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ABSTRACT
We introduce the Phoenix Project, a set of � cold dark matter (CDM) simulations of the dark
matter component of nine rich galaxy clusters. Each cluster is simulated at least at two different
numerical resolutions. For eight of them, the highest resolution corresponds to ∼130 million
particles within the virial radius, while for one this number is over one billion. We study
the structure and substructure of these systems and contrast them with six galaxy-sized dark
matter haloes from the Aquarius Project, simulated at comparable resolution. This comparison
highlights the approximate mass invariance of CDM halo structure and substructure. We find
little difference in the spherically averaged mass, pseudo-phase-space density and velocity
anisotropy profiles of Aquarius and Phoenix haloes. When scaled to the virial properties of
the host halo, the abundance and radial distribution of subhaloes are also very similar, despite
the fact that Aquarius and Phoenix haloes differ by roughly three decades in virial mass. The
most notable difference is that cluster haloes have been assembled more recently and are thus
significantly less relaxed than galaxy haloes, which leads to decreased regularity, increased
halo-to-halo scatter and sizable deviations from the mean trends. This accentuates the effects
of the strong asphericity of individual clusters on surface density profiles, which may vary by
up to a factor of 3 at a given radius, depending on projection. The high apparent concentration
reported for some strong-lensing clusters might very well reflect these effects. A more recent
assembly also explains why substructure in some Phoenix haloes is slightly more abundant
than in Aquarius, especially in the inner regions. Resolved subhaloes nevertheless contribute
only 11 ± 3 per cent of the virial mass in Phoenix clusters. Together, the Phoenix and Aquarius
simulation series provide a detailed and comprehensive prediction of the CDM distribution in
galaxies and clusters when the effects of baryons can be neglected.
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1 I N T RO D U C T I O N

The past two decades have witnessed the emergence of a paradigm
for the origin of structure in the Universe. There is now strong ev-
idence that the dominant forms of the matter–energy content are
a combination of a mysterious form of ‘dark energy’ that governs
the late expansion of the Universe, and ‘dark matter’ made up of
some kind of non-baryonic, weakly interacting elementary particle
left over from the big bang. Although the exact nature of the dark
matter particle is unknown, astrophysical clues to its identity may

�E-mail: lgao@bao.ac.cn

be gained by studying its clustering properties on different scales.
Considerable effort has been devoted to this task, and has led to the
crafting of detailed theoretical predictions, especially for the case
of particles with negligible thermal velocity, the cornerstone of the
popular ‘cold dark matter’ (CDM) theory. As a result, we now under-
stand fairly well (i) the statistics of CDM clustering on large scales
and its dependence on the cosmological parameters (e.g. Jenkins
et al. 1998; Springel, Frenk & White 2006); (ii) the dynamics of its
incorporation into non-linear units (‘haloes’) (see e.g. Wang et al.
2011, and references therein) and, at least empirically, (iii) its spa-
tial distribution within such virialized structures (e.g. Frenk et al.
1985; Navarro, Frenk & White 1996, 1997; Navarro et al. 2004,
2010).
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Progress in this field has been guided by N-body simulations of
ever increasing numerical resolution and dynamic range (e.g. Frenk
et al. 1985; Navarro et al. 1997, 2004, 2010; Moore et al. 1999; Jing
& Suto 2002; Diemand, Moore & Stadel 2004b; Gao et al. 2004b,
2008; Diemand, Kuhlen & Madau 2007; Springel et al. 2008a;
Stadel et al. 2009). These simulations are essential to investigate
highly non-linear scales such as the haloes of individual galaxies
and galaxy groupings, where simple analytical approximations fail.
A few key properties of CDM haloes are now widely agreed upon,
at least when the effects of baryons are neglected: (a) the presence
of a central density ‘cusp’; (b) strong deviations from spherical
symmetry; (c) a remarkable similarity in the shape of the mass
profiles and (d) the presence of abundant substructure in the form
of self-bound ‘subhaloes’.

On the scale of individual galaxies, these key predictions have
been confirmed and refined by the latest simulation work, in par-
ticular the Via Lactea simulation series (Diemand et al. 2007), the
GHALO simulation (Stadel et al. 2009) and the Aquarius Project
(Springel et al. 2008a,b; Navarro et al. 2010). For example, the
central density cusp is now accepted to be shallower than hypoth-
esized in some earlier work and mass profiles have been shown
to be only approximately self-similar. Further, it is now clear that
although subhaloes are subdominant in terms of total mass, they
are still dense and abundant enough to dominate the dark matter
annihilation radiation from a halo.

As shown by Springel et al. (2008a), the latter statement requires
a detailed characterization of the substructure, including the internal
properties of the subhaloes, their mass function and their spatial dis-
tribution within the main halo. The Aquarius Project has provided
compelling, if mainly empirical, guidance to each of these issues in
the case of haloes similar to that of the Milky Way. For example,
the subhalo mass function is well approximated by a power law,
dN/dM ∝ M−1.9, with a normalization, in scaled units, weakly de-
pendent on halo mass (Gao et al. 2011). In addition, subhaloes tend
to avoid the central region of the main halo and are more prevalent
in the outer regions. Interestingly, their spatial distribution appears
to be independent of subhalo mass, a result that, if generally appli-
cable, simplifies substantially the characterization of substructure.
Finally, the internal structure of subhaloes obeys scaling laws simi-
lar to those of haloes in isolation but slightly modified by the effects
of the tidal field of the main halo: subhaloes are ‘denser’, reaching
their peak circular velocity at radii roughly half that of their isolated
counterparts.

Galaxy clusters are a promising venue for testing these predic-
tions. The central cusp, for example, can be constrained by combin-
ing measurements of the stellar kinematics of the central galaxy with
a lensing analysis of radial and tangential ‘arcs’ near the cluster cen-
tre (e.g. Sand, Treu & Ellis 2002; Sand et al. 2004; Meneghetti et al.
2007; Newman et al. 2009; Zitrin et al. 2012). Outside the very cen-
tre, the cluster mass profile can be measured through weak lensing
(see e.g. Okabe et al. 2010; Umetsu et al. 2011; Oguri et al. 2012),
X-ray studies of the hot intracluster medium (ICM; e.g., Buote et al.
2007) and, more recently, through the ICM Sunyaev–Ze’ldovich ef-
fect on the cosmic microwave background (CMB; see e.g. Gralla
et al. 2011). In many cases, including substructure seems required
in order to obtain acceptable fits (e.g. Mao & Schneider 1998; Mao
et al. 2004; Natarajan, De Lucia & Springel 2007; Natarajan et al.
2009; Xu et al. 2009), implying that it should be possible to con-
trast observations directly with the CDM substructure predicted by
simulations.

Such endeavour has so far been hindered by the lack of ultra-high-
resolution dark matter simulations of galaxy clusters comparable to

the Aquarius series. Indeed, the highest resolution galaxy cluster
simulations published to date have at most of the order of a few
million particles within the virial radius (e.g. Jing & Suto 2000;
Springel et al. 2001b; Diemand et al. 2004b; Reed et al. 2005),
roughly one thousand times fewer than the best resolved Aquarius
halo. None of these cluster simulations are thus able to address
conclusively issues such as the structure of the central cusp or the
properties of cluster substructure.

Although it may be tempting to appeal to the nearly self-similar
nature of CDM haloes to extrapolate the Aquarius results to cluster
scales, it is unclear what systematic uncertainties might be intro-
duced through such extrapolation. Clusters are rare, dynamically
young objects up to one thousand times more massive than individ-
ual galaxies. They thus trace scales where the CDM power spectrum
differs qualitatively from that of galaxies. Precision work demands
that the near self-similarity of dark haloes be scrutinized directly
in order to provide definitive predictions for the CDM paradigm on
cluster scales.

To this aim, we have carried out a suite of simulations designed
to address these issues in detail. The Phoenix Project follows the
design of the Aquarius Project and consists of zoomed-in resimu-
lations of individual galaxy clusters drawn from a cosmologically
representative volume. The simulations follow only the dark mat-
ter component of each cluster, and include the first simulation of
a cluster-sized halo with more than one billion particles within the
virial radius. Like the Aquarius Project on galaxy scales, the large
dynamic range of these simulations allows us to probe not only
the innermost regions of cluster haloes and thus the structure of the
central cusp, but also the statistics, internal structure and spatial dis-
tribution of cluster substructure over a mass range spanning seven
decades.

Our paper is organized as follows. In Section 2, we describe our
numerical techniques and introduce the simulation set. In Sections 3
and 4 we discuss, respectively, the density profile and substructure
properties of Phoenix haloes and compare them with those of Aquar-
ius. Section 5 summarizes our main conclusions.

2 T H E S I M U L AT I O N S

The Phoenix Project consists of a series of simulations of nine
different galaxy clusters with masses exceeding 5 × 1014 h−1 M�.
These clusters were selected from a large cosmological volume
and resimulated individually at varying resolution. Details of the
resimulation procedure are given below.

