
Satisfiability of Acyclic and Almost Acyclic CNF
Formulas?

Sebastian Ordyniak1??, Daniel Paulusma2? ? ?, and Stefan Szeider1∗∗

1 Institute of Information Systems, Vienna University of Technology, A-1040 Vienna, Austria
sebastian.ordyniak@kr.tuwien.ac.at,stefan@szeider.net

2 School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE, UK
daniel.paulusma@durham.ac.uk

Abstract. We show that the SATISFIABILITY (SAT) problem for CNF formulas
with β-acyclic hypergraphs can be solved in polynomial time by using a special
type of Davis-Putnam resolution where each resolvent is a subset of a parent
clause. We extend this class to CNF formulas for which this type of Davis-
Putnam resolution still applies and show that testing membership in this class
is NP-complete. We compare the class of β-acyclic formulas and this superclass
with a number of known polynomial formula classes. We then study the param-
eterized complexity of SAT for “almost” β-acyclic instances, using as parameter
the formula’s distance from being β-acyclic. As distance we use the size of small-
est strong backdoor sets and the β-hypertree width. As a by-product we obtain
the W[1]-hardness of SAT parameterized by the (undirected) clique-width of the
incidence graph, which disproves a conjecture by Fischer, Makowsky, and Ravve.

Keywords acyclic hypergraph, chordal bipartite graph, Davis-Putnam resolution.

1 Introduction

We consider the SATISFIABILITY (SAT) problem on classes of CNF formulas (for-
mulas in Conjunctive Normal Form) with restrictions on their associated hypergraphs,
which are obtained from these formulas by ignoring negations and considering clauses
as hyperedges on variables. This is a natural study, because many computationally hard
problems can be solved efficiently on acyclic instances. However, there are several no-
tions of acyclicity for hypergraphs: α-acyclicity, β-acyclicity, γ-acyclicity, and Berge
acyclicity. We provide the relevant definitions in Section 2 and refer to Fagin [9] for a
detailed description. The notions of acyclicity are strictly ordered with respect to their
generality:

α-ACYC) β-ACYC) γ-ACYC) Berge-ACYC (1)

where X -ACYC denotes the class of X-acyclic hypergraphs, which are in 1-to-1 corre-
spondence to a class of CNF formulas called X-acyclic formulas. It is known that SAT
is NP-complete for α-acyclic formulas [26] and polynomial-time solvable for Berge-
acyclic formulas [10, 26].
? Extended abstracts of this paper appeared in the Proceedings of FSTTCS 2010 and SAT 2011.

?? Supported by ERC (COMPLEX REASON, 239962).
? ? ? Supported by EPSRC (EP/G043434/1).

Our Results. In Section 3 we determine the boundary between NP-completeness and
polynomial-time tractability in the chain (1) by showing that SAT is polynomial-time
solvable for β-acyclic formulas. Consequently, the same holds for γ-acyclic formulas.
To prove our result we use a fundamental procedure called the Davis-Putnam procedure,
which successively eliminates variables using Davis-Putnam resolution [7]. In general,
this procedure is not efficient, because the number of clauses may increase after each
application of Davis-Putnam resolution. However, β-acyclic formulas are related to
chordal bipartite graphs [30], and this allows us to compute an elimination ordering
of the variables with the property that each obtained resolvent is a subset of a parent
clause. This type of resolution is known as subsumption resolution [19].

In Section 4 we show that there are CNF formulas that are not β-acyclic but that still
admit an elimination ordering of their variables based on subsumption resolution, such
that the Davis-Putnam procedure takes polynomial time. We call such an elimination
ordering DP-simplicial. This leads to a new class DPS of CNF formulas that contains
the class of β-acyclic formulas. In Section 5 we show that testing membership in this
class is an NP-complete problem. The reason for the NP-hardness is that a formula
may have several so-called DP-simplicial variables, one of which must be chosen to be
eliminated but we do not know which one. In Section 6 we show how to work around
this obstacle to some extent, i.e., we identify a subclass of DPS that is a proper super-
class of the class of β-acyclic formulas for which SAT is polynomial-time solvable. In
Section 7 we show that the class of β-acyclic formulas and its superclass DPS are in-
comparable with other known polynomial classes of CNF formulas. Hence, β-acyclic
formulas form a new “island of tractability” for SAT.

In Section 8 we study the complexity of SAT for formulas that are parameterized
by their “distance” from the class of β-acyclic CNF formulas. We use two distance
measures. The first distance measure is based on the notion of a strong backdoor set.
For a CNF formula F we define its “distance to β-acyclicity” as the size k of a smallest
set B of variables such that for each partial truth assignment to B, the reduct of F
under the assignment is β-acyclic; such a set B is a strong backdoor set. If we know B,
then deciding the satisfiability of F reduces to deciding the satisfiability of at most 2k β-
acyclic CNF formulas, and is thus fixed-parameter tractable with respect to k. We show,
however, that finding such a set B of size k (if it exists) is W[2]-hard, thus unlikely
fixed-parameter tractable for parameter k, which limits the algorithmic usefulness of
this distance measure.

The second distance measure we consider is the β-hypertree width, a hypergraph
invariant introduced by Gottlob and Pichler [15]. The classes of hypergraphs of β-
hypertree width k = 1, 2, 3, . . . form an infinite chain of proper inclusions. Hyper-
graphs of β-hypertree width 1 are exactly the β-acyclic hypergraphs. Thus β-hypertree
width is also a way to define a “distance to β-acyclicity.” The complexity of determin-
ing the β-hypertree width of a hypergraph is open [15]. However, we show that SAT
parameterized by an upper bound on the β-hypertree width is W[1]-hard even if we are
given the CNF formula together with a β-hypertree decomposition of width k. As a side
effect, we obtain from this result that SAT is also W[1]-hard when parameterized by the
clique-width (of the undirected incidence graph) of the CNF formula. This disproves a
conjecture by Fischer, Makowsky, and Ravve [10].

2 Preliminaries

In this section we state our basic terminology and notations. We also present some
known results that will be useful at several places in the paper.

2.1 Formulas and Resolution

We assume an infinite supply of propositional variables. A literal is a variable x or a
negated variable x; if y = x is a literal, then we write y = x. For a set S of literals
we put S = {x | x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a finite non-
tautological set of literals. A finite set of clauses is a CNF formula (or formula, for
short). A variable x occurs in a clause C if x ∈ C ∪ C; var(C) denotes the set of
variables which occur in C. A variable x occurs in a formula F if it occurs in one of its
clauses, and we put var(F) =

⋃
C∈F var(C). If F is a formula andX a set of variables,

then we denote by F −B the formula obtained from F after removing all literals x and
x with x ∈ B from the clauses in F . If X = {x} we simply write F − x instead of
F − {x}.

Let F be a formula and X ⊆ var(F). A truth assignment is a mapping τ : X →
{ 0, 1 } defined on some set X of variables; we write var(τ) = X . For x ∈ var(τ) we
define τ(x) = 1− τ(x). For a truth assignment τ and a formula F , we define

F [τ] = {C \ τ−1(0) | C ∈ F, C ∩ τ−1(1) = ∅ },

i.e., F [τ] denotes the result of instantiating variables according to τ and applying the
usual simplifications. A truth assignment τ satisfies a clause C if C contains some
literal x with τ(x) = 1; τ satisfies a formula F if it satisfies all clauses of F . A formula
is satisfiable if it is satisfied by some truth assignment; otherwise it is unsatisfiable.
Two formulas F and F ′ are equisatisfiable if either both are satisfiable or both are
unsatisfiable. The SATISFIABILITY (SAT) problem asks whether a given CNF formula
is satisfiable.

Let C,D be two clauses such that C ∩ D = {x} for a variable x. The clause
(C ∪D) \ {x, x} is called the x-resolvent (or resolvent) of C and D; the clauses C and
D are called parent clauses of the x-resolvent. Note that by definition any two clauses
have at most one resolvent. Let F be a formula. A sequence C1, . . . , Cn is a resolution
derivation of Cn from F if every Ci is either in F or the resolvent of two clauses Cj
and Cj′ for some 1 ≤ j < j′ ≤ i − 1. If Cn is the empty clause, then the sequence
is called a resolution refutation of F . The derivation is minimal if we cannot delete a
clause from it and still have a resolution derivation of Cn from F . We call a clause Cn
a resolution descendant of a clause C1 ∈ F if there is a minimal resolution derivation
C1, . . . , Cn of Cn from F .

Consider a formula F and a variable x of F . Let DPx(F) denote the formula ob-
tained from F after adding all possible x-resolvents and removing all clauses in which
x occurs. We say that DPx(F) is obtained from F by Davis-Putnam resolution, and
that we eliminated x. It is well known (and easy to show) that F and DPx(F) are
equisatisfiable.

For an ordered sequence of variables x1, . . . , xk of F , we set DPx1,...,xk
(F) =

DPxk
(· · · (DPx1(F)) · · ·) and DP∅(F) = F . The Davis-Putnam procedure [7] is a

well-known algorithm that solves SAT. In its most basic form, it takes an ordering of
the variables x1, . . . , xn of a formula F and checks whether DPx1,...,xn

(F) is empty or
contains the empty clause. In the first case F is satisfiable, and in the second case F is
unsatisfiable. Note that this procedure computes a certificate for the (un)satisfiability of
F ; we can obtain a satisfying truth assignment of F from a satisfying truth assignment
of DPx(F), and we can obtain a resolution refutation of F from a resolution refutation
of DPx(F). However, DPx(F) contains in general more clauses than F . Hence, re-
peated application of Davis-Putnam resolution to F may cause an exponential growth
in the number of clauses. As a result, the Davis-Putnam procedure has an exponential
worst-case running time.

