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ABSTRACT

The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy

and reliability of weak-lensing measurement, in preparation for the next generation of wide-

field surveys. We review 16 current and emerging shear-measurement methods in a common

language, and assess their performance by running them (blindly) on simulated images that

contain a known shear signal. We determine the common features of algorithms that most

successfully recover the input parameters. A desirable goal would be the combination of

their best elements into one ultimate shear-measurement method. In this analysis, we achieve

previously unattained discriminatory precision via a combination of more extensive simulations

and pairs of galaxy images that have been rotated with respect to each other. That removes the

otherwise overwhelming noise from their intrinsic ellipticities. Finally, the robustness of our

simulation approach is confirmed by testing the relative calibration of methods on real data.

Weak-lensing measurements have improved since the first STEP paper. Several methods now

consistently achieve better than 2 per cent precision, and are still being developed. However,
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we can now distinguish all methods from perfect performance. Our main concern continues

to be the potential for a multiplicative shear calibration bias: not least because this cannot be

internally calibrated with real data. We determine which galaxy populations are responsible

for bias and, by adjusting the simulated observing conditions, we also investigate the effects

of instrumental and atmospheric parameters. The simulated point spread functions are not

allowed to vary spatially, to avoid additional confusion from interpolation errors. We have

isolated several previously unrecognized aspects of galaxy shape measurement, in which fo-

cused development could provide further progress towards the sub-per cent level of precision

desired for future surveys. These areas include the suitable treatment of image pixellization

and galaxy morphology evolution. Ignoring the former effect affects the measurement of shear

in different directions, leading to an overall underestimation of shear and hence the amplitude

of the matter power spectrum. Ignoring the second effect could affect the calibration of shear

estimators as a function of galaxy redshift, and the evolution of the lensing signal, which will

be vital to measure parameters including the dark energy equation of state.

Key words: gravitational lensing – methods: data analysis – cosmology: observations.

1 I N T RO D U C T I O N

The observed shapes of distant galaxies become slightly distorted

by the (differential) gravitational deflection of a light bundle as it

passes near foreground mass structures. Such ‘cosmic shear’ hap-

pens regardless of the nature and state of the foreground mass. It

is therefore a uniquely powerful probe of the cosmic mass distribu-

tion, dominated by dark matter. Observations of gravitational lens-

ing are directly and simply linked to theories of structure formation

that are otherwise ill-equipped to predict the distribution of light

(for reviews, see Bartelmann & Schneider 2001; Wittman 2002;

Refregier 2003). Measurements are not limited by astrophysical

bias (e.g. Dekel & Lahav 1999; Weinberg et al. 2004; Gray et al.

2002; Hoekstra et al. 2002b; Smith et al. 2003), which affects op-

tical surveys, neither by unknown physics of distant supernovae

(e.g. Hillebrandt & Niemeyer 2000; James et al. 2006; Sullivan

et al. 2006; Travaglio, Hillebrandt & Reinecke 2006), nor by the

uncertain relations between the mass of galaxy clusters and their

observable X-ray luminosity or temperature (e.g. Pierpaoli, Scott &

White 2001; Viana, Nichol & Liddle 2002; Huterer & White 2003).

Gravitational lensing is a purely geometric effect, requiring knowl-

edge of only deflection angles and distances. By directly observing

the growth of the mass structures over cosmic time, and by investi-

gating the large-scale geometry of the universe, it is also an effective

probe of dark energy (Hoekstra et al. 2006; Jarvis et al. 2006; Schimd

et al. 2006; Semboloni et al. 2006) and can test alternative theories

of gravity that move beyond general relativity (White & Kochanek

2001).

The practical use of weak lensing in cosmology effectively began

with the simultaneous detection of a coherent cosmic shear signal

by four independent groups (Bacon, Refregier & Ellis 2000; Kaiser,

Wilson & Luppino 2000; Van Waerbeke et al. 2000; Wittman et al.

2000). Since then, the field of weak lensing has advanced dramati-

cally. Large, dedicated surveys with ground- and space-based tele-

scopes have recently measured the projected 2D power spectrum of

the large-scale mass distribution and drawn competitive constraints

on the matter density parameter �m and the amplitude of the matter

power spectrum σ 8 (Maoli et al. 2001; Rhodes, Refregier & Groth

2001; Van Waerbeke et al. 2001; Hoekstra, Yee & Gladders 2002a;

Bacon et al. 2003; Refregier, Rhodes & Groth 2002; Jarvis et al.

2003; Brown et al. 2003; Hamana et al. 2003; Massey et al. 2005;

Rhodes et al. 2004; Heymans et al. 2005; Van Waerbeke, Mellier &

Hoekstra 2005; Hoekstra et al. 2006; Semboloni et al. 2006; Jarvis,

Bernstein & Dolney 2005; Hetterscheidt et al. 2006; Schrabback

et al. 2006; Dahle 2006). The results from these efforts are found

to be in broad agreement and are rapidly becoming more credi-

ble, with the most recent publications presenting several different

diagnostic tests to determine the levels of systematic error. Ambi-

tious plans are being laid for dedicated telescopes both on the ground

(e.g. VST-KIDS, DES, VISTA darkCAM, Pan-STARRS, LSST) and

in space (e.g. DUNE, SNAP, JDEM). Indeed, future weak-lensing

surveys were recently identified as the most promising route to un-

derstanding the nature of dark energy by the joint NSF–NASA–DOE

Astronomy and Astrophysics Advisory Committee (AAAC) and

NSF–DOE High Energy Physics Advisory Panel (HEPAP) Dark

Energy Task Force.1 The importance of weak lensing in future cos-

mological and astrophysical contexts seems assured.

However, the detection and measurement of weak gravitational

lensing presents a technical challenge. The ∼1 per cent distortion

induced in the observed shapes of galaxies is an order of magnitude

smaller than their typical intrinsic ellipticities, and a similar factor

smaller than the spurious shape distortions created by convolution

with the telescope’s point spread function (PSF). Correction for

these effects is crucial and complex. To test the reliability of weak-

lensing measurements, it has therefore been necessary since the first

detections to manufacture simulated images that closely resemble

real data but contain a known shear signal. Bacon et al. (2001), Erben

et al. (2001) and Hoekstra et al. (2002) ran their shear-measurement

methods on such images. By comparing the input and mean mea-

sured shears, they determined the calibration error inherent to each

technique, and in some cases discovered (and hence corrected) a

multiplicative calibration bias. This is most important because it

cannot be self-calibrated from a survey itself. Other systematics can

be checked for in real data via correlation of the galaxies and the PSF,

or via an E − B decomposition (Crittenden et al. 2002; Schneider,

Van Waerbeke & Mellier 2002; Schneider & Kilbinger 2007). These

early tests determined that the first successful shear-measurement

methods were accurate to �10 per cent of the signal.

1 http://www.nsf.gov/mps/ast/detf.jsp.
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To maximize progress in this technical field, and to foster the ex-

change of data and theoretical knowledge within the weak-lensing

community, we launched the Shear Testing Programme (STEP). In

the first STEP paper (Heymans et al. 2006, STEP1), we parametrized

the performance of methods in terms of their multiplicative shear

calibration bias m, an additive residual shear offset c and, in some

cases, a nonlinear responsivity to shear q. That analysis confirmed

that the main difficulty in weak lensing lies in the calibration

of the shear signal, but encouragingly showed that all the meth-

ods used on existing weak-lensing surveys achieve better than

∼7 per cent accuracy. Shear-measurement error is therefore not

currently a dominant source of error.

Unfortunately, this accuracy will not be sufficient to realize the

potential of the ambitious and much larger future surveys. STEP1

found that the most-accurate shear-measurement methods were suc-

cessfully calibrated to within a few per cent, but the limited size and

precision of the first STEP simulations forbade any finer analysis

than this. The morphologies of galaxies in the first simulated images

were also overly simplistic, in a way that did not fully test the as-

sumptions of some shear-measurement methods that galaxies lack

substructure and complex shapes.

In this second STEP paper, we include complex galaxy mor-

phologies and conduct a more precise test of current and develop-

ing shear-measurement algorithms to the �0.5 per cent level. We

achieve this precision through the combination of a more extensive

set of simulated images and an ingenious use of galaxy pairs ro-

tated with respect to each other (Nakajima & Bernstein 2006). This

removes the otherwise dominant noise from galaxies’ intrinsic el-

lipticities. To focus on shear-measurement errors rather than PSF

inerpolation, we hold the PSF fixed across each simulated image.

However, we have designed the set of images to span a wide range

of simulated observing conditions and to test several potentially

challenging regimes for shear measurement. The data set is suffi-

ciently large for it to be divided into different observing conditions

and for independent tests to be carried out within each. We thereby

test the effects of the following parameters on shear-measurement

precision.

(i) Complex galaxy morphology;

(ii) galaxy size;

(iii) galaxy magnitude;

(iv) selection effects related to galaxy ellipticity;

(v) direction of the shear signal relative to the pixel grid;

(vi) PSF size; and

(vii) PSF ellipticity.

16 different shear-measurement codes have been run on the simu-

lated images. These can be categorized into four distinct categories.

We provide a brief description of each algorithm, and outline the

relative successes of each method. The STEP programme has dra-

matically sped the development of new shear-measurement methods

(e.g. Bernstein & Jarvis 2002; Refregier & Bacon 2003; Massey &

Refregier 2005; Kuijken 2006; Nakajima & Bernstein 2006; Bridle

et al., in preparation), and we particularly focus on these. However,

these methods necessarily remain experimental, and development

continues. The results from such methods should therefore be taken

as an indication of progress rather than a judgement on their ultimate

potential.

This paper is organized as follows. In Section 2, we describe

the simulated images. In Section 3, we review the different shear-

measurement methods used by each author, translating them into a

common language for ease of comparison, and categorizing them

into four distinct groups. In Section 4, we compare each author’s

measured shear with the input signal, and split the simulations in

various ways to isolate areas of potential difficulty in shear mea-

surement. Because of the number of different methods used, this

is a rather daunting process. In Section 5, we provide some per-

spective on the results, assessing the relative performance of the

different methods, and the categories of methods. In Section 6, we

derive some general conclusions and outline suggestions for future

development.

2 S I M U L AT E D I M AG E S

We have used the Massey et al. (2004a) simulation package to manu-

facture artificial images that closely resemble deep r-band data taken

in good conditions with the Suprime-Cam camera on the Subaru

telescope. We specifically mimic the weak-lensing survey data of

Miyazaki et al. (2002b). The Subaru telescope was built with care-

ful consideration of weak-lensing requirements, and has reliably

obtained the highest-quality weak-lensing data to date (Miyazaki

et al. 2002a; Wittman 2005; Kasliwal et al., in preparation). It there-

fore represents the current state of the art, and will most closely

match future dedicated survey instruments. The simulated images

are publicly available for download from the STEP website.2

To aid the interpretation of our results, the simulated images incor-

porate several ‘unrealistic’ simplifications: neither the noise level,

the input shear signal nor the PSF vary as a function of position.

This does not adversely affect the validity of the results, as any com-

bination of PSF size, PSF ellipticity, and shear signal can usually be

found in one of the images. However, it does let us simply average

the measured shear for the large number of galaxies in each im-

age, without explicitly keeping track of either the shear or the PSF

applied to each object. We have attempted to decouple our inves-

tigation of shear measurment precision from the challenge of PSF

interpolation. Solutions to this separate problem are being devised

elsewhere (Hoekstra 2004; Jarvis & Jain 2004).

As in STEP1, the main figure of merit throughout our analysis will

be the mean shear measured within each image, 〈γ̃ 〉, and deviations

of that from the known input shear γ input. If the mean shear can

be determined without bias for any input shear (and for any PSF),

all the commonly used statistics typical in cosmic shear analysis

should also be unbiased (but the distribution of the shear estimates

will affect their noise level).

To address the specific topics outlined in the introduction, we

manufactured six sets of simulated images. These span a range of

realistic observing conditions, in a carefully orchestrated way that

will isolate various effects. The differences between the images are

described in Table 1. Each set contains 128 7 × 7-arcmin2 images,

with a pixel scale of 0.2 arcsec. In the first simulated image of each

set, the galaxies are not sheared. For the next 63 images, which

all feature the same patch of sky in order to maximize sensitivity

to shear calibration, the galaxies are sheared by a random amount.

This amount is chosen with a flat PDF within |γ input| < 6 per cent.

To concentrate on cosmic shear measurement rather than cluster

mass reconstruction, this limit is smaller than the maximum shears

used in STEP1. However, the shears are now crucially chosen from a

continuous distribution and are allowed to be in any direction relative

to the pixel grid. Note that we are really attempting to measure

‘reduced shear’ (Seitz & Schneider 1997) throughout this analysis,

although there is explicitly zero convergence in the simulations. The

2 http://www.physics.ubc.ca/∼heymans/step.html.
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Table 1. The six different sets of images used in the STEP2 analysis are

carefully chosen to isolate and test particular aspects of weak shear measure-

ment. Either the PSF shape, or the form of galaxies’ intrinsic morphologies

varies in a prescribed way between sets.

Image set PSF description Galaxy type

A Typical Subaru PSF (∼0.6 arcsec) shapelets

B Typical Subaru PSF (∼0.6 arcsec) pure exponential

C Enlarged Subaru PSF (∼0.8 arcsec) shapelets

D Elliptical PSF aligned along x-axis shapelets

E Elliptical PSF aligned at 45◦ shapelets

F Circularly symmetric Subaru PSF shapelets

input signals were not disclosed to any of the groups analysing the

data.