2.1 Cosmology

All the simulations reported here adopt the cosmological parameters
of the Millennium Simulation (Springel et al. 2005): �M = 0.25,
�� = 0.75, σ 8 = 0.9, ns = 1 and a present-day value of the
Hubble constant H0 = 100 h km s−1 Mpc−1 = 73 km s−1 Mpc−1.
This is also the set of cosmological parameters adopted for the
Aquarius project (Springel et al. 2008b), which targeted haloes a
thousand times less massive. Although they are inconsistent with
the latest CMB data (Komatsu et al. 2011) the differences are not
large (the main difference is that a lower value of σ 8 = 0.81 is now
preferred) and they are expected to affect only the abundance of
cluster haloes rather than their detailed structure and substructure
properties (Wang et al. 2012). This choice also has the advantage that
any difference between Aquarius and Phoenix haloes can be traced
to the different mass scales and not to variations in the cosmological
model.
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Table 1. Basic parameters of the Phoenix simulations. Each of the nine haloes is labelled as Ph-X-N,
where the letter X (from A to I) identifies each halo and N, which runs from 1 to 4, refers to the numerical
resolution (1 is highest). The parameter mp gives the particle mass in the high-resolution region that
includes the cluster; M200 is the virial mass of the halo; r200 is the corresponding virial radius and
N200 states the number of particles inside r200. The parameter ε is the Plummer-equivalent gravitational
softening length, so that pairwise interactions are fully Newtonian when separated by a distance greater
than 2.8ε. The last column lists the ‘convergence radius’, rconv, outside which the circular velocity is
expected to converge to better than 10 per cent.

Name mp M200 r200 N200 ε rconv

(h−1 M�) (h−1 M�) (h−1 Mpc) (h−1 kpc) (h−1 kpc)

Ph-A-1 6.355 × 105 6.560 × 1014 1.413 10 32 269 120 0.15 1.2
Ph-A-2 5.084 × 106 6.570 × 1014 1.414 129 235 472 0.32 2.7
Ph-A-3 1.716 × 107 6.566 × 1014 1.413 38 261 560 0.7 4.2
Ph-A-4 1.373 × 108 6.593 × 1014 1.415 4 802 516 2.8 9.4

Ph-B-2 6.127 × 106 8.255 × 1014 1.526 134 718 112 0.32 3.0
Ph-B-4 1.656 × 108 8.209 × 1014 1.522 4 956 688 2.8 10.7

Ph-C-2 4.605 × 106 5.495 × 1014 1.386 119 324 008 0.32 2.6
Ph-C-4 1.182 × 108 5.549 × 1014 1.383 4 696 046 2.8 9.2

Ph-D-2 4.721 × 106 6.191 × 1014 1.386 130 529 200 0.32 2.7
Ph-D-4 1.373 × 108 6.162 × 1014 1.384 4 488 330 2.8 9.4

Ph-E-2 4.425 × 106 5.969 × 1014 1.369 130 529 200 0.32 2.4
Ph-E-4 1.017 × 108 5.923 × 1014 1.366 5 824 375 2.8 8.4

Ph-F-2 4.425 × 106 7.997 × 1014 1.509 129 221 216 0.32 2.8
Ph-F-4 1.682 × 108 8.039 × 1014 1.512 4 779 008 2.8 10.3

Ph-G-2 8.599 × 106 1.150 × 1015 1.704 133 730 958 0.32 3.2
Ph-G-4 2.907 × 108 1.148 × 1015 1.703 3 949 310 2.8 13.1

Ph-H-2 8.600 × 106 1.136 × 1015 1.686 129 488 456 0.32 2.9
Ph-H-4 2.502 × 108 1.150 × 1015 1.686 4 456 720 2.8 11.8

Ph-I-2 1.841 × 107 2.411 × 1015 2.185 131 845 620 0.32 2.9
Ph-I-4 4.559 × 108 2.427 × 1015 2.181 5 289 259 2.8 14.2

2.2 Cluster sample and resimulations

The Phoenix cluster sample is selected for resimulation from the
Millennium Simulation friends-of-friends (FOF) group catalogue at
z = 0. Six clusters were selected at random from the 72 systems
with virial1 mass in the range 5 < M200/1014 h−1 M� < 10. In
order to sample the tail of rare rich clusters three further Phoenix
clusters were selected from the nine Millennium haloes which have
M200 > 1015 h−1 M�.

The initial conditions for resimulation were set up using a proce-
dure analogous to that used for the Aquarius haloes and described
in detail by Power et al. (2003) and Springel et al. (2008a). The
only difference is that the initial displacements and velocities were
computed using second-order Lagrangian perturbation theory, as
described by Jenkins (2010). All nine haloes were resimulated at
least twice using different numerical resolution (level 2 and level
4, respectively). At level 2 each cluster has between 120 and 135
million particles within the virial radius; at level 4 each system is
made up of 4 to 6 million particles.

We have selected one of the clusters (Ph-A) for a numerical reso-
lution study and have carried out an extra level 3 run (with roughly

1 We define the virial radius of a cluster, r200, as that of a sphere of mean
density 200 times the critical density for closure; ρcrit = 3H 2

0 /8πG. The
virial radius defines implicitly the virial mass of a cluster, M200, and its virial
velocity, V200 = √

GM200/r200.

40 million particles within r200) and a flagship level 1 run, where we
followed 4.05 billion high-resolution particles in total, 1.03 billion
of which are found within r200 at z = 0. For ease of reference we
label the runs using the convention Ph-X-N, where X is a letter
from A to I that identifies each individual cluster and N is a num-
ber from 1 to 4 that specifies the resolution level. The simulation
parameters are summarized in Table 1. We have used for all runs
the P-GADGET-3 code, a version of GADGET-2 (Springel et al. 2005)
especially optimized for zoomed-in cosmological resimulations in
distributed-memory massively parallel computers. The code is iden-
tical to that used for the Aquarius Project (Springel et al. 2008b).
The simulations were carried out on Deepcomp 7000 at the Super-
computer Center of the Chinese Academy of Science. The largest
simulation, Ph-A-1, used 3 Tbs of memory on 1024 cores and took
about 1.9 million CPU hours. The initial conditions were generated
at the Institute for Computational Cosmology (Durham University).

The gravitational softening of each run was chosen following
the ‘optimal’ prescription of Power et al. (2003). It is kept fixed
in comoving coordinates throughout each run and is listed in
Table 1. Our highest resolution run (Ph-A-1) has a nominal
(Plummer-equivalent) spatial resolution of just 150 h−1 pc.

Haloes are identified in each run using the FOF group finding
algorithm with linking length set to 20 per cent of the mean
interparticle separation (Davis et al. 1985). Substructure within
FOF haloes is identified by SUBFIND (Springel, Yoshida & White
2001a), a groupfinding algorithm that searches recursively for self-
bound subhaloes. Both FOF and SUBFIND have been integrated within
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Table 2. Basic structural parameters of Phoenix clusters at z = 0. The leftmost column labels each run, as in Table 1;
the second and third columns list the peak circular velocity, Vmax, and the radius, rmax, at which it is reached. The
concentration parameters of the best NFW (Navarro et al. 1996, 1997) and Einasto (Einasto 1965) fits are listed under
c and cE, respectively. QNFW and QE are the figures of merit of the best NFW and Einasto fits, respectively. The
column labelled α lists the Einasto shape parameter. Nsub denotes the total number of subhaloes with more than 20
particles identified within r200; f sub is the fraction of the virial mass contributed by such subhaloes and doff is the
distance from the gravitational potential minimum to the centre of mass of particles within the virial radius, in units
of r200.