2.2 Graphs and Hypergraphs

A hypergraph H is a pair (V,E) where V is the set of vertices and E is the set of
hyperedges, which are subsets of V . If |e| = 2 then we call e an edge; we denote an
edge e = {u, v} simply as uv or vu. If all hyperedges of a hypergraph are edges then
we call it a graph. We say that a hypergraph H ′ = (V ′, E′) is a partial hypergraph
of H = (V,E) if V ′ ⊆ V and E′ ⊆ E. The incidence graph I(H) of hypergraph
H = (V,E) is the bipartite graph where the sets V and E form the two partitions, and
where e ∈ E is incident with v ∈ V if and only if v ∈ e. A hypergraph is α-acyclic if it
can be reduced to the empty hypergraph by repeated application of the following rules:

1. Remove hyperedges that are empty or contained in other hyperedges.
2. Remove vertices that appear in at most one hyperedge.

A hypergraph H is β-acyclic if every partial hypergraph of H is α-acyclic. The hyper-
graph H(F) of a formula F has vertex set var(F) and hyperedge set { var(C) | C ∈
F }. We say that F is α-acyclic or β-acyclic if H(F) is α-acyclic or β-acyclic, respec-
tively.

Let F be a formula. The incidence graph of F is the bipartite graph I(F) with
vertex set var(F) ∪ F and edge set {Cx | C ∈ F and x ∈ var(C) }. The directed
incidence graph of F is the directed graph D(F) with vertex set var(F)∪F and arc set
{ (C, x) | C ∈ F and x ∈ C } ∪ { (x,C) | C ∈ F and x ∈ C }. We can also represent
the orientation of edges by labeling them with the signs +,−, such that an edge between
a variable x and a clause C is labeled + if x ∈ C and labeled − if x ∈ C. This gives
rise to the signed incidence graph which carries exactly the same information as the
directed incidence graph.

The graph parameter clique-width measures in a certain sense the structural com-
plexity of a directed or undirected graph [4]. The parameter is defined via a graph con-
struction process where only a limited number of vertex labels are available; vertices
that share the same label at a certain point of the construction process must be treated
uniformly in subsequent steps. In particular, one can use the following four operations:
the creation of a new vertex with label i, the vertex-disjoint union of already constructed
labeled graphs, the relabeling of all vertices of label i with label j denoted ρi→j , and
the insertion of all possible edges between vertices of label i and label j denoted ηi,j
(either undirected, in which case we can also write ηj,i, or directed from label i to j).

The clique-width cw(G) of a graph G is the smallest number k of labels that suffice to
construct G by means of these four operations. An algebraic term representing such a
construction of G is called a k-expression of G. The (directed) clique-width of a CNF
formula is the clique-width of its (directed) incidence graph. The directed clique-width
of a CNF formula can also be defined in terms of the signed incidence graph and is
therefore sometimes called the signed clique-width.

Let G = (V,E) be a graph. For a subset U ⊆ V , the subgraph of G induced by U
is the graph with vertex set U and edge set {uv | u, v ∈ U with uv ∈ E}. A cycle is a
graph, the vertices of which can be ordered as v1, . . . , vn such that E = {vivi+1 | 1 ≤
i ≤ n−1}∪{vnv1}. A graph is chordal bipartite if it has no induced cycle on 6 vertices
or more. A vertex v in a graph G is weakly simplicial if (i) the neighborhood of v in G
forms an independent set, and (ii) the neighborhoods of the neighbors of v form a chain
under set inclusion. Uehara [31] showed the following, which also follows from results
of Hammer, Maffray, and Preismann [17], see [24]. We call a bipartite graph nontrivial
if it contains at least one edge.

Proposition 1 ([17, 31]). A graph is chordal bipartite if and only if every induced sub-
graph has a weakly simplicial vertex. Moreover, a nontrivial chordal bipartite graph
has a weakly simplicial vertex in each partition class.

The following proposition shows how β-acyclic CNF formulas and chordal bipartite
graphs are related. The equivalence between statement (i) and (ii) is due to Tarjan and
Yannakakis [30], who presented this relationship in terms of β-acyclic hypergraphs.
The equivalence between statement (ii) and (iii) follows from the facts that I(H(F)) is
obtained from I(F) after removing all but one clause vertices in I(F) with the same
neighbors, i.e., clauses with the same set of variables in F , and that a chordal bipartite
graph remains chordal bipartite under vertex deletion.

Proposition 2 ([30]). For a CNF formula F , statements (i)-(iii) are equivalent:

(i) F is β-acyclic;
(ii) I(H(F)) is chordal bipartite;

(iii) I(F) is chordal bipartite.

We also call a vertex of a hypergraph or a variable of a CNF formula weakly simplicial
if the corresponding vertex in the associated incidence graph is weakly simplicial.

3 Polynomial-time SAT Decision for β-acyclic CNF Formulas

Note that we can make a hypergraph α-acyclic by adding a universal hyperedge that
contains all vertices; by rule 1 we remove all other hyperedges, by rule 2 all vertices. By
this observation, it is easy to see that SAT is NP-complete for the class of α-acyclic CNF
formulas [26]. In contrast, it is well known that the satisfiability of α-acyclic instances
of the CONSTRAINT SATISFACTION PROBLEM (CSP) can be decided in polynomial
time [13]. Thus SAT and CSP behave differently with respect to α-acyclicity (repre-
senting a clause with k literals as a relational constraint requires exponential space of

order k2k). However, in this section, we give a polynomial-time algorithm that solves
SAT for β-acyclic CNF formulas.

If we can reduce a hypergraphH to the empty graph by repeated deletion of weakly
simplicial vertices, then we say thatH admits a weakly simplicial elimination ordering.
If H = H(F) for some formula F , then we also say that F admits a weakly simplicial
ordering of its variables. The first key ingredient of our algorithm is the following
lemma.

Lemma 1. If F is a β-acyclic formula, then F admits a weakly simplicial elimination
ordering. Moreover, such an ordering can be found in polynomial time.

Proof. Let F be a β-acyclic formula. We must show that H(F) admits a weakly sim-
plicial elimination ordering. Proposition 2 tells us that I(H(F)) is chordal bipartite.
Then I(H(F)) has a weakly simplicial vertex in each partition class due to Proposi-
tion 1. We choose the partition class of I(H(F)) that corresponds to the vertices of H .
Then the lemma readily follows after observing that the class of chordal bipartite graphs
is closed under vertex deletion and that weakly simplicial vertices can be identified in
polynomial time by brute force. ut

The following lemma is the second key ingredient for our algorithm. Recall that
DPx(F) denotes the formula obtained from a formula F after eliminating x by Davis-
Putnam resolution.

Lemma 2. If x is a weakly simplicial variable of a formula F , then |DPx(F)| ≤ |F |.

Proof. Let x be a weakly simplicial variable of a CNF formula F . Let F − x :=
{C \ {x, x} | C ∈ F }. We show that DPx(F) ⊆ F − x.

Assume C1, C2 ∈ F have a resolvent C with respect to x. Consequently we have
C1 ∩ C2 ⊆ {x, x}. Because x is weakly simplicial, var(C1) ⊆ var(C2) or var(C2) ⊆
var(C1). Without loss of generality, assume the former is the case. If x ∈ C1, then we
have C1 ∩ C2 = {x}, and so C = C2 \ {x} ∈ F − x. Similarly, if x ∈ C1, then we
have C1 ∩ C2 = {x}, and so C = C2 \ {x} ∈ F − x. Thus indeed DPx(F) ⊆ F − x.
From |DPx(F)| ≤ |F − x| ≤ |F | the result now follows. ut

We are now ready to present our algorithm.

Algorithm solving SAT for β-acyclic formulas

Input : a β-acyclic formula F
Output : Yes if F is satisfiable

No otherwise

Step 1. compute a weakly simplicial elimination ordering x1, . . . , xn of F
Step 2. apply the Davis-Putnam procedure on ordering x1, . . . , xn

We let BAC denote the class of all β-acyclic formulas and state the main result of
this section.

Theorem 1. SAT can be solved in polynomial time for BAC.

Proof. Let F be a β-acyclic CNF formula. We apply our algorithm. Its correctness fol-
lows from Lemma 1 combined with the correctness of the Davis-Putnam procedure [7].
Steps 1 and 2 run in polynomial time due to Lemma 1 and Lemma 2, respectively.
Hence, Theorem 1 follows. ut

4 Generalizing β-Acyclic Formulas

Lemma 2 is one of the two key ingredients than ensures that our algorithm for solving
SAT on BAC runs in polynomial time. It states that the number of clauses does not
increase after applying Davis-Putnam resolution if x is a weakly simplicial variable of
a formula F . We can ensure this by requiring the following property that is more general
than being weakly simplicial. We say that a variable x ∈ var(F) is DP-simplicial in a
formula F if

(*) for any two clauses C,D ∈ F that have an x-resolvent, this x-resolvent is a subset
of C or a subset of D.

Observe that whenever an x-resolvent is a subset of a parent clause C then it is
equal to C \ {x, x}. The following lemma immediately follows from (∗).

Lemma 3. If x is a DP-simplicial variable of a formula F , then |DPx(F)| ≤ |F |.

An ordering x1, . . . , xn of the variables of F is a DP-simplicial elimination order-
ing if xi is DP-simplicial in DPx1,...,xi−1(F) for all 1 ≤ i ≤ n. We let DPS denote the
class of all formulas that admit a DP-simplicial elimination ordering. We observe that
every weakly simplicial elimination ordering of H(F) is a DP-simplicial elimination
ordering of F . This means that BAC ⊆ DPS. However, due to Example 4.1 below, the
reverse is not true. Hence, we found the following result.

Proposition 3. BAC (DPS.

Given a DP-simplicial ordering, the Davis-Putnam procedure runs in polynomial
time due to Lemma 3. This leads to the following result.

Proposition 4. Let F ∈ DPS. If a DP-simplicial elimination ordering of the variables
in var(F) is given, then SAT can be solved in polynomial time for F .

4.1 An Example

We give an example of a formula in DPS \ BAC. Consider the formula F that has
variables y, z, b, b′, b∗ and c and clauses {y, z, b, b′}, {y, z, b, b∗}, {y, b}, {y, b}, {z, b},
{z, b}, {y, b, b∗, c}, {y, b, b′, c}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗} and {b, b′}.