We can predict the signal-to-noise ratio (S/N) in the shear mea-

surement from these images. We first define a complex ellipticity

for each galaxy:

e = e1 + ie2 ≡
a − b

a + b
[cos (2θ ) + i sin (2θ )], (1)

where a and b are the major and minor axes, and θ is the orientation

of the major axis from the x-axis. This definition is widely used

because it is more convenient than a two-component parametrization

involving θ . Both the real and imaginary parts are well defined (zero)

for a circular object or, on average, for an unsheared population of

objects. In the absence of PSF smearing and shear-measurement

errors, the observed galaxy ellipticity eobs is related to its intrinsic

ellipticity eint by

eobs =
eint + γ

1 + γ ∗eint
(2)

(Seitz & Schneider 1997), where γ ≡ γ 1 + iγ 2 is the complex shear

applied to each image. With only a finite number N of galaxies, all

with non-zero intrinsic ellipticity, measurement of the mean shear

〈γ̃ 〉 = 〈eobs〉 is limited by an intrinsic shot noise

SN error ≈ 〈eint〉 = 0 ±

√

〈(

eint
i

)2〉

N
. (3)

In the STEP2 simulations,
√

〈e2
i 〉 ∼ 0.1, about an order of magni-

tude larger than the shear signal.

Since the morphologies of the simulated galaxies are uncorre-

lated, this noise can be slowly beaten down by increasing the size

of the simulations. However, to dramatically improve the efficiency

of the simulations, and circumvent the meagre 1/
√

N behaviour,

we introduce an innovation in the remaining 64 images. Follow-

ing a suggestion in Nakajima & Bernstein (2006), the entire sky,

including the galaxies, was artificially rotated by 90◦ before being

sheared by the same signals and being convolved with the same

PSF as before. This rotation flips the sign of galaxies’ intrinsic el-

lipticites. To measure biases in shear-measurement methods, we can

then consider matched pairs of shear estimators from the unrotated

and rotated versions of each galaxy. Averaging these estimators ex-

plicitly cancels the intrinsic shape noise, leaving only measurement

noise and any imperfections in shear measurement. We thus form a

shear estimator for each galaxy pair

γ̃ =
eobs,unrot + eobs,rot

2
. (4)

Since eint,unrot = eint = − eint,rot, we can use equation (2) to find

γ̃ =
(

eint + γ

1 + γ ∗eint
+

−eint + γ

1 − γ ∗eint

)/

2

=
γ − γ ∗(eint)2

1 − (γ ∗eint)2
. (5)

Averaging this shear estimator over N/2 galaxy pairs now gives a

shot noise error in 〈γ̃ 〉 of

SN error ≈ γ
〈(

eint
i

)2〉

= 0 ± γ

√

〈(

eint
i

)4〉

2N
, (6)

which has been significantly reduced from equation (3). In the

STEP2 simulations,
√

〈(eint
i )4〉 ∼ 0.05 and |γ | < 0.06. Nothing

is lost by this approach. All 128 images can still be analysed inde-

pendently – and we do pursue this approach in order to measure the

total shape measurement noise in an ordinary population of galaxies.

The Massey et al. (2004a) image simulation pipeline required

extensive development from previously published versions to mimic

ground-based data. We will therefore now describe its three main

ingredients: stars (i.e. PSF), galaxies and noise.

2.1 Stars

The simulated images are observed after convolution with a vari-

ous point-spread functions (PSFs). The PSF shapes are modelled

on real stars observed in Suprime-Cam images, and are shown in

Fig. 1. They are modelled using shapelets (Bernstein & Jarvis 2002;

Refregier 2003; Refregier & Bacon 2003; Massey & Refregier

2005), a (complete) set of orthogonal basis functions that can be

used to describe the shape of any isolated object. The decomposition

of an image into shapelet space acts rather like a localized Fourier

transform, with images f(x) being expressed in shapelet space as a

set of indexed coefficients fn,m that weight the corresponding basis

function:

f (x) =
∞

∑

n=0

n
∑

m=−n

fn,mχn,m(r , θ ; β), (7)

with m � n, and where the Gauss–Laguerre basis functions are

χn,m(r , θ ; β) =
Cn,m

β

(

r

β

)|m|

L
|m|
(n−|m|)/2

(

r 2

β2

)

e−r2/2β2

e−imθ , (8)

with a normalizing constant Cn,m and scale size β.

The PSFs can therefore take a complex form. They contain sub-

structure, skewness and chirality. In general, the ellipticity of their

isophotes varies as a function of radius. For computational effi-

ciency, the shapelet series is truncated at an order nmax = 12. The

limited wings and the rapid convergence of the PSFs to zero at large

radii compared to those used in STEP1 are not a consequence of

this truncation, but a confirmation of the excellent optical qualities

of Suprime-Cam.

PSF A is modelled from a fairly typical star towards the centre of

a 40-min-long Suprime-Cam exposure (which, in practice, is likely

to be assembled from four 10-min exposures). It has a full width at

half-maximum (FWHM) of 0.6 arcsec. PSF B is identical to PSF A.

PSF C is the same star, but enlarged to model slightly worse seeing,

and has an FWHM of 0.8 arcsec. This is the worst that might be

expected in future weak-lensing surveys, with nights during poorer

conditions typically used to obtain data in additional colours. PSF

D is modelled on a star at the edge of the same Suprime-Cam expo-

sure. The phases of all its m = 2 shapelet coefficients were adjusted

to the same value so that at all radii (and therefore with any radial

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 13–38
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Figure 1. The PSFs used to generate the six different sets of simulated

images. The colour scale is logarithmic, and the contours, which are overlaid

at the the same absolute value on each PSF, are spaced logarithmically by

factors of two. They are designed to target specific aspects of weak-lensing

measurement that could potentially prove difficult to control. See Table 1

and the text for a description of each PSF.

weight function), its ellipticity derived from quadrupole moments

points in exactly the same direction. Substructure and skewness ap-

parent in the real Subaru PSF is otherwise untouched. As PSF D,

the ellipticity is directed parallel to the x-axis of the pixel grid. The

star is rotated by 45◦ to make PSF E. It is an example of extreme

ellipticity, which highlights ellipticity-dependent effects. However,

it might be possible to limit such ellipticity in weak-lensing surveys

by improving the optical design of future telescopes or optimizing

survey tiling and scheduling strategies. PSF F is a circularized ver-

sion of that star, obtained by setting all its m �= 0 shapelet coefficients

to zero, which is equivalent to averaging the PSF over all possible

orientations.

2.2 Shapelet galaxies

Most of the simulated images contain galaxy shapes also constructed

from weighted combinations of the shapelet basis functions, using

a version of the Massey et al. (2004a) image-simulation pipeline

similarly modified to imitate ground-based data (Fig. 2). The com-

plex and irregular galaxy morphologies that are possible using this

method represent an important advance from the STEP1 analysis

using the SKYMAKER image simulation package (Erben et al. 2001).

Figure 2. A 1 × 1-arcmin2 section of a simulated image from set A, con-

taining shapelet galaxies with complex morphologies. The colour scale is

logarithmic, and the same as that in Fig. 3.

Figure 3. A 1 × 1-arcmin2 section of a simulated image from set B, con-

taining idealized galaxies with exponential radial profiles and simple mor-

phologies. The colour scale is logarithmic, and the same as that in Fig. 2.

The measurement of weak lensing in STEP1 was considerably sim-

plified by the galaxies’ smooth and unperturbed isophotes. Sev-

eral shear-measurement methods are based on the assumption that

galaxy shapes and the PSF are concentric, elliptical, and in some

cases Gaussian. In addition, the SKYMAKER galaxies have reflection

symmetry about the centroid which could feasibly cause any sym-

metrical errors to vanish. By contrast, PSF correction and galaxy

shape measurement are rendered more challenging in STEP2 by the

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 13–38
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realistic morphologies that include spiral arms, dust lanes and small-

scale substructure. Our analysis is thus designed to test the robust-

ness of weak-lensing measurement methods.

The joint size–magnitude morphology distribution of galaxies

was copied from the Hubble Space Telescope COSMOS survey

(Scoville et al. 2007). This is a uniform, two square degree set of

images taken with the F814W filter on the Advanced Camera for

Surveys (ACS), to a depth of 28.7 for a point source at 5σ . It is deeper

than our intended simulations, and with a much finer resolution, so

provides an ideal source population. The extent of the COSMOS

survey also provided sufficient real galaxies to avoid duplication in

the simulations without needing to perturb shapelet coefficients, as

in section 4 of Massey et al. (2004a). We simply used the shapelet

models of COSMOS galaxies, randomly rotated, inverted and repo-

sitioned. The positions of galaxies in the simulations were chosen

at random, without attempting to reproduce higher-order clustering.

Since the galaxy models are inevitably truncated at some level

in shapelet space, and since we did not deconvolve the galaxies

from the ACS PSF, the smallest simulated galaxies are intrinsically

slightly rounder than those in real Subaru data. However, this convo-

lution occurs before shearing and does not alter the necessary steps

for shear measurement. As in real data, the simulated galaxy ellip-

ticity and morphology distributions do vary with galaxy magnitude

and size. We adopt an alternative definition of ellipticity:

(ε1, ε2) ≡
a2 − b2

a2 + b2
[cos (2θ ), sin (2θ )], (9)

where a and b are the major and minor axes, and θ is the orientation of

the major axis from the x-axis. Note the difference from equation (1);

this version is closer to the notation used by most shear estimators.

Before PSF convolution, the width of this ellipticity distribution

σ int
ε ≡

((

σ int
ε1

)2
+

(

σ int
ε2

)2)1/2
(10)

as measured by SEXTRACTOR (Bertin & Arnouts 1996) is σ int
ε =

0.35 ± 0.03 at r = 22 and σ int
ε = 0.20 ± 0.02 at r = 26. Note that

this ε is a different quantity than the e used in equation (3).

The galaxies were then sheared analytically in shapelet space,

using equation (41) of Massey & Refregier (2005). This operation

is to first order in γ . Terms of the order of γ 2 are ignored, but, for

typical galaxy shapes, the coefficients by which these are multiplied

are also smaller than those multiplying the first order terms. This

therefore introduces only a very small error. The galaxies were then

convolved with the PSF, also in shapelet space, using equation (52)

of Refregier (2003). They were pixellated by analytically integrating

the shapelet models within adjoining squares, using equation (34)

of Massey & Refregier (2005).

2.3 Idealized galaxies

We have also manufactured one set (B) of simulated images with the

same observing conditions but in which the galaxies have simple,

exponential profiles and concentric, elliptical isophotes (Fig. 3).

These idealized galaxies provide a contrast to the morphological

sophistication of the shapelet galaxies, and an independent test of

the shapelet-based shear-measurement methods. We intentionally

chose a very simple form for the idealized galaxy shapes, with a

sharp cusp and extended wings, to most effectively pronounce any

difference to the results from galaxies with realistically complex

morphologies. As before, the size–magnitude distribution of un-

sheared galaxies was modelled on that observed in the ACS COS-

MOS images. Galaxy ellipticities were assigned randomly from a

Gaussian distribution. Like STEP1, we used a constant distribution

of intrinsic ellipticity. This had width σ int
ε = 0.3 for galaxies at all

magnitudes.

To add a shear signal, the random ellipticities are then perturbed at

the catalogue level. Under a small shear γ i, the ellipticity ε defined

in equation (9) transforms as

εobs
i = εint

i + 2
(

δi j − εint
i εint

j

)

γ j + O(γ 3) (11)

(e.g. Rhodes, Refregier & Groth 2000), where δij is the Kroneker-

delta symbol, and the summation convention was assumed. Simi-

larly, the mean square radius d ≡ a2 + b2 becomes

d ′2 = d2
(

1 + 2εint
i γi

)

+ O(γ 2). (12)

These two expressions are valid up to first order in the shear. Note

that, to this order, the flux F is unaffected by a pure shear. These

results are valid for any galaxy with self-similar isophotes (as long

as the moments converge).

To create a simulated galaxy image f(x) with a desired ellipticity,

we first specify the desired size r0 and mean radial profile p(r2),

where r2 = x2
1 + x2

2 is the square radius and x = (x1, x2) are Cartesian

coordinates on the sky, centred on the centroid of the galaxy. For

convenience, we choose the normalization and angular scale of the

generic profile such that
∫ ∫

p(r 2) d2
x =

∫ ∫

r 2 p(r 2) d2
x = 1 . (13)

The exponential profile used in these simulations is given by

p(r 2) =
√

6

2πr0

e−
√

6(r/r0)2
(14)

(cf. Rhodes et al. 2000 for the alternative case of a Gaussian profile).

Using the conventions of equation (13) and a coordinate transfor-

mation

J = R(θ )T

(

a2 0

0 b2

)

R(θ ) = d2

(

1 + ε1 ε2

ε2 1 − ε1

)

, (15)

where T denotes transpose and the rotation matrix

R(θ ) ≡

(

cos θ sin θ

− sin θ cos θ

)

, (16)

it is then easy to show that the elliptical galaxy image should have

surface brightness

f (x) = FJ
− 1

2 p(xT
J

−1
x), (17)

where the vertical bars denote the matrix determinant. The tails

of their exponential profiles were artificially truncated at elliptical

isophotes 5 × r0 from the centre. To pixellate the galaxies, the value

of the analytic function was computed at the centre of each pixel. The

PSF was similarly pixellated, and convolution was then performed in

a real space to produce the final image I(x). Strictly, these operations

should be reversed, and they do not commute. However, the pixels

are small and the PSFs are Nyquist sampled, so the error introduced

should be minimal.

2.4 Noise

A two-component noise model is then superimposed on to the im-

ages. Instrumental performance mimics that attained with a stack

of four 10-min exposures with Suprime-Cam on the 8 m Subaru

telescope (Miyazaki et al. 2002b). They are complete to r = 25.5,

and the galaxies selected for lensing analysis are likely to have a

median redshift zm ≈ 0.9. This is slightly deeper than most existing
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weak-lensing surveys, and is towards the deep end of ground-based

surveys planned for the future. The number density of useable galax-

ies found in these simulated images is therefore unlikely to be greatly

surpassed.

The first component of ‘photon counting’ shot noise is first added

to the true flux in every pixel. This is drawn from a Gaussian dis-

tribution with a width equal to the square root of the photon count.

