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Abstract. The Degree Contractibility problem is to test whether
a given graph G can be modified to a graph of minimum degree at least
d by using at most k contractions. We prove the following three results.
First, Degree Contractibility is NP-complete even when d = 14.
Second, it is fixed-parameter tractable when parameterized by k and d.
Third, it is W[1]-hard when parameterized by k. We also study its vari-
ant where the input graph is weighted, i.e., has some edge weighting
and the contractions preserve these weights. The Weighted Degree
Contractibility problem is to test if a weighted graph G can be con-
tracted to a weighted graph of minimum weighted degree at least d by
using at most k weighted contractions. We show that this problem is
NP-complete and that it is fixed-parameter tractable when parameter-
ized by k. In addition, we pinpoint a relationship with the problem of
finding a minimal edge-cut of maximum size in a graph and study the
parameterized complexity of this problem and its variants.

1 Introduction

Throughout the paper we consider undirected finite graphs that have no loops.
Unless we explicitly indicate this, they do not have multiple edges either. We
denote the vertex set and edge set of a graph G by VG and EG, respectively. If
no confusion is possible, we may omit subscripts. We refer to the text book of
Diestel [10] for undefined graph terminology and to the monographs of Downey
and Fellows [12] and Niedermeier [27] for more on parameterized complexity.

A graph modification problem has as input a graph G and an integer k.
The question is whether G can be modified to belong to some specified graph
class that satisfies further properties by using at most k operations of a certain

? This paper has been supported by EPSRC (EP/G043434/1), and an extended ab-
stract of it appeared in the Proceedings of IPEC 2011.



specified type such as deleting a vertex or deleting an edge. In our paper the
permitted operation is the contraction of an edge, which removes both end-
vertices of the edge and replaces them by a new vertex adjacent to precisely
those vertices to which the two end-vertices were adjacent.

We continue a very recent study [17,18,19] of the following graph modification
problem called Π-Contractibility, where Π is some prespecified graph class.

Π-Contractibility
Instance: a graph G and an integer k.
Question: can G be modified to a graph in Π by at most k contractions?

1.1 Previous Results

Research on the Π-Contractibility problem dates back to the early eighties,
when Watanabe, Ae and Nakamura [29,30] showed that Π-Contractibility is
NP-complete if Π is finitely characterizable by 3-connected graphs. Their result
was generalized by Asano and Hirata [2] who showed that Π-Contractibility
is NP-complete whenever Π is a graph class that fulfills the following conditions.
First, Π must be closed under contractions. Second, Π must be described by a
property that is satisfied by infinitely many connected graphs and violated by
infinitely many other connected graphs. Third, a graph belongs to Π if and only
if each of its biconnected components belong to Π. Examples [2] of such graph
classes Π include planar graphs, outerplanar graphs, series-parallel graphs, and
also forests, chordal graphs, or more generally, graphs with no cycles of length
at least ` for some fixed integer ` ≥ 3.

The problem Π-Contractibility is closely related to the problem H-
Contractibility, which is to test whether a given graph G can be contracted
to a fixed graph H (i.e., which is not part of the input). Brouwer and Veldman [8]
showed that the H-Contractibility problem is NP-complete whenever H is
a triangle-free graph that contains no vertex adjacent to all the other vertices.
Their work has been extended by a series of other papers [20,25,26] showing both
polynomial-time solvable and NP-complete cases. Determining a full complexity
classification for H-Contractibility is open, although such results restricting
the input graph G to be in a special graph class have been obtained [3,4,22].

If Π is the class of paths or cycles, then Π-Contractibility is polynomially
equivalent to the problems of determining the length of a longest path and
a longest cycle, respectively, to which a given graph can be contracted. The
first problem has been shown to be NP-complete by van ’t Hof, Paulusma and
Woeginger [21] even for graphs with no induced path on 6 vertices. The second
problem has been shown to be NP-complete by Hammack [16].

Eppstein [13] showed that it is NP-complete to decide if a graph contains
a complete graph Kp as a minor for some given integer p. This problem is
equivalent to deciding if a graph is contractible to Kp. As a direct consequence,
Π-Contractibility is NP-complete if Π is the class of complete graphs. Due
to a close relationship with the problem that is to test whether a given graph
contains a so-called disconnected cut set, Martin and Paulusma [23] have shown
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that Π-Contractibility is NP-complete if Π is the class of bicliques Kp,q with
p, q ≥ 2.

Recently, more papers appeared that study the Π-Contractibility prob-
lem, and in particular, its parameterized complexity where the parameter is
the number k of edges that may be contracted. Heggernes et al. [19] gave an

4k+O(log2
k) + nO(1) time algorithm for Π-Contractibility if Π is the class

of paths. Moreover, they showed that in this case the problem has a linear
kernel. When Π is the class of trees, they showed that the problem can be
solved in 4.88knO(1) time and that a polynomial kernel does not exist unless
coNP ⊆ NP \ poly. When the input graph is a chordal graph with n vertices
and m edges, Heggernes et al. [17] could show that Π-Contractibility can be
solved in O(n+m) time when Π is the class of trees and in O(nm) time when
Π is the class of paths. When Π is the class of bipartite graphs, Heggernes et
al. [18] observed that Π-Contractibility is NP-complete and showed that Π-
Contractibility is fixed-parameter tractable when parameterized by k. Later
on, Marx, O’Sullivan, and Razgon [24] obtained this result for bipartite graphs
as a corollary from their result on generalized bipartization.