Name Vmax rmax zh cE c QE QNFW α Nsub f sub doff

(km s−1) (h−1Mpc)

Ph-A-1 1521.82 0.55 1.17 5.59 5.63 0.037 0.093 0.215 192 206 0.080 0.04
Ph-A-2 1527.24 0.55 1.17 5.72 5.96 0.039 0.075 0.216 26 896 0.071 0.04
Ph-A-3 1529.41 0.56 1.17 5.69 6.04 0.038 0.061 0.218 8478 0.062 0.04
Ph-A-4 1538.88 0.59 1.17 5.71 6.14 0.052 0.063 0.219 1049 0.049 0.04

Ph-B-2 1624.52 0.53 0.46 4.41 4.19 0.127 0.108 0.235 38 659 0.108 0.02
Ph-B-4 1623.12 0.56 0.46 4.40 4.06 0.107 0.117 0.276 1657 0.081 0.02

Ph-C-2 1294.19 0.65 0.76 4.27 5.11 0.077 0.104 0.181 33 529 0.114 0.06
Ph-C-4 1310.19 0.78 0.76 4.34 4.72 0.085 0.112 0.185 1489 0.095 0.06

Ph-D-2 1393.13 0.68 0.46 3.88 4.08 0.122 0.086 0.205 38 199 0.124 0.05
Ph-D-4 1436.10 0.65 0.46 4.03 4.34 0.136 0.127 0.212 1491 0.093 0.05

Ph-E-2 1385.78 0.65 0.91 3.48 5.19 0.067 0.135 0.149 33 678 0.101 0.04
Ph-E-4 1399.96 0.68 0.91 4.02 4.82 0.048 0.079 0.181 1547 0.070 0.04

Ph-F-2 1543.27 0.60 1.1 3.81 4.61 0.053 0.048 0.186 31 247 0.095 0.05
Ph-F-4 1559.44 0.62 1.1 4.00 4.54 0.059 0.057 0.203 1547 .075 0.05

Ph-G-2 1561.75 1.06 0.18 0.78 3.33 0.100 0.221 0.097 42 528 0.168 0.17
Ph-G-4 1599.17 1.04 0.18 1.10 2.98 0.109 0.164 0.116 1586 0.140 0.17

Ph-H-2 1676.43 1.14 0.21 1.98 4.66 0.155 0.212 0.117 35 048 0.095 0.1
Ph-H-4 1710.19 1.14 0.21 2.75 3.59 0.109 0.115 0.178 1437 0.069 0.1

Ph-I-2 2236.05 1.03 0.56 4.18 4.86 0.041 0.059 0.190 35 754 0.102 0.02
Ph-I-4 2269.09 1.05 0.56 4.48 5.02 0.045 0.051 0.208 1641 0.073 0.02

P-GADGET-3 and are run on-the-fly each time a simulation snapshot
is created.

We have stored for each run 72 snapshots uniformly spaced in
log10a, starting at a = 0.017 (a = 1/(1 + z) is the expansion factor).
The initial conditions are set at zinit = 63 for our level 4 and at
zinit = 79 for the rest. The large number of outputs is designed
to allow us in future work to implement semi-analytic models of
galaxy formation in order to follow the evolution of the baryonic
component of galaxies within rich clusters.

We list the basic structural parameters of Phoenix clusters at
redshift z = 0 in Table 2. These include the peak circular velocity,
Vmax, and the radius, rmax, at which it is reached; the half-mass
formation redshift, zh, when the main progenitor first reaches half
the final halo mass; the concentration parameters, c and cE, obtained
from the best-fitting Navarro-Frenk-White (NFW) (Navarro et al.
1996, 1997) and Einasto (1965) profiles, respectively; the figure
of merit, QNFW and QE, associated with each of those fits and
the Einasto ‘shape’ parameter α. (See Appendix A for definitions
corresponding to these fitting formulae and for details on the profile-
fitting procedure.) Nsub is the total number of subhaloes with more
than 20 particles identified by SUBFIND inside r200; f sub is the total
mass contributed by these subhaloes, expressed as a fraction of the
virial mass.

3 T H E S T RU C T U R E O F P H O E N I X C L U S T E R S

We shall focus our analysis on the properties of Phoenix clusters at
z = 0. Fig. 1 shows Ph-A at the four different numerical resolutions.

As in Springel et al. (2008a), this and other cluster images are
constructed so that the brightness of each pixel is proportional to
the logarithm of the square of the dark matter density projected
along the line of sight,

S(x, y) =
∫

ρ2
loc(r) dz, (1)

while the colour hue encodes the mean dark matter velocity disper-
sion,

σ (x, y) = 1

S(x, y)

∫
σloc(r) ρ2

loc(r) dz. (2)

Here the local dark matter density, ρ loc(r), and the local velocity
dispersion, σ loc(r), are estimated using a smoothed particle hydro-
dynamics kernel interpolation scheme.

Fig. 1 shows that the main result of increasing the number of
particles is the ability to resolve a larger number of subhaloes. On
the other hand, the main properties of the cluster, such as its shape
and orientation, the overall mass profile, and even the location of
the largest subclumps remain invariant in all four Ph-A realizations.

Fig. 2 is analogous to Fig. 1, but for the inner ∼1 h−1 Mpc of Ph-
A-1 (our highest resolution run). This image highlights the strong
asphericity of the halo, as well as the presence of several nested lev-
els of substructure (i.e. subhaloes within subhaloes). It also shows
that subhaloes tend to avoid the central regions. These characteris-
tics are shared with galaxy-sized haloes (Springel et al. 2008a), and
appear to be typical of CDM haloes on all mass scales.
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The Phoenix project 2173

Figure 1. Images of cluster Ph-A at four different numerical resolutions. Each panel projects a cubic volume 5 h−1 Mpc on a side. The brightness of each
image pixel is proportional to the logarithm of the square of the dark matter density projected along the line of sight, and the hue encodes the local velocity
dispersion density-weighted along the line of sight (see the text for details). This rendering choice highlights the presence of substructure which, although
abundant, contributes less than about 10 per cent of the total mass within the virial radius.

Fig. 3 is analogous to Fig. 1 but for all level 2 Phoenix haloes
at z = 0. This figure shows that the main characteristics of Ph-
A described above are common to all Phoenix clusters: strong
asphericity, abundant substructure and a marked difference be-
tween the spatial distribution of mass (which is highly concen-
trated) and that of subhaloes (which tend to avoid the central
regions).

Fig. 3 also highlights an important characteristic of cluster-sized
dark matter haloes: the presence of ‘multiple centres’ traced by
groups of subhaloes, as well as the overall impression that many
systems are in a transient, unrelaxed stage of their evolution. This
is expected, given the late assembly of the clusters: Ph-G-2, for
example, assembled half its final mass after z = 0.18; the median
half-mass assembly redshift for all Phoenix clusters is just z = 0.56.
Ph-A, on the other hand, appears relaxed; this cluster has the highest
formation redshift of our sample, zh ∼ 1.2.

The late assembly and concomitant departures from equilibrium
are characteristics that set clusters apart from galaxy-sized haloes;
for comparison, the median half-mass formation redshift of Aquar-
ius haloes is z ∼ 2. Table 2 lists two quantitative measures of
departures from equilibrium: the fraction of mass in substructures,
f sub, and the offset, doff , between the centre of mass of the halo
and the location of the potential minimum expressed in units of the
virial radius (for further discussion of these parameters see Neto
et al. 2007). These correlate well with the formation redshift, zh,
and are significantly larger, on average, than in the galaxy-sized
Aquarius haloes (see Table 3).

3.1 Mass profiles

We explore in this section the spherically averaged mass profiles
of Phoenix haloes. We begin by using the four Ph-A realizations to
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Figure 2. The inner ∼1 h−1 Mpc of Ph-A-1. Colour coding is the same as in Fig. 1. This figure illustrates clearly the strong asphericity of the halo, the presence
of several nested levels of substructure and the tendency of subhaloes to avoid the halo centre.

assess the limitations introduced by finite numerical resolution.
Fig. 4 shows the density profile, ρ(r), as well as the radial depen-
dence of the logarithmic slope, γ = −d ln ρ/d ln r , for Ph-A-1
through Ph-A-4. As discussed by Power et al. (2003) and Navarro
et al. (2010), the mass profiles of simulated haloes are robustly de-
termined in regions where the two body-relaxation time exceeds the
age of the Universe. This constraint defines a ‘convergence radius’,
rconv, outside which the circular velocity, Vc = (GM(< r)/r)1/2,
is expected to converge to better than 10 per cent. Since Vc is a
cumulative measure we expect rconv to be a conservative indicator
of the innermost radius where local estimates of the density, ρ(r),
converge to better than 10 per cent.

This is indeed the case for Ph-A, as shown in Fig. 4. The left-
hand panel shows ρ(r), multiplied by r2 in order to remove the
dominant radial trend so as to enhance the dynamic range of the
plot. The thick lines highlight the radial range of the profile outside
the convergence radius; the density clearly converges to better than
10 per cent at radii greater than rconv. In those regions the logarithmic
slope γ is also robustly and accurately determined. We conclude that
r > rconv is a simple and useful prescription that identifies the regions

unaffected by numerical limitations. We list rconv for all Phoenix
runs in Table 1.

The thin dashed lines in Fig. 4 indicate the best-fitting NFW
(brown) and Einasto (magenta) profiles, computed as described in
Appendix A. The NFW shape is fixed in this log–log plot, whereas
the Einasto shape is controlled by the parameter α, which is found to
be 0.215 by the fitting procedure when applied to the Ph-A-1 profile.
This figure suggests that the shape of the mass profile deviates
slightly but systematically from the NFW profile. Although it is
possible to obtain excellent fits over the resolved radial range with
the NFW formula (typical residuals are less than ∼10 per cent),
there is a clear indication that the density profile near the centre is
shallower than the asymptotic r−1 NFW cusp. In agreement with
results from the Aquarius Project (Navarro et al. 2010), there is
little indication that the central density cusp of Ph-A is approaching
a power law; the profile becomes gradually shallower all the way
into the innermost resolved radius. This radial trend is very well
described by the Einasto profile.