The images are then renormalized to units of counts per second. In

the renormalized images, the rms of the Gaussian is 0.033 times the

intensity in a pixel.

A second component of sky background is then added throughout

each image, with an rms of 4.43 counts s−1. The constant back-

ground level is assumed to be perfectly subtracted. The model

Subaru images were combined using DRIZZLE, and the sky back-

ground noise is correlated in adjacent pixels. To mimic this effect,

we smoothed the sky noise component (but not the flux in objects)

by a Gaussian of FWHM 3.5 pixel. After this process, the rms of

the sky noise is 1.65 counts s−1. A simulated image of a completely

blank patch of sky was also available to measure the covariance

between pixels. The correlated noise particularly affects the detec-

tion of small, faint objects, and impedes the calculation of objects’

weights from their detection S/N. It will be instructive in the fu-

ture to consider which image resampling kernels and co-addition

methods are optimal for shape measurement, or indeed whether we

should stack the data at all. Jarvis et al. (2003) suggested measuring

galaxy ellipticities on individual frames and combining these at the

catalogue level. Note that faint simulated galaxies are created to

the depth of the COSMOS survey, below the limiting magnitude of

the simulated ground-based images, and these unresolved sources

will also add slightly to the overall sky background.

3 S H E A R - M E A S U R E M E N T M E T H O D S

16 different shear-measurement codes have been run on the simu-

lated images, by the authors listed in Table 2. Those that have been

used elsewhere on real data, attempt to preserve as similar a pipeline

as possible. Each method must first find and measure the shape of

stars in each image. It must interpolate the PSF shape across the

field, without assuming that it is constant. It must then find and

measure the shapes of galaxies, correcting them appropriately for

the effects of seeing. Note that we still consider object identifica-

Table 2. Table of authors and their shear-measurement methods. The key identifies the authors in

all future plots and tables.

Author Key Method

Bergé JB Shapelets (Massey & Refregier 2005)

Clowe C1 KSB+ (same PSF model used for all galaxies)

Clowe C2 KSB+ (PSF weight size matched to galaxies’)

Hetterscheidt MH KSB+
Hoekstra HH KSB+
Jarvis MJ Bernstein & Jarvis (2002)

Jarvis MJ2 Bernstein & Jarvis (2002) (new weighting scheme)

Kuijken KK Shapelets (Kuijken 2006)

Mandelbaum RM Reglens (Hirata & Seljak 2003)

Nakajima RN Bernstein & Jarvis (2002) (deconvolution fitting)

Paulin-Henriksson SP KSB+
Schirmer MS1 KSB+ (scalar shear susceptibility)

Schirmer MS2 KSB+ (tensor shear susceptibility)

Schrabback TS KSB+
Semboloni ES1 KSB+ (shear susceptibility fitted from population)

Semboloni ES2 KSB+ (shear susceptibility for individual galaxies)

tion and classification to be part of a shear-measurement method, as

shape biases can easily be introduced at this point (e.g. Bernstein &

Jarvis 2002; Hirata & Seljak 2003); however, that task is likely to

be separated in future STEP projects.

All the methods work by obtaining, for each galaxy, a two-

component polarization εi that behaves like a generalized ellipticity.

Precise definitions of polarization vary between methods, but it is

important to note that easily measurable quantities do not usually

change linearly with applied shear, so that 〈ε〉 �= γ input for all val-

ues of γ input. To obtain an unbiased shear estimator, methods must

determine how their polarizations change under an applied shear,

and compute either a shear susceptibility tensor P
γ

i j ≡ δεi/δγ j or a

shear responsivity factor R. These are essentially interchangeable

concepts, but with the word ‘susceptibility’ used to imply measure-

ment from the higher-order shape moments of each galaxy (which

are then often averaged or fitted across a galaxy population), and

the word ‘responsivity’ to mean an average susceptibility for the

population, measured from moments of the galaxy ellipticity dis-

tribution. In either case, this quantity can be inverted, and used to

form a shear estimator

γ̃ ≡ (Pγ )−1 ε (18)

or

γ̃ ≡
ε

R
. (19)

When computing the mean shear from a limited subset of galaxies,

such as those in one size or magnitude bin, we will investigate

two approaches to the calculation of R. We try using the constant,

global value, as has been done in published work, and we also try

calculating R from the statistics of the smaller population. The

latter is more noisy, but takes into account the evolution of galaxy

morphology between samples (see Section 5.5).

In Table 3, the methods are broadly distinguished by their solu-

tions to the two most important tasks in shear measurement. Some

methods correct for the PSF at the catalogue level, by essentially

subtracting the ellipticities of the PSF from that of each galaxy;

others attempt to deconvolve each galaxy from the PSF, and mea-

sure the ellipticity of a reconstructed model. To obtain a polariza-

tion, some (‘passive’) methods measure combinations of galaxies’

observed shape moments; other (‘active’) methods shear a model

of an intrinsically circular source until it most closely resembles

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 13–38
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Table 3. Broad classification scheme to distinguish different types of shear-

measurement methods. The asterisks denote methods not tested in this paper.

The top left-hand quadrant is red; the top right-hand quadrant is blue; the

bottom left-hand quadrant is orange; and the bottom right-hand quadrant is

green.

P
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em
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Shear measurement method

Passive Active

Subtraction

KSB+ (various)

Reglens (RM)

RRG∗ K2K∗

Ellipto∗

BJ02 (MJ, MJ2)

Deconvolution Shapelets (JB)

Shapelets (KK)

BJ02 (RN)

im2shape∗

the observed galaxy. We will now provide a brief description of

each method, starting in the top-left quadrant of Table 3. Since the

STEP programme has dramatically sped the development of new

shear-measurement methods (Bernstein & Jarvis 2002; Refregier &

Bacon 2003; Massey & Refregier 2005; Kuijken 2006; Nakajima &

Bernstein 2006; Bridle et al., in preparation), we will particularly

concentrate on the latest developments in those algorithms.

3.1 Red class methods

3.1.1 KSB+ (C1, C2, MH, HH, SP, MS1, MS2, TS, ES1 and ES2)

The shear-measurement method developed by Kaiser, Squires &

Broadhurst (1995), Luppino & Kaiser (1997) and Hoekstra et al.

(1998) is in widespread use by many current weak-lensing surveys.

This has led to a high level of optimization of the basic method. The

base IMCAT code is publicly available from the World Wide Web.3

Many variations have been developed, and the ten implementations

tested in this paper represent a cross-section of those that have been

applied to real data. The details of each method are compared fully

in the appendix of STEP1. The differences that STEP2 results reveal

to be particularly significant are summarized again in Table 4.

The core of the method requires the measurement of the

quadrupole moments of each observed galaxy image I(x) weighted

by a Gaussian of size rg. From these is formed a polarization

(ε1, ε2) ≡
∫ ∫

I (x) W (x) r 2
(

cos (2θ ), sin (2θ )
)

d2
x

∫ ∫

I (x) W (x) r 2 d2
x

, (20)

where

W (x) = e−r2/2r2
g . (21)

The polarization is corrected for smoothing of the PSF via the

smear susceptibility tensor Psm and calibrated as shears via the shear

polarizability tensor Psh: both of which involve higher-order shape

moments. Using stars to denote measurements from stars (for which

a smaller weight function is sometimes used) instead of galaxies,

these form a shear estimator

γ̃ = (Pγ )−1 [ε − P sm(P sm⋆)−1 ε⋆], (22)

3 http://www.ifa.hawaii.edu/∼kaiser/imcat.

where

Pγ = P sh − P sm(P sm⋆)−1 P sh⋆. (23)

The tensor inversions can be performed in full, but these measure-

ments of faint objects are particularly noisy. In practice, since the

diagonal elements of Pγ are similar, and its off-diagonal elements

are about an order of magnitude smaller, it can be approximated as

a scalar quantity. Many implementations of KSB+ therefore simply

divide by a shear susceptibility factor. The noise in Pγ is also some-

times reduced by fitting it from the entire population as a function

of other observable quantities like galaxy size and magnitude. Re-

ducing noise in any nonlinear aspect of shear measurement is vital,

because the lensing signal is so much smaller than both the intrinsic

ellipticity and photon shot noise, and must be obtained by linearly

averaging away those sources of noise over a large population of

galaxies.

Unfortunately, fundamental limitations in the mathematical for-

malism of KSB+ introduce further decisions that must also be re-

solved to approximate an ideal scenario in practical implementa-

tions. The KSB+ method makes no provision for the effects of

pixellization; assumes that the PSF isophotes are concentric; and

is mathematically ill-defined for non-Gaussian or non-concentric

PSF and galaxy profiles. The various implementations developed

by groups participating in the STEP2 analysis represent a cross-

section of those choices.

Since STEP1, the TS method has incorporated a shear calibration

factor of 0.91−1, determined from the STEP1 results, but without

knowledge of the STEP2 data. STEP2 therefore tests the robustness

of this sort of calibration. As in STEP1, the C1 and C2 methods

incorporate a calibration factor of 0.95−1 to eliminate the effect of

close galaxy pairs. The C1 method uses a constant model of the PSF

for all galaxies; the C2 method lets the size of the weight function r⋆
g

= rg change to match each galaxy. The new SP method numerically

integrates weight functions within pixels, uses the trace of Pγ from

individual galaxies, and similar galaxy weights to the HH method.

The ES1 method is based on the LV method from STEP1 but, rather

than fitting the shear susceptibility from the galaxy population as a

function of size and magnitude, it finds the 20 most similar galaxies

in terms of those parameters, and uses their average value. This

same procedure was used in the Semboloni et al. (2006) analysis

of the CFHTLS deep survey. Subsequent tests on STEP1 images

suggested that better results could be obtained by using individual

measurements of Pγ from each galaxy, and ignoring the galaxy

weights. These improvements have been incorporated into the new

ES2 method.

One final finesse is required for methods that use weights wi on

each galaxy i that could vary between the rotated and unrotated ima-

ges. For all N pairs of galaxies, we determine normalized weights

w′
i =

N wi
∑N

j=1
w j

(24)

and then calculate three estimates of the mean shear in each image

〈γ̃ unrot〉 =
1

N

∑

(wunrot′eobs,unrot) (25)

〈γ̃ rot〉 =
1

N

∑

(wrot′eobs,rot) (26)

〈γ̃ 〉 =
1

2N

∑

(wunrot′eobs,unrot + wrot′eobs,rot). (27)

Errors on these are estimated using a bootstrap technique.
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Table 4. Choices adopted by each of the shear-measurement methods that significantly affect their performance in this paper. See the appendix in STEP1 for

more details about the differences between the various implementations of KSB+.

Author Pixellization Galaxy weighting scheme Calculation factor Shear susceptibility

JB Analytic integration None — Global mean shear responsivity R = 2 − 〈ε2〉
C1 Centre of pixel min (ν, 40) 1/0.95 1

2
Tr[Pγ ], fitted as f (rg, εi )

C2 Centre of pixel min (ν, 40) 1/0.95 1
2

Tr[Pγ ], fitted as f (rg, εi )

MH Numerical integration 1/(0.15 + σ 2
ε + σ ( 1

2
Tr[Pγ (rg)])2) 1/0.88 1

2
Tr[Pγ ], from individual galaxies

HH Numerical integration 1/(σ 2
ε + s2

ε /((1 − ε2

2
) 1

2
Tr[Pγ ])2) — (1 − ε2

2
) 1

2
Tr[Pγ ], fitted as f(rg)

MJ Centre of pixel 1/
√

ε2 + 2.25s2
◦ — Global mean shear responsivity R

MJ2 Centre of pixel 1/s2
◦ — Global mean shear responsivity R

KK Centre of pixel 1/(0.12 + σ 2
e1

+ σ 2
e2

) — Global mean shear responsivity R = 1 − 〈ε2〉
RM Centre of pixel f(S/N) — Global mean shear responsivity R

RN Centre of pixel 1/
√

ε2 + 2.25s2
◦ — Global mean shear responsivity R

SP Numerical integration 1/(0.15 + σ 2
ε + σ ( 1

2
Tr[Pγ (rg)])2) — 1

2
Tr[Pγ ], Individual galaxies

MS1 Numerical integration 1/σ 2
ε(rg, mag) — 1

2
Tr[Pγ ], fitted as f (rg, mag)

MS2 Numerical integration 1/σ 2
ε(rg, mag) — Full Pγ tensor, fitted as f (rg, mag)

TS Numerical integration None 1/0.91 1
2

Tr[Pγ ], from individual galaxies

ES1 Numerical integration 1/(σ 2
ε(rg, mag) + 0.442) — 1

2
Tr[Pγ ], smoothed from galaxy population f (rg, mag)

ES2 Numerical integration None — 1
2

Tr[Pγ ], from individual galaxies

3.1.2 Reglens (RM)

The Reglens (RM) method consists of two parts: the SDSS data-

processing pipeline PHOTO (Ivezić et al. 2004), followed by the re-

Gaussianization pipeline (Hirata & Seljak 2003; Mandelbaum et al.

2005). The magnitude cut was adjusted, and one additional sub-

routine was required for the STEP2 analysis, to properly determine

the noise variance in the presence of correlated background noise.

The STEP2 images are more crowded than SDSS images, leading

to occasional deblending problems. Objects with failed deblending

were automatically eliminated, after visual inspection indicated that

nearly all of them were really several galaxies very close to each

other.

PSF correction is performed via a two-step procedure that ad-

dresses KSB+’s limitation of being exact only in the limit of

Gaussian PSF and galaxy profile. The PSF is first split into a Gaus-

sian component G(x) plus a small residual ǫ(x), so that the observed

image

I = (G + ǫ) ⊗ f = G ⊗ f + ǫ ⊗ f , (28)

where f(x) is the galaxy image before convolution of the PSF, and ⊗
signifies convolution. Assuming knowledge of f, it would be possible

to find

I ′ ≡ G ⊗ f = I − ǫ ⊗ f , (29)

the galaxy image as it would appear when convolved with a perfectly

Gaussian PSF. Although f is not known in practice, it is convolved

with a small correction ǫ in the final equality, so equation (29) is

fairly accurate even with an approximation f0. The SDSS and STEP2

analyses used an elliptical Gaussian as f0, with its size and ellipticity

determined from the difference between the best-fitting Gaussians

to the observed image and the full PSF. Possible alternatives to this

approximation are discussed in Hirata & Seljak (2003).