Bodlaender, Koster and Wolle [6] introduced the related notion of contraction
degeneracy as a useful tool to improve lower bound heuristics for treewidth.
The contraction degeneracy of a graph G is the largest minimum degree of any
minor of G. When G is connected, the contraction degeneracy of G is equal
to the largest minimum degree of any graph to which G can be contracted [6].
The Contraction Degeneracy problem is to test whether the contraction
degeneracy of a given graph is at least d for some given integer d (see also [28]
for extensions of this problem). Bodlaender, Koster and Wolle [6] proved that
this problem is NP-complete, even for bipartite graphs, and that it is is fixed-
parameter tractable when parameterized by d. They also evaluated a number of
heuristics for computing the contraction degeneracy.

1.2 Our Results

In order to define the class Π of graphs that we consider, we need the following
terminology. A vertex u in a graph G = (V,E) has is a neighbor of a vertex u if
uv ∈ EG. We let N(u) = {uv | v ∈ V } denote the neighborhood of u. The degree
of a vertex u is denoted d(u) = |N(u)|. We let δ = min{d(v) | v ∈ V } denote
the minimum degree of G. We study the Π-Contractibility problem where
Π is the class of graphs of minimum (vertex) degree at least d for some integer
d. Note that this class of graphs does not satisfy the first and third property of
Asano and Hirata [2]. Moreover, for this class of graphs, we allow the integer d
to be part of the input as well. This leads to the following problem.

Degree Contractibility
Instance: a graph G and two integers d and k.
Question: can G be modified to a graph of minimum degree at least d by at most

k contractions?
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We observe that the problem becomes equivalent to the Contraction Degen-
eracy problem when the input is restricted to connected graphs G = (V,E)
and k ≥ |E|.

In Section 2 we show that Degree Contractibility is fixed-parameter
tractable when parameterized by k and d. However, when either k or d is part
of the input, Degree Contractibility becomes hard in the following sense.
First, if k is part of the input, then Degree Contractibility is NP-complete
for any fixed d ≥ 14. Second, if d is part of the input, then Degree Con-
tractibility is W[1]-hard when parameterized by k. These results complement
the result of Amini, Sau and Saurabh [1] who showed that detecting a subgraph
that has at most k vertices and minimum degree at least d is W[1]-hard for any
fixed d ≥ 4 when parameterized by k.

In Section 3 we study a weighted version of Degree Contractibility. In
order to define this variant, let G = (V,E) be a weighted graph, i.e., with some
edge weighting w : E → R>0 where R>0 denotes the set of positive real numbers.
The weighted degree dw(u) of a vertex u is the sum of the weights of the edges
incident with u in G, i.e., dw(u) =

∑
v∈N(u) w(uv). We let δw = min{dw(v) | v ∈

V } denote the minimum weighted degree of G. The weighted contraction of an
edge e = uv is a contraction of e where the weights on the edges incident with
the new vertex xuv are defined as follows:

• w(xuvy) = w(uy) if y is adjacent to u and not adjacent to v;
• w(xuvy) = w(vy) if y is adjacent to v and not adjacent to u;
• w(xuvy) = w(uy) + w(vy) if y is adjacent to u and v.

We can now state the new variant.

Weighted Degree Contractibility
Instance: a weighted graph G and two integers d and k.
Question: can G be modified to a weighted graph of minimum weighted degree

at least d by at most k weighted contractions?

Because the weight of an edge xuvy with y adjacent to both u and v is the accu-
mulated weight of the two original edges uy and vy, Degree Contractibility
is not a special (unweighted) case of Weighted Degree Contractibility.
However, we can make the following observation. A simple contraction is the
operation on loopless multigraphs that identifies both end-vertices of the edges,
keeps multiple edges, but removes the loop that was created. The Weighted
Degree Contractibility problem for integer edge weights on a graph G is
equivalent to the variant of Degree Contractibility, where simple contrac-
tions are used on the loopless multigraph G′ obtained from G by replacing each
edge uv by w(uv) parallel edges.

Contrary to the aforementioned W[1]-hardness result for Degree Con-
tractibility when parameterized by k, accumulating the weights after con-
tracting an edge results in the problem not being hard anymore, i.e., we prove
that Weighted Degree Contractibility is fixed-parameter tractable when
parameterized by k even when d is part of the input. If both d and k are parts of
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the input, then Weighted Degree Contractibility is NP-complete in the
strong sense for integer edge weights, even in the case when k ≥ |E|. The latter
case is equivalent to the case, in which there is no upper bound imposed on the
number of weighted contractions. We denote this special case as the problem

Weighted Contraction Degeneracy
Instance: a weighted graph G and an integer d.
Question: can G be modified to a weighted graph of minimum weighted degree

at least d by weighted contractions?

We prove that this problem is fixed-parameter tractable when parameterized by
d. Both this result and the aforementioned NP-completeness result are based on
an equivalence, which we pinpoint, between Weighted Contraction Degen-
eracy and the problem that is to test whether a connected graph has a minimal
edge-cut of some given size.

Table 1 summarizes our results for the Degree Contractibility (DC)
problem and the Weighted Degree Contractibility (WDC) problem. In
this table, the para-NP-completeness of the problem Weighted Degree Con-
tractibility parameterized by d immediately follows from our result that
Weighted Degree Contractibility is NP-complete in the strong sense for
integer edge weights, which allows us to fix d = 1 after dividing all edge weights
by d. However, when we restrict the edge weighting to be integer, the corre-
sponding problem is still open.