Fig. 5 shows the density profiles of all level 2 Phoenix haloes,
in a format similar to that of Fig. 4. The top panels show profiles

C© 2012 The Authors, MNRAS 425, 2169–2186
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at U
niversity of D

urham
 on A

pril 22, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


The Phoenix project 2175

Figure 3. The same as Fig. 1, but for all level 2 Phoenix clusters at z = 0. Boxes are all 5 h−1 Mpc on a side. Note that the appearance of several Phoenix clusters
is suggestive of a transient evolutionary stage, characterized by the presence of a number of undissolved substructure groupings. Ph-G-2 is a particularly good
example of this irregular structure which may be traced to its recent assembly time; this cluster has acquired half its mass since z = 0.18.

Table 3. Comparison of the average properties of the six galaxy-sized Aquarius haloes and the nine cluster-sized Phoenix
haloes. Sample averages are listed for each quantity together with the rms dispersion around the mean. The first column
identifies the simulation set; zh is the half-mass formation redshift; doff and f sub are the dynamical relaxation diagnostics
introduced in Table 2; α is the best-fitting Einasto shape parameter and Qmin the goodness-of-fit measure (Section A);
Cχ and χ are the parameters of power-law fits to the PPSD profile (equation 3); Nm and s describe the power-law fits
to the subhalo mass function, N (>μ) = Nm (μ/10−6)s (equation 4); Nv and d those corresponding to fits of the form,
N (> ν) = Nv (ν/0.025)d , to the subhalo velocity function (equation 5).

Name 〈zh〉 〈doff〉 〈f sub〉 〈α〉 〈Qmin〉 〈Cχ 〉 〈χ〉 〈Nm〉 〈s〉 〈Nv〉 〈d〉

Phoenix 0.65 0.061 0.109 0.175 0.086 1.75 −1.86 7866 −0.97 3984 −3.32
±0.36 ±0.047 ±0.027 ±0.046 ±0.041 ±0.29 ±0.04 ±965 ±0.02 ±317 ±0.10

Aquarius 1.65 0.032 0.071 0.159 0.048 2.19 −1.82 5092 −0.94 4033 −3.13
±0.65 ±0.011 ±0.022 ±0.022 ±0.012 ±0.14 ±0.02 ±677 ±0.02 ±500 ±0.09
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Figure 4. Left-hand panel: spherically averaged density profile of halo Ph-A at z = 0. Different colours correspond to the four different resolution runs listed
in Table 1. The panel on the left shows the density multiplied by r2 in order to enhance the dynamic range of the plot. Each profile is shown with a thick
line connecting filled circles from the ‘convergence radius’, rconv, outwards (Power et al. 2003). The thin curves extend the profiles inwards down to r = 2ε,
where ε is the Plummer-equivalent gravitational softening length. The vertical dotted lines indicate, for each run, 2.8ε, the distance beyond which pairwise
particle interactions are fully Newtonian. Note the excellent numerical convergence achieved for each simulation outside their rconv. An NFW profile with
concentration c = 5.63 (thin dashed brown line) and an Einasto profile with α = 0.22 and cE = 5.59 (thin dashed magenta line) are also shown for comparison.
Right-hand panel: logarithmic slope (γ = −d ln ρ/d ln r) of the density profile as a function of radius. Colours and line types are the same as in the left-hand
panel. Note again the excellent convergence achieved in all runs at radii outside the convergence radius, rconv.

Figure 5. Spherically averaged density (left-hand panels) and logarithmic slope (right-hand panels) of all level 2 Phoenix haloes as a function of radius. Radii
have been scaled to the virial radius of each halo in the top panels and to the ‘scale radius’, r−2, of the best-fitting Einasto profile in the bottom panels. Profiles
are plotted down to the convergence radius, rconv. The thick dashed black line shows the average density profile of all Phoenix haloes, computed after stacking
the nine haloes, each scaled to its own virial mass and radius. The thick red dashed line shows the result of the same stacking procedure, but applied to the
Aquarius haloes.
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The Phoenix project 2177

Figure 6. Residuals from the best Einasto (left-hand panel) and NFW (right-hand panel) profile fits for all level 2 Phoenix haloes. Colours and line types are
as in Fig. 5. The thick black dashed curve corresponds to the composite profile obtained after stacking all nine Phoenix level 2 runs. The red thick dashed curve
corresponds to the same composite profile, but for the six galaxy-sized level 2 Aquarius haloes.

with radii scaled to the virial radius of each cluster, whereas those at
the bottom show radii in units of the ‘scale radius’, r−2, of the best
Einasto fit. Profiles are shown from the convergence radius, rconv,
outwards.

In general, the density profiles of Phoenix clusters become grad-
ually shallower towards the centre; from γ ∼ 3 in the outer regions
to an average value of γ ∼ 1 at the innermost resolved radius.
This behaviour is similar to that of Aquarius haloes, whose average
profile is shown by the thick red dashed lines in Fig. 5. The large
difference between Aquarius and Phoenix seen in the top panels of
this figure just reflects the different concentration2 of cluster- and
galaxy-sized haloes. Indeed, when radii are scaled to r−2, the aver-
age Phoenix and Aquarius profiles are basically indistinguishable
from each other.

This is confirmed quantitatively by the best-fitting Einasto pa-
rameters of these average profiles (listed in Table 3). The average
Phoenix halo is only slightly worse fit by an Einasto profile than
Aquarius, as shown by the Qmin goodness-of-fit measure (6.5 versus
1.8 per cent, respectively). There is also a slight difference in shape
parameter; the average Phoenix cluster has α = 0.175 whereas the
average Aquarius halo has α = 0.159, in agreement with previously
reported trends (Gao et al. 2008).

One aspect in which Phoenix and Aquarius haloes do differ is
the halo-to-halo scatter: the dispersion in the Einasto parameter α

is twice as large for clusters as for galaxy-sized haloes (Table 3).
This may be readily seen in Fig. 5: Ph-A-2, for example, follows
the steady decline in γ towards the centre exhibited by Ph-A-1 (and
characteristic also of Aquarius haloes), whereas in other cases, such
as Ph-H-2, γ stays roughly constant over a wide radial range near
the centre.

The latter behaviour is poorly captured by the Einasto or NFW
fitting formulae, and leads to larger residuals and figure-of-merit
values for the best fits. NFW and Einasto best-fitting residuals are
shown in Fig. 6; per bin deviations of up to 40 per cent from NFW
and ∼20 per cent from Einasto fits are not uncommon for Phoenix
clusters.

2 The concentration is defined as r200/r−2, where r−2 is the radius at which
the logarithmic slope γ has the isothermal value of 2. This indicates the
location of the maximum of the curves shown in Fig. 5.

These deviations may be traced to transient departures from equi-
librium induced by the recent formation of many Phoenix clusters.
For example, one of the worst offenders is Ph-H-2, which accreted
half its final mass since z = 0.21 and whose unrelaxed appearance
is obvious in Fig. 3. In contrast, Ph-A-2, the cluster with highest
formation redshift of the Phoenix series (zh = 1.17) is very well
fitted by both the Einasto and NFW profiles, with average residuals
of only ∼3 and ∼6 per cent, respectively. Indeed, a well-defined
correlation may be seen in Table 2 between quantitative measures
of departures from equilibrium, such as the centre offset, doff , or
the mass fraction in the form of substructure, f sub, and the average
residuals from the best NFW and Einasto fits. On average, both
indicators are substantially smaller for Aquarius than for Phoenix
(Table 3), as expected. The higher formation redshift of galaxy-
sized haloes means that they are closer to dynamical equilibrium
than recently assembled cluster haloes.

3.2 Pseudo-phase-space density and velocity anisotropy

The similarity in the mass profiles of galaxy- and cluster-sized
CDM haloes highlighted in the previous subsection extends to their
dynamical properties. We show this by comparing the spherically
averaged pseudo-phase-space density (PPSD) profiles of Phoenix
and Aquarius haloes. The PPSD, ρ/σ 3, is dimensionally identical
to the phase-space density, but not strictly a measure of it. (Here
the velocity dispersion, σ (r), is defined as the square root of twice
the specific kinetic energy in each spherical shell.) It is well known
that PPSD profiles are well approximated by a simple power law,
ρ/σ 3 ∝ rχ (Taylor & Navarro 2001), intriguingly similar to
the secondary-infall self-similar solutions of Bertschinger (1985),
where the exponent χ = −1.875 (see also Ludlow et al. 2010, and
references therein).