Correction for the isotropic part of the now Gaussian PSF reqires

a subtraction similar to that in KSB+ equation (22), except that

Reglens directly subtracts moments of the PSF from those of the

galaxy (i.e. the numerator and denominator of equation 20) before

they are divided (i.e. the ratio in equation 20). Furthermore, the mo-

ments are calculated using weight functions WI ′ (x) and WG(x) that

are the best-fitting elliptical Gaussians to the image and to the PSF

respectively. The advantage of these adaptive weight functions is

that they do not bias the shape measurement or require later cor-

rection. Correction for the anisotropic part of the Gaussian PSF is

finally performed by shearing the coordinate system, including I′,

until G is circular.

In the absence of galaxy weights, a shear estimate for each galaxy

would be computed via equation (19). The shear responsivity

R = 2 − σ 2
ε ≡ 2 −

〈

ε2
1 + ε2

2 − s2
ε1

− s2
ε2

〉

, (30)

is calculated from shape distribution statistics of the entire galaxy

population and the error on each polarization, sεi
, is calculated by

propagating measured photon shot noise in the image. During our

analysis, it became apparent that, for the RM, MJ, MJ2 and RN

methods, it is necessary to recalculate R in each bin of galaxy size

or magnitude when the catalogue is so split.

To improve the S/N, galaxies are each weighted by a factor

w =
1

σ 2
ε + s2

ε1

. (31)

An estimate of the mean shear in each image is then simply

〈γ̃ 〉 =
∑

w
ε

R

/

∑

w, (32)

with a shear responsivity (Bernstein & Jarvis 2002):

R =
∑

w
(

2 − 2k0 − k1ε
2
)

/

∑

w, (33)

where k0 = σ 2
ε − wσ 4

ε and k1 = w2σ 4
ε .

Note that this calculation ofR in the STEP2 images is much more

uncertain than in SDSS data, because the correlated background

noise in the STEP2 images is not as well understood. Consequently,

this may introduce some bias into the STEP2 results that does not

exist with the real data.

3.1.3 Other methods not tested in this paper

Rhodes et al. (2000, RRG) is a modification of the KSB+ method for

space-based data in which the PSF is small. In this limit, ε⋆ becomes

noisy. Like Reglens, RRG therefore deals directly with moments

rather than polarizations for as long as possible, and performs the
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subtraction before the division. The moments use a circular weight

function, and therefore require correction for this truncation as well

as the PSF. RRG uses a global shear responsivity R ≈ 2 − 〈ε2〉.
Kaiser (2000, K2K) also seeks a resolution of the Gaussian PSF

limitation in KSB+. The galaxy image is first convolved by an

additional ‘re-circularizing kernel’, which is a modelled version of

the observed PSF that has been rotated by 90◦. PSF correction and

shear measurement are thereafter fairly similar to KSB. However,

particular efforts are made to correct biases that arise from the use

of Pγ measured after shear rather than before shear.

Ellipto (Smith et al. 2001) also uses a re-circularizing kernel to

eliminate the anisotropic component of the PSF, following (Fischer

& Tyson 1997). It then repeats object detection to remove PSF-

dependent selection biases. Galaxy polarizations are derived from

moments weighted by the best-fit elliptical Gaussian. It is a partial

implementation of BJ02, discussed in the next section, and primarily

differs from BJ02 by using a simpler re-circularizing kernel.

3.2 Blue class methods

3.2.1 BJ02 (MJ and MJ2)

The remaining methods are based on expansions of the galaxy and

PSF shapes into Gauss–Laguerre (‘shapelet’) basis functions. The

JB and KK methods use them with a circular basis function, as de-

fined in equations (7) and (8), while the MJ, MJ2 and RN methods

use more general elliptical versions. Shapelets are a natural exten-

sion of KSB+ to higher order. The first few shapelet basis functions

are precisely the weight functions used in KSB+, with rg reinter-

preted as the shapelet scale size β. Generalized versions of the Psh

and Psm matrices are derived in Refregier & Bacon (2003). Extend-

ing the basis set to higher order than KSB+ allows complex shapes

of galaxies and PSFs to be well described, even when the elliptic-

ity varies as a function of object radius. The shapelet basis set is

mathematically well suited to shear measurement because of the

simple transformation of shapelet coefficients during typical image

manipulation.

The two Jarvis (MJ, MJ2) methods correct for the anisotropic

component of the PSF by first convolving the image with an ad-

ditional, spatially varying kernel that is effectively 5 × 5 pixels.

This convolution is designed to null both the Gaussian-weighted

quadrupole of the PSF and its next higher m = 2 shapelet coeffi-

cient (since it is the m = 2 components of the PSF that mostly affects

the observed shapes of galaxies). For PSF ellipticities of order ∼0.1

or less, a 5 × 5 pixel kernel is sufficient to round a typical PSF up

to approximately 50 pixels in diameter: much larger than the PSFs

used in this study.

The shapelet basis functions are sheared, to make them ellipti-

cal, then pixellated by being evaluated at the centre of each pixel.

Shapelet coefficients fn,m = 0 are determined for each galaxy in dis-

torted coordinate systems, and the polarizability ε is defined as −1

times the amount of distortion that makes each object appear round

(i.e. f 2,2 = 0). Some iteration is required to get this measurement

to converge. In the distorted coordinate frame where the galaxy is

round, the weight function for this coefficient is a circular Gaussian

of the same size as the galaxy. Matching the shape of the weight

function to that of the galaxy has the advantage that the polarizabil-

ity no longer requires correction for truncation biases introduced by

the weight function.

Finally, a correction for the PSF dilution (the circularizing effect

of the PSF) is applied by also transforming the PSF into this coordi-

nate system, and then using formulae proposed by Hirata & Seljak

(2003):

The two methods (MJ, MJ2) differ only in the weights applied to

each galaxy. The MJ method is identical to the MJ method used for

the STEP1 study. It uses weights

wMJ =
1

√

e2 + 2.25s2
◦

, (34)

where s◦ is the uncertainty in the polarizability due to image shot

noise, as measured in the coordinate system where the galaxy is

round. STEP1 revealed that this optimized weight gave incorrect

responsivities as the input shear became large (≈0.1). For this

study, method MJ2 was therefore added, which is identical ex-

cept that it uses weights that are not a function of the galaxies’

polarizations

wMJ2 =
1

s2
◦
. (35)

These weights should be less biased for larger input shears. The MJ

weight might be more appropriate for cosmic shear measurements,

and the MJ2 weight for cluster lensing.

The shear responsivity R for the MJ2 method is the same as that

in equation (33). For the ellipticity-dependent weight used by the

MJ method, this is generalized to

R ≡
∑

[

w
(

2 − 2k0 − k1ε
2
)

+ ε(∂w/∂ε)
(

1 − k0 − k1ε
2
)]

∑

w
, (36)

where the summations are over the entire galaxy population, or for

each size or magnitude bin. For either method, an estimate of the

mean shear in each image is then

〈γ̃ 〉 =
∑

w
ε

R

/

∑

w. (37)

Note that, in the absence of shape noise, equation (36) reproduces

the extra (1 − ε2/2) term multiplying Pγ in the HH implementation

of KSB+ (see Table 4).

3.3 Orange class methods

3.3.1 Shapelets (JB)

The Bergé (JB) shear-measurement method uses a parametric

shapelet model to attempt a full deconvolution of each galaxy from

the PSF. Deconvolution is an ill-defined operation in general, since

information is irrevocably lost during convolution. In shapelet space,

however, it is easy to restrict the galaxy model to include only that

range of physical scales in which information is expected to sur-

vive. Massey & Refregier (2005) described an iterative algorithm

designed to optimize the scale size of the shapelets and to thus

capture the maximum range of available scales for each individ-

ual galaxy. A complete software package to perform this analysis

and shapelet manipulation is publicly available from the shapelets

website.4

To model a deconvolved galaxy shape, the basis functions are

first convolved with the PSF in shapelet space, then integrated ana-

lytically within pixels: thus undergoing the same processes as real

photons incident on a CCD detector. The convolved basis func-

tions are then fit to the data, with the shapelet coefficients as free

parameters. Reassembling the model using unconvolved basis func-

tions produces a deconvolved reconstruction of each galaxy. This

4 http://www.astro.caltech.edu/∼rjm/shapelets.
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performs better than a Wiener-filtered deconvolution in a Fourier

space, because shapelets have a preferred centre. The available ba-

sis functions act as a prior on the reconstruction, localizing it in

a real space (and also allowing a slightly higher resolution at the

central cusp than at large radii). The deconvolved model can also be

rendered free of noise by ensuring that a sufficient range of scales

are modelled to lower the residual χ2
reduced to exactly unity. Unfor-

tunately, achieving exactly this target is hindered by the presence of

correlated background noise in the STEP2 simulations. Incorporat-

ing the noise covariance matrix is theoretically trivial but infeasibly

slow in practice, because of the required matrix inversion: a work-

able implementation has not yet been developed. Proceeding regard-

less, the shape of this analytic model can be directly measured (see

Massey, Refregier & Bacon 2004b; Massey et al. 2007), including

its unweighted moments. These cannot be measured directly from

real data because observational noise prevents the relevant integrals

from converging.

Once a deconvolved model is obtained, extraction of a shear esti-

mator is easy. It could mimic the KSB method. However, removing

the weight function (like the Gaussian in equation 20) makes the

polarization itself into an unbiased shear estimator

γ̃ =
∫ ∫

f (x) r 2 [cos (2θ ), sin (2θ )] d2
x

∫ ∫

f (x) r 2 d2
x

. (38)

The numerator of this expression has a shear susceptibilty equal

to the denominator. However, that denominator is a scalar quan-

tity, with explicitly zero off-diagonal elements in the susceptibility

tensor, which can therefore be easily inverted. It is also a simple

product of a galaxy’s flux and size, both low-order quantities that

can be robustly measured. The method is intended to be completely

linear for as long as possible, and to introduce minimal bias for

even faint objects in this final division. Since the denominator also

changes during a shear, a population of galaxies acquires an overall

shear responsivity factor

R = 2 − 〈ε2〉. (39)

The method is still under development. The shear responsivity factor

has currently been calculated only from the entire galaxy population.

No weighting scheme has yet been applied to the shear catalogue

when calculating mean shears. Once galaxies have passed crude cuts

in size, flux and flags (which indicate successful convergence of the

shapelet series and of the iteration), they are all counted equally.

These aspects will be improved in the future.

3.4 Green class methods

3.4.1 Shapelets (KK)

The Kuijken (KK) shear-measurement method (Kuijken 1999) as-

sumes that each galaxy was intrinsically circular, then shears it, and

smears it by the PSF, until it most closely matches the observed

image. The shear required is the stored as the polariz ation ε. As

described in Kuijken (2006), this approach is desirable, because it

is understood precisely how a circular object changes under a shear.

This process could operate in a real space; however, the conve-

nient properties of shapelets make the required image manipulations

easier and faster in shapelet space. The pixellated image need be ac-

cessed only once, when each galaxy is initially decomposed into

shapelets (without deconvolution). Models of circular sources can

have arbitrary radial profiles, parametrized by shapelet coefficients

with m = 0 and n � 12. This is sheared in shapelet space to first

order in γ , although, in principle, this could also be increased to ac-

commodate more highly elliptical objects. Also in shapelet space, it

is smeared by a model of the PSF. Since there is only one shapelet

decomposition overall, and one forward convolution for each object,

the code is much faster than the Bergé (JB) method. Furthermore,

the decomposition uses completely orthogonal shapelet basis func-

tions, so the errors on shapelet coefficients are also uncorrelated at

that stage. To avoid iterating the decomposition, the optimum scale

size β for each object is approximated from SEXTRACTOR param-

eters, and the range of scales is fixed in advance. In the current

implementation, the basis functions are evaluated at the centre of

each pixel. Since both the PSF and the galaxy are pixellated, its ef-

fects ought to drop out. In terms of the orthogonality of the shapelet

basis functions, this approach is satisfactory as long so the range of

scales is small, and oscillations in the basis functions remain larger

than the pixel scale (cf. Berry, Hobson & Withington 2004).

To determine the shear required to make a circular source match

each real galaxy, a fit is performed using a numerical recipe Newton-

Raphson algorithm, which is quadratic in shapelet coefficients, the

centroid and the shear. Since the galaxies are not really all circular, in

practice the global population does have a non-trivial shear suscep-

tibility or ‘responsivity’ R. For an ensemble population of galaxies,

this is a scalar quantity. As can be deduced from equation (11), it

involves the variance of the intrinsic polarization distribution

R ≡ 1 − 〈e2〉. (40)

Unlike other methods that use a shear responsivity correction, this

quantity was calculated only once for the KK method, from the

entire galaxy population. However, the calculation of 〈e2〉 properly

takes into account the galaxy weights

〈e2〉 =
∑

[

w
(

e2
1 + e2

2 − s2
e1

− s2
e2

)]

∑

w
−

(∑

w(e1 + e2)
∑

w

)2

, (41)

where sei
is the noise on each polarization calculated by propagating

photon shot noise, and the weight for each galaxy is

w =
1

(

σ int
e

)2
+ s2

e1
+ s2

e2

. (42)

Note that the estimates of errors on the polarizations did not take into

account the fact that the background noise was correlated between

adjacent pixels, and are therefore likely to be underestimated.

Shear estimates for individual galaxies are then computed simi-

larly to equation (37), but where γ̃ ≡ e/R here.