In Section 4 we identify two related problem settings. In the first setting
weighted plane graphs are considered, where the edge weightings define weighted
degrees of the faces. In the second setting, parity constraints are considered
instead of degree constraints. We show how these problem settings are related
with our previous problems, and we study them using results of the previous
sections.

input parameter DC WDC

d, k NP-complete NP-complete

d k W[1]-hard FPT

k d para-NP-complete para-NP-complete

d, k FPT FPT

Table 1. An overview of our results for the problems DC and WDC.

1.3 Preliminaries

Let G = (V,E) be a (weighted) graph. A subset U ⊆ V is a clique if there is
an edge in G between any two vertices of U , and U is an independent set if
there is no edge in G between any two vertices of U . We write G[U ] to denote
the subgraph of G induced by U ⊆ V , i.e., the graph on vertex set U and an
edge between any two vertices if and only if there is an edge between them in
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G. We let G/e denote the (weighted) graph obtained from G by the (weighted)
contraction of e. If a (weighted) graph H is obtained from G by a sequence of
(weighted) contractions, then H is a (weighted) contraction of G. For a weighted
graph G with an edge weighting w and X ⊆ E, we write w(X) =

∑
e∈X w(e).

Let G and H be two graphs. An H-witness structure W is a vertex partition
of G into |VH | (nonempty) sets W (x) called H-witness bags, such that

(i) each W (x) induces a connected subgraph of G;
(ii) for all x, y ∈ VH with x 6= y, bags W (x) and W (y) are adjacent in G if and

only if x and y are adjacent in H;

By contracting all bags to singletons we observe that H is a contraction of G if
and only if G has an H-witness structure such that conditions (i)-(ii) hold. Note
that a graph may have more than one H-witness structure.

2 Contractions

First, we observe that Degree Contractibility is FPT when parameterized
by k and d.

Proposition 1. Degree Contractibility can be solved in time O(dk(n+m))
for graphs with n vertices and m edges.

Proof. Let G be a graph with n vertices and m edges. We give the following
branching algorithm. Let dG(u) < d for some vertex u ∈ VG. We consider all
edges e incident with u, and call our algorithm recursively for G/e and parameter
k′ = k − 1. The algorithm returns Yes, if for at least one of the new instances
the answer is Yes, and it returns No otherwise. Since for each recursive call of
our algorithm, we create at most d− 1 instances of the problem, and the depth
of the recursion is at most k, the algorithms runs in time O(dk(n+m)). ut

A graph G is r-degenerate for some integer r if δ(H) ≤ r for every subgraph
H of G. A graph class G is contraction-closed if G/e ∈ G for every graph G ∈ G
and every e ∈ EG. Proposition 1 has the following consequence.

Corollary 1. Let G be a contraction-closed graph class so that all graphs in G
are r-degenerate for some integer r ≥ 0. Then Degree Contractibility can
be solved in time O(rk(n+m)) for every G ∈ G with n vertices and m edges.

Proof. If d > r, then we cannot modify a graph G ∈ G to a graph of minimum
degree at least d by edge contractions. Otherwise, we apply Proposition 1. ut

Corollary 1 holds, for example, for the class of planar graphs which are
5-degenerate, or more general, for bounded-genus graph classes and excluded-
minor graph classes.

For general graphs, we observe that Degree Contractibility is in XP
when parameterized by k, i.e., it can be solved in nf(k) time for n-vertex graphs
by checking all sequences of at most k contractions (here f is some function
depending only on k). However, we show that it is unlikely to be solvable in
FPT-time.
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Theorem 1. Degree Contractibility parameterized by k is W[1]-hard.

Proof. The problem Multicolored Clique is to test whether a graph with
a proper k-coloring contains a clique of size k with exactly one vertex from
each color class. Fellows et al. [11] proved that this problem is W[1]-hard when
parameterized by k. Consequently, its “complementary” problem, the problem
Multicolored Independent Set, which is to test whether a graph with a
partition X1, . . . , Xk of the vertex set, where each of Xi induces a clique, has an
independent set of size k with exactly one vertex from each Xi, is W[1]-hard as
well when parameterized by k. Our aim is to reduce Degree Contractibility
to this problem.

C

W

xi1

xij

xini

w1 wd+1

rij

a
(1)
ij

a
(2k+1)
ij b

(2k+1)
ij

W

w1 wd+1

XiXi

X1 Xk
yi

Qij

z1

zi

zk

c1 ck+2

a) b)

Fig. 1. The construction of G.

Let (G, k) with a partition X1, . . . , Xk of VG be an instance of Multicol-
ored Independent Set. Let Xi = {xi1, . . . , xini

} for i ∈ {1, . . . , k} where we
assume without loss of generality that ni ≥ 2. Let d = n(4k+ 3) + 1. From G we
construct a graph G′ in the following way. Recall that connecting two vertices
means adding an edge between them.

1. Modify each set Xi into a clique.
2. Construct a clique W with vertices w1, . . . , wd+1.
3. Connect every xij with w1, . . . , wtij where tij = d− dG(xij)− ni − 4k − 2.
4. Add vertices y1, . . . , yk.

5. For every xij , construct a clique Qij with vertices rij , a
(1)
ij , . . . , a

(2k+1)
ij ,

b
(1)
ij , . . . , b

(2k+1)
ij and connect every vertex of Qij with xij and yi. Moreover,

connect every rij with w1, . . . , wd−(4k+3), every a
(s)
ij with w1, . . . , wd−(4k+3),

and every b
(s)
ij with w4k+5, . . . , wd+1.