We observe first that none of the variables of F are weakly simplicial. Conse-
quently, there is no weakly simplicial elimination ordering of F . Hence F /∈ BAC.
However, we will show below that y, b, b′, b∗, c, z is a DP-simplicial elimination order-
ing of F . Then F ∈ DPS, as desired.

We find that y is DP-simplicial in F and obtain DPy(F) = {{z, b, b′}, {z, b, b∗},
{z, b}, {z, b}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗}, {b, b′}}. We then find that b
is DP-simplicial in DPy(F) and obtain DPy,b(F) = {{b′, b∗}, {b∗, b′}, {c, b′, b∗},
{c, b′, b∗}}. We then find that b′ is DP-simplicial in DPy,b(F) and obtain DPy,b,b′(F) =
{{c, b′, b∗}, {c, b′, b∗}}. We then find that b∗ is DP-simplicial in DPy,b,b′(F) and ob-
tain DPy,b,b′,b∗(F) = ∅. Hence, y, b, b′, b∗, c, z is a DP-simplicial elimination ordering
of F .

We note that z is also DP-simplicial in F . Suppose that we started with z instead
of y. We first derive that DPz(F) = {{y, b, b′}, {y, b, b∗}, {y, b}, {y, b}, {y, b, b∗, c},
{y, b, b′, c}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗}, {b, b′}}. In contrast to DPy(F),
the clauses {y, b, b∗, c} and {y, b, b′, c} are still contained in DPz(F). This implies
that DPz(F) has no DP-simplicial variables. Consequently, F has no DP-simplicial
elimination ordering that starts with z.

We conclude that in contrast to weakly simplicial elimination orderings it is impor-
tant to choose the right variable when we want to obtain a DP-simplicial elimination
ordering. In the next section we will extend this consideration and show that making
the right choice is in fact an NP-hard problem.

5 Recognizing Formulas in DPS

We prove that the problem of testing whether a given CNF formula belongs to the
class DPS, i.e., admits a DP-simplicial elimination ordering, is NP-complete. This
problem is in NP, because we can check in polynomial time whether an ordering of the
variables of a CNF formula is a DP-simplicial elimination ordering. In order to show
NP-hardness we reduce from SAT. In Section 5.1 we construct a CNF formula F ′ from
a given CNF formula F . We also show a number of properties of F ′. In Section 5.2 we
use these properties to prove that F is satisfiable if and only if F ′ admits a DP-simplicial
elimination ordering.

5.1 The Gadget and its Properties

For a given CNF formula F with variables x1, . . . , xn called the x-variables and clauses
C1, . . . , Cm, we construct a CNF formula F ′ as follows. For every xi we introduce two
variables yi and zi. We call these variables the y-variables and z-variables, respectively.
For every Cj we introduce a variable cj . We call these variables the c-variables. We
also add three new variables b, b′ and b∗ called the b-variables. We let var(F ′) consist
of all b-variables, c-variables, y-variables, and z-variables.

Let Cj be a clause of F . We replace every x-variable in C by its associated y-
variable if the occurrence of x in C is positive; otherwise we replace it by its associated
z-variable. This yields a clause Dj . For instance, if Cj = {x1, x2, x3} then Dj =
{y1, z2, y3}.

We let F ′ consist of the following 6n+ 4m+ 3 clauses:

• {yi, b} and {yi, b} for i = 1, . . . , n called by-clauses

• {zi, b} and {zi, b} for i = 1, . . . , n called bz-clauses

• {yi, zi, b, b′} and {yi, zi, b, b∗} for i = 1, . . . , n called byz-clauses

• {cj , b′, b∗} and {cj , b′, b∗} for j = 1, . . . ,m called bc-clauses

• Dj∪{b, b∗, cj}∪{ ck | k 6= j } andDj∪{b, b′, cj}∪{ ck | k 6= j } for j = 1, . . . ,m
called bcD-clauses

• {b, b′}, {b′, b∗} and {b′, b∗} called b-clauses.

We call a pair Dj ∪ {b, b∗, cj} ∪ { ck | k 6= j } and Dj ∪ {b, b′, cj} ∪ { ck | k 6= j }
for some 1 ≤ j ≤ m a bcD-clause pair. We call a CNF formula M a yz-reduction
formula of F ′ if there exists a sequence of variables v1, . . . , vk, where every vi is either
a y-variable or a z-variable, such that DPv1,...,vk(F ′) = M , and vi is DP-simplicial in
DPv1,...,vi−1(F ′) for i = 1, . . . , k. We say that two clauses C and D violate (*) if they
have a resolvent that is neither a subset of C nor a subset of D, i.e., C ∩D = {v} for
some variable v but neither (C∪D)\{v, v} = C \{v} nor (C∪D)\{v, v} = D\{v}.
We will now prove five useful lemmas valid for yz-reduction formulas.

Lemma 4. LetM be a yz-reduction formula of F ′. IfM contains both clauses of some
bcD-clause pair, then no b-variable and no c-variable is DP-simplicial in M .

Proof. LetE1 = Dj∪{b, b∗, cj}∪{ ck | k 6= j } andE2 = Dj∪{b, b′, cj}∪{ ck | k 6=
j } for some 1 ≤ j ≤ m be a bcD-clause pair in M . We observe that by definition M
contains all b-clauses and bc-clauses. This enables us to prove the lemma. Let v be a
b-variable or c-variable. Then we must distinguish 5 cases. If v = b, then {b, b′} and
E1 violate (*). If v = b′, then {b′, b∗} and E2 violate (*). If v = b∗, then {b′, b∗}
and E1 violate (*). If v = cj , then {cj , b′, b∗} and E1 violate (*). If v = ck for some
1 ≤ k ≤ m with k 6= j, then {ck, b′, b∗} and E1 violate (*). ut

Lemma 5. LetM be a yz-reduction formula of F ′. Then yi ∈ var(M) or zi ∈ var(M)
for i = 1, . . . , n.

Proof. Suppose thatM does not contain yi or zi for some 1 ≤ i ≤ m, say yi /∈ var(M).
We show that zi ∈ var(M). Let M ′ be the formula obtained from F ′ just before
the elimination of yi. Because M is a yz-reduction formula, M ′ is a yz-reduction
formula as well. Hence, var(M ′) contains all b-variables. Because yi and zi are in
var(M ′), we then find that M ′ contains the clauses {yi, zi, b, b′}, {yi, b}, {yi, zi, b, b∗}
and {yi, b}. Because the first two clauses resolve into {zi, b, b′}, and the last two re-
solve into {zi, b, b∗}, we obtain that DPyi(M

′) contains {zi, b, b′} and {zi, b, b∗}, which
violate (*). Because M contains all b-variables by definition, zi will never become DP-
simplicial when we process DPyi

(M ′) until we obtain M . Hence, zi ∈ var(M), as
desired. ut

Lemma 6. Let M be a yz-reduction formula of F ′, and let 1 ≤ j ≤ m. If there is a
variable that occurs in Dj but not in M , then M neither contains Dj ∪ {b, b∗, cj} ∪
{ ck | k 6= j } nor Dj ∪ {b, b′, cj} ∪ { ck | k 6= j } nor their resolution descendants.

Proof. Let v be a variable that occurs in Dj but not in M . We may assume without loss
of generality that v is the first variable inDj that got eliminated and that v = yi for some

1 ≤ i ≤ n. Let S be the set that consists of all clausesDj′∪{b, b∗, cj′}∪{ ck | k 6= j′ }
and Dj′ ∪ {b, b′, cj′} ∪ { ck | k 6= j′ } in which yi occurs.

Let M ′ be the formula obtained from F ′ just before the elimination of yi. Because
M is a yz-reduction formula, M ′ is a yz-reduction formula as well. Hence, by defini-
tion, all b-variables and all c-variables occur in M ′. Then the clauses in M ′, in which
yi occurs, are {yi, b}, {yi, b}, {yi, zi, b, b′},{yi, zi, b, b∗}, together with clauses that are
either from S or a resolution descendant of a clause in S. Note that these resolution
descendants still contain all their b-variables and c-variables.

When we eliminate yi, we remove all clauses in M ′ in which yi occurs. Hence,
DPyi(M

′), and consequently,M neither containsE1 = Dj∪{b, b∗, cj}∪{ ck | k 6= j }
nor E2 = Dj ∪ {b, b′, cj} ∪ { ck | k 6= j }. We show that DPyi

(M ′) does not contain
a resolvent of one of these two clauses either. This means that M ′ does not contain
one of their resolution descendants, as desired. We only consider E1, because we can
deal with E2 in the same way. There is no yi-resolvent of E1 and a clause C from
{{yi, b}, {yi, b}, {yi, zi, b, b′},{yi, zi, b, b∗}}, because E1 ∩ C contains b. There is no
yi-resolvent of E1 and a (resolution descendant from a) clause C of S either, because
E1 ∩ C contains cj . ut
Lemma 7. Let M be a yz-reduction formula of F ′, and let 1 ≤ i ≤ n. If var(M)
contains yi and zi, then both yi and zi are DP-simplicial in M .

Proof. By symmetry, we only have to show that yi is DP-simplicial in M . Let S be the
set of all clausesDj′∪{b, b∗, cj′}∪{ ck | k 6= j′ } andDj′∪{b, b′, cj′}∪{ ck | k 6= j′ }
in which yi occurs. By definition, var(M) contains all b-variables and all c-variables.
This has the following two consequences. First, as var(M) also contains yi and zi,
we find that M contains the clauses {yi, b}, {yi, b}, {yi, zi, b, b′}, and {yi, zi, b, b∗}.
Second, by Lemma 6, the other clauses of M in which yi occurs form a subset of S.
This means that there are only 3 pairs of clauses C1, C2 in M with C1 ∩ C2 = {yi},
namely the pair {yi, b}, {yi, b}, the pair {yi, b}, {yi, zi, b, b∗}, and the pair {yi, b},
{yi, zi, b, b′}. Each of these pairs satisfies (*). This completes the proof of Lemma 7.

ut
Lemma 8. Let M be a yz-reduction formula of F ′. If M contains neither bcD-clauses
nor resolution descendants of such clauses, then M has a DP-simplicial elimination
ordering b, c1, . . . , cm, b′, b∗, v1, . . . , v`, where v1, . . . , v` form an arbitrary ordering
of the y-variables and z-variables in var(M).