3.4.2 BJ02 (RN)

The ‘deconvolution fitting method’ by Nakajima (RN) implements

nearly the full formalism proposed by BJ02, which is further elabo-

rated in Nakajima & Bernstein (2006). Like MJ and MJ2, it shears

the shapelet basis functions until they match the ellipticity of the

galaxy. The amount of distortion that makes an object appear round

(i.e. f 2,2 = 0) defines the negative of its polarizability ε.

Since no PSF interpolation scheme has yet been developed, the

pipeline deviates from the STEP rules by using prior knowledge that

the PSF is constant across each image (but not between images).

Deconvolution from the PSF is performed in a similar fashion to

the JB method. The Gauss–Laguerre basis functions are convolved

with the PSF to obtain a new basis set. These are evaluated at the

centre of each pixel. The new basis functions are fitted directly to

the observed pixel values, and should fully capture the effect of

highly asymmetric PSFs or galaxies, as well as the effects of finite

sampling. The fit iterates until a set of sheared Gauss–Laguerre basis
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functions are obtained, in which the coefficients f 2,0 = f 2,2 = 0 and

hence the deconvolved galaxy appears round. All PSF coefficients

were obtained to n � 12, and galaxy coefficients to n � 8.

The weights applied to each galaxy are optimized for small shears,

using the same prescription as the MJ2 method in equation (35). The

shear responsivity R is similarly calculated using equation (36),

averaged over the entire galaxy population or within size and mag-

nitude bins as necessary.

The evolution of the RN method during the STEP2 analysis high-

lights the utility of even one set of STEP simulations. In the first

submission, it was noted that a few outlying shear estimates in each

field were destabilizing the result. These were identified as close

galaxy pairs, so an algorithm was introduced to remove these, and

the size and magnitude cuts were also gradually adjusted over sev-

eral iterations to improve stability.

3.4.3 Other methods not tested in this paper

IM2SHAPE (Bridle et al. 2001) performs a similar PSF deconvolution,

but parametrizes each galaxy and each PSF as a sum of elliptical

Gaussians. The best-fitting parameters are obtained via a Markov

Chain Monte Carlo sampling technique. Concentric Gaussians are

usually used for the galaxies, in which case the ellipticity is then a

direct measure of the shear via equations (1) and (2). For alternative

galaxy models using non-concentric Gaussians, shear estimators

like that of the JB method could also be adopted. The ‘active’ or

‘passive’ classification of this method is somewhat open to interpre-

tation.

4 R E S U LT S

Individual authors downloaded the simulated images and ran their

own shear-measurement algorithms, mimicking as closely as pos-

sible the procedure they would have followed with real data. None

of the authors knew the input shears at this stage. Their galaxy

catalogues were then compiled by Catherine Heymans and Richard

Massey. Independently of the other authors, the mean shears in each

image were compared to the input values. Galaxies in the measured

catalogues were also matched to their rotated counterparts and to ob-

jects in the input catalogues, with a 1-arcsec tolerance. Except for

determining false detections or stellar contamination in the mea-

sured catalogues (which were removed in the matched catalogues),

no results using the input shapes are presented in this paper.

In this section, we present low-level data from the analyses, in

terms of direct observables. For further discussion and interpretation

of the results in terms of variables concerning global survey and

instrumental performance, see Section 5. To conserve space, only a

representative sample of the many results are displayed here. The

rest is described in the text, in relation to the illustrative examples,

and is also available from the STEP website.2 First, we will describe

the measurement of stars, then the number density of galaxies and

then shears in each set of images. Finally, we will split the galaxy

catalogues by objects’ observed sizes and magnitudes.

4.1 PSF modelling

The first task for all shear-measurement methods is to identify stars

and measure the shape of the PSF. Table 5 lists parameters of the

PSF model generated by the TS implementation of KSB+. These

quantities are more familiar than those derived analytically from

the shapelet models, and also demonstrate the differences between

measured PSF ellipticities and inputs described in Table 1. The few

Table 5. PSF models for the six sets of images used in the STEP2 anal-

ysis by the TS implementation of KSB+, averaged over stars in the sim-

ulated images. These quantities may be more familiar to some readers.

FLUX RADIUS is directly from SEXTRACTOR, and the ellipticities are all

measured using a Gaussian weight function of rms size rg = 0.6 arcsec=3

pixels.

Image set PSF model from TS implementation of KSB+
FLUX RADIUS ε1 ε2

(arcsec) (per cent) (per cent)

A 0.334 −(0.68 ± 0.10) (1.21 ± 0.07)

B 0.334 −(0.66 ± 0.07) (1.28 ± 0.05)

C 0.406 −(0.47 ± 0.07) (0.97 ± 0.06)

D 0.390 (11.49 ± 0.11) (2.20 ± 0.14)

E 0.390 −(2.21 ± 0.14) (11.29 ± 0.16)

F 0.392 −(0.01 ± 0.12) (0.01 ± 0.01)

per cent polarizations measured for components of PSFs D and E

that should be zero are typical of several other methods. These may

explain the peculiar residual shear offsets described in Section 5.3.

4.2 Galaxy number counts and the false detection rate

The methods used a variety of object-detection algorithms and cata-

logue selection criteria. For each method and each PSF, Table 6 lists

the density of objects per square arcminute, ngals, their mean mag-

nitude, and the percentage of false detections. Clearly, methods that

are able to successfully measure the shapes of more (fainter) galax-

ies, while avoiding false detections, will obtain a stronger measure-

ment of weak lensing, especially because the lensing signal grows

cumulatively with galaxy redshift. The false detection and stellar

contamination rate is generally low, and the effective survey depth

is lowered by less than 0.1 mag for all methods after matching ro-

tated and unrotated catalogues. Nor does matching has a significant

effect on the overall mean polarization of galaxies, which is always

consistent with zero both before and after matching – as might not

have been the case in the presence of selection effects (Bernstein &

Jarvis 2002; Hirata & Seljak 2003).

Table 6 also shows the measured dispersion of shear estimators

σ γ for each population. This statistic represents a combination of the

intrinsic ellipticity of galaxies and the shape measurement/PSF cor-

rection noise introduced by each method. Lower values will produce

stronger measurements of weak lensing. Since shear measurement

is more difficult for smaller or fainter galaxies, and the intrinsic mor-

phology distribution of galaxies varies as a function of magnitude

in images other than set B, ngals and σ γ are likely to be correlated

in a complicated fashion. Galaxy selection effects and weighting

schemes are discussed in Sections 5.6 and 5.7.

4.3 Shear calibration bias and residual shear offset

As with STEP1, we assess the success of each method by comparing

the mean shear measured in each image with the known input shears

γ
input
i . We quantify deviations from perfect shear recovery via a

linear fit that incorporates a multiplicative ‘calibration bias’ m and an

additive ‘residual shear offset’ c. With a perfect shear-measurement

method, both of these quantities would be zero. Since the input shear

is now applied in random directions, we measure two components

each of m and c, which correspond to the two components of shear:

〈γ̃1〉 − γ
input
1 = m1γ

input
1 + c1

〈γ̃2〉 − γ
input
2 = m2γ

input
2 + c2.

(43)
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Table 6. Number density of galaxies used by each method, and the shear-measurement noise from those galaxies. The number of

galaxies per square arcminute are listed for the unmatched unrotated/rotated catalogues and after matching. The number in brackets is

the percentage of stars or false detections.

Author Image set ngals Mean magnitude Per cent mag σγ

Original/ Matched (original) Decrease Original/ Matched

JB A 37 (0) 25 24.04 1.2 0.012 0.007

C 28 (1) 21 23.50 1.0 0.014 0.008

C1 A 51 (2) 45 23.70 0.3 0.008 0.003

C 46 (2) 40 23.64 0.4 0.009 0.003

C2 A 50 (2) 45 23.70 0.3 0.008 0.003

C 45 (2) 40 23.64 0.4 0.009 0.003

MH A 38 (0) 35 23.68 0.4 0.008 0.003

C 33 (0) 29 23.56 0.5 0.009 0.004

HH A 28 (0) 26 23.05 0.2 0.010 0.002

C 24 (0) 21 22.97 0.3 0.012 0.002

MJ A 27 (1) 24 23.30 0.3 0.009 0.003

C 25 (0) 22 23.26 0.4 0.009 0.003

MJ2 A 27 (1) 24 22.58 0.1 0.014 0.002

C 25 (0) 22 22.48 0.2 0.016 0.002

KK A 32 (0) 26 23.46 0.5 0.009 0.003

C 27 (0) 21 23.35 0.5 0.010 0.003

RM A 36 (0) 32 23.41 0.3 0.009 0.002

C 27 (0) 23 23.21 0.4 0.010 0.003

RN A 22 (1) 19 23.10 0.3 0.009 0.003

C 16 (1) 13 23.03 0.5 0.011 0.004

SP A 27 (11) 15 23.13 0.4 0.014 0.003

C 25 (10) 13 23.10 0.4 0.016 0.004

MS1 A 43 (1) 39 23.68 0.3 0.007 0.003

C 37 (1) 33 23.55 0.3 0.008 0.003

MS2 A 41 (1) 36 23.46 0.1 0.010 0.004

C 35 (1) 30 23.26 0.1 0.013 0.006

TS A 40 (0) 36 23.74 0.5 0.008 0.004

C 34 (0) 29 23.64 0.6 0.010 0.005

ES1 A 40 (0) 34 23.81 0.6 0.008 0.003

C 35 (0) 30 23.71 0.7 0.008 0.003

ES2 A 40 (0) 34 23.74 0.6 0.016 0.009

C 35 (0) 30 23.69 0.7 0.017 0.009

An illustrative example of one typical measurement of the first

component of shear is shown in Fig. 4. The grey points correspond

to sets of rotated and unrotated galaxies, and are explained in Sec-

tion 4.4. In this example, the negative slope of the black dashed

line in the bottom panel (m1) shows that this method systematically

underestimates shear by ∼2.5 per cent. However, the negligible

y-intercept shows that the PSF was successfully corrected and no

residual shear calibration (c1) remained. The measurement of the

second component of shear is not shown. Note that the range of

input shear values is smaller than STEP1 and, in this weak shear

régime, none of the methods exhibit the non-linear response to shear

seen with the strong signals in STEP1. We therefore do not attempt

to fit a quadratic function to any of the shear in vs shear out re-

sults.

4.4 Combining rotated and unrotated galaxies

An important advance in this second STEP project is the simulta-

neous analysis of galaxies that had been rotated by 90◦ before the

application of shear and convolution with the PSF. This can largely

remove noise due to scatter in galaxies’ intrinsic morphology, but

complicates the production of a joint shear catalogue, especially

where the galaxies are given different weights in the two catalogues.

Taking the rotated and unrotated sets of images individually,

we obtain two sets of mean shear estimators 〈γ̃ unrot〉 and 〈γ̃ rot〉,
which are defined in equations (25) and (26). We typically find that

mrot
i ≈ munrot

i and crot
i ≈ −cunrot

i . Such stability to changes in image

rotation is to be expected: cross-talk between ellipticity and shear

directions are second order in γ according to equation (2), and the

mean ellipticity is overwhelmingly dominated by the intrinsic el-

lipticities of a finite number of galaxies (as demonstrated by the

offset between the squares and diamonds in Fig. 4). Intruigingly,

for the MS1 and MS2 methods, the shear calibration bias changes

significantly between the rotated and the unrotated catalogues, and

when the two are matched. These methods use smaller galaxies than

most, including some 10–25 per cent around or below the stellar lo-

cus on a size vs magnitude plane, and this effect may be caused

by instabilities in the PSF correction of the smallest. As an alterna-

tive explanation, there are also second-order effects inherent in the

non-linear lensing equation that involve the dot product of elliptic-

ity and shear, which would become significant in the presence of an

ellipticity-dependent selection bias. However, we do not understand
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Table 7. Tabulated values of shear-calibration bias (×10−2) from Fig. 5. In each entry, the top line refers to the first component of shear,

and the bottom line to the second.