6. Construct a clique C with vertices c1, . . . , ck+2, z1, . . . , zk.
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7. For h = 1, . . . , k + 2, connect ch with w1, . . . , wd−2k+1

8. For i = 1, . . . , k, connect zi with every vertex of Xi.

Stages 1–5 of the construction are shown in Fig. 1 a), and Stages 6–8 are shown
in Fig. 1 b). We let k′ = k(2k+3) and claim that G has an independent set with
exactly one vertex from each Xi if and only if G′ can be modified to a graph H
with minimum degree at least d by at most k′ contractions.

First suppose that {x1j1 , . . . , xkjk} is an independent set in G. For i =

1, . . . , k, let Ai = {a(1)iji
b
(1)
iji
, . . . , a

(2k+1)
iji

b
(2k+1)
iji

, rijiyi, xijizi} be a set of 2k + 3
edges in G′. We contract every edge in every Ai. Then the total number of con-
tractions is k(2k + 3) = k′. Moreover, the resulting graph has minimum degree
at least d.

Now suppose that G′ can be modified to a graph H with minimum degree at
least d by at most k′ contractions. Let W be an H-witness structure of G′. For
each bag W of W, we choose an arbitrary spanning tree of G′[W ]. Let A ⊆ EG′

denote the union of the sets of edges of these trees. Because we obtain H by
contracting the edges of A, we find that |A| ≤ k′.

Claim 1. A = A1 ∪ . . .∪Ak, where each Ai = {xijzi, yif, g1h1, . . . , g2k+1h2k+1}
with {f, g1, . . . , g2k+1, h1, . . . , h2k+1} = Qij.

We prove Claim 1 as follows. Let 1 ≤ i ≤ k. Because dG′(yi) < d, at least one
edge incident with yi must be included in Ai. Assume that yif ∈ Ai for some
f ∈ Qij . Note that after contracting yif , all 4k + 2 vertices of Qij \ {f} have
degrees less that d. Hence, at least 2k + 1 edges incident with these vertices
must be contracted. We also note that dG′(zi) < d. Therefore, at least one edge
incident with zi must be in A. Suppose that zit ∈ A for some t ∈ C. Then, after
contracting zit, all other 2k vertices of C have degrees less than d. Hence, we
must contract at least k edges incident with these vertices. Because the total
number of contractions is k′ = k(2k + 3) and we also need to contract at least
2k + 3 edges for every h 6= i, this is not possible. We conclude that zixij′ ∈ A
for some 1 ≤ j′ ≤ ni and that Ai = {xij′zi, yif, g1h1, . . . , g2k+1h2k+1} with
{f, g1, . . . , g2k+1, h1, . . . , h2k+1} = Qij . We now consider xij and observe that
by contracting the edges g1h1, . . . , g2k+1h2k+1 we decreased the degree of xij by
2k + 1. Hence, j′ = j and Claim 1 follows.

Due to Claim 1, we can define the set {x1j1 , . . . , xkjk} with xijizi ∈ Ai for
i = 1, . . . , k. We prove that this is an independent set in G. In order to ob-
tain a contradiction, assume that there is an edge xijixi′ji′ ∈ EG. Recall that
dG′(xijj) = dG(xijj) + (ni − 1) + (4k + 3) + 1 + tij = d + 1. Contracting those
edges of Ai that have both end-vertices in Qij decreases the degree of xijj by
2k + 1. Moreover, after contracting the edges in Ai and Ai′ , the edges zizi′ and
xijixi′ji′ have been replaced by one edge. Because zi is adjacent to all vertices in
C \ {zi}, this means that the degree of the vertex of H obtained by contracting
xijjzi is at most d + 1 − (2k + 1) − 2 + (2k + 1) = d − 1. This is not possible.
Hence, {x1j1 , . . . , xkjk} is an independent set in G with a vertex, namely xijj ,
from each Xi, as desired. This completes the proof of Theorem 1. ut
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If we parameterize the problem only by d, then Degree Contractibility
becomes hard even if d is a fixed integer.

Theorem 2. For any fixed d ≥ 14, Degree Contractibility is NP-complete.

Proof. The inclusion of the problem in NP is obvious. For simplicity, we prove
NP-hardness for d = 14. We reduce from the NP-complete Set Cover prob-
lem [14]. This problem is defined as follows.

Given a set U = {u1, . . . , um}, a family of subsets X1, . . . , Xn ⊆ U and an
integer r, are there at most r subsets that cover U , i.e., their union is U?

It is known [14] that this problem remains NP-complete even if

(i) each Xi has cardinality 3, and
(ii) each uj is included in at least two and at most three subsets of X1, . . . , Xn.

q
(2)
ij

s t

p
(1)
i

uj

p
(2)
i

q
(1)
ij

w1 w13

xi

Fig. 2. The construction of G.

We consider an instance (U,X1, . . . , Xn) of Set Cover with restrictions (i)
and (ii). We construct a graph G in the following way; also see Fig. 2. We say
that we connect a vertex with some other vertex if we add an edge between them.

1. Construct a clique with 13 vertices w1, . . . , w13.
2. Add two new vertices s, t and connect each of them with w1, . . . , w13.
3. For i = 1, . . . , n, add a vertex xi and connect it with s, t.

4. For i = 1, . . . , n, add two adjacent vertices p
(1)
i , p

(2)
i , connect p

(1)
i with

s, w1, . . . , w11, xi, and connect p
(2)
i with s, w3, . . . , w13, xi.

