolution was performed on a grid three times the pixel resolution in each direction, with additional integration in the central pixels
of the galaxy model image. The maximum-likelihood point was used, with a χ2 evaluated from the full 48 × 48 postage stamp. The output
ellipticity (a − b)/(a + b) was used as our shear estimate, but with a correction for noise bias for the submissions marked ‘NBC’. For the
noise bias correction, a noisy simulated image was produced of a fiducial galaxy using the machinery in the IM3SHAPE code. Simulations were
also produced in which the ellipticity was increased by 0.1 in one or other direction. A straight line was fitted to the output shear estimates
relative to the input ellipticity to measure multiplicative and additive errors and it was verified that the multiplicative and additive errors
were zero in the absence of noise. For submissions marked ‘NBC0’, two different kinds of noisy simulations were performed and used these
to correct the shear estimates of the corresponding GREAT10 image sets for (i) Moffat PSF and fiducial GREAT10 S/N; and (ii) Moffat
PSF and lowest GREAT10 S/N. For NBC1 the following combinations were used: (i) Moffat PSF, fiducial GREAT10 S/N, PSF FWHM
3.3 pixels, bulge scale radius 4.3 pixels; (ii) the same as the previous but PSF FWHM 3.1 pixels; (iii) the same as the previous but PSF FWHM
3.6 pixels; (iv) Moffat PSF, fiducial GREAT10 S/N, PSF FWHM 3.3 pixels, bulge scale radius 2.3 pixels; (v) the same as the previous but
bulge scale radius 8 pixels; (vi) Moffat PSF, low GREAT10 S/N, PSF FWHM 3.3 pixels, bulge scale radius 4.3 pixels; (vii) the same as the
previous but PSF FWHM 3.1 pixels; and (viii) the same as the previous but PSF FWHM 3.6 pixels. The optimizer used to find the location of
maximum likelihood in the model parameter space was ‘PRAXIS’ (short for Principal AXIS) by Richard Brent which is available free from
Netlib at http://www.netlib.org/opt/. The code is specifically written to make it easy to interchange optimizers, and alternatives are also under
investigation. For more information, please refer to Zuntz et al. (in preparation) for details about the im3shape code in general and Kacprzak
et al. (in preparation) for details of the noise bias calibration.

E7 KSB : Julia Young, Peter Melchior

The original KSB approach was implemented with the ‘trace-trick’, where the inversion of Psm is achieved by replacing the entire 2 × 2
matrix with 1/2 of its trace. This approach is employed in several studies, and it has recently been shown (Viola et al. 2012) that it provides
the most unbiased shear estimates for a variety of observational conditions.
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3194 T. D. Kitching et al.

Figure E9. The true shear power (green) for each set and the shear power for the ‘gfit’ submission (red). We also show the ‘denoised’ power spectrum (blue)
for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the bottom right-hand
corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label the set number.

Figure E10. The measured minus true shear for the ‘gfit’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy bulge-to-disc offset
angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top left-hand panel,
these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners show �χ2 =
χ2(gradient, offset) − χ2(offset).
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GREAT10 Galaxy Challenge 3195

Figure E11. The STEP m and c values for the ‘gfit’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle, galaxy
bulge-to-disc ratio and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity. The average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).

To determine the galaxy centroid and the width of the circular Gaussian weight function, the same iterative method as employed in DEIMOS
was used: determine the centroid such that the first moments vanish, and the size of the weight function such as to maximize S/N. For the
final shear estimate, we did not apply additional fudge factors or responsivity corrections.

E8 KSB f90: Catherine Heymans

KSB f90 is a benchmark implementation of the longstanding KSB+ method (Kaiser, Squires & Broadhurst 1995; Luppino & Kaiser 1997;
Hoekstra et al. 1998). This code is identical to that used in the ‘CH’ analysis of STEP1 and GREAT08 (Heymans et al. 2006; Bridle et al.
2010) and can therefore be viewed as a benchmark to compare the different simulations. KSB f90 is publicly available and can be downloaded
from http://www.roe.ac.uk/h̃eymans/KSBf90. The code has been used to analyse the HST GEMS and STAGES surveys (Heymans et al. 2005;
Heymans et al. 2008). The accuracy of KSB f90 has a strong S/N dependence as shown in this paper, yielding an incorrect redshift scaling
of the lensing signal in real data. For this reason, whilst KSB f90 has been shown to perform well on average and for S/N > 20, author CH
advises not to use this shape measurement method for low-S/N data.