Proof. By our assumptions, the only clauses inM in which b occurs are by-clauses, bz-
clauses, byz-clauses, and the clause {b, b′}. In all these clauses b occurs as b. Hence, b is
(trivially) DP-simplicial in M . We then find that DPb(M) consists of {b′, b∗}, {b′, b∗}
and all bc-clauses. For every cj , there exists exactly one bc-clause, namely {cj , b′, b∗},
in which cj occurs as cj , and exactly one bc-clause, namely {cj , b′, b∗}, in which cj
occurs as cj . Hence, cj is DP-simplicial in DPb,c1,...,cj−1(M) for j = 1, . . . ,m. We
deduce that DPb,c1,...,cm(M) = {{b′, b∗}, {b′, b∗}, {b′, b∗}}. Then b′ is DP-simplicial
in DPb,c1,...,cm

(M), and we find that DPb,c1,...,cm,b′(M) = {{b∗}}. Then b∗ is DP-
simplicial in DPb,c1,...,cm,b′(M), and we find that DPb,c1,...,cm,b′,b∗(M) = ∅. Conse-
quently, vi is DP-simplicial in DPb,c1,...,cm,b′,b∗,v1,...,vi−1(M) for i = 1, . . . , `. This
concludes the proof of Lemma 8. ut

5.2 The Reduction

We are now ready to prove the main result of Section 5.

Theorem 2. The problem of testing whether a CNF formula belongs to DPS is NP-
complete.

Proof. Recall that the problem is in NP. Given a CNF formula F that has variables
x1, . . . , xn and clauses C1, . . . , Cm, we construct in polynomial time the CNF for-
mula F ′. We claim that F is satisfiable if and only if F ′ admits a DP-simplicial elimi-
nation ordering.

First suppose that F is satisfiable. Let τ be a satisfying truth assignment of F . We
define functions f and g that map every x-variable to a y-variable or z-variable in the
following way. If τ(xi) = 1, then f(xi) = yi and g(xi) = zi. If τ(xi) = 0, then
f(xi) = zi and g(xi) = yi. Let x1, . . . , xn be the x-variables in an arbitrary ordering.
Then, for every 1 ≤ i ≤ n, the formula DPf(x1),...,f(xi)(F

′) is a yz-reduction formula.
From Lemma 7 we deduce that f(xi) is DP-simplicial in DPf(x1),...,f(xi−1)(F

′) for
every 1 ≤ i ≤ n. Because τ satisfies F , var(Dj) contains a variable that is not in
var(DPf(x1),...,f(xn)(F ′)), for every 1 ≤ j ≤ m. Lemma 6 implies that M does
not contain any bcD-clause or any of their resolution descendants. Then, by Lemma 8,
we find that f(x1), . . . , f(xn), b, c1, . . . , cm, b′, b∗, g(x1), . . . , g(xn) is a DP-simplicial
elimination ordering of F ′.

Now suppose thatF ′ admits a DP-simplicial elimination ordering v1, . . . , v|var(F ′)|.
Let vk be the first variable that is neither a y-variable nor a z-variable. Then M =
DPv1,...,vk−1(F ′) is a yz-reduction formula. Let A = {v1, . . . , vk−1}, and let X con-
sist of all x-variables that have an associated y-variable or z-variable in A. We define
a truth assignment τ : X → {0, 1} by setting τ(xi) = 1 if yi ∈ A and τ(xi) = 0
if zi ∈ A, for every xi ∈ X . By Lemma 5, we find that τ is well defined. Be-
cause vk is a DP-simplicial b-variable or a DP-simplicial c-variable in M , we can ap-
ply Lemma 4 and find that, for every 1 ≤ j ≤ m, at least one of the two clauses
Dj ∪ {b, b∗, cj} ∪ { ck | k 6= j } and Dj ∪ {b, b′, cj} ∪ { ck | k 6= j } is not in M . This
means that every clause Cj contains a literal x with τ(x) = 1. Hence, F is satisfiable.
This completes the proof of Theorem 2. ut

6 Intermediate Classes

We discuss a possibility for coping with the NP-hardness result of the previous section.
The ultimate reason for this hardness is that a formula may have several DP-simplicial
variables, and it is hard to choose the right one. A simple workaround is to assume
a fixed ordering of the variables and always choose the DP-simplicial variable which
comes first according to this ordering. In this way we loose some generality but win
polynomial time tractability. This idea is made explicit in the following definitions.

Let Ω denote the set of all strict total orderings of the propositional variables. Let
≺ ∈ Ω and F be a CNF formula. A variable x ∈ var(F) is≺-DP-simplicial in F if x is
DP-simplicial in F , and var(F) contains no variable y ≺ x that is DP-simplicial in F .
A strict total ordering x1, . . . , xn of the variables of F is a≺-DP-simplicial elimination

ordering if xi is ≺-DP-simplicial in DPx1,...,xi−1(F) for all 1 ≤ i ≤ n. We let DPS≺
denote the class of all CNF formulas that admit a≺-DP-simplicial elimination ordering,
and we set DPS∀ =

⋂
≺∈Ω DPS≺.

Proposition 5. DPS≺ can be recognized in polynomial time for every ≺ ∈ Ω. More
precisely, it is possible to find in polynomial time a ≺-DP-simplicial elimination order-
ing for a given CNF formula F , or else to decide that F has no such ordering.

Proof. Let x1, . . . , xn be the variables of F , ordered according to≺. By brute force we
check whether xi is DP-simplicial in F , for i = 1, . . . , n. This takes polynomial time
for each check. When we have found the first DP-simplicial variable xi, we replace F
by DPxi

(F). We iterate this procedure as long as possible. Let F ′ be the formula we
end up with. If var(F ′) = ∅ then F ∈ DPS≺ and the sequence of variables as they have
been eliminated provides a ≺-DP-simplicial elimination ordering. If var(F ′) 6= ∅ then
F /∈ DPS≺. ut

Proposition 6. BAC (DPS∀ (DPS =
⋃
≺∈Ω DPS≺.

Proof. First we show that BAC (DPS∀. Let F ∈ BAC and ≺ ∈ Ω. We use induction
on the number of variables of F to show that F ∈ DPS≺. The base case |var(F)| = 0
is trivial. Let |var(F)| ≥ 1. Because F ∈ BAC and var(F) 6= ∅, we find that F has at
least one weakly simplicial variable. Recall that each weakly simplicial variable is DP-
simplicial. Consequently, F has at least one DP-simplicial variable. Let x be the first
DP-simplicial variable in the ordering≺. By definition, x is a≺-DP-simplicial variable.
We consider F ′ = DPx(F). Because a β-acyclic hypergraph remains β-acyclic under
vertex and hyperedge deletion, F ′ ∈ BAC. Because F ′ has fewer variables than F ,
we use the induction hypothesis to conclude that F ′ ∈ DPS≺. Hence BAC ⊆ DPS≺
follows. Because ≺ ∈ Ω was chosen arbitrarily, BAC ⊆ DPS∀ follows.

In order to see that BAC 6= DPS∀, we take a hypergraph H that is not β-acyclic
and consider H as a CNF formula with only positive clauses. All variables of H are
DP-simplicial and can be eliminated in an arbitrary order. Thus H ∈ DPS∀ \ BAC.

Next we show that DPS∀ (DPS. Inclusion holds by definition. In order to show
that the inclusion is strict, we consider the formula F of the example in Section 4.1.
In that section we showed that y, b, b′, b∗, c, z is a DP-simplicial elimination ordering
of F . Hence, F ∈ DPS≺ for any ordering ≺ with y ≺ b ≺ b′ ≺ b∗ ≺ c ≺ z.
We also showed that z is DP-simplicial in F but that F has no DP-simplicial ordering
starting with z. Hence, F /∈ DPS≺′ for any ordering ≺′ with z ≺′ y. We conclude that
F ∈ DPS \ DPS∀. Finally, the equality DPS =

⋃
≺∈Ω DPS≺ holds by definition. ut

6.1 Grades of Tractability

What properties do we require from a class C of CNF formulas to be a “tractable class”
for SAT? Clearly we want C to satisfy the property:

1. Given a formula F ∈ C, we can decide in polynomial time whether F is satisfiable.

This alone is not enough, since even the class of all satisfiable CNF formulas has this
property. Therefore we might wish that a tractable class C should also satisfy the prop-
erty:

2. Given a formula F , we can decide in polynomial time whether F ∈ C.

However, if C is not known to satisfy property 2, then it may still satisfy the property:

3. There exists a polynomial-time algorithm that either decides where a given a for-
mula F is satisfiable or not, or else decides that F does not belong to C.

The algorithm mentioned in property 3 may decide the satisfiability of some formulas
outside of C, hereby avoiding the recognition problem. Such algorithms are called
robust algorithms [29]. In addition we would also assume from a tractable class C to be
closed under isomorphisms, i.e., to satisfy the property:

4. If two formulas differ only in the names of their variables, then either both or none
belong to C.

This leaves us with two notions of a tractable class for SAT, a strict one where properties
1, 2, and 4 are required, and a permissive one where only properties 3 and 4 are required.
Every strict class is permissive, but the converse does not hold in general. For instance,
the class of Horn formulas is strictly tractable, but the class of extended Horn formulas
is only known to be permissively tractable [27].

Where are the classes from our paper located within this classification? As a result
of Theorem 1, we find that BAC is strictly tractable. By Theorem 2, DPS is not strictly
tractable (unless P = NP). The classes DPS≺ do not satisfy property 4. Hence they are
not considered as tractable classes. However, DPS∀ is permissively tractable, because
an algorithm for DPS≺ for an arbitrary ordering ≺ is a robust algorithm for DPS∀. It
remains open whether DPS is permissively tractable.

7 Comparisons

We compare the classes of our paper with other known (strictly or permissively) tractable
classes. We say that two classes C1 and C2 of CNF formulas are incomparable if for
every n larger than some fixed constant there exist formulas in C1 \ C2 and in C2 \ C1
with at least n variables.