5. For j = 1, . . . ,m, add a vertex uj and connect it with t.
6. Connect xi and uj whenever uj ∈ Xi. In that case also add two adjacent

vertices q
(1)
ij , q

(2)
ij , connect q

(1)
ij with xi, uj , w1, . . . , w11 and connect q

(2)
ij with

xi, uj , w3, . . . , w13.
7. For j = 1, . . . ,m, connect uj with w1, . . . , w8 if uj occurs in two subsets of
X1, . . . , Xn, and connect uj with w1, . . . , w6 if uj occurs in three subsets.
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We set k = n + r and claim that U can be covered by at most r subsets of
{X1, . . . , Xn} if and only if G can be modified to a graph with minimum degree
at least d = 14 by at most k contractions.

First suppose that Xi1 , . . . , Xir is a set cover of U , i.e., U = Xi1∪. . .∪Xir . For

j = 1, . . . , r, we contract the edges sxij and p
(1)
ij
p
(2)
ij

. We also contract the edge

xit for every i /∈ {i1, . . . , ir}. The total number of contractions is 2r+ (n− r) =
n+r = k. Moreover, the resulting graph is readily seen to have minimum degree
at least 14, as desired.

Now suppose G can be modified to a graph H with minimum degree at least
d = 14 by at most k contractions. Let W be an H-witness structure of G. For
each bag W of W, we choose an arbitrary spanning tree of G[W ]. Let A ⊆ EG

denote the union of the sets of edges of these trees. Because H is obtained by
contracting the edges of A, we find that |A| ≤ k.

For each Xi, we define a set of edges Ei ⊆ EG as follows. The set Ei includes

all edges incident with xi, p
(1)
i , p

(2)
i , and all edges incident with q

(1)
ij , q

(2)
ij for every

uj ∈ Xi. Moreover, we choose one vertex uj ∈ Xi and also add all (other) edges
incident with uj to Ei. The sets E1, . . . , En have the following properties.

1. Ei ∩ Ej = ∅ for 1 ≤ i < j ≤ n.
2. Ei ∩A 6= ∅ for i = 1, . . . , n.
3. The number of sets Ei with |Ei ∩A| ≥ 2 is at most r.

Property 1 is true by definition. Property 2 follows from the fact that dG(xi) =
13 < 14 = d; therefore, at least one edge incident with xi must be contracted.
Property 3 follows from properties 1 and 2 and the aforementioned observation
that |A| ≤ k = n+ r.

Let I = {i | |Ei ∩ A| ≥ 2}. We claim that ∪i∈IXi = U . In order to obtain
a contradiction, assume that there is a vertex uj ∈ U \ ∪i∈IXi. Then, for each
Xi with uj ∈ Xi, we find that Ei contains a unique edge ei ∈ Ei ∩ A. Because
dG(xi) = 13 < d, ei is incident with xi. If ei = sxi, then contracting ei decreases

the degree of p
(1)
i and p

(2)
i . Because they both have degree 14, at least one edge

incident with them must be contracted as well. Hence, ei 6= sxi. Similarly, if

ei = xip
(1)
i then contracting ei decreases the degree of p

(2)
i . Hence, ei 6= xip

(1)
i .

We apply the same arguments on the other edges in Ei and conclude that the
only possibility is ei = xit. Now we consider two cases.

Case 1. uj is included in exactly two sets Xi1 , Xi2 . Then edges xi1t, xi2t are

contracted, whereas all other edges incident with xi1 , xi2 and also edges p
(1)
i1
p
(2)
i1

,

p
(1)
i2
p
(2)
i2

, q
(1)
i1j
q
(2)
i1j

, q
(1)
i2j
q
(2)
i2j

are not contracted. Moreover, no edges incident with uj
are contracted, because these belong to Ei1 ∪ Ei2 . However, then uj has degree
at most 13 < d in H, a contradiction.

Case 2. uj is included in three sets Xi1 , Xi2 , Xi3 . By the same arguments as in
Case 1, we find that the degree of uj in H is at most 13 < d, a contradiction.

We conclude that {Xi | i ∈ I} is a set cover, which contains at most r sets due
to Property 3. This completes the proof of Theorem 2. ut
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While it can be easily seen that for any fixed d ≤ 3, Degree Contractibil-
ity can be solved in polynomial time, determining the complexity for 4 ≤ d ≤ 13
is an open question.

3 Weighted Contractions

3.1 Weighted Degree Contractibility parameterized by k

We first show that Weighted Degree Contractibility is in FPT when
parameterized by k. Recall that xuv denotes the vertex obtained from u and v
after contracting an edge uv in a graph.

Theorem 3. Weighted Degree Contractibility can be solved in time
O(2kk2k(n+m)) for weighted graphs with n vertices and m edges.

Proof. Let G be a weighted graph with n vertices and m edges. Let U = {u ∈
VG | dwG(u) < d} and let r = |U |. Trivially, if r = 0, then the answer is Yes. If
r ≥ 1, then we branch according to the following four cases.

Case 1. r > 2k.
The algorithm returns No. The reason is that at least one edge incident with
each vertex of U must be contracted to get a graph of minimum weighted degree
at least d, and every edge is incident with at most two vertices of U .

Case 2. r ≤ 2k and there is a vertex u ∈ U with dG(u) ≤ k.
At least one edge incident with u must be contracted to obtain a graph of
minimum degree at least d. Hence, for each edge e incident with u, we call our
algorithm recursively for G/e and parameter k′ = k − 1. The algorithm returns
Yes if for at least one of the new instances the answer is Yes, and No otherwise.