PPSD profiles for all level 2 Phoenix clusters are shown in
Fig. 7, and compared with the average PPSD for Aquarius haloes.
Since clusters are denser and have higher velocity dispersions than
galaxy-sized haloes, we scale all profiles to the scale radius, r−2,
of each halo. Together with the density at this characteristic ra-
dius, ρ−2, these quantities define a characteristic velocity, V−2 =
(G ρ−2)1/2 r−2, that allows us to compare PPSD profiles of haloes
of widely different mass in a meaningful way.
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Figure 7. Spherically averaged PPSD (ρ/σ 3) of all level 2 Phoenix haloes
as a function of radius. Profiles are plotted down to the convergence radius,
rconv. Radii are given in units of the scale radius, r−2, of the best-fitting
Einasto profile for each halo. Densities are scaled to ρ−2 = ρ(r−2) and ve-
locity dispersions, σ (r), to the characteristic velocity V−2 = (Gρ−2)1/2 r−2.
The thick dashed lines show the average PPSD of all Phoenix (black) and
Aquarius (red) haloes plotted over the converged radial range common to
both simulation series: 0.06 ≤ (r/r−2) ≤ 4, respectively. The bottom panel
shows residuals from a simple r−1.875 power-law fit.

The top panel of Fig. 7 shows that, in these scaled units, Aquarius
and Phoenix have very similar PPSD profiles. The similarity extends
over the range 0.06 < r/r−2 < 4 where both simulation sets give
converged results. (Note that Phoenix profiles actually probe radii
interior to 0.06r−2 because of their lower concentration.) Table 3
lists the average parameters (and their dispersion) of power-law fits
of the form

ρ

σ 3
= Cχ

ρ−2

V 3
−2

(
r

r−2

)χ

, (3)

where Cχ = (σ (r−2)/V−2)3. Fits are carried out over the radial range
0.06 < r/r−2 < 4 for each halo. On average, both the slope and the
normalization of Aquarius and Phoenix PPSD profiles are almost
indistinguishable, emphasizing again the structural similarity be-
tween cluster- and galaxy-sized haloes.

At the same time, the scatter is larger in the Phoenix sample
than in Aquarius (Table 3), highlighting again the larger halo-to-
halo variation of cluster profiles. This may also be appreciated in
the bottom panel of Fig. 7, where residuals from the self-similar
r−1.875 power law are shown. Although PPSD profiles scatter above
and below the self-similar solution depending on the individual
dynamical state of each cluster, the PPSD profiles of cluster haloes
seem to be, on average, indistinguishable from that of galaxy-sized
haloes.

We reach a similar conclusion when comparing the velocity
anisotropy profiles of Phoenix clusters with those of Aquarius
haloes (Fig. 8). Aside from a slightly larger scatter, the velocity
anisotropy, which measures the ratio of the kinetic energy in tan-
gential and radial motions, increases gently from the centre, where
haloes are nearly isotropic, to the outer regions, where radial mo-
tions dominate. Phoenix and Aquarius haloes again seem indis-
tinguishable from each other regarding velocity anisotropy when
compared over their converged radial range.

Figure 8. Velocity anisotropy profiles of all level 2 Phoenix haloes. Radii
are expressed in units of the scale radius, r−2, of the best-fitting Einasto
profile. Profiles are plotted down to the convergence radius, rconv. The thick
dashed lines show the average anisotropy profile of all Phoenix (black)
and Aquarius (red) haloes over the radial range where both give converged
results (0.06 ≤ (r/r−2) ≤ 4).

3.3 Projected profiles

The preceding discussion highlights the mass invariance of the
structure of CDM haloes, but it also makes clear that the dynam-
ical youth of clusters limits the validity of simple fitting formulae
to describe their instantaneous mass profiles. This complication
must be taken into account when comparing observational esti-
mates of individual cluster mass profiles with the profiles expected
in a CDM-dominated Universe. Stacking clusters in order to obtain
an ‘average’ cluster profile might offer a way of circumventing this
difficulty. This should smooth out local inhomogeneities in the mass
distribution and average over different dynamical states to produce
a more robust measure of the shape of the mass profile.

Aside from dynamical youth, another issue that complicates the
interpretation of observations is the fact that, due to the cluster’s as-
phericity, projected mass profiles, such as those measured through
gravitational lensing, may differ substantially from simple projec-
tions of the 3D spherically averaged profiles discussed above.

Depending on the line of sight a cluster may appear more or
less massive within a given radius, leading to biases in the cluster’s
estimated mass, concentration and even the shape of its density
profile. We illustrate this in Fig. 9, where we plot the surface density
profile of two Phoenix clusters, Ph-A-2 and Ph-I-2, each projected
along 20 different random lines of sight. The aspherical nature of
the clusters results in large variations (up to a factor of 3) in the
surface density in the inner regions. For comparison, we also show
in Fig. 9 the result of a weak and strong-lensing analysis of a stack
of four massive clusters by Umetsu et al. (2011). The mass of the
stacked cluster lies between that of Ph-A and Ph-I, which explains
why, on average, Ph-A �(R) profiles lie below the observed data
whereas the opposite applies to Ph-I.

In agreement with earlier work (see e.g. Corless & King 2007;
Oguri et al. 2010; Sereno, Jetzer & Lubini 2010, and references
therein), Fig. 9 suggests that substantial biases may be introduced
by projection effects on estimates of cluster parameters, especially
when reliable data are restricted to the inner regions of a cluster.
For example, fitting the inner 500 h−1 kpc of the Ph-A-2 projected
profile with an NFW profile results in mass and concentration (M200,
c) estimates that vary from (5.4 × 1014 h−1 M�, 4.8) to (7.3 ×
1014 h−1 M�, 9.8) when using the projections that maximize or

C© 2012 The Authors, MNRAS 425, 2169–2186
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at U
niversity of D

urham
 on A

pril 22, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


The Phoenix project 2179

Figure 9. Projected density profiles of Ph-A-2 (top) and Ph-I-2 (bottom). We show 20 different random projections for each cluster. The asphericity of the
clusters leads to large variations (up to a factor of 3) in the projected density at a given radius depending on the line of sight. On the other hand, the shape
of the profile (as measured by the logarithmic slope, γp = −d ln �/d ln R, is much less sensitive to projection effects. Data with error bars correspond to the
stacked profile of four massive clusters estimated using strong and weak lensing data (Umetsu et al. 2011).

minimize the inner surface density, respectively (see Fig. 9). The
corresponding numbers for Ph-I-2 are (1.8 × 1015 h−1 M�, 4.1)
and (3.0×1015 h−1 M�, 7.1). Comparing these numbers with those
listed in Tables 1 and 2 we see that variations as large as ∼30 per
cent in the mass and ∼60 per cent in the concentration may be
introduced just by projection effects.3

We explore this further in Fig. 10, where the small dots show the
mass–concentration estimates for 500 random projections of each
level 2 Phoenix cluster. Large symbols correspond to the 3D esti-
mates listed in Tables 1 and 2. The black diamond symbol indicates
the M200–c estimate for the stack of four strong-lensing clusters
presented by Umetsu et al. (2011). This figure again emphasizes the
importance of projection effects; for example, 12 per cent of random
projections result in concentration overestimates larger than 25 per
cent. Although an exhaustive analysis of such biases is beyond the
scope of this paper, the results in Figs 9 and 10 suggest that there
is no substantial difficulty matching the surface density profile of
lensing clusters such as those studied by Umetsu et al. (2011). Our
interpretation thus agrees with that reached by a number of recent
studies (see e.g. Okabe et al. 2010; Gralla et al. 2011; Umetsu et al.

3 Note that variations may actually be larger, because these estimates neglect
the possible contribution of the large-scale mass distribution along the line
of sight.

2011; Oguri et al. 2012), which conclude that there is no obvi-
ous conflict between the concentration of lensing-selected clusters
and those of �CDM haloes once projection effects are taken into
account.

Interestingly, despite the large variations in surface density al-
luded to above, the shape of the surface density profile is quite
insensitive to projection effects. We show this in the right-hand
panels of Fig. 9; the weak dependence of γp(R) on projection may
thus be profitably used to assess the consistency of theoretical pre-
dictions with cluster mass profiles. For illustration, we compare
in the same panels the logarithmic slope of the projected profile,
γp = d ln �(R)/d ln R, with the stacked cluster data of Umetsu
et al. (2011). Despite the fact that the masses of the simulated
and observed clusters are different and that no scaling has been ap-
plied, there is clearly quite good agreement between observation and
Phoenix clusters, supporting our earlier conclusion. Available data
on individual clusters are bound to improve dramatically with the
advent of surveys such as the Cluster Lensing and Supernova Sur-
vey with Hubble (CLASH) with the Advanced Camera for Surveys
onboard the Hubble Space Telescope (Postman et al. 2012). These
surveys will enable better constraints on the shape of the inner mass
profile of individual rich clusters and it is therefore important to
constrain how projection effects may affect them. Fig. 11 shows the
distribution of γp at two projected radii, R = 3 and 10 h−1 kpc. The
histograms are computed after choosing 500 random lines of sight
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Figure 10. Cluster virial mass versus concentration estimated from fits to
the projected density profiles of level 2 Phoenix haloes in the radial range
R < 500 h−1 kpc. A total of 500 random projections are used for each
halo. The large filled circles indicate the true value of the virial mass and
concentration of the cluster, obtained from NFW fits to the 3D spherically
averaged profile (see Appendix A and Table 2). The dashed curve flanked
by dotted lines shows the fit to the mass–concentration relation derived by
Neto et al. (2007). Note that projection effects lead to significant bias in
the mass and concentration, which are underestimated on average by 8.5 ±
17 and 0.4 ± 20 per cent, respectively, where the ‘error’ is the rms of
all projections for the nine clusters. The black diamond symbol indicates
the M200–c estimate for a stack of four strong-lensing clusters taken from
Umetsu et al. (2011).