Author Image set A Image set B Image set C Image set D Image set E Image set F

JB 2.34 ± 2.89 −1.46 ± 2.46 5.08 ± 3.06 7.31 ± 3.08 3.44 ± 3.02 1.92 ± 3.14

5.34 ± 2.91 −7.78 ± 2.05 −2.57 ± 2.87 2.12 ± 3.01 −6.85 ± 3.77 −1.25 ± 3.31

C1 −9.33 ± 1.12 −6.30 ± 1.12 −15.78 ± 1.27 −17.01 ± 1.05 −15.60 ± 1.09 −9.18 ± 1.24

−7.44 ± 1.07 −6.06 ± 0.97 −11.69 ± 1.19 −18.11 ± 0.97 −18.90 ± 1.35 −9.22 ± 1.32

C2 −7.97 ± 1.13 −4.13 ± 1.14 −12.68 ± 1.35 −7.39 ± 1.19 −7.64 ± 1.19 −5.50 ± 1.28

−6.05 ± 1.12 −4.43 ± 0.97 −8.31 ± 1.24 −9.16 ± 1.13 −11.99 ± 1.49 −6.50 ± 1.37

MH 3.73 ± 1.30 7.76 ± 1.46 6.26 ± 1.55 2.51 ± 1.37 0.82 ± 1.41 1.78 ± 1.56

3.67 ± 1.24 7.70 ± 1.23 3.39 ± 1.52 4.57 ± 1.39 −2.88 ± 1.75 0.86 ± 1.63

HH −0.05 ± 0.81 −3.57 ± 0.84 1.53 ± 0.94 −1.94 ± 0.82 −1.33 ± 0.83 −0.30 ± 0.90

−1.88 ± 0.79 −3.33 ± 0.70 0.28 ± 0.88 −2.50 ± 0.81 −4.95 ± 1.04 −1.89 ± 0.94

MJ −1.05 ± 1.18 −1.07 ± 1.01 −0.35 ± 1.31 −0.98 ± 1.20 −1.92 ± 1.21 −2.81 ± 1.30

−4.07 ± 1.10 −2.11 ± 0.84 1.09 ± 1.21 −0.75 ± 1.16 −3.18 ± 1.49 −3.54 ± 1.33

MJ2 −0.74 ± 0.97 −3.99 ± 0.89 0.81 ± 1.04 −0.73 ± 0.94 −0.01 ± 0.94 −1.77 ± 0.96

−3.04 ± 0.90 −3.20 ± 0.75 1.58 ± 0.98 −1.49 ± 0.92 −4.10 ± 1.14 −1.14 ± 1.01

KK −1.06 ± 1.05 −0.74 ± 1.21 −6.28 ± 1.26 −3.38 ± 1.15 −3.04 ± 1.13 −2.58 ± 1.19

−2.20 ± 1.01 −1.96 ± 1.01 −4.34 ± 1.17 −2.38 ± 1.10 −4.74 ± 1.36 −4.51 ± 1.28

RM −1.88 ± 0.97 −4.05 ± 0.90 1.08 ± 1.14 −1.13 ± 1.04 −0.99 ± 1.04 −0.39 ± 1.14

−3.58 ± 0.94 −3.91 ± 0.75 −0.65 ± 1.11 −3.67 ± 0.99 −6.17 ± 1.26 −4.20 ± 1.22

RN −2.28 ± 1.27 −0.79 ± 1.16 −4.16 ± 1.57 −3.52 ± 1.33 −3.90 ± 1.35 −6.20 ± 1.46

−4.85 ± 1.21 −3.04 ± 0.96 −6.55 ± 1.48 −5.26 ± 1.28 −7.68 ± 1.66 −6.18 ± 1.53

SP −10.52 ± 1.25 −7.52 ± 1.40 −12.60 ± 1.49 −12.67 ± 1.55 −14.41 ± 1.34 −12.20 ± 1.44

−3.96 ± 1.25 −3.49 ± 1.31 −6.89 ± 1.55 −5.66 ± 1.56 −9.62 ± 1.87 −6.91 ± 1.60

MS1 −15.19 ± 1.15 −13.40 ± 1.00 −22.79 ± 1.30 −11.85 ± 1.22 −15.45 ± 1.25 −13.93 ± 1.29

−15.79 ± 1.11 −12.76 ± 0.85 −21.68 ± 1.24 −11.92 ± 1.19 −19.01 ± 1.45 −14.87 ± 1.56

MS2 −3.40 ± 1.75 −8.09 ± 1.30 −12.55 ± 2.31 −0.70 ± 2.08 −0.68 ± 1.97 −1.99 ± 2.10

−2.94 ± 1.75 −4.18 ± 1.19 −6.55 ± 2.21 5.13 ± 2.07 −11.98 ± 2.61 −1.70 ± 2.40

TS −1.43 ± 1.47 2.82 ± 1.57 0.26 ± 1.87 −2.76 ± 1.55 −3.69 ± 1.58 −2.04 ± 1.74

−0.97 ± 1.38 1.88 ± 1.30 −2.54 ± 1.67 −1.11 ± 1.56 −7.81 ± 1.98 −2.60 ± 1.79

ES1 −15.51 ± 1.27 −8.11 ± 1.29 −19.03 ± 1.34 −19.09 ± 1.26 −17.31 ± 1.26 −12.45 ± 1.45

−18.07 ± 1.21 −8.02 ± 1.06 −21.05 ± 1.19 −19.65 ± 1.17 −20.60 ± 1.60 −16.80 ± 1.51

ES2 13.66 ± 3.28 11.68 ± 3.34 −1.36 ± 3.47 3.03 ± 2.97 1.06 ± 2.85 3.00 ± 3.47

4.61 ± 3.10 14.64 ± 2.70 −4.93 ± 3.20 3.10 ± 2.73 −3.82 ± 3.61 −7.25 ± 3.74

why this would affect only this pipeline and not others. We have not

attempted to investigate this isolated effect in more detail.

We obtain a third set of parameters mi and ci from the matched

catalogue with 〈γ̃ 〉 defined in equation (27). In general, we find

that mi ≃ (munrot
i + mrot

i )/2 and ci ≃ cunrot
i − crot

i , with significantly

smaller errors in this matched analysis. An example of all three shear

estimators for the KK method on image set F are plotted in Fig. 4.

The fitted parameters for all the shear-measurement methods, on

all the PSFs, are shown in Fig. 5. Parameters measured from the

matched pair analysis are also tabulated in the appendix. Results

from the most successful methods are averaged across all the sets

of simulated images and compared directly in Fig. 6.

4.5 Analysis as a function of galaxy population

It is possible to measure the mean shear correctly from a large pop-

ulation of galaxies, but to underestimate the shears in some and

overestimate it in others. This was frequently found to be the case

in STEP2 data as a function of galaxy size or magnitude, but corre-

lations could also be present as a function of galaxy morphological

type. Anything that correlates with galaxy redshift is particularly

important, and Fig. 7 shows the correlation of shear calibration bias

and residual shear offset with galaxy size and magnitude for an il-

lustrative selection of shear-measurement methods. Of course, these

proxies are not absolute: the fundamental parameters of interest are

the size of galaxies relative to the pixel or PSF size, and the flux

of galaxies relative to the image noise level. This must be taken

into account before drawing parallel conclusions on data sets from

willower surveys or those taken in different observing conditions.

The results for the TS method are fairly representative of most

implementations of KSB+. The calibration bias changes by 0.2–0.3

between bright and faint galaxies. The mean shear calibration bias

changes between methods by merely raising or lowering this curve.

The ES2 curve is least affected, with only a ∼5 per cent change.

The shear calibration bias also generally changes as a function of

galaxy size. The HH method controls this the best, no doubt due

to its fitting of Pγ as a function of size only. However, this method

still displays significant variation as a function of magnitude; it is

not clear in Fig. 7 because the final point expands the y-axis scale.

The fairly constant residual shear offset as a function of galaxy

magnitude is typical; as is the dramatic improvements for bigger

galaxies in the image sets D and E with highly elliptical PSFs. That

demonstrates that it is a PSF-correction problem. The RM method

behaves similarly to the implementations of KSB+.

Other methods exhibit more idiosyncratic behaviour. The main

difference is between the KK method and the others that use a global

shear responsivity R. This was calculated only once for the KK

method, from the entire galaxy population. For the other methods,

it was recalculated using a subset of galaxies for each size and mag-

nitude bin. The large trends in the shear calibration bias as a function

of size and magnitude merely reflect the evolving distribution of in-

trinsic galaxy ellipticities. The MJ, MJ2, RM and RN methods also

all look like this with a single value of R, and the KK method would

presumably be improved by this step. The JB results are atypical,
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Table 8. Tabulated values of residual shear offset (×10−4) from Fig. 5. In each entry, the top line refers to the first component of shear,

and the bottom line to the second.

Author Image set A Image set B Image set C Image set D Image set E Image set F

JB −6.8 ± 6.5 −17.2 ± 5.4 −34.5 ± 7.5 24.5 ± 7.6 83.7 ± 8.0 17.4 ± 7.3

1.3 ± 6.6 −15.0 ± 5.5 −1.0 ± 7.5 −80.3 ± 7.6 46.5 ± 8.0 10.6 ± 7.5

C1 21.2 ± 2.5 26.7 ± 2.5 −5.2 ± 3.2 124.2 ± 2.6 64.1 ± 2.9 −11.8 ± 2.9

21.2 ± 2.5 −5.4 ± 2.6 23.2 ± 3.1 −70.0 ± 2.5 130.2 ± 2.9 8.5 ± 2.9

C2 −3.3 ± 2.5 −1.1 ± 2.5 −21.6 ± 3.3 259.4 ± 2.9 29.7 ± 3.2 −6.2 ± 2.9

38.3 ± 2.6 18.8 ± 2.6 39.8 ± 3.2 −36.6 ± 2.9 276.6 ± 3.2 3.6 ± 3.0

MH 10.2 ± 3.0 19.8 ± 3.3 19.6 ± 3.9 101.2 ± 3.4 91.6 ± 3.8 −4.4 ± 3.6

5.4 ± 3.0 21.9 ± 3.3 6.7 ± 4.0 −84.2 ± 3.6 99.3 ± 3.8 6.3 ± 3.6

HH 1.6 ± 1.8 −4.8 ± 1.8 −6.1 ± 2.3 3.7 ± 2.0 75.2 ± 2.2 −2.2 ± 2.1

−4.6 ± 1.8 −3.1 ± 1.8 −0.6 ± 2.2 −65.5 ± 2.0 −5.9 ± 2.1 9.8 ± 2.1

MJ −11.8 ± 2.5 −9.5 ± 2.2 −6.5 ± 3.2 18.2 ± 2.9 13.8 ± 3.1 −2.2 ± 2.8

−0.9 ± 2.6 6.0 ± 2.1 1.6 ± 3.1 −12.7 ± 2.8 16.6 ± 3.0 1.2 ± 2.8

MJ2 −10.3 ± 1.9 −4.8 ± 1.7 0.4 ± 2.3 23.9 ± 1.9 15.5 ± 2.2 −0.8 ± 1.9

1.5 ± 1.9 3.1 ± 1.7 2.3 ± 2.2 −16.8 ± 2.0 19.7 ± 2.1 1.2 ± 1.9

KK −2.1 ± 2.4 −5.2 ± 2.7 −14.0 ± 3.1 −71.6 ± 2.8 66.6 ± 3.0 0.1 ± 2.8

−2.7 ± 2.4 −6.6 ± 2.7 2.1 ± 3.0 −69.5 ± 2.7 −56.9 ± 2.9 −3.9 ± 2.8

RM 22.9 ± 2.2 14.9 ± 2.0 26.5 ± 2.9 −33.5 ± 2.5 112.0 ± 2.8 0.1 ± 2.6

−9.9 ± 2.2 −3.1 ± 1.9 −5.8 ± 2.8 −105.7 ± 2.5 −19.4 ± 2.7 2.4 ± 2.7

RN −5.3 ± 2.8 −5.0 ± 2.5 −6.3 ± 3.8 −34.9 ± 3.1 43.1 ± 3.4 2.5 ± 3.1

1.8 ± 2.7 −0.1 ± 2.5 8.9 ± 3.7 −33.1 ± 3.2 −26.8 ± 3.3 4.6 ± 3.2

SP −1.1 ± 2.5 −3.4 ± 2.9 −4.5 ± 3.3 −69.9 ± 3.3 71.6 ± 3.4 5.5 ± 3.0

−1.1 ± 2.7 −7.6 ± 3.2 −4.6 ± 3.8 −55.3 ± 3.6 −13.3 ± 3.5 4.1 ± 3.3

MS1 −5.6 ± 2.5 −22.3 ± 2.1 4.9 ± 3.2 105.1 ± 3.0 58.5 ± 3.3 −7.6 ± 3.1

10.3 ± 2.6 23.1 ± 2.1 7.2 ± 3.2 −45.7 ± 3.0 83.8 ± 3.1 6.1 ± 3.2

MS2 −7.9 ± 3.9 −21.3 ± 2.8 3.2 ± 5.6 140.5 ± 5.0 41.5 ± 5.2 −0.4 ± 4.9

14.4 ± 4.0 24.3 ± 3.0 19.5 ± 5.9 −28.7 ± 5.1 154.4 ± 5.4 9.2 ± 5.3

TS −2.9 ± 3.3 −4.3 ± 3.5 2.7 ± 4.5 −46.2 ± 3.9 70.3 ± 4.3 −3.5 ± 4.0

−3.0 ± 3.2 −1.3 ± 3.6 0.4 ± 4.4 −65.4 ± 3.9 −40.3 ± 4.2 −3.1 ± 4.0

ES1 −9.1 ± 2.8 −4.1 ± 2.9 5.7 ± 3.3 153.1 ± 3.1 54.3 ± 3.4 −5.5 ± 3.4

4.0 ± 2.8 8.7 ± 2.8 9.9 ± 3.2 −58.7 ± 3.0 132.0 ± 3.4 0.4 ± 3.3

ES2 −11.0 ± 7.4 8.5 ± 7.4 15.0 ± 8.2 95.3 ± 7.1 96.7 ± 7.8 −10.4 ± 8.2

−11.2 ± 7.4 −3.3 ± 7.2 5.7 ± 8.4 −92.9 ± 7.1 77.9 ± 7.7 7.7 ± 8.1

but their additional noise level represents that in all analyses lacking

an optimal galaxy weighting scheme.

5 I N T E R P R E TAT I O N

We will now revisit the questions posed in the introduction, con-

cerning the accuracy with which current methods can measure

shear, and in which régimes that accuracy begins to deteriorate.

By noting the variation of results with different PSFs, we will in-

vestigate the effects of changing atmospheric and observing con-

ditions. We will also investigate the effects of image pixellization,

galaxy morphology and morphology evolution, selection biases and

weighting effects. In light of our results, we will then review the

consequences for previously published measurements of cosmic

shear.

The rotated pairs of galaxies provide an unprecedented level of

discriminatory power, and we can now identify high level causes of

shear-measurement error. Overall, both the shear calibration (mul-

tiplicative) bias and the anisotropic PSF correction (additive) errors

depend on the PSF model. From this information, we can deduce

that some aspects of shape measurement have been suitably con-

trolled. We can deduce that others still provide difficulty, and it is

work in these identified areas that will provide a route to the de-

sired sub-per cent level of precision. This section describes various

lessons that we have learned from our tests, in terms of high-level

variables.

5.1 PSF size

Within the precision accessible by this analysis, all the methods are

reassuringly tolerant to reasonable changes in observing conditions.

Image set A (0.6-arcsec FWHM PSF) represents typical seeing at

a good site, and image set C (0.8-arcsec FWHM PSF) the worst

that might be expected for a weak-lensing survey after appropriate

telescope scheduling.

Differences in the residual shear offsets between the two sets of

images with different seeing are generally not significant. The few

methods with a significant difference are JB, MH, KK and ES. In

all four cases, the 2–3σ offset is in c1 but not c2. The two KSB+
methods have a positive offset, and the two shapelets methods have

a negative one, but no general conclusion seems manifest.