Case 3. k < r ≤ 2k and dG(u) ≥ k + 1 for all u ∈ U .
If G can be contracted to a graph of minimum weighted degree at least d, then
at least one edge with both its end-vertices in U must be contracted. Note
that there at most k(2k − 1) such edges. If there are no such edges, then the
algorithm returns No. Otherwise, for each e = xy with x, y ∈ U , we call our
algorithm recursively for G/e and parameter k′ = k − 1. The algorithm returns
Yes if for at least one of the new instances the answer is Yes, and No otherwise.

Case 4. r ≤ k and dG(u) ≥ k + 1 for all u ∈ U .
Let U = {u1, . . . , ur}. Each ui is adjacent to at least two vertices in VG \U . For
i = 1, . . . , r, we do the following. Let y, z be two neighbors of u in VG \U , where
we assume that w(uiy) ≤ w(uiz). Let G′ = G/uiy. Then we deduce that

dwG′(xuiy) = dwG(ui) + dwG(y)− 2w(uiy)

≥ w(uiy) + w(uiz) + dwG(y)− 2w(uiy)

= dwG(y)− w(uiy) + w(uiz)

≥ dwG(y)

≥ d.
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Hence, we contract uiy and recursively proceed with G′ and U ′ = U \ {ui}.
Note that the weighted contraction of uiy does not change the weighted degrees
of the other vertices. Consequently, each vertex in U ′ is adjacent to at least
two vertices of weighted degree at least d in G′, and U ′ is the set of vertices of
weighted degree at most d−1 in G′. Then after processing ur, we obtain a graph
of minimum degree at least d by using r ≤ k weighted contractions. Hence, our
algorithm always returns Yes in this case.

To estimate the running time, observe that for each recursive call of our algo-
rithm, we create at most k(2k−1) instances of the problem, and the depth of the
recursion is at most k. Hence, the algorithm runs in time O(2kk2k(n+m)). ut

3.2 Weighted Contraction Degeneracy

Recall that we call the special case of Weighted Degree Contractibility.
in which there is no upper bound on the number of weighted contractions, i.e., in
which k = |EG|, the Weighted Contraction Degeneracy problem. In this
section we prove that Weighted Degree Contractibility is NP-complete
in the strong sense but FPT when parameterized by d if all edge weights are
integers. We first introduce some extra terminology.

Let G = (V,E) be a connected graph. For a proper subset U ⊂ V , the set of
edges that have one end-vertex in U and the other one in U = V \ U is called
an edge-cut denoted E(U,U). An edge-cut C is minimal if G has no edge cut
C ′ ⊂ C. The following lemma is well known (see e.g [10]).

Lemma 1. Let G = (V,E) be a connected graph and U ⊂ V . Then E(U,U) is
a minimal edge-cut of G if and only if G[U ] and G[U ] are both connected.

For the proofs of our results we also need the following lemma.

Lemma 2. Let G be a connected weighted graph with an edge weighting w, and
let d ∈ R>0. Then G has a weighted contraction H with δw(H) ≥ d if and only
if G has a minimal edge-cut C with w(C) ≥ d.

Proof. First suppose that H is a weighted contraction of G with δw(H) ≥ d.
Let W be a corresponding H-witness structure. Let x be a vertex of H that is
not a cut-vertex. Then the subgraphs of G induced by U = W (x) and by U ,
respectively, are connected. Lemma 1 tells us that C = E(U,U) is a minimal
edge-cut of G. Because dwH(x) ≥ d, we deduce that w(C) ≥ d.

Now suppose that G has a minimal edge-cut C = E(U,U) with w(C) ≥ d.
Then G[U ] and G[U ] are connected graphs due to Lemma 1. Contracting the
edges of G[U ] and G[U ] yields a graph H that has two vertices and one edge
with weight at least d. Hence, δw(H) ≥ d. ut

Lemma 2 implies that the Weighted Contraction Degeneracy problem
is equivalent to the Maximum Minimal Cut problem that is to test whether
a connected graph G with an edge weighting w has a minimal edge-cut C with
w(C) ≥ d for some given integer d.
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A problem is said to be NP-complete in the strong sense, if it remains NP-
complete even when all of its numerical parameters are bounded by a polynomial
in the size of the input. We prove that Weighted Degree Contractibility
is NP-complete in the strong sense.

Theorem 4. Weighted Contraction Degeneracy with integer edge weights
is NP-complete in the strong sense.

Proof. It is clear that the problem is in NP. In order to prove NP-hardness, we
reduce from the Max-Cut problem. This NP-complete problem [7] is to test
whether a connected graph G has an edge-cut C with at least s edges for some
given integer s.

Given an instance (G, s) of Max-Cut, we construct a weighted graph G′

as follows. We add two new adjacent vertices u and v to G by making each of
them adjacent to all vertices of G. We set w(uv) = n+m, and w(e) = 1 for all
other edges in G′. We let d = 2n + m + s. In this way we obtained an instance
(G′, d) of Weighted Contraction Degeneracy. Observe that all numerical
parameters of this instance, i.e., all edge weights and d are polynomially bounded
in n and m.

We claim that G has an edge-cut C with |C| ≥ s if and only if G′ has a
minimal edge-cut C ′ with w(C ′) ≥ d.

First suppose that G has an edge-cut C = EG(U,U) with |C| ≥ s. We define
U ′ = U ∪{u} and U ′ = (VG \U)∪{v}. Because both u and v are adjacent to all
vertices of G, we find that both G′[U ′] and G′[U ′] are connected. Then Lemma 1
tells us that C ′ = EG′(U

′, U ′) is a minimal edge-cut of G′. We also deduce that
w(C ′) ≥ w(uv) + n+ s = n+m+ n+ s = d.