Figure 11. Distribution of the slope of the circularly averaged surface den-
sity profile, γp(R), measured at two different radii, R = 3 and 10 h−1 kpc
in projection. These histograms are based on 500 random lines of sight for
each of the level 2 Phoenix clusters. The vertical arrows show the values
corresponding to the projected profile of all nine clusters stacked together.
The profiles become gradually shallower towards the centre, but with large
scatter: 〈γp〉 changes from 0.35 to 0.25 as R goes from 10 to 3 h−1 kpc,
but the halo-to-halo scatter is quite large, with rms of the order of 0.09 at
3 h−1 kpc and 0.05 at 10 h−1 kpc, respectively.

for each of our nine level 2 Phoenix haloes. On average, cluster pro-
jected profiles flatten steadily towards the centre, from 〈γp〉 = 0.35
to 0.25 in that radial range, but with fairly large dispersion; the rms
is σγp = 0.054 and 0.091 at R = 10 and 3 h−1 kpc, respectively.
Because of the large dispersion it is unlikely that observations of
a single cluster can lead to conclusive statements about the viabil-

ity of CDM; however, it should be possible to use this constraint
fruitfully once data for a statistically significant number of clusters
become available.

4 T H E S U B S T RU C T U R E O F P H O E N I X
CLUSTERS

As may be seen from the images presented in Fig. 3, substructure
is ubiquitous in Phoenix clusters. We have used SUBFIND (Springel
et al. 2001a) to identify and characterize self-bound structures (sub-
haloes) within the virial radius of the main halo. We discuss below
the mass function, spatial distribution and internal properties of
subhaloes in Phoenix. Since our main goal is to explore the mass
invariance of the properties of CDM haloes, we contrast these results
with those obtained for the galaxy-sized Aquarius haloes.

4.1 Mass function

We start by analysing the Ph-A simulation series in order to iden-
tify the limitations introduced by finite numerical resolution. The
top-left panel of Fig. 12 shows the cumulative mass function of
subhaloes, N(>M), plotted in each case down to the mass corre-
sponding to 60 particles. The bottom-left panel shows the same
data, but after weighting the numbers by subhalo mass, Msub, in
order to emphasize the differences between runs. The results show
clearly how, as resolution improves, the mass function converges
at the low-mass end. Ph-A-4 agrees with higher resolution runs for
subhaloes with mass exceeding ∼2 × 1010 h−1 M�, correspond-
ing to roughly 150 particles; the same applies to Ph-A-3 for mass
greater than ∼3 × 109 h−1 M�, or ∼170 particles, and to Ph-A-2
for ∼7 × 108 h−1 M�, or 140 particles. We conclude that the sub-
halo mass function can be robustly determined in Phoenix haloes
down to subhaloes containing roughly 150 particles, in good agree-
ment with the results reported for Aquarius haloes (see fig. 6 of
Springel et al. 2008a). For level 2 runs this implies a subhalo mass
function that spans over six decades in mass below the virial mass
of the halo. The subhalo mass function is also routinely expressed
in terms of the subhalo peak circular velocity. This is shown in the
right-hand panels of Fig. 12 which shows that level 2 Phoenix runs
give robust estimates of the abundance of subhaloes down to Vmax

∼ 20 km s−1, a factor of ∼75 lower than the main halo’s V200.
Both the subhalo mass and velocity functions seem reasonably

well approximated by simple power laws: N ∝ M−1
sub and N ∝

V −3.4
max , respectively. Interestingly, the M−1 dependence corresponds

to the critical case where each logarithmic mass bin contributes
equally to the total mass in substructure. This is logarithmically
divergent as Msub approaches zero, and implies that a significant
fraction of the mass could in principle be locked in haloes too small
to be resolved by our simulations. We note, however, that even at
the resolution of Ph-A-1, of nearly seven decades in mass, only
8 per cent of the mass within r200 is in the form of substructure.
Extrapolating down to the Earth mass by assuming that N ∝ M−1

sub,
the total mass locked in substructure would still be only about 27
per cent.

Fig. 13 compares these results with other level 2 Phoenix clusters
in order to assess the general applicability of the Ph-A subhalo mass
function. The cumulative number of subhaloes N(>M) is weighted
here by μ = Msub/M200 (left-hand panel) in order to emphasize
differences as well as to enable the comparison of haloes of different
virial mass. Although the subhalo mass function, expressed in this
form, is relatively flat in several Phoenix clusters (indicative of an
N ∝ M−1

sub dependence) it is clearly declining in others. The average
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Figure 12. Left: the cumulative mass function of substructure haloes (‘subhaloes’) within the virial radius of cluster Ph-A at z = 0. We compare the results
of four different realizations of the same halo, Ph-A-1 to Ph-A-4, with varying numerical resolution. The top and bottom panels contain the same information;
the bottom shows the number of subhaloes weighted by mass or, equivalently, the fractional contribution of each logarithmic mass bin to the total mass in
subhaloes. Each curve extends down to a mass corresponding to 60 particles. Note that, over the range resolved by the simulations, the cumulative function is
well approximated by a power law, N ∝ M−1, the critical dependence for logarithmically divergent substructure mass. Right: the same as the left-hand panels,
but for the subhalo peak circular velocity.

Figure 13. As the bottom panels of Fig. 12, but for all level 2 Phoenix haloes. The cumulative mass function (left-hand panel) is weighted by subhalo mass,
expressed in units of the virial mass. A cumulative N ∝ M−1 dependence, the critical case for logarithmic divergence in the total substructure mass, corresponds
to a horizontal curve in these scaled units. Although the dependence is nearly flat in several Phoenix clusters it is clearly declining in others, and the average
trend seems to be subcritical. Compared with Aquarius (thick dashed red curve) the average Phoenix subhalo mass function is slightly steeper. The panel on
the right is analogous to the mass function, but for the subhalo peak circular velocity, weighted by V 3

max. (See the text for further discussion.)

trend, as indicated by the ‘stacked’ Phoenix cluster (thick dashed
black curve) may be approximated, in the range 10−6 < μ < 10−4,
by N ∝ μ−0.98. This is a slightly steeper dependence than found
for Aquarius haloes over the same mass range, N ∝ μ−0.94 (thick
dashed red curve), but still subcritical. The slight difference in the
average slope of the Aquarius and Phoenix subhalo mass functions
is smaller than the halo-to-halo scatter in either simulation set. This
is shown in Table 3, where we list the average parameters of power-
law fits of the form

N (> μ) = Nm (μ/10−6)s (4)

for Aquarius and Phoenix haloes. The dispersion around 〈s〉 is sim-
ilar to the difference between the average slope of Aquarius and
Phoenix haloes, suggesting that there is no significant difference in
the shape of the subhalo mass function of cluster- and Milky Way
halo-sized haloes.

Fig. 13 also shows that substructure is slightly more prevalent
in clusters than in galaxy-sized haloes. Indeed, at all values of
Msub/M200 the number of Phoenix subhaloes exceeds that in Aquar-
ius, and this is reflected in the higher values of 〈Nm〉 (7866 for
Phoenix versus 5092 for Aquarius; see Table 3). This is another
consequence of the dynamical youth of clusters compared to galax-
ies (tides take a few orbital times to strip a subhalo), as may be
verified by inspection of Table 1: in the cluster that forms latest,
Ph-G, substructure makes up roughly 17 per cent of its virial mass,
but in the earliest collapsing system of the Phoenix series, Ph-A, it
makes up only 8 per cent.

Interestingly, as a function of ν = Vmax/V200, the comparison be-
tween the Aquarius and Phoenix subhalo functions reverses (right-
hand panel of Fig. 13). At a given velocity (scaled to the virial
value), subhaloes are more abundant in Aquarius than in Phoenix.
This is a consequence of tidal stripping, which affects Aquarius
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Figure 14. Peak circular velocity, Vmax, versus the radius at which it is
reached, rmax. The solid cyan curve indicates the rmax–Vmax relation ob-
tained for isolated haloes in the Millennium Simulation by Neto et al. (2007).
Subhaloes in both Phoenix (solid black curve) and Aquarius (solid red curve)
deviate systematically from this relation towards smaller rmax at a given ve-
locity. This is a result of tidal stripping, which shifts the location of the peak
inwards while changing little the peak velocity. Isolated haloes identified in
Aquarius and Phoenix (shown with dashed lines) are not subject to tides and
are in good agreement with the Millennium Simulation results.

subhaloes more: since tides act to remove preferentially the outer
regions of a subhalo, they affect more its mass than its peak circular
velocity.