E9 MegaLUT: Malte Tewes, Nicolas Cantale, Frederic Courbin

MegaLUT is a fast empirical method to correct ellipticity measurements of galaxies for the distortions by the PSF. It uses a straightforward
classification scheme, namely a LUT, built by supervised learning. In the scope of our submissions to GREAT10, the successive steps of
MegaLUT can be summarized as follows: (1) simulate a large number of realistic galaxy and PSF stamps and store the sheared galaxy
ellipticities prior to the PSF convolution. This leads to a learning sample of images; (2) run a shape measurement algorithm on the galaxies
and PSFs of this learning sample and create a LUT that connects the measured galaxy and PSF shapes to the known galaxy ellipticities stored
in the first step; (3) for a given galaxy–PSF pair in the GREAT10 data, run the same shape measurement algorithms as in step (2). Query
the LUT to identify the galaxy–PSF pairs of the learning sample that have similar measured shapes. The galaxy ellipticities of these selected
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3196 T. D. Kitching et al.

Figure E12. The true shear power (green) for each set and the shear power for the ‘im3shape NCB0’ submission (red). We also show the ‘denoised’ power
spectrum (blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the
bottom right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label
the set number.

Figure E13. The measured minus true shear for the ‘im3shape NCB0’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy
bulge-to-disc offset angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top
left-hand panel, these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners
show �χ2 = χ2(gradient, offset) − χ2(offset).
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GREAT10 Galaxy Challenge 3197

Figure E14. The STEP m and c values for the ‘im3shape NCB0’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle,
galaxy bulge-to-disc ratio and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity. The average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).

pairs, as stored in step (1), yield our estimate of the galaxy ellipticity prior to the convolution by the PSF. The complex problem of PSF
correction is therefore reduced to a simple and fast array indexing operation.

For the final submission ‘MegaLUTsim2.1 b20’, we denoised the galaxy and PSF images with wavelet filtering, and built simple threshold
masks. The shapes were then measured using second-order moments of the masked light distributions. The LUT was generated from 2.1
million simulated galaxy–PSF pairs.

E10 method04,05,07: Micheal Hirsch, Stefan Harmeling

In a series of submissions named method0x with x ∈ {1, . . . , 7} the effect of taking higher order pixel correlations on the accuracy of shear
measurement was tested. In method01, the shear was measured by subtracting the quadrupole moments of the autocorrelated images of the
galaxy and corresponding PSF images. The assumption of uncorrelated noise is confirmed by the fact that the autocorrelation is highly peaked
at zero shift. To get rid of this peak which impedes accurate moment estimation, a rough estimate of the noise variance was obtained by
computing the variance of pixels with negative intensity values only (assuming Gaussian noise with zero mean) which was then subtracted
from the central pixel. As in any other KSB-type method, noise affects moment estimation and has to be accounted for by some weighting
scheme. To this end, both galaxy and star images were modulated by a Gaussian with fixed variance and zero centroid. By noticing that
a pixel-wise modulation corresponds to a convolution in Fourier space, a correction for the induced error due to the modulation could be
removed by subtracting the measured quadrupole moment and the fixed variance of the Gaussian distribution used for weighting in the
Fourier domain. In method04, we went one step further by computing the autocorrelation of the autocorrelated galaxy or star image, otherwise
pursuing the same approach as described above. By this the images are even further smoothed and are still centred such that inaccuracies in
centroid estimation are not an issue in our approach. All other methods are variants of the above where the empirical moment estimation with
a Gaussian weighting scheme was replaced by a model-fitting approach (method02), introduced an additional denoising step (method05), did
empirical moment estimation without additional weighting (method03) and accounted for the PSF by a Wiener deconvolution of the galaxy
images before moment estimation (method07).
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3198 T. D. Kitching et al.

Figure E15. The true shear power (green) for each set and the shear power for the ‘KSB’ submission (red). We also show the ‘denoised’ power spectrum
(blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the bottom
right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label the set
number.