We show that each of the classes mentioned in Proposition 6 is incomparable with
a wide range of classes of CNF formulas, in particular with all the tractable classes
considered in Speckenmeyer’s survey [28], and classes based on graph width parame-
ters [16]. For showing this it suffices to consider the classes BAC and DPS only, which
are boundary classes as shown in Proposition 6.

The following four families of formulas will be sufficient for showing most of our
incomparability results. Here, n ≥ 1 is an integer, x1, . . . , xn and y1, . . . , y2n are
variables, and C1, . . . , C2n are all possible clauses with variables x1, . . . , xn.

Fa(n) = {C1, . . . , C2n}

Fs(n) = {{x1, . . . , xdn
2 e}, {xdn

2 e, . . . , xn}}

Fc(n) = { {xi, xi+1} | 1 ≤ i ≤ n− 1 } ∪ {{xn, x1}}

Fac(n) = { {yj−1, yj} ∪ Cj | 1 < j ≤ 2n } ∪ {{y2n , y1} ∪ C1} ∪
{ {yj , yj+1} ∪ Cj | 1 ≤ j ≤ 2n } ∪ {{y2n , y1} ∪ C2n}.

We observe that every I(Fa(n)) is a complete bipartite graph with partition classes
of size n and 2n, respectively, and that every I(Fs(n)) is a tree. Because complete
bipartite graphs and trees are chordal bipartite, we can apply Proposition 2 to obtain the
following lemma.

Lemma 9. Fa(n), Fs(n) ∈ BAC for all n ≥ 1.

By the following lemma, the other two classes of formulas do not intersect with DPS.
Recall that two clauses C and D violate (*) if they have a resolvent that is neither a
subset of C nor a subset of D.

Lemma 10. Fc(n), Fac(n) /∈ DPS for all n ≥ 3.

Proof. Throughout the proof we compute indices of modulo n for the vertices xi, and
modulo 2n+1 for the vertices yj .

First we show that Fc(n) /∈ DPS. The clauses C = {xi, xi+1} and C ′ =
{xi−1, xi} ∈ Fc(n) have the xi-resolvent {xi−1, xi+1} which is not a subset of C
or C ′. Hence, C and C ′ violate (*). Consequently, xi is not DP-simplicial for any
1 ≤ i ≤ n. Because Fc(n) has no other resolvents, Fc(n) has no DP-simplicial vari-
ables. Because var(Fc(n)) 6= ∅ either, we conclude that Fc(n) /∈ DPS for all n ≥ 3.

Next we show that Fac(n) /∈ DPS. Let 1 ≤ i ≤ n for some n ≥ 3. Let 1 ≤
j1, j2 ≤ 2n such that Cj1 ∩ Cj2 = {xi}. By definition, Fac(n) contains the clauses
C = {yj1 , yj1+1} ∪ Cj1 and C ′ = {yj2 , yj2+1} ∪ Cj2 , which have xi-resolvent C∗ =
{yj1 , yj1+1, yj2 , yj2+1}∪ (Cj1 ∪Cj2) \ {xi, xi} . However, since {yj1 , yj1+1} 6= {yj2 ,
yj2+1}, we find that C∗ is not a subset of C or C ′. Hence, C and C ′ violate (*).
Consequently, xi is not DP-simplicial for any 1 ≤ i ≤ n.

Let 1 ≤ j ≤ 2n for some n ≥ 3. Then Fac(n) contains the two clauses C =
{yj , yj+1}∪Cj andC ′ = {yj−1, yj}∪Cj , which have yj-resolventC∗ = {yj−1, yj+1}∪
Cj . However, yj−1 ∈ C∗ \ C and yj+1 ∈ C∗ \ C ′. Hence, C∗ is not a subset of C
or C ′. Consequently yj is not DP-simplicial for any 1 ≤ j ≤ 2n. Because Fac(n) has
no other resolvents, Fac(n) has no DP-simplicial variables. Because var(Fac(n)) 6= ∅
either, we conclude that Fac(n) /∈ DPS for all n ≥ 3. ut

Suppose that we want to show that BAC and DPS are incomparable with a class C
of CNF formulas. Then, Proposition 6 combined with Lemmas 9 and 10 implies that
we only have to show the validity of the following two statements:

(i) Fa(n) /∈ C or Fs(n) /∈ C for every n larger than some fixed constant;
(ii) Fc(n) ∈ C or Fac(n) ∈ C for every n larger than some fixed constant.

7.1 Easy Classes

We use (i) and (ii) to show that BAC and DPS are incomparable with the classes con-
sidered by Speckenmeyer [28]. For example, consider the class of 2-CNF formulas,
i.e., CNF formulas where every clause contains at most two literals. For every n ≥ 3,
Fa(n) is not a 2-CNF formula. This shows (i). Furthermore, (ii) follows from the fact

that Fc(n) is a 2-CNF formula for every n ≥ 3. Consequently, the class of 2-CNF
formulas is incomparable with BAC and DPS.

As a second example we consider the class of hitting formulas, i.e., CNF formulas
where C ∩ C ′ 6= ∅ holds for any two of their clauses [28]. Now, for every n ≥ 3 the
formula Fs(n) is not a hitting formula. This shows (i). It is not difficult to see that for
n ≥ 3, Fac(n) is a hitting formula. This shows (ii). Consequently, the class of hitting
formulas is incomparable with BAC and DPS.

The proofs for other classes of formulas considered in [28] are similar. In particular,
for the classes Horn, renameable Horn, extended Horn, CC-balanced, Q-Horn, SLUR,
Matched, bounded deficiency, nested, co-nested, and BRLRk formulas we can utilize
the formulas Fa(n) to show (i) and the formulas Fc(n) to show (ii).

7.2 Classes of Bounded Width

It is known [16] that SAT is tractable for various classes of formulas that are defined by
bounding certain width-measures of graphs associated with formulas. Besides the inci-
dence graph I(F) and the directed incidence graph D(F), the other prominent graph
associated with a CNF formula F is the primal graph P (F) of F , which is the graph
with vertex set var(F) and edge set {x, y | x, y ∈ var(C) for some C }. We restrict
our scope to the graph invariants treewidth (tw), and clique-width (cw). Recall that the
latter notion has been defined in Section 2. For the definition of treewidth we refer to
other sources [16], as we do not need it here.

For a graph invariant π, a graph representation G ∈ {P, I,D} and an integer k, we
consider the class CNFGk (π) of CNF formulas F with π(G(F)) ≤ k. For every fixed
k ≥ 0, SAT can be solved in polynomial time for the classes CNFPk (tw), CNFIk(tw),
and CNFDk (cw) [16]. We show that these classes are incomparable with BAC and DPS.

Proposition 7. For every k ≥ 2, CNFPk (tw) is incomparable with BAC and DPS.

Proof. We prove that (i) and (ii) hold with respect to CNFPk (tw). Because P (Fa(n))
is the complete graph on n vertices, it has treewidth n − 1 [1, 18]. Hence, Fa(n) /∈
CNFPk (tw) for all n ≥ k+ 2. This proves (i). Because P (Fc(n)) is a cycle of length n,
it has treewidth 2 [1, 18]. Hence, Fc(n) ∈ CNFP2 (tw). This proves (ii). ut

Proposition 8. For every k ≥ 2, CNFIk(tw) is incomparable with BAC and DPS.

Proof. We prove that (i) and (ii) hold with respect to CNFIk(tw). Because I(Fa(n)) is
a complete bipartite graph with partition classes of size n and 2n, respectively, it has
treewidth n [1, 18]. Hence, Fa(n) /∈ CNFIk(tw) for all n ≥ k + 1. This proves (i).
Because I(Fc(n)) is a cycle of length 2n, it has treewidth 2 [1, 18]. Hence, Fc(n) ∈
CNFI2(tw). This proves (ii). ut

Proposition 9. For every k ≥ 4, CNFDk (cw) is incomparable with BAC and DPS.

Proof. First we show that BAC \ CNFDk (cw) contains formulas with an arbitrary large
number of variables. For all n ≥ 1, Brandstädt and Lozin [3] showed that there is a
bipartite permutation graph G(n) with clique-width n. We do not need the definition of

a bipartite permutation graph; it suffices to know that bipartite permutation graphs are
chordal bipartite [29].

Let G′(n) = (Un ∪ Wn, En) denote the graph obtained from G(n) by deleting
twin vertices as long as possible; two vertices are twins if they have exactly the same
neighbors. The deletion of twins does not change the clique-width of a graph [6].
Hence, G′(n) has clique-width n. It is well known and easy to see that the clique-width
of a bipartite graph with partition classes of size r and s, respectively, is not greater
than min(r, s) + 2. Hence |Un| ≥ n − 2. Because we only deleted vertices, G′(n) is
also chordal bipartite.

Let F (n) = {N(w) | w ∈ Wn } where N(w) denotes the set of neighbors of w in
G′(n). Then G′(n) is the incidence graph of F (n), because G′(n) has no twins. Hence
F (n) ∈ BAC follows from Proposition 2. Recall that the clique-width of G′(n) =
I(F (n)) is n and that |Un| ≥ n − 2. Since all clauses of F (n) are positive, I(F (n))
and D(F (n)) have the same clique-width. We conclude that F (n) is a formula on at
least n− 2 variables that belongs to BAC \ CNFDk (cw) for n ≥ k + 1.

For the converse direction we observe thatD(Fc(n)) is an oriented cycle and clearly
has clique-width at most 4. This means that D(Fc(n)) ∈ CNFD4 (cw). By Lemma 10,
we have that D(Fc(n)) /∈ DPS for all n ≥ 3. We then conclude that CNFD4 (cw) \DPS
contains D(Fc(n)) for all n ≥ 3. We are left to apply Proposition 6 to complete the
proof of Proposition 9. ut

Results similar to Propositions 7–9 also hold for the graph invariants branchwidth
and rank-width, since a class of graphs has bounded branchwidth if and only if it has
bounded treewidth [1], and a class of directed graphs has bounded rank-width if and
only if it has bounded clique-width [12].