For example, as discussed by Peñarrubia, Navarro & Mc-
Connachie (2008), after losing half of its mass to tides, the peak
velocity of a subhalo decreases only by ∼25 per cent. Even af-
ter losing 90 per cent of its mass, Vmax is only reduced by about
one half. Since Aquarius haloes form earlier, their subhaloes have
been accreted earlier and, on average, have been more stripped
than Phoenix subhalos, leading to higher relative velocities for their
bound mass than for Phoenix subhalos. This shifts their abundance
when measured in terms of peak velocity. In the range 0.025 < ν <

0.1 fits to the subhalo function of the form

N (> ν) = Nv (ν/0.025)d (5)

yield 〈Nv〉 = 4033 and 〈d〉 = −3.13 for Aquarius and 3984 and
−3.32, respectively, for Phoenix (see Table 3). Given the scatter, the
difference seems too small to be significant. We conclude that the
scaled subhalo velocity function, N(>ν), is roughly independent of
mass (see Wang et al. 2012 for a more thorough discussion of this
point).

The effects of tidal stripping on Phoenix subhaloes are shown in
Fig. 14. Here we plot Vmax versus rmax for subhaloes identified in Ph-
A-1 (solid black curve). This relation is clearly offset from the mean
relation that holds for isolated haloes in the Millennium Simulation,
as given by Neto et al. (2007) (cyan line). As expected for haloes that
have undergone tidal stripping, rmax shifts inwards as the subhalo
loses mass whilst leaving the peak velocity relatively unchanged
(Peñarrubia et al. 2008). Support for this interpretation may be found
by inspecting the same relation for ‘isolated’ haloes in Phoenix (i.e.
those outside the main halo and that are not embedded in a more
massive structure); the rmax –Vmax relation for these systems (see
the dashed lines) is consistent with that of Millennium haloes.

Fig. 14 also includes results for isolated haloes and subhaloes in
Aquarius (red lines). The results from the two sets of simulations
form a single sequence and this allows us to characterize the struc-

tural parameters of subhaloes over a range spanning more than two
decades in velocity (and thus over six decades in mass). On average,
subhaloes follow the same rmax–Vmax scaling relations as isolated
haloes, but shifted by about a factor of 2 in radius (or, alternatively,
by ∼30 per cent in velocity).

We conclude from this discussion that although substructure does
not seem fully invariant with halo mass, the changes are relatively
small when comparing the haloes of clusters and galaxies, and
depend on whether subhalo masses or velocities are used to char-
acterize substructure. The subhalo mass function of clusters, scaled
to halo virial mass, is similar in shape to that of galaxy-sized haloes
(which are roughly one thousand times less massive), but with a
slightly higher normalization (∼35 per cent). The normalization
difference disappears when the scaled subhalo velocity function,
N(>ν), is used. The total mass in substructure increases with the
dynamical youth of the system and is more prevalent in clusters
than on galaxy scales, but only weakly so: the average mass frac-
tion in substructures is 11 per cent for Phoenix and 7 per cent for
Aquarius.

4.2 Spatial distribution

The distribution of subhaloes within the main halo has been the
subject of many studies (e.g. Ghigna et al. 2000; Diemand, Moore
& Stadel 2004a; De Lucia et al. 2004; Gao et al. 2004a,b; Springel
et al. 2008a; Ludlow et al. 2009) over the past decade. This work
has demonstrated that substructure does not follow the same spatial
distribution as the dark matter: subhaloes tend to populate prefer-
entially the outskirts of the main halo and their spatial distribution
is much more extended than the mass. It also hinted that the num-
ber density profile of subhaloes is roughly independent of subhalo
mass, at least in the subhalo mass range where simulations resolve
them well and where they exist in sufficient numbers for their spa-
tial distribution to be determined. This result has been confirmed
recently by the Aquarius simulation suite for haloes similar to the
Milky Way (Springel et al. 2008a).

A number of observational diagnostics depend on the spatial dis-
tribution of substructure, and it is therefore important to verify that
this result also holds on galaxy cluster scales. For example, recent
analyses indicate that total flux of dark matter annihilation radia-
tion is expected to be dominated by low-mass subhaloes (Kuhlen,
Diemand & Madau 2008; Springel et al. 2008b; Gao et al. 2012). It
is therefore crucial to constrain their spatial distribution in order to
understand the expected angular distribution of the annihilation flux
and to design optimal filters to aid its discovery (see e.g. Pinzke,
Pfrommer & Bergstrom 2011; Gao et al. 2012).

We show the number density profile of subhaloes in Fig. 15.
The left-hand panel shows the profiles for each of the nine level
2 Phoenix haloes (thin lines), as well as the profile corresponding
to stacking all nine haloes after scaling them to the virial mass
and radius of each cluster (thick dashed black curve). All subhaloes
with more than 100 particles have been used for this plot. This figure
clearly confirms the results of earlier work: the subhalo distribution
is more extended than that of the dark matter; in addition, there is a
well-defined ‘core’ in the central density of the subhalo distribution;
subhaloes primarily populate the outskirts of the main halo.

There is also considerable halo-to-halo scatter, especially near
the centre, where the number density of subhaloes may vary by up
to a factor of 3. Comparing the average number density profile of
Phoenix with that of Aquarius (thick red dashed curve) reveals that
cluster subhaloes are slightly more abundant near the centre, by up
to 50 per cent at r = 0.1r200. In the outskirts of the main halo both
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Figure 15. Subhalo number density profiles. The panel on the left shows the spatial distribution of subhaloes with more than 100 particles in each of the nine
Phoenix level 2 clusters. Each profile is normalized to the mean number density of subhaloes within the virial radius. The thick dashed black curve traces the
result of stacking all nine level 2 Phoenix haloes. The profile obtained after stacking all level 2 Aquarius haloes is shown by the red dashed curve. Note that
subhaloes are slightly more concentrated in the case of Phoenix than of Aquarius. The panel on the right shows the density profile of subhaloes in different
bins of subhalo mass, computed after stacking all nine level 2 Phoenix clusters. Note that the spatial distribution of subhaloes is approximately independent of
subhalo mass.

Aquarius and Phoenix give similar results. As discussed by Ludlow
et al. (2009), the number density profile can be fitted accurately by
an Einasto profile (equation A2), just like the dark matter, but with
quite different shape parameters: α ∼ 1 for subhaloes but ∼0.2 for
the main halo. An Einasto fit to the Phoenix subhalo profile yields
r−2 = 0.58r200 and α = 1.0. For Aquarius, the same procedure yields
r−2 = 0.64r200 and α = 1.0, and a central density normalization
lower by a factor of 1.3, when expressed in units of 〈n〉, the mean
number density of subhaloes within r200.

Simplified schemes for populating dark matter simulations with
galaxies make a variety of assumptions about how to assign galaxies
to subhaloes. A number of authors have argued that although present
subhalo mass and maximum circular velocity are strongly affected
by tidal stripping and so are poor indicators of galaxy properties,
the mass or circular velocity at infall are plausibly much better and
give meaningful results when used in subhalo abundance matching
analyses (Vale & Ostriker 2004; Conroy, Wechsler & Kravtsov
2006; Behroozi, Conroy & Wechsler 2010; Guo et al. 2010). We
study this issue in Fig. 16, which shows stacked number density
profiles for subhalo samples defined above thresholds in present
mass, present circular velocity and infall circular velocity. Note that
these thresholds are chosen so that each sample contains roughly
6000 subhaloes. In agreement with earlier work, we see that sample
definition has a substantial effect on the inferred radial profile of the
subhalo population. Subhalo samples defined by present mass have
shallower profiles than samples defined by present circular velocity
which, in turn, have shallower profiles than samples defined by
infall circular velocity. Note, however, that all these profiles differ
substantially from the mean dark matter density profile, especially
in the inner regions (r < 0.25r200), whereas observations show the
mean galaxy number density profiles in the inner regions of clusters
to follow the mean dark matter profiles quite closely (e.g. Carlberg
et al. 1997; Biviano & Girardi 2003; Sheldon et al. 2009). Semi-
analytic models which explicitly follow the formation of galaxies
within the evolving subhalo population provide a better match to
the observed inner profiles because they include a population of
‘orphan’ galaxies whose dark matter subhaloes have already been
tidally destroyed (Gao et al. 2004a; Wang et al. 2006; Guo et al.
2011).

Figure 16. Stacked subhalo number density profiles as a function of r/r200

for the nine Phoenix haloes and for different definitions of the lower subhalo
‘mass’ limit. The solid line shows the radial profile for all subhaloes whose
progenitors had a maximum circular Vmax exceeding 45 km s−1 when they
first fell into the cluster; the dot–dashed line shows a similar profile but
for subhaloes with Vmax greater than 30 km s−1 at the present day; finally,
the dashed line show the profile for all subhaloes containing more than 200
bound particles. For comparison, a dotted line shows the stacked dark matter
mass profile of the clusters. The profiles are normalized to integrate to the
same value within r200. Note that none of the subhalo profiles matches the
shape of the dark matter profile within 0.25r200.