As expected, most methods demonstrate minimal shear calibra-

tion bias with image set A, and fare slightly worse on image set C.

Shear calibration bias for the JB and RN methods is stable to changes

in observing conditions at the ∼0.5 per cent level. The MH KSB+
method achieves ∼1 per cent consistency, although its applied shear

calibration factor is apparently a little overzealous.

No global trends emerge that are able to include all the KSB+
methods. However, for the generally most successful KSB+ imple-

mentations by MH, HH and TS, as well as the BJO2 (MJ, MJ2)

methods, m is higher in image set C than in set A. These meth-

ods are all on the top row of Table 3, and correct for the PSF

by subtracting combinations of shape moments. The trend is re-

versed in the KK deconvolution method on the bottom row, and the
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Figure 4. An example of the input vs measured shear for one represen-

tative method. This is for the first component of shear measured by the

KK method in image set F. It is neither the best method on this image

set, nor the best image set for this method, but shows behaviour that is

typical of most. The grey squares and diamonds show results from indepen-

dent analyses of the rotated and unrotated images; the black circles show

the effect of matching pairs of otherwise identical galaxies. The bottom

panel shows deviations from perfect shear recovery, which is indicated in

both panels by solid lines. Linear fits to the data are shown as

dashed lines. The fitted parameters m (shear-calibration bias) and c (resid-

ual shear offset) are plotted for all methods and all for all images sets in

Fig. 5.

calibration bias does not vary in the JB and RN methods. These cor-

rect for the PSF via a full deconvolution. Although all implemen-

tations of KSB+ do not necessarily fit this trend, it does suggest

that the isotropic component of the PSF might be being overcor-

rected by some moment subtraction schemes. Furthermore, as the

PSF moments get larger, this oversubtraction exaggerates pixelliza-

tion effects (see Section 5.3). The best PSF correction is generally

attained by methods that model the full PSF and attempt to de-

convolve each galaxy – but this currently works on slightly fewer

galaxies (see Section 5.6).

5.2 PSF ellipticity (and skewness)

Image sets D and E demonstrate the ability of methods to correct

for highly elliptical PSFs, and can be compared to image set F,

which has a circularly symmetric PSF. Imperfect correction for PSF

anisotropy will emerge mainly as a residual additive shear offset,

c. The method that was most efficient at removing all the different

strengths of PSF anisotropy to better than 0.2 per cent accuracy was

MJ/MJ2, and all the PSF deconvolution methods had better than

1 per cent accuracy. The most successful KSB+ correction was the

HH implementation. The residual shear offsets are smallest with

large galaxies, and deteriorate only as galaxies get smaller. This

behaviour is as expected if the problems are caused by imperfect

PSF correction.

Many methods have a spurious residual shear offset in both com-

ponents of shear, while the PSF is highly elliptical in only the ε1

or ε2 direction. This cross-contamination might come from the ig-

nored off-diagonal elements of the Psm tensor in KSB+, and is

indeed slightly better controlled in MS2 (with the full tensor inver-

sion) than in MS1. However, this cannot explain all of the effect;

the off-diagonal elements are exactly zero for the circular PSF in

image set F, and a few methods (JB, C1, RN, SP, MS1, ES2) have

a significantly non-zero residual shear offset for even this set of

images.

A more likely source of the contamination lies in the measurement

of stellar ellipticities. The non-zero residual shear offsets with image

set F probably come from shot noise in the measurement of PSF

ellipticity, which is higher than the shot noise for galaxies because

of the smaller number of stars. It will therefore be worthwhile to

make sure that future methods gather the maximum possible amount

of information about the PSF. In particular, small galaxies provide

as much information about the PSF as their own shapes, and this

is currently discarded. Furthermore, PSFs D and E are not only

highly elliptical, but also skewed. The centre of those PSFs therefore

depends strongly on the size of the weight function used. While the

main direction of ellipticity is not in doubt, changing the centre of

the PSF also perturbs its apparent ellipticity. The C1 method, with

a fixed stellar weight function and a constant PSF model, removes

stellar ellipticity more consistently that the C2 method, in which the

size of the stellar weight function is altered to match each galaxy

(although matching the galaxy weight function provides a better

shear calibration). Methods that involve deconvolution from a full

model of the PSF, or correction of PSF non-Gaussianity, and which

allow the galaxy centroid to iterate during this process, do indeed

seem to be able to better control PSF ellipticity and centroiding

errors.

We cannot conclusively explain the cross-contamination of both

shear components by a PSF strongly elongated in only one direc-

tion, but hypothesise that it is introduced by skewness and substruc-

ture in the PSF. Neither of these are addressed by the formalism of

KSB+, and they are both controlled more reliably by newer methods

that explicitly allow such variation. However, it is also worth notic-

ing the remarkable success of most methods on other image sets

with more typical PSF ellipticities, and remarking that this is still a

small effect that will not dominate shear measurement for the near

future.

Our investigation of PSF effects in the STEP2 images is con-

fused by other competing manifestations of imperfect shear mea-

surement, and the realism of the simulations. The combination of

image pixellization (see Section 5.3), correlated galaxy sizes and

magnitudes, and the evolution of intrinsic galaxy size and mor-

phology as a function of redshift all hinder interpretation. Higher
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Figure 5. Fitted values of residual shear offset and shear-calibration bias for each method and for each PSF. In all cases, the left hand panel shows results

for the γ 1 component of shear, and the right hand panel for the γ 2 component. The dotted lines show rms errors after a combined analysis of the rotated and

unrotated galaxies, after the two catalogues have been matched (and only common detections kept). The solid lines show the reduced errors after removing

intrinsic galaxy shape noise from the matched the pairs of galaxies. Note that the scales on each panel are different, but the frequency of the axis labels is

preserved. The red points correspond to image set A. The black points correspond to image set B, and, where available, the filled black circles reproduce results

from STEP1. The pink, dark blue, light blue and green points correspond to image sets C, D, E and F respectively.

precision tests in the future will counterintuitively require less re-

alistic simulated images: for example, ones that are tailored to

compare otherwise identical galaxies at fixed multiples of the PSF

size.

5.3 Pixellization effects

This is the first STEP project in which the input shear has been ap-

plied in many directions, and in which the two components of shear
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Figure 5 – continued

can be measured independently.s In general, residual shear offsets

c are consistent between components. However, we find that the γ 1

component, aligned with the square pixel grid, is typically measured

more accurately than the γ 2 component, along the diagonals. This

is even observed for image set F, in which the analytic PSF is cir-

cularly symmetric. Since there is no other preferred direction, this

phenomenon must therefore be an effect of pixellization. An im-

age pixellization, which is similar (but not identical) to convolution,

slightly circularizes galaxies, thereby reducing their ellipticity. Not

explicitly correcting for pixellization may therefore explain both the

general 1–3 per cent underestimation of γ 1, and the slightly larger

underestimation of γ 2, in which direction the distance between pix-

els is exaggerated. For almost all methods, we consistently find that

m1 > m2.

In KSB+, there is no formal mathematical framework to deal with

image pixellization. Two different approaches have been adopted to

approximate the integrals in equation (20) with pixellated data. The

C1 and C2 implementations calculate the value of the weight func-

tions at the centre of each pixel and then form a discrete sum; all

the others numerically integrate the weight functions by subdividing
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Figure 6. Comparison of shear-measurement accuracy from different meth-

ods, in terms of their mean residual shear offset 〈c〉 and mean shear-

calibration bias 〈m〉. In the top panel, these parameters have been averaged

over both components of shear and all six sets of images; the bottom panel

includes only image sets A, B, C and F, to avoid the two highly elliptical

PSFs. Note that the entire region of these plots lie inside the grey band that

indicated good performance for methods in Fig. 3 of STEP1. The results

from methods C1, SP, MS1 and ES1 are not shown here.

pixels into a number of smaller regions. Neither approach is ideal.

Independent experiments by Tim Schrabback, running objects with

Gaussian radial profiles though his implementation of KSB+, have

shown that pixellization can cause a systematic underestimation of

ε and Psm, and an overestimation of Psh. This effect can be up to

∼10 per cent for small objects. However, as stars and faint galax-

ies are similarly affected, the error on the shear estimate approxi-

mately cancels. An integration using linearly interpolated subpixels

makes the measurement more stable to the subpixel position of the

object centroid, but slightly increases the individual bias. Bacon

et al. (2001) tested a variant of the C1 method, and found a similar

∼13 per cent overall calibration bias, which was used to correct

subsequent measurements. With hindsight, the different calibration

of γ 1 and γ 2 are also already visible in that work.

The MJ2, KK and TS methods are least affected by pixellization.

This might have suggested that the extraction of a shear estima-

tor by shearing circular objects removes the problem, were it not

for the peculiar behaviour of the RN method. For this method, im-

age sets A and C follow the usual pattern that m1 > m2, but that

bias is reversed when PSF is circular (image set F and the zero-

ellipticity components of PSFs D and E). The SP method is similar.

Strangely, the JB method, which ostensibly tries the hardest to treat

pixellization with mathematical rigour, displays the most difference

between m1 and m2. However, this method does break a trend by

not having an overall negative shear calibration bias. If this bias is

indeed caused by pixellization, this method appears to have most

successfully eliminated it.

Pixellization could also hinder shear measurement, and bring

about the observed results, via two additional mechanisms. First,

it may exaggerate astrometric errors in the PSF, and produce the

consequences described in the previous section. We would be un-

able to distinguish these effects. Secondly, the undersampling of

objects may also fundamentally prevent the measurement of their

high order shape moments. All the STEP2 PSFs (and hence the

galaxies) are Nyquist sampled. It would be unfortunate for lensing

if Nyquist sampling were theoretically sufficient to measure astrom-

etry, but not shapes. As it happens, for methods other than MJ, the

pixellization bias is more pronounced for image set C (with poor

seeing, and therefore better sampled) than on image set A (with good

seeing). This suggests that the pixellization effects are not due to

undersampling. The STEP1 simulations had the same pixel scale but

worse seeing (∼1-arcsec FWHM), so objects were better sampled

there.

We therefore hypothesise that the circularizing effects of pixel-

lization explain the general underestimation of shear and the differ-

ential calibration of the γ 1 and γ 2 components. Indeed, a dedicated

study of simulated images with varying pixel scales by High et al.

(in preparation) supports this view. They found that the shear cali-

bration bias of the RRG method tends to zero with infinitely small

pixels, grows linearly with pixel scale, and that the bias m2 ≈
√

2m1.

Because of the isotropy of the Universe, this differential calibration

of shear estimators ought not affect two-point cosmic shear statis-

tics. However, it can certainly affect the reconstruction of individ-

ual cluster mass distributions, and is inherently quite disconcerting.

The next STEP project will feature sets of images with varying

pixel scales to investigate this effect on a wider scale. In the

mean time, dealing properly with pixellization will provide a

promising direction for further improvement in shear-measurement

methods.

5.4 Galaxy morphology

The introduction of complex galaxy morphologies tends to hinder

shear measurement with KSB+ methods. The shear calibration bias

is more negative with image set A (shapelet galaxies) than with

image set B (simple galaxies) for the C1, C2, MH, SP, MS1, TS and

ES1 implementations. Of the implementations of KSB+, only HH

and MS2 reverse this trend. This is perhaps not surprising, given

the inherent limitation of KSB+ in assuming that the ellipticity of

a galaxy does not change as a function of radius.
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Figure 7. Variation in shear-calibration bias and residual shear offset as a function of galaxy magnitude and size, for a representative sample of methods. The

input values of these are used, which do not have noise. The ‘size’ on the abscissae is the unweighted rms size of galaxies from equation (53) in Massey &

Refregier (2005). The six coloured lines in each plot correspond to the six sets of images, coloured in the same way as in Fig. 5. In all cases, measurements of

the two components of shear have been averaged.

Many of the newer methods deal with complex galaxy morpholo-

gies very successfully. Particularly KK, but also the MJ and MJ2

methods, have no significant difference in the shear calibration bias

or residual shear offset measured between image sets A and B. Fu-

ture ground-based shear surveys are therefore unlikely to be limited

at the 0.5 per cent level by complex galaxy morphologies. Indeed, it

is apparent in Fig. 2 that most of the substructure in galaxies that will

be used for lensing analyis is destroyed by the atmospheric seeing.

Although complex galaxy morphologies may become important at

the level of a few tenths of a per cent, they do not currently pose a

dominant source of error or instability in shear measurement from

the ground.

One of the crucial findings of this study, however, concerns the

effect of galaxy morphology evolution. This could potentially affect
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the calibration of shear measurement as a function of galaxy redshift,

and is investigated further in the next section.

In the next STEP project, which will simulate space-based ob-

servations, we will repeat our investigation of galaxy morphology

by comparing three similar sets of image simulations. A galaxy

substructure will be better resolved from space and, because the

galaxies observed there are likely to be at a higher redshift, their in-

trinsic morphologies may be both more irregular and more rapidly

evolving. Both of these effects will amplify any differences seen

from the ground.

5.5 Shear calibration for different galaxy populations

The STEP2 results reveal that the calibration bias of some shear-

measurement methods depends on the size and magnitude of

galaxies. There seem to be two causes. There is often a sudden

∼30 per cent deterioration of performance at very faint magni-

tudes, due to being noise blown up during the nonlinear process

of shear measurement (and exacerbated by ellipticity-dependent

galaxy weighting schemes). This is even observed with many meth-

ods that are otherwise robust (e.g. HH, MJ2, RN), and may urge

more caution in the use of faint galaxies at the limits of detection.

There is also a gradual transition in shear calibration between bright

and faint galaxies that is probably caused by evolution of the intrin-

sic morphology distribution as a function of redshift. The observed

variation is least pronounced for image set B, in which the galaxies

explicitly do not evolve.