Figure E16. The measured minus true shear for the ‘KSB’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy bulge-to-disc offset
angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top left-hand panel,
these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners show �χ2 =
χ2(gradient, offset) − χ2(offset).
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GREAT10 Galaxy Challenge 3199

Figure E17. The STEP m and c values for the ‘KSB’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle, galaxy
bulge-to-disc fraction and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity. The average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).

Figure E18. The true shear power (green) for each set and the shear power for the ‘KSB f90’ submission (red). We also show the ‘denoised’ power spectrum
(blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the bottom
right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label the set
number.
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3200 T. D. Kitching et al.

Figure E19. The measured minus true shear for the ‘KSB f90’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy bulge-to-disc
offset angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top left-hand
panel, these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners show
�χ2 = χ2(gradient, offset) − χ2(offset).

Figure E20. The STEP m and c values for the ‘KSB f90’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle, galaxy
bulge-to-disc ratio and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity. The average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).
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GREAT10 Galaxy Challenge 3201

Figure E21. The true shear power (green) for each set and the shear power for the ‘MegaLUTsim2.1 b20’ submission (red). We also show the ‘denoised’
power spectrum (blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �.
In the bottom right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point
label the set number.

Figure E22. The measured minus true shear for the ‘MegaLUTsim2.1 b20’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy
bulge-to-disc offset angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top
left-hand panel, these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners
show �χ2 = χ2(gradient, offset) − χ2(offset).
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3202 T. D. Kitching et al.

Figure E23. The STEP m and c values for the ‘MegaLUTsim2.1 b20’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset
angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote
errors on all parameters for clarity. The average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient,
offset) − χ2(offset).

Figure E24. The true shear power (green) for each set and the shear power for the ‘method 4’ submission (red). We also show the ‘denoised’ power spectrum
(blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the bottom
right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label the set
number.
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GREAT10 Galaxy Challenge 3203

Figure E25. The measured minus true shear for the ‘method 4’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy bulge-to-disc
offset angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top left-hand
panel, these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners show
�χ2 = χ2(gradient, offset) − χ2(offset).

Figure E26. The STEP m and c values for the ‘method 4’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle, galaxy
bulge-to-disc fraction and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity. The average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).
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3204 T. D. Kitching et al.

Figure E27. The true shear power (green) for each set and the shear power for the ‘shapefit’ submission (red). We also show the ‘denoised’ power spectrum
(blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the bottom
right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label the set
number.

Figure E28. The measured minus true shear for the ‘shapefit’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy bulge-to-disc
offset angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top left-hand
panel, these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners show
�χ2 = χ2(gradient, offset) − χ2(offset).
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GREAT10 Galaxy Challenge 3205

Figure E29. The STEP m and c values for the ‘shapefit’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle, galaxy
bulge-to-disc fraction and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity. The average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).

E11 shapefit: David Kirkby, Daniel Margala

See the fit-unfold description (Appendix E4).

E12 TVNN: Guldariya Nurbaeva, Frederic Courbin, Malte Tewes, Marc Gentile

The methods NN23 func, NN19 and NN21, submitted to GREAT10, were variants of the TVNN method which is a deconvolution technique
based on the combination of a Hopfield neural network (Hopfield 1982) with the Total Variation model proposed by Rudin, Osher and Faterni
(Rudin 1992). In the Total Variation model, the noise in the image is assumed to follow a Gaussian distribution.

The deconvolution process is carried out by minimizing the energy function of the Hopfield Neural Network. This energy function is
composed of PSF, expressed as a Toeplitz matrix, and a regularization term to minimize the noise. The latter is a Sobel high-pass operator.
The deconvolution itself is done in an iterative way where at each step the neurons of the network are updated so as to minimize the energy
function.

Galaxy ellipticities are then estimated from quadrupole moments computed on the 2D autocorrelation function (ACF) of the deconvolved
image. The advantages of using the ACF are: (i) high-S/N shape measurement; and (ii) invariance of the ellipticity measurement with respect
to data (Miralda-Escude 1991; van Waerbeke 1998)

In our submissions, the number after the acronym NN stands for the size of the input data stamps; for example, NN23 considers images
with 23 pixels on a side. This is the first time full deconvolution of the data is used to carry out shape measurements.