8 Parameterized Complexity

We stud the complexity of SAT for formulas that are “almost” β-acyclic. We define
what it means to be almost β-acyclic in two different ways. We base the distance
measure on the notion of a strong backdoor set in Section 8.1, and on the notion of
β-hypertree width in Section 8.2. We start with a short introduction into Parameterized
Complexity and refer to other sources [8, 11] for an in-depth treatment.

A parameterized problem can be considered as a set of pairs (I, k), the instances,
where I is the main part and k is the parameter. The parameter is usually a non-negative
integer. The complexity class XP consists of parameterized decision problems Π such
that for each instance (I, k) it can be decided in f(k)|I|g(k) time whether (I, k) ∈ Π ,
where f and g are computable functions depending only on the parameter k, and |I|
denotes the size of I . So XP consists of parameterized decision problems which can
be solved in polynomial time if the parameter is a constant. A parameterized decision
problem is fixed-parameter tractable if there exists a computable function f such that
instances (I, k) of size n can be decided in time f(k)nO(1). The class FPT denotes the
class of all fixed-parameter tractable decision problems.

Parameterized complexity offers a completeness theory, similar to the theory of NP-
completeness, that allows the accumulation of strong theoretical evidence that some

parameterized problems are not fixed-parameter tractable. This theory is based on a
hierarchy of complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP. Each class W[i]
contains all parameterized decision problems that can be reduced to a certain fixed
parameterized decision problem under parameterized reductions. These are many-to-
one reductions where the parameter for one problem maps into the parameter for the
other. More specifically, problem L reduces to problem L′ if there is a mapping R from
instances of L to instances of L′ such that (i) (I, k) is a yes-instance of L if and only if
(I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ = g(k) for a computable function g,
and (iii) R can be computed in time f(k)nO(1) where f is a computable function and n
denotes the size of (I, k). The class W[1] is considered as the parameterized analog to
NP.

8.1 Strong Backdoor Sets

Let C be a class of CNF formulas. Consider a CNF formula F together with a set of
variables B ⊆ var(F). We say that B is a strong backdoor set of F with respect to
C if for all truth assignments τ : B → {0, 1} we have F [τ] ∈ C. In that case we
also say that B is a strong C-backdoor set. For every CNF formula F and every set
B ⊆ var(F) it holds that F is satisfiable if and only if F [τ] is satisfiable for at least
one truth assignment τ : B → {0, 1}. Thus, if B is a strong C-backdoor set of F ,
then determining whether F is satisfiable reduces to the SATISFIABILITY problem for
at most 2|B| reduced CNF formulas F [τ] ∈ C.

Now consider a strictly or permissively tractable class C of CNF formulas. Then,
if we have found a strong C-backdoor set of F of size k, deciding the satisfiability of
F is fixed-parameter tractable for parameter k. Hence, the key question is whether we
can find a strong backdoor set of size at most k if it exists. To study this question, we
consider the following parameterized problem; note that this problem belongs to XP for
every fixed strictly tractable class C.

STRONG C-BACKDOOR
Instance: A formula F and an integer k > 0.
Parameter: The integer k.
Question: Does F have a strong C-backdoor set of size at most k?

It is known that STRONG C-BACKDOOR is fixed-parameter tractable for the class C of
Horn formulas and for the class C of 2CNF formulas [21]. Contrary to these results, we
show that STRONG BAC-BACKDOOR is W[2]-hard.

Theorem 3. The problem STRONG BAC-BACKDOOR is W[2]-hard.

Proof. Let S be a family of finite sets S1, . . . , Sm. Then a subset R ⊆
⋃m
i=1 Si is

called a hitting set of S if R ∩ Si 6= ∅ for i = 1, . . . ,m. The HITTING SET problem is
defined as follows.

HITTING SET
Instance: A family S of finite sets S1, . . . , Sm and an integer k > 0.
Parameter: The integer k.
Question: Does S have a hitting set of size at most k?

It is well known that HITTING SET is W[2]-complete [8]. We reduce from this problem
to prove the theorem.

Let S = {S1, . . . , Sm } and k be an instance of HITTING SET. We write V (S) =⋃m
i=1 Si and construct a formula F as follows. For each s ∈ V (S) we introduce a

variable xs, and we write X = {xs | s ∈ V (S) }. For each Si we introduce two
variables h1

i and h2
i . Then, for every 1 ≤ i ≤ m, the formula F contains three clauses

Ci, C
1
i , and C2

i such that:

• Ci = {h1
i , h

2
i };

• C1
i = {h1

i } ∪ {xs | s ∈ Si } ∪ {xs | s ∈ V (S) \ Si) };
• C2

i = {h2
i } ∪ {xs | s ∈ V (S) }.

We need the following claims. The first claim characterizes the induced cycles in
I(F) with length at least 6. We need it to prove the second claim.

Claim 1. Let D be an induced cycle in I(F). Then |V (D)| ≥ 6 if and only if V (D) =
{h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some 1 ≤ i ≤ m and s ∈ V (S).

We prove Claim 1 as follows. Suppose that D is an induced cycle in I(F) with
|V (D)| ≥ 6. By construction, D contains at least one vertex from X . Because any
two vertices in X have exactly the same neighbors in I(F), D contains at most one
vertex from X . Hence, D contains exactly one vertex from X , let xs be this vertex. Let
Cji and Cj

′

i′ be the two neighbors of xs on D. Because xs is the only of D that belongs
to X , we find that hji and hj

′

i′ belong to D. By our construction, Ci and Ci′ then belong
to D as well. If Ci 6= Ci′ , then D contains at least two vertices from X , which is not
possible. Hence Ci = Ci′ , as desired. The reverse implication is trivial, and Claim 1 is
proven.

Claim 2. Let B be a strong BAC-backdoor set that contains variable hji . Then, for any
s∗ ∈ Si, the set (B\{hji}) ∪ {xs∗} is a strong BAC-backdoor set.

We prove Claim 2 as follows. Let s∗ ∈ Si and define B′ = (B\{hji}) ∪ {xs∗}.
Suppose that B′ is not a strong BAC-backdoor set. Then there is a truth assignment
τ : B′ → {0, 1} with F [τ] /∈ BAC. This means that I(F [τ]) contains an induced
cycle D with |V (D)| ≥ 6. Because B is a strong BAC-backdoor set, hji must belong
to V (D). We apply Claim 1 and obtain V (D) = {h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some

xs ∈ X . Suppose τ(xs∗) = 1. Then C1
i /∈ F [τ]. Hence τ(xs∗) = 0, but then

C2
i /∈ F [τ]. This contradiction proves Claim 2.

We are ready to prove the claim that S has a hitting set of size at most k if and only
if F has a strong BAC-backdoor set of size at most k.

Suppose that S has a hitting set R of size at most k. We claim that B = {xs | s ∈
R } is a strong BAC-backdoor set of F . Suppose not. Then there is a truth assignment τ
withF [τ] /∈ BAC. This means that I(F [τ]) contains an induced cycleD with |V (D)| ≥
6. By Claim 1, we obtain V (D) = {h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some 1 ≤ i ≤ m and

s ∈ S. Because C1
i , C

2
i are in I(F [τ]), we find that R ∩ Si = ∅. This is not possible,

because R is a hitting set of S.

Conversely, suppose that F has a strong BAC-backdoor set B of size at most k.
By Claim 2, we may without loss of generality assume that B ⊆ X . We claim that
R = { s | xs ∈ B } is a hitting set of S. Suppose not. Then R ∩ Si = ∅ for
some 1 ≤ i ≤ m. This means that B contains no vertex from {xs | s ∈ Si }. Let
τ : B → {0, 1} be the truth assignment with τ(xs) = 1 for all xs ∈ B. Then C1

i and
C2
i are in F [τ]. Let s ∈ Si. Then the cycle D with V (D) = {h1

i , h
2
i , xs, Ci, C

1
i , C

2
i }

is an induced 6-vertex cycle in I(F [τ]). This means that F [τ] /∈ BAC, which is not
possible. Hence, we have proven Theorem 3. ut

We finish Section 8.1 by considering another type of backdoor sets. Let F be a
formula and let B ⊆ var(F) be a set of variables. Recall that F − B denotes the
formula obtained from F after removing all literals x and x with x ∈ B from the
clauses in F . We call B a deletion backdoor set with respect to a class C if F −B ∈ C.

Deletion C-backdoor sets can be seen as a relaxation of strong C-backdoor sets if
the class C is clause-induced, i.e., if for every F ∈ C and F ′ ⊆ F , we have F ′ ∈ C.
In that case every deletion C-backdoor set B is also a strong C-backdoor set. This is
well known [22] and can easily be seen as follows. Let τ : B → {0, 1} be a truth
assignment. Then by definition F [τ] ⊆ F − B. Because B is a deletion C-backdoor
set, F − B ∈ C. Because C is clause-induced and F [τ] ⊆ F − B, this means that
F [τ] ∈ C, as required.

Now let C be a clause-induced class. Let B be a smallest deletion C-backdoor
set and let B′ be a smallest strong C-backdoor set. Then, from the above, we deduce
|B′| ≤ |B|. The following example shows that |B| − |B′| can be arbitrarily large for
C = BAC, which is obviously clause-induced. Let F be the formula with var(F) =
{x1, . . . , xp, y1, . . . , yp, z1, . . . , zp} for some p ≥ 1 and clauses

C1 = {x1, . . . , xp, y1, . . . , yp},
C2 = {y1, . . . , yp, z1, . . . , zp},
C3 = {x1, . . . , xp, z1, . . . , zp}.

Then B = {y1} is a smallest strong BAC-backdoor set. However, a smallest deletion
BAC-backdoor set must contain at least p variables.

Analogously to the STRONG C-BACKDOOR problem we define the following prob-
lem, where C is a fixed clause-induced class.

DELETION C-BACKDOOR

Instance: A formula F and an integer k > 0.
Parameter: The integer k.
Question: Does F have a deletion C-backdoor set of size at most k?