Fig. 17 shows the fractional contribution of substructure to the
total mass of the halo, as a function of radius, either in cumulative
(left-hand panel) or differential (right-hand panel) form. This fig-
ure shows quantitatively that substructure contributes only a small
fraction of the halo mass. This contribution peaks in the outer re-
gions; it is only 0.1 per cent at r = 0.02r200 but it reaches 10–20 per
cent at the virial radius. The total mass contribution is, on average,
just over 10 per cent (see also Table 2). Results for Phoenix are
similar to Aquarius, adjusted up by a modest amount that reflects
the overall larger substructure fraction present in clusters relative
to galaxy-sized haloes. This adjustment is mainly noticeable in the
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Figure 17. Left-hand panel: cumulative fractional contribution of subhaloes (resolved with more than 100 particles) to the enclosed mass, shown as a function
of radius for all level 2 Phoenix clusters (thin lines). A thick dashed black curve shows the average trend, computed after stacking all nine Phoenix haloes.
The corresponding result for Aquarius is shown by the thick dashed red curve. Right-hand panel: fraction of total mass contributed by substructure in different
radial bins. As in the left-hand panel, only subhaloes with more than 100 particles are considered; black and red thick dashed lines correspond to the average
trend computed after stacking all level 2 Phoenix and Aquarius haloes, respectively.

inner regions, reflecting our earlier conclusion that substructure in
Phoenix is more centrally concentrated than in Aquarius.

5 SU M M A RY A N D C O N C L U S I O N S

We present the Phoenix Project, a series of simulations of the for-
mation of rich galaxy cluster haloes in the �CDM cosmogony.
Phoenix simulations follow the dark matter component of nine dif-
ferent clusters with numerical resolution comparable to that of the
Milky Way-sized haloes targeted in the Aquarius Project (Springel
et al. 2008a; Navarro et al. 2010). We report here on the basic struc-
tural properties of the simulated clusters and their substructure, and
compare them with those of Aquarius haloes in order to highlight
the near mass invariance of CDM haloes in the absence of baryonic
effects. Our main results may be summarized as follows.

Radial profiles. The recent formation of galaxy clusters causes
many of them to be rapidly evolving and unrelaxed. This results
in mass profiles that are less well approximated by simple fitting
formulae such as the NFW or Einasto profiles than those of galaxy
haloes. Stacking clusters helps to average out inhomogeneities in
the mass distribution characteristic of transient states. The mass
profile of the stacked cluster is very similar to that of Aquarius
haloes; it can be well approximated by an Einasto profile, albeit
with a slightly larger value of the shape parameter, α, and signifi-
cantly lower concentration. The similarity extends to the dynamical
properties of the haloes: when properly scaled, the average PPSD
and velocity anisotropy profiles of Aquarius and Phoenix haloes are
indistinguishable.

Density cusp. The central density cusp has, at the innermost
resolved radius (rconv ∼ 2 × 10−3 r200), an average logarithmic
slope 〈γ 〉 = 1.05 ± 0.19, where the ‘error’ refers to the halo-to-
halo rms dispersion of the nine level 2 Phoenix runs. This is only
slightly steeper than that of Aquarius haloes at comparable radii,
for which 〈γ 〉 = 1.01 ± 0.10). Although in some clusters γ remains
roughly constant over a sizeable radial range near the centre, in the
majority of cases the profile keeps getting shallower all the way to
the innermost converged radius, with little evidence of convergence
to an asymptotic power-law behaviour.

Projected profiles. Because of their aspherical nature, the surface
density of Phoenix haloes varies greatly depending on the line of

sight, in some cases by up to a factor of ∼3 at a given projected
radius. This affects especially the inner regions and may give rise
to substantially biased estimates of a cluster’s total mass and con-
centration. For example, NFW fits to the inner 500 h−1 kpc of nine
Phoenix haloes, on average, lead to estimates of M200 and c that
can be overestimated by 20 and 80 per cent, respectively, when
the cluster is projected along the major axis and underestimated
by 30 and 20 per cent, respectively, when seen along the minor
axis. The shape of the surface density profile, on the other hand,
is hardly affected by projection. The average logarithmic slope of
the surface density profile declines gradually towards the centre,
from 〈γp〉 = 0.35 ± 0.091 at R = 10 h−1 kpc to 0.21 ± 0.054 at
R = 3 h−1 kpc, again with no clear sign of approaching a power-law
asymptotic behaviour.

Substructure mass function. Substructure is more abundant (by
about ∼35 per cent on average) in Phoenix clusters than in galaxy
haloes. At a given μ = Msub/M200, the cumulative number of cluster
subhaloes is higher in Phoenix by about ∼30 per cent compared to
Aquarius, with a tendency for the excess to increase at the low-mass
end. In some cases, the subhalo mass function is best approximated
by a power law with the critical slope N ∝ μ−1. There is significant
halo-to-halo scatter, however, and the average trend is subcritical. In
the range 1 × 10−6 < μ < 1 × 10−4 we find that N = 0.010μ−0.98 fits
well the composite subhalo mass function of the nine level 2 Phoenix
clusters stacked together. For comparison, the same procedure for
the Aquarius haloes yields a very similar result: N = 0.012μ−0.94.

Substructure spatial distribution. We confirm earlier reports that
subhaloes are biased tracers of the halo mass distribution, avoiding
the central regions and increasing in prevalence gradually from the
centre outwards. As in galaxy haloes, the subhalo number density
profile appears to be independent of subhalo mass, and may be
approximated accurately by an Einasto profile, but with scale radius
∼0.58r200 and a shape parameter much greater than that of the dark
matter distribution, α ∼ 1.0. Phoenix subhaloes are slightly more
concentrated than those of Aquarius haloes: inside 0.1r200 they
make up roughly 0.05 per cent of the enclosed mass, a factor of
two to three times larger than in Aquarius haloes. The difference
decreases with increasing radius; in total Phoenix subhaloes make
up on average 11 per cent of the total mass, compared with 7 per
cent for Aquarius.
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Our analysis confirms the remarkable structural similarity of
CDM haloes of different mass, whilst at the same time empha-
sizing the small but systematic differences that arise as halo mass
increases from galaxies to clusters. Many of these differences may
be ascribed to the dynamical youth of galaxy clusters, which lead
to larger deviations of individual clusters from the average trends.
This argues for combining the results of as many clusters as possible
in order to average over the transient features of individual systems
and to uncover robust trends that may be fruitfully compared with
the predictions of the �CDM paradigm.
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APPENDI X A:

A1 Fitting formulae

The fitting formulae used to describe the mass profile of Phoenix
haloes are the following: (i) the NFW profile (Navarro et al. 1996,
1997), given by

ρ(r) = ρs

(r/rs)(1 + r/rs)2
(A1)

and (ii) the Einasto profile (Einasto 1965),

ln(ρ(r)/ρ−2) = (−2/α)[(r/r−2)α − 1]. (A2)

Because these formulae define the characteristic parameters in a
slightly different way, we choose to reparametrize them in terms of
r−2 and ρ−2 ≡ ρ(r−2), which identify the ‘peak’ of the r2ρ profile
shown in the left-hand panel of Fig. 4. This marks the radius where
the logarithmic slope of the profile, γ (r) = −d ln ρ/d ln r , equals
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the isothermal value, γ = 2. We note that, unlike NFW, when α is
allowed to vary freely the Einasto profile is a three-parameter fitting
formula.

A2 Fitting procedure

We compute the density profiles of each halo in 32 radial bins
equally spaced in log10r, in the range rconv < r < r200. All haloes
are centred at the minimum of the gravitational potential. Best-
fitting parameters are found by minimizing the deviation between
model and simulation across all bins in a specified radial range. In
the case of the density profile, the best fit is found by minimizing
the figure-of-merit function, Q2, defined by

Q2 = 1

Nbins

Nbins∑
i=1

(
ln ρi − ln ρmodel

i

)2
. (A3)

This function provides a simple measure of the level of disagreement
between simulated and model profiles. It is dimensionless, it weights
different radii logarithmically and, for a given radial range, Q2 is
roughly independent of the number of bins used in the profile.
The actual value of Q is thus a reliable and objective measure
of the average per-bin deviation from a particular model. Thus,
minimizing Q2 yields for each halo well-defined estimates of a
model’s best-fitting parameters. The values of Qmin for each halo
are given in Table 2 for both Einasto and NFW fits.

It is less clear how to define a goodness-of-fit measure associated
with Q2 and, consequently, how to assign statistically meaningful
confidence intervals to the best-fitting parameter values. We have
explored this issue in Navarro et al. (2010) and we refer the inter-
ested reader to that paper for details.
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