A P P E N D I X F: SI M U L AT I O N S

Inevitably, with a simulation the size of the GREAT10 Galaxy Challenge, there were several points in which the data or interpretation of the
data/competition instructions was inadvertently misinterpreted by participants. The following is a list of those points:

(i) Approximately 1 per cent of the data were found to contain image glitches and were replaced during the challenge as a patch to the data.
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3206 T. D. Kitching et al.

Figure E30. The true shear power (green) for each set and the shear power for the ‘NN23’ submission (red). We also show the ‘denoised’ power spectrum
(blue) for each set (where this is indistinguishable from the raw submission, a red line is only legible). The y-axes are C��

2 and the x-axis is �. In the bottom
right-hand corner, we show M/2,

√A and the colour scale represents the logarithm of the quality factor. The small numbers next to each point label the set
number.

Figure E31. The measured minus true shear for the ‘NN23’ submission as a function of the true shear, PSF ellipticity, PSF FWHM, galaxy bulge-to-disc
offset angle, galaxy bulge-to-disc ratio and galaxy bulge size. For each dependence, we fit a linear function with a gradient and offset. For the top left-hand
panel, these are the STEP m and c values; additionally for the shear dependence we include a quadratic term separately, q. The top right-hand corners show
�χ2 = χ2(gradient, offset) − χ2(offset).
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GREAT10 Galaxy Challenge 3207

Figure E32. The STEP m and c values for the ‘NN23’ submission as a function of PSF FHWM and ellipticity, galaxy bulge-to-disc offset angle, galaxy
bulge-to-disc ratio and galaxy bulge size. For each variable, we plot a linear relation to the behaviour of m and c. We do not explicitly quote errors on all
parameters for clarity. The average errors on m and c are �0.005 and 5 × 10−5, respectively. The top right-hand corners show �χ2 = χ2(gradient, offset) −
χ2(offset).

(ii) The functional PSFs used a convention in (x,y) coordinate and ellipticity for which some methods had to make the following
transformations: e2 → −e2, x → y and y → x, rPSF → rPSF/(1+e2

1 +e2
2). This convention warning was listed in the header of every functional

PSF description during the challenge.
(iii) An additional two sets contained ‘pseudo-Airy’ PSFs using the functional form of Kuijken (2006). However, there was a misinterpre-

tation by some participants between the functional PSF description and the PSF FITS images generated using the photon-shooting method
used in the GREAT10 code. This arose because in the photon-shooting method photons at large r are generated using a uniform distribution
from 0 to 1 and then their values replaced by a reciprocal; however, the PDF of such a process yields a variation of 1/r2 not 1/r which when
modulated by the function gives 1/r4 [not 1/r3, given in equation (21), Kuijken 2006; the same equation as that provided to participants]. This
was identified during the challenge and all participants were informed, and the code used to produce the PSFs was made public8 on 2011
February 7 (7 months before the challenge deadline); however, we have not included the results from these sets in this paper because several
submissions were affected.

Each of these issues was addressed during the challenge; however, the nature of the participation rate (see Section 5, all submissions were
made in the final 3 weeks) meant that some methods did not have time to create alternative submissions before the challenge was closed
officially. The challenge was extended by 1 week, into a post-challenge submission period, but those methods submitted during this time
could not officially ‘win’ the competition; in the event, none of these additional submissions improved on the winning score.

When using the GREAT08/GREAT10 code we note a number of issues that should be taken into account. The S/N used in Bridle et al.
(2010) is approximately half the standard definition used in this paper. Equation (A8) makes the area of the galaxy invariant under the primary
ellipticity transformation (but not under the cosmological shear transformation), whereas equation (A9) does not make the PSF area invariant

8 http://great.roe.ac.uk/data/code/sm/
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under the ellipticity transformation. Also the sense of the transformation in these equations of g for galaxies and e for PSFs is different; the
PSF shear is in the opposite direction to the cosmic shear. Finally, we also note that there were two typos in appendix A of Bridle et al. (2010).
These were (i) in equation (A5), the top left-hand corner of the matrix should be r/

√
(q) and (ii) equation (A8) should be the transpose of

what it reads.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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