Determining the parameterized complexity of DELETION BAC-BACKDOOR is interest-
ing, especially in the light of our W[2]-hardness result for STRONG BAC-BACKDOOR.
In other words, is the problem of deciding whether a graph can be modified into a
chordal bipartite graph by deleting at most k vertices fixed-parameter tractable in k?
Marx [20] showed that the version of this problem in which the modified graph is re-
quired to be chordal instead of chordal bipartite is fixed-parameter tractable.

8.2 β-Hypertree Width

The hypergraph invariant hypertree width was introduced by Gottlob, Leone, and Scar-
cello [14]. It is defined via the notion of a hypertree decomposition of a hypergraph H ,
which is a triple T = (T, κ, λ) where T is a rooted tree and χ and λ are labelling func-
tions with χ(t) ⊆ V (H) and λ(t) ⊆ E(H), respectively, for every t ∈ V (T), such that
the following conditions hold:

1. For every e ∈ E(H) there is a t ∈ V (T) such that e ⊆ χ(t).
2. For every v ∈ V (H), the set { t ∈ V (T) | v ∈ χ(t) } induces a connected subtree

of T .
3. For every t ∈ V (T), it holds that χ(t) ⊆

⋃
e∈λ(t) e.

4. For every t ∈ V (T), if a vertex v occurs in some hyperedge e ∈ λ(t) and if
v ∈ χ(t′) for some node t′ in the subtree below t, then v ∈ χ(t).

The width of a hypertree decomposition (T, χ, λ) is max{ |λ(t)| | t ∈ V (T) }. The
hypertree width, denoted hw(H), of a hypergraph H is the minimum width over all its
hypertree decompositions. Many NP-hard problems such as CSP or Boolean database
queries can be solved in polynomial time for instances with associated hypergraphs of
bounded hypertree width [13].

Gottlob and Pichler [15] defined β-hypertree width as a “hereditary variant” of hy-
pertree width. The β-hypertree width, denoted β-hw(H), of a hypergraph H is defined
as the maximum hypertree width over all partial hypergraphs H ′ of H . Using the
fact that α-acyclic hypergraphs are exactly the hypergraphs of hypertree width 1 [14],
one deduces that the hypergraphs of β-hypertree width 1 are exactly the β-acyclic hy-
pergraphs. Unfortunately, the complexity of determining the β-hypertree width of a
hypergraph is not known [15]. However, we show the following. Here, a β-hypertree
decomposition of width k of a hypergraph H is an oracle that produces for every partial
hypergraph H ′ of H a hypertree decomposition of width at most k.

Theorem 4. SAT, parameterized by an upper bound k on the β-hypertree width of a
CNF formula F , is W[1]-hard even if a β-hypertree decomposition of width k forH(F)
is given.

Proof. A clique in a graph is a subset of vertices that are mutually adjacent. A k-partite
graph is balanced if its k partition classes are of the same size. A partitioned clique of
a balanced k-partite graph G = (V1, . . . , Vk, E) is a clique K with |K ∩ Vi| = 1 for
i = 1 . . . , k. We devise a parameterized reduction from the following problem, which
is W[1]-complete [25].

PARTITIONED CLIQUE
Instance: A balanced k-partite graph G = (V1, . . . , Vk, E).
Parameter: The integer k.
Question: Does G have a partitioned clique?

Before we describe the reduction we introduce some auxiliary concepts. For any three
variables z, x1, x2, let F (z, x1, x2) denote the formula consisting of the clauses

{z, x1, x2}, {z, x1, x2}, {z, x1, x2}, {z, x1, x2}, {z, x1, x2}.

This formula has exactly three satisfying assignments, corresponding to the vectors 000,
101, and 110. Hence each satisfying assignment sets at most one out of x1 and x2 to
true, and if one of them is set to true, then z is set to true as well (“z = x1+x2”). Taking
several instances of this formula we can build a “selection gadget.” Let x1, . . . , xm and
z1, . . . , zm−1 be variables. We define F=1(x1, . . . , xm; z1, . . . , zm−1) as the union of
F (z1, x1, x2),

⋃m−1
i=2 F (zi, zi−1, xi+1), and {{zm−1}}. Now each satisfying assign-

ment of this formula sets exactly one variable out of {x1, . . . , xm} to true, and, con-
versely, for each 1 ≤ i ≤ m there exists a satisfying assignment that sets exactly xi to
true and all other variables from {x1, . . . , xm} to false.

Now we describe the reduction. Let G = (V1, . . . , Vk) be a balanced k-partite
graph for k ≥ 2. We write Vi = {vi1, . . . , vin}. We construct a CNF formula F . As
the variables of F we take the vertices of G plus new variables zij for 1 ≤ i ≤ k

and 1 ≤ j ≤ n − 1. We put F =
⋃k
i=0 Fi where the formulas Fi are defined

as follows: F0 contains for any u ∈ Vi and v ∈ Vj (i 6= j) with uv /∈ E the
clause Cu,v = {u, v } ∪ {w | w ∈ (Vi ∪ Vj) \ {u, v } }; for i > 0 we define
Fi = F=1(vi1, . . . , v

i
n; z

i
1, . . . , z

i
n−1). To prove Theorem 4 it suffices to show the fol-

lowing two claims.

Claim 1. β-hw(H(F)) ≤ k.

We prove Claim 1 as follows. First we show that that β-hw(H(F0)) ≤ k. Let H ′0
be a partial hypergraph of H(F0). Let I be the set of indices 1 ≤ i ≤ k such that
some hyperedge of H ′0 contains Vi. For each i ∈ I we choose a hyperedge ei of H ′0
that contains Vi. The partial hypergraph H ′0 admits a trivial hypertree decomposition
(T0, χ0, λ0) of width at most k with a single tree node t0 where χ0(t0) contains all
vertices of H ′0 and λ0(t0) = { ei | i ∈ I }. Second we observe that β-hw(H(Fi)) =
1 for 1 ≤ i ≤ k: H(Fi) is β-acyclic, and β-acyclic hypergraphs have β-hypertree
width 1.

Now let H ′ be an arbitrarily chosen partial hypergraph of H(F). For i = 0, . . . , k,
we let H ′i denote the (maximal) partial hypergraph of H ′ that is contained in H(Fi).
We let T0 = (T0, χ0, λ0) be a hypertree decomposition of width at most k of H ′0 as
defined above. For i = 1, . . . , k we let Ti = (Ti, χi, λi) be a hypertree decomposition
of width 1 of H ′i . We combine these k + 1 hypertree decompositions to a hypertree
decomposition of width at most k forH ′. We will do this by adding the decompositions
T1, . . . , Tk to T0 one by one and without increasing the width of T0.

Let T ∗i = (T ∗i , χ
∗
i , λ
∗
i) denote the hypertree decomposition of width at most k

obtained from T0 by adding the first i hypertree decompositions. For i = 0 we let
T ∗0 = T0. For i > 0 we proceed as follows.

First we consider the case where there is a hyperedge e ∈ H ′0 with Vi+1 ⊆ e.
Observe that there exists a node t ∈ V (T ∗i) with e ⊆ χ(t). We define T ∗i+1 =
(T ∗i+1, χ

∗
i+1, λ

∗
i+1) as follows. We obtain T ∗i+1 from the disjoint union of T ∗i and Ti+1

by adding an edge between t and the root of Ti+1. As the root of T ∗i+1 we choose the
root of T ∗i . We set χ∗i+1(t) = χ∗i (t) for every t ∈ V (T ∗i), and χ∗i+1(t) = χi+1(t)∪Vi+1

for every t ∈ V (Ti+1); we set λ∗i+1(t) = λ∗i (t) for every t ∈ V (T ∗i), and λ∗i+1(t) =
λi+1(t)∪{e} for every t ∈ V (Ti+1) (hence |λ∗i+1(t)| ≤ max(2, k) = k). Consequently
T ∗i+1 has width at most k.

It remains to consider the case where there is no hyperedge e ∈ H ′0 with Vi+1 ⊆ e.
We define T ∗i+1 as follows. We obtain T ∗i+1 from the disjoint union of T ∗i and Ti+1 by
adding an edge between an arbitrary node t ∈ V (T ∗i) and the root of Ti+1. As the root
of T ∗i+1 we choose the root of T ∗i . We set χ∗i+1 = χ∗i ∪ χi+1 and λ∗i+1 = λ∗i ∪ λi+1.
Clearly T ∗i+1 has width at most k. This completes the proof of Claim 1.

Claim 2. G has a partitioned clique if and only if F is satisfiable.

To prove Claim 2 we first suppose thatG has a partitioned cliqueK. We define a partial
truth assignment τ : V → {0, 1} by setting τ(v) = 1 for v ∈ K, and τ(v) = 0 for
v /∈ K. This partial assignment satisfies F0, and it is easy to extend τ to a satisfying
truth assignment of F . Conversely, suppose that F has a satisfying truth assignment
τ . Because of the formulas Fi, 1 ≤ i ≤ k, τ sets exactly one variable viji ∈ Vi to
true. Let K = {v1

j1
, . . . , vkjk}. The clauses in F0 ensure that viji and vi

′

ji′
are adjacent

in G for each pair 1 ≤ i < i′ ≤ k, hence K is a partitioned clique of G. This proves
Claim 2. ut

We finish this section by showing some consequences of Theorem 4 with respect
to the clique-width and rank-width of a formula. By definition, the clique-width of a
CNF formula is always bounded by its directed clique-width. However, in general the
directed clique-width can be much higher than the undirected one. It is well known
that SAT is fixed-parameter tractable for the parameter directed clique-width [5, 10].
Fischer, Makowsky, and Ravve [10] developed a dynamic programming algorithm that
counts the number of satisfying truth assignments in linear time for CNF formulas of
bounded directed clique-width. They also conjectured that their method can be ex-
tended to work for formulas of bounded (undirected) clique-width. However, the re-
duction in the proof of Theorem 4 shows that this is not possible unless FPT = W[1].

Corollary 1. SAT, parameterized by an upper bound k on the clique-width of the in-
cidence graph of a formula F , is W[1]-hard even if a k-expression for I(F) is given.