Now suppose that G′ has a minimal edge-cut C ′ = EG′(U
∗, U∗) with w(C ′) ≥

d. If u, v ∈ U∗ or (symmetrically) u, v ∈ U∗, then |C ′| ≤ |EG|+2n = 2n+m < d.
Because C ′ only contains edges of weight 1, we obtain w(C ′) < d, which is not
possible. Hence, either u ∈ U∗, v ∈ U∗ or v ∈ U∗, u ∈ U∗. We may assume
without loss of generality that u ∈ U∗, v ∈ U∗. Then C = EG(U∗ \{u}, U∗ \{v})
is an edge-cut in G with

|C| = w(C ′)− w(uv)− n ≥ d− (n+m)− n = 2n+m+ s− n−m− n = s.

To conclude the proof, it remains to observe that, by Lemma 2, G′ has a weighted
contraction H with δw(H) ≥ d if and only if G′ has a minimal edge-cut C ′ with
w(C ′) ≥ d. ut

Due to Theorem 4, we immediately obtain the following result by taking
k = |E|.

Corollary 2. Weighted Degree Contractibility with integer edge weights
is NP-complete in the strong sense.

Recall that Contraction Degeneracy is in FPT when parameterized by
d [6]. We now show that Weighted Contraction Degeneracy is also FPT
when parameterized by d. For doing this we first give some extra terminology.
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A tree decomposition of a graph G is a pair (X , T ) where T is a tree, the
vertices of which are called nodes, and X = {Xi | i ∈ VT } is a collection of
subsets (called bags) of VG such that the following three conditions are satisfied:

1.
⋃

i∈VT
Xi = VG;

2. for each edge xy ∈ EG, the vertices x, y are in a bag Xi for some i ∈ VT ;
3. for each x ∈ VG, the set {i | x ∈ Xi} induces a connected subtree of T .

The width of tree decomposition (X , T ) is maxi∈VT
{|Xi| − 1}. The treewidth of

a graph G is the minimum width over all tree decompositions of G.

Theorem 5. Weighted Contraction Degeneracy with integer edge weights
is in FPT when parameterized by d.

Proof. Let G = (V,E) be a weighted graph and d be a nonnegative integer.
We may assume without loss of generality that G is connected, as otherwise we
can consider each connected component of G separately. We use Bodlaender’s
algorithm [5] to check in linear time whether the treewidth of G is at most 2d−2.

First suppose that the treewidth of G is at most 2d − 2. Because all edge
weights are integers, for a given d, we can express Weighted Contraction
Degeneracy in monadic second order logic using Lemmas 1 and 2. Then we
apply the well-known result of Courcelle [9] to solve the problem in linear time.

Now suppose that the treewidth of G is at least 2d − 1. We claim that G
contains a minimal edge-cut C with w(C) ≥ d. In order to obtain a contradiction,
we assume that all minimal edge-cuts of G have weight less than d.

We recursively construct a tree decomposition of G as follows. During its
construction we maintain the following property. Suppose that at some moment
we have constructed a tree decomposition (X , T ) of a subgraph of G induced by
a subset U ⊂ V . Then for each minimal edge-cut C ⊆ EG(U,U) of G the set

Z = {z ∈ U | z is incident with an edge of C}

must be included in some bag of (X , T ). To ensure this property, initially, we set
U = {u} for an arbitrary vertex u ∈ V . Then we recursively extend U until we
get V as follows. Let C ⊆ EG(U,U) be a minimal edge-cut of G. Define the sets

Z = {z ∈ U | z is incident with an edge of C} and

Z ′ = {z′ ∈ U | z′ is incident with an edge of C}.

Let Xi be a bag of the tree decomposition of G[U ] that contains Z. We set
U ′ = U ∪Z ′. To obtain a tree decomposition of G[U ′], we add a pendant node j
adjacent to node i and define the bag Xj as Z∪Z ′. Then |Z∪Z ′| ≤ 2|C| ≤ 2d−2,
where the latter inequality follows from the fact that |C| < d, as all edge weights
are positive integers and we assume that w(C) < d. For every minimal edge-cut
C ′ ⊆ EG(U ′, U ′), the set of vertices in U ′ incident with an edge of C ′ is either
contained in Z or in Z ′. In the first case we take the bag Xi, and in the second
case we take the bag Xj . Hence, we may proceed with U ′ and the obtained tree
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decomposition of G[U ′]. This eventually leads to a tree decomposition of G that
has width at most 2d− 2; a contradiction.

By this claim and Lemma 2, we conclude that the answer is always a Yes if
the treewidth of G is at least 2d− 1. ut

4 Concluding Remarks

We leave the problem of determining the complexity of Weighted Degree
Contractibility with integer edge weights, when parameterized by d, as an
open problem. We conclude our paper with two additional results.

4.1 Weighted Face Degree Subgraph

We show that our algorithm from Theorem 3 can be applied for weighted faces
in plane graphs; for the definition of a plane graph and other notions, we refer
to the text-book of Diestel [10].

The weighted face degree of a face f of a plane weighted graph G is the sum of
all the weights of the edges of G incident with f . The Weighted Face Degree
Subgraph problem is to test whether a plane weighted graph G can be modified
to a plane weighted graph of minimum weighted face degree at least d by using
at most k edge removals.

Theorem 6. Weighted Face Degree Subgraph is in FPT when parame-
terized by k.

Proof. Given an instance of Weighted Face Degree Subgraph with a plane
weighted graph G and an integer d we do as follows. Let G∗ denote the geometric
dual of G. There is a one-to-one correspondence between the edges of G and the
edges of G∗. Let e∗ be the edge of G that corresponds to the edge e in G. We
assign weights to the edges of G∗ in the following way: wG∗(e

∗) = wG(e).