Proof. We use the same parameterized reduction as in the proof of Theorem 4. Hence
it remains to prove that the clique-width of the incidence graph of the formula F in the
proof of Theorem 4 is at most k′ = O(k). In fact, we show that a k + 4-expression for
the incidence graph of F can be obtained in polynomial time.

We start with the following claim. Let n ≥ 3, and for i = 1, . . . , k, let Ti be the tree
with vertices Ci1, . . . , C

i
n−1, vi1, . . . , v

i
n, zi1, . . . , z

i
n−1, and edges Ci1v

i
1, Ci1v

i
2, Ci1z

i
1,

and Cijv
i
j+1, Cijz

i
j−1, Cijz

i
j for j = 2, . . . , n− 1.

Claim 1. Every Ti allows a 5-expression resulting in a labeling in which every Cij has
label d, every vij has label i, zin−1 has label e, whereas every other zij has label d.

Let 1 ≤ i ≤ k. We prove Claim 1 by induction on n. Let n = 3. We get a desired 5-
expression of Ti in the following way. We introduce vi1 and vi2, each with label i. Then
we introduce Ci1 with label b. We perform the operation ηb,i resulting in edges between
Ci1 and vi1, v

i
2, respectively. We introduce zi1 with label c and perform the operation

ηb,c resulting in an edge between Ci1 and zi1. We perform the operation ρb→d resulting
in a change of label of Ci1 from b to d. We introduce Ci2 with label b and perform

the operation ηb,c resulting in an edge between Ci2 and zi1. We perform the operation
ρc→d resulting in a change of label of zi1 from c to d. We introduce vi3 with label c and
perform the operation ηb,c resulting in an edge between Ci2 and vi3. We perform the
operation ρc→i resulting in a change of label of vi3 from c to i. We introduce zi2 with
label e and perform the operation ηb,e resulting in an edge between Ci2 and zi2. Hence,
we have obtained T3. What is left to do is to perform the operation ρb→d resulting in a
change of label of Ci2 from b to d.

Let n ≥ 4. Suppose that we have a labeling of Ti−1 as in the statement of the claim.
Then we do as follows. We introduce Cin−1 with label b and perform the operation ηb,e
resulting in an edge between Cin−1 and zin−2. We perform the operation ρe→d resulting
in a change of label of zin−2 from e to d. We introduce vin with label c and perform the
operation ηb,c resulting in an edge between Cin−1 and vin. We perform the operation
ρc→i resulting in a change of label of vin from c to i. We introduce zin−1 with label e
and perform the operation ηb,e resulting in an edge between Cin−1 and zin−1. Hence,
we have obtained Tn. What is left to do is to perform the operation ρb→d resulting in a
change of label of Cin−1 from b to d. This completes the proof of Claim 1.

Note that in the proof of Claim 1 we never performed an operation ηd,x for some x ∈
{b, c, d, e, i}. Hence, we can consider the trees in order T1, . . . , Tk to obtain a (k + 4)-
expression for their disjoint union where vi1, . . . , v

i
k are the (only) vertices of label i for

i = 1, . . . , k. Moreover, we may assume that all other vertices have label d because we
can apply the operation ρe→d afterwards. For s = 1 and t = 2 we now introduce a new
vertex Ds,t with label b and perform the operations ηb,s, ηb,t to connect Ds,t to every
vsi and every vtj , respectively. Afterwards we perform the operation ρb→d resulting in
a change of label of Ds,t from b to d. In this way, we can add a vertex Ds,t for every
other index pair 1 ≤ s < t ≤ k as well while using no new labels. We call the resulting
graph I ′.

We now return to the incidence graph I(F) of the formula F in the proof of Theo-
rem 4. Observe that I(F) can be obtained from I ′ by adding a number of copies of the
vertices Cij and Ds,t. This does not increase the clique-width of I ′ as explained in the
proof of Proposition 9. Hence, the clique-width of I(F) is at most k + 4, as required.
This completes the proof of Corollary 1. ut

The already mentioned graph parameter rank-width was introduced by Oum and
Seymour [23] for approximating the clique-width of graphs. A certain structure that
certifies that a graph has rank-width at most k is called a rank-width decomposition
of width k. Similar to clique-width, one can define the rank-width of a directed graph
that takes the orientation of edges into account. The directed (or signed) rank-width
of a CNF formula is the rank-width of its directed incidence graph. Ganian, Hliněný,
and Obdržálek [12] developed an efficient dynamic programming algorithm that counts
in linear time the number of satisfying assignments of a CNF formula of bounded
directed rank-width. Because bounded undirected rank-width implies bounded undi-
rected clique-width [23], the following is a direct consequence of Corollary 1.

Corollary 2. SAT, parameterized by an upper bound k on the rank-width of the inci-
dence graph of F , is W[1]-hard even if a rank-decomposition of width k for I(F) is
given.

9 Conclusion

We have studied new classes of CNF formulas: the strictly tractable class BAC, the
permissively tractable class DPS∀, and the hard-to-recognize class DPS. Our results
show that the classes are incomparable with previously studied classes. Moreover, they
establish an interesting link between SAT and algorithmic graph theory: the formulas
in BAC are exactly the formulas whose incidence graphs belong to the class of chordal
bipartite graphs, a prominent and well-studied graph class. It would be interesting to
study systematically other classes of bipartite graphs, e.g., the classes described by
Brandstädt, Le and Spinrad [2], in order to determine the complexity of SAT restricted
to CNF formulas whose incidence graphs belong to the class under consideration.

We have also established hardness results for two natural strategies for gradually
extending BAC: extensions via strong backdoor sets and extensions via β-hypertree
decompositions. The first extension is fixed-parameter intractable because it is W[2]-
hard to find a strong backdoor set. The second extension is fixed-parameter intractable
because SAT is W[1]-hard when parameterized by an upper bound on the β-hypertree
width even if the β-hypertree decomposition is provided. It would be interesting to
know whether SAT belongs to XP for CNF formulas of bounded β-hypertree width, if
a β-hypertree decomposition is provided.

References

1. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoret.
Comput. Sci., 209(1-2):1–45, 1998.

2. Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. SIAM
Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, PA, 1999.

3. Andreas Brandstädt and Vadim V. Lozin. On the linear structure and clique-width of bipartite
permutation graphs. Ars Combinatoria, 67:273–281, 2003.

4. B. Courcelle, J. Engelfriet, and G. Rozenberg. Context-free handle-rewriting hypergraph
grammars. In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Graph-
Grammars and their Application to Computer Science, 4th International Workshop, Bremen,
Germany, March 5–9, 1990, Proceedings, volume 532 of Lecture Notes in Computer Science,
pages 253–268, 1991.

5. B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discr. Appl. Math., 108(1-
2):23–52, 2001.

6. B. Courcelle and S. Olariu. Upper bounds to the clique-width of graphs. Discr. Appl. Math.,
101(1-3):77–114, 2000.

7. M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, 1960.

8. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer Verlag, New York, 1999.

9. Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J.
ACM, 30(3):514–550, 1983.

10. E. Fischer, J. A. Makowsky, and E. R. Ravve. Counting truth assignments of formulas of
bounded tree-width or clique-width. Discr. Appl. Math., 156(4):511–529, 2008.

11. Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

12. Robert Ganian, Petr Hlinený, and Jan Obdrzálek. Better algorithms for satisfiability prob-
lems for formulas of bounded rank-width. In Kamal Lodaya and Meena Mahajan, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs,
pages 73–83. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

13. Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions: a survey.
In Mathematical Foundations of Computer Science, 2001 (Mariánské Láznĕ), volume 2136
of Lecture Notes in Computer Science, pages 37–57. Springer, 2001.

14. Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. of Computer and System Sciences, 64(3):579–627, 2002.

15. Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking: acyclicity and
hypertree-width versus clique-width. SIAM J. Comput., 33(2):351–378, 2004.

16. Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction, and database problems. The Computer Journal, 51(3):303–325, 2006.
Survey paper.

17. Peter L. Hammer, Frederic Maffray, and Myriam Preismann. A characterization of chordal
bipartite graphs. Technical report, Rutgers University, New Brunswick, NJ, 1989.

18. Ton Kloks and Hans Bodlaender. Approximating treewidth and pathwidth of some classes
of perfect graphs. In Algorithms and Computation (Nagoya, 1992), volume 650 of Lecture
Notes in Computer Science, pages 116–125. Springer Verlag, 1992.

19. Oliver Kullmann and Horst Luckhardt. Algorithms for SAT/TAUT decision based on various
measures, manuscript, 1999.

20. Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768,
2010.

21. Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting backdoor sets with re-
spect to Horn and binary clauses. In Proceedings of SAT 2004 (Seventh International Con-
ference on Theory and Applications of Satisfiability Testing, 10–13 May, 2004, Vancouver,
BC, Canada), pages 96–103, 2004.

22. Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Solving #SAT using vertex covers.
Acta Informatica, 44(7-8):509–523, 2007.

23. Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. J. Combin.
Theory Ser. B, 96(4):514–528, 2006.

24. Michael J. Pelsmajer, Jacent Tokazy, and Douglas B. West. New proofs for strongly chordal
graphs and chordal bipartite graphs. Unpublished Manuscript, 2004.

25. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. J. of Computer and System
Sciences, 67(4):757–771, 2003.

26. Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010.

27. John S. Schlipf, Fred S. Annexstein, John V. Franco, and R. P. Swaminathan. On finding
solutions for extended Horn formulas. Information Processing Letters, 54(3):133–137, 1995.

28. Ewald Speckenmeyer. Classes of easy expressions. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability, chapter 13, Section 1.19, pages
27–31. IOS Press, 2009.

29. Jeremy P. Spinrad. Efficient Graph Representations. Fields Institute Monographs. AMS,
2003.

30. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput.,
13(3):566–579, 1984.

31. Ryuhei Uehara. Linear time algorithms on chordal bipartite and strongly chordal graphs. In
Automata, languages and programming, volume 2380 of Lecture Notes in Computer Science,
pages 993–1004. Springer, 2002.