An embedded contraction of an edge e of a plane graph is a contraction of
e that respects the embedding and keeps multiple edges if they appear (that
is, if the endpoints of e have common neighbors). We observe that the dual of
the graph obtained from a plane graph G by removing an edge e is the graph
obtained from G∗ by an embedded contraction of e∗.

We apply our algorithm from Theorem 3 for Weighted Degree Con-
tractibility for G∗ and degree d. Note that there is a one-to-one correspon-
dence between the faces of G and the vertices of G∗. Therefore, weighted con-
tractions can simulate the face degree transformations of a graph with embedded
contractions and multiple edges. Due to the equivalence between edge removals
in a plane graph and embedded edge contractions in its dual, the sequence of
k edges of G∗ that is a solution to the Weighted Degree Contractibility
problem can be transformed into a sequence of k edge removals in G. Hence,
Weighted Face Degree Subgraph can be solved in FPT time. ut
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4.2 Eulerian Simple-Contractibility

As future work, one may consider other variants of constrained contractibility
problems, for example by imposing parity constrains. To show that this may be
interesting, we spot an algorithm that solves such a problem.

Recall that a simple contraction is the operation on loopless multigraphs that
identifies both end-vertices of the edge and keeps multiple edges but removes the
loop that was created. A connected multigraph is Eulerian if all its vertices have
even degree. The problem Eulerian Simple-Contractibility is to find the
minimum number of simple contractions that transforms a connected multigraph
into an Eulerian graph. While it has never been stated explicitly in the literature,
Eulerian Simple-Contractibility admits a polynomial-time algorithm. We
show this below.

Let G be a multigraph. A vertex of G is odd (or even) when its degree is
odd (or even). An odd-vertex pairing is a subset of edges, whose removal from
G yields a multigraph that contains no odd vertices. Hadlock [15] considered
minimum odd-vertex pairings , i.e., that have minimum cardinality, and proved
the following result.

Lemma 3 ([15]). Let P be a subset of edges of a multigraph G. Then P is a
minimum odd-vertex pairing if and only if P forms a collection of edge-disjoint
paths with the odd vertices of G as endpoints, using each as an endpoint once,
and with minimum sum of path lengths.

We use Lemma 3 to show the following lemma.

Lemma 4. Let P be a subset of edges of a multigraph G. Then P is a minimum
set of edges whose simple contractions transform G into an Eulerian graph if and
only if P is a minimum odd-vertex pairing of G.

Proof. First suppose that P is a minimum set of edges whose simple contractions
transform G into an Eulerian graph. We will prove that P is a minimum odd-
vertex pairing by induction on |P |.

Let |P | = 1. Then the endpoints of the only edge e in P must be odd in G,
and they must be the only two odd vertices in G, because P is a minimum set
of edges whose simple contractions transform G into an Eulerian graph. Hence,
P is an odd-vertex pairing. Because |P | = 1, we deduce that P is minimum.

Let |P | > 1. Let C be a connected component of P . Because P is minimum,
C is a tree. Consider an edge vw in P such that v is a leaf of C (and w is its
neighbor in C). Let xvw be the new vertex obtained as the result of a simple
contraction of vw. Also, let P ′ be the resulting set of edges obtained from P ,
and let G′ be the resulting multigraph obtained from G, after performing the
simple contraction of vw. Then P ′ is a minimum set of edges whose simple
contractions transform G′ into an Eulerian graph. By our induction hypothesis,
P ′ is a minimum odd-vertex pairing of G′.

If v is even in G , then the simple contractions of all the edges in P except
the edge incident with this leaf would transform G into an Eulerian graph; a
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contradiction with the choice of P . Hence, v is an odd vertex in G. If w is odd
in G, then xvw is even in G′, because v is odd in G. This is not possible, because
P ′ is a minimum odd-vertex pairing of G′, and by Lemma 3 this means that P ′

forms a collection of edge-disjoint paths with the odd vertices of G′ as endpoints,
using each as an endpoint once, Hence, w is even in G. Consequently, P forms a
collection of edge-disjoint paths with the odd vertices of G as endpoints, using
each as an endpoint once. Moreover, P is minimum because we need at least
one edge to cover v. By Lemma 3, we then find that P is a minimum odd-vertex
pairing of G.

Now suppose that P is a minimum odd-vertex pairing. Then Lemma 3 tells
us that P forms a collection of edge-disjoint paths with the odd vertices of
G as endpoints, using each as an endpoint once, and with minimum sum of
path lengths. We observe that the vertex obtained by the simple contraction
of an edge xy ∈ E is odd if and only if one of {x, y} is even and the other
one is odd. Hence, the simple contractions of all edges in P transform G into
an Eulerian graph. Suppose that there exists a smaller set P ∗ of edges whose
simple contractions transform G into an Eulerian graph. Then we may assume
without loss of generality that P ∗ is minimum. However, as shown in the forward
implication, P ∗ is a minimum odd-vertex pairing as well. This is not possible.
Hence, P is minimum. This completes the proof of Lemma 4. ut

Hadlock [15] observed that a minimum odd-vertex pairing can be computed
in polynomial time by a reduction to a maximum matching problem. This ob-
servation and Lemma 4 imply the following theorem.

Theorem 7. The Eulerian Simple-Contractibility problem can be solved
in polynomial time.

Acknowledgments. We thank Hans Bodlaender for useful comments ands re-
marks.
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