Shear-calibration bias that changes gradually as a function of

galaxy redshift has important consequences for any weak-lensing

measurement. In a 2D survey, it will change the effective redshift

distribution of source galaxies, with all the consequences discussed

by Van Waerbeke et al. (2006). In a 3D analysis, it will affect the

perceived redshift evolution of the matter power spectrum, and the

apparent large-scale geometry of the universe. During the STEP2

analysis, we have developed ways to partially control this, as a

function of other observables like galaxy size and magnitude. To first

order, these act as suitable proxies for redshift, but the underlying

causes will need to be well understood, because neither of these are

redshift. Even if the mean shear in size–magnitude bins could be

made correct, this does not necessarily imply that the mean shear

would be correct in redshift bins. The techniques could be applied

in multicolour surveys as a function of photometric redshift, but this

is not perfect either, not least because of the inevitable presence of

catastrophic photo-z failures.

The obvious place to start looking for shear-calibration errors is

in the shear susceptibility and responsivity factors. All the KSB+
implementations allow variation in Pγ as a function of at least one

of galaxy size and galaxy magnitude. However, the behaviour is

neither well understood, nor stable at the desired level of precision.

Massey et al. (2005) have already observed that Pγ fitted from a

population ensemble varies for any given object as a function of

the catalogue selection cuts. There is less variation in the shear-

calibration bias of the MS1 method (
m ≈ 0.1), which fits only the

trace of Pγ , than of the MS2 method (
m ≈ 0.2), which models

the entire tensor – except for image set B, in which there is little

variation in either. Realistic galaxy morphologies therefore do not

have shear susceptibility that is a simple function of these observ-

ables; and trying to model the variation of all the components of

this tensor merely adds noise. The TS implementation of KSB+,

which uses Pγ from individual objects, suffers particularly from

this noise, which enters into the denominator equation (18), and has

at least as much sudden deterioration at faint magnitudes as other

methods. However, this method is about the least affected by grad-

ual variation in shear-calibration bias, with 
m ≈ 0.05. Size galaxy

size and magnitude are correlated, the variation with galaxy mag-

nitude usually carries over to variation with galaxy size. However,

the HH method has notably little variation in m as a function of

galaxy size. This is presumably due to the particularly individual

form of the function used to model Pγ (rg). Unfortunately, Pγ is not

fitted as a function of galaxy magnitude, and the HH method still

shows strong (
m ≈ 0.1) variation with this. The shear susceptibility

in this implementation is calculated separately in three magnitude

bins, and correction of the faintest galaxies therefore required an

extrapolation.

Many of the other shear-measurement methods require global cal-

ibration via a responsivity R factor, which is determined from the

distribution of galaxy ellipticities. This factor is designed to ensure

that the mean shear in a population is unbiased. However, it must

be calculated from precisely that population. For the KK method, it

was calculated only once, from the entire catalogue. Although it es-

timated the overall mean shear correctly, it then underestimated the

shear in small/faint galaxies, and overestimated that in large/bright

galaxies. This bias was addressed for the MJ, MJ2, RM and RN

methods by recalculating R within each size and magnitude bin.

There is no particular reason why this should not, in future, be fit-

ted and allowed to vary continuously like the shear susceptibility in

KSB+ methods. The estimates of R in bins were more noisy, but

removed the differential shear calibration (in fact, the variation as a

function of galaxy magnitude was slightly overcorrected in the case

of the MJ2 and RM methods).

5.6 Galaxy selection effects

There is a marked difference between the depth of the various galaxy

catalogues. At one extreme, the C1/C2 catalogues are deeper, and

more ambitious, than all others. At the other, the RN catalogue

(and to some extent the MJ/MJ2 catalogue) is very willow. The RN

method obtained extremely good results, but only from large and

bright galaxies, and it would be interesting to test whether its PSF

deconvolution iteration can converge with a deeper sample. The JB

catalogue of individual rotated and unrotated images is deeper, but

not all the galaxies at the magnitude limit converged successfully,

leading to a relatively willow matched catalogue. We could conclude

from this that the full deconvolution of every galaxy is an overly

ambitious goal: it is a panacea for many image analysis problems,

but all that we require is one shear estimator. Maximising the number

density of useable galaxies will remain crucial in the near future, to

overcome noise from their intrinsic ellipticities. However, there has

been far less time spent developing the deconvolution methods than

the moment subtraction methods, so we reserve judgement for now

because of their promise of robust PSF correction. Furthermore,

it is not only the methods that require complicated iterations that

suffer from catalogue shortcomings: the SP catalogue includes a

significant number of spurious detections (10 per cent) and stars

(1 per cent). Neither of these contain any shear signal, and their

presence partly explains the large, negative calibration bias of the

SP method in the rotated and unrotated images (they are removed

during the galaxy matching).

Most other methods use a fairly standard density of ∼30 galaxies

per square arcminute in this simulated data. This is unlikely to be

increased dramatically by any future weak-lensing observations.

Since selection effects in the STEP2 analysis must be measured

from the individual unrotated and rotated catalogues, rather than

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 13–38



34 R. Massey et al.

the matched catalogues, the results about catalogue selection biases

are hardly more profound than those of STEP1.

5.7 Galaxy weighting schemes

The weighting schemes applied to galaxies also vary significantly

between methods used in this paper, and these do affect the results in

the matched catalogue. Most of the methods increase the contribu-

tion to the estimated mean shear from those galaxies whose shapes

are thought to be most accurately measured. Such schemes have

long been used in the analysis of real 2D data, but the exact form of

the weighting scheme as a function of size, magnitude and ellipticity

varies widely. Even more sophisticated weighting schemes will also

need to be developed for the 3D analyses essential to fully exploit

future weak-lensing surveys.

In this analysis, the effectiveness of each weighting scheme can

be seen in the difference between the size of error bars in the analysis

of independent galaxies and of rotated/unrotated pairs of matched

galaxies. In the independent analysis, the scatter includes compo-

nents from intrinsic galaxy shapes and measurement noise (e.g. due

to photon shot noise). The former is essentially removed by match-

ing pairs of galaxies. If a set of error bars shrink dramatically by

matching, the method was dominated by intrinsic galaxy shapes: this

is an ideal situation. If the error bars change little, the measurement

was dominated by measurement noise.

The weighting schemes of MJ2 and KK are very effective in this

analysis: their error bars shrink by up to 75 per cent. The weighting

schemes of HH, SP and MJ are similarly effective – but these meth-

ods weight ellipticities using a function of ellipticity, which may be

less accurate in regimes where the mean shear is large, such as clus-

ter mass reconstruction. Indeed, the aggressive weighting scheme

of MJ was shown in STEP1 to be useful with small input shears,

but introduced a non-linear shear response that became important

if the shear was high. A new weighting scheme was developed for

MJ2 to address this concern; however, the range of input shears in

STEP2 does not provide sufficient lever arm to evaluate the potential

nonlinear response of any method.

The value of a successful weighting scheme is demonstrated by

the lesser performance of methods without one. The JB, TS and

ES2 methods apply crude weighting schemes that are merely a

step function (cut) in galaxy size and magnitude. Their error bars

shrink by only 30–50 per cent during galaxy matching. Their re-

sults are also less stable to the sudden deterioration of performance

seen in several methods with galaxies fainter than or smaller than

a particular limit. This shortfall is easy to correct, and we urge the

rapid adoption of a more sophisticated weighting scheme in those

methods.

It is important to remember the limitations of the STEP simula-

tions to optimize a galaxy weighting scheme, because of their inher-

ent simplification that all galaxies are sheared by the same amount.

In real data, the lensing signal increases cumulatively with redshift,

and the distant galaxies therefore contain the most valuable signal.

However, when weighting objects by the accuracy of their shape

measurement, it is the contribution of these small, faint sources that

is usually downweighted. It would instead be better to set weights

that vary as a function of the S/N in shear signal – although the

exact variation of the signal is of course unknown in advance. A sta-

tistically ‘optimal’ weighting scheme verified from the STEP simu-

lations will therefore not be optimal in practice. Weighting schemes

can also act like calibration biases as a function of galaxy redshift,

exacerbating the problems of differential shear calibration discussed

in the previous section.

5.8 Consequences for previously published measurements

The largest cosmic shear survey to date, which has been pub-

lished since STEP1, comes from the Canada–France–Hawaii Tele-

scope Legacy Survey (CFHTLS) i-band data. The CFHTLS wide

survey (Hoekstra et al. 2006) was analysed using the HH shear-

measurement method, and the CFHTLS deep survey (Semboloni

et al. 2006) using the ES1 method. These methods perform very

differently on the simulated images.

The HH method recovers shear in the STEP2 images with re-

markable success. The seeing in the CFHTLS data is most similar

to that in image set C, for which the overall shear calibration is

within 1 per cent: well within the current error budget. Hoekstra

et al. (2006) also featured a parallel analysis using an independent

KSB+ pipeline, which agreed with the HH results, and also demon-

strates the potential robustness of KSB+ at this level of precision

(similar comparisons have also been performed by Massey et al.

(2005) and Schrabback et al. (2006), and these also give results

consistent with that work). The HH method had difficulty only with

the calibration of very faint galaxies, due to its non-smooth fitting

of Pγ as a function of magnitude. If a similar bias is present in the

CFHTLS analysis, it will have lowered the effective redshift dis-

tribution of source galaxies, and slightly diluted the overall signal.

Both of these effects would have led to an underestimation of σ 8,

although only by a small amount, due to the low weight given to

faint galaxies. As discussed by Van Waerbeke et al. (2006), a more

significant bias (which acts in the opposite sense) arises from using

the Hubble Deep Field to infer the redshift distribution of galaxies.

As the survey area of the CFHTLS grows, and the statistical error

bars decrease, it may be prudent for this analysis to conservatively

use slightly fewer galaxies.

The ES1 method underestimates shear in the STEP2 images by

20 per cent overall, and by as much as 30 per cent for the faintest

galaxies. We have verified this result retrospectively in STEP1 sim-

ulations, and also confirmed it in real images, by comparing the re-

sults of the HH and ES1 shear-measurement pipelines on the same

CFHTLS deep data. Of course, the true ‘input’ shear is not known

for real data. Fig. 8 shows the relative calibration of the two methods

in real data, with the dashed line indicating their relative calibration

in simulated image set C. This should not be interpreted as a strict

prediction, since the simulation was not designed to mimic this spe-

cific survey: the simulated and real data have very different noise

properties, and the only similarity between their PSFs is their size.

None the less, the agreement is impressive. Fig. 9 shows a further

comparison of the methods’ relative calibration, in which galax-

ies have been split by size and magnitude. Once again, overlaying

the performance of ES1 from image set C confirms the results of

the STEP simulations with remarkable success. A likely source

of the shear-calibration bias is in the smoothing of Pγ as a function

of rg and magnitude. Tests indicate that the shear susceptibility is

more stable if it is instead fitted as a smooth function of size and

magnitude, or even by using the raw values. The strong magnitude

dependence is probably related to the sudden drop at small sizes.

Note also that both pipelines started from scratch with the individ-

ual exposures, reducing them and stacking them independently. All

the available exposures are stacked in both versions, so the two sets

of images have effectively the same depth. The full data reduction

pipeline of both groups is being tested, and the differences could

therefore have been introduced at any stage.

Fig. 10 shows the two-point correlation functions of the matched

shear catalogues (using the weights of the individual catalogues),

which are normally used to constrain cosmological parameters at the
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Figure 8. Comparison of shear measurement in real CFHTLS deep data,

from a galaxy-by-galaxy comparison of matched catalogues from the ES1

analysis (Semboloni et al. 2006) and a reanalysis using the HH method.

The relative calibration of both components of shear are indistinguishable,

and are here included in the same plot. A slope of unity would imply per-

fect agreement. The dashed line indicates the relative calibration of the two

methods in simulated image set C, which is the most closely matched to

actual observing conditions. Although this should not be regarded as a strict

prediction, since there are many image parameters that are not matched, its

agreement with the real data is striking.

end of a weak-lensing analysis. Although the ES1 analysis consis-

tently measures a lower signal than the HH analysis, the discrepancy

is not uniform on all scales. The relative bias is most pronounced

on small scales when measuring the variance of the aperture mass

statistic, and on both small and large scales for the shear variance

in cells. Such variation is not seen in the galaxy-by-galaxy compar-

ison of relative shear calibration. For example, the signal in Fig. 9

is stable to changes in the size of the area over which the shears are

averaged.

We hypothesise that there may therefore be an additional source

of bias in the ES1 CFHTLS analysis, due to PSF anisotropy resid-

uals. Since the PSF anisotropy varies spatially, the residual would

average out across the survey, and not affect the overall bias. The

correlation functions were calculated using the procedure in Van

Waerbeke et al. (2005), which deals with an unknown constant of

integration in the calculation of σ 2
γ (θ ) by forcing the B-modes of

to zero on large scales. This prior on the B-modes can add spuri-

ous power to the E-modes, and could have artificially re-raised the

cosmic shear signal. Indeed, the ratio of the sum of the E and B

modes between analyses is flatter than that of the E modes alone.

Furthermore, the star–star correlation functions (Semboloni et al.

2006) show an excess before PSF correction, on similar scales to

that observed in the left-hand panel of Fig. 10.

A naı̈ve correction for a 20 per cent shear-calibration bias in

the CFHTLS deep survey (Semboloni et al. 2006) would raise the

measured value of σ 8 almost proportionally. This would remain

within the estimated error budget for the lensing analysis due to

non-Gaussian cosmic variance (Semboloni et al. 2007), but adds

tension to an existing discrepancy with the three year results from

the WMAP (Spergel et al. 2006). In practice, a more sophisticated

Figure 9. Comparison of shear measurement in real CFHTLS deep data,

as a function of galaxy size and magnitude. The relative shear calibration

of the ES1 and HH methods is obtained from the ratio of the mean shear

calculated in 3 × 3-arcmin2 subfields of each CFHTLS deep field. A value

of unity would imply perfect agreement between the catalogues. Note that

we have reconciled the different definitions of galaxy size in the simulations

compared to real data by approximating R ≈ rg. We have dealt with the

different relationship between galaxy magnitude and S/N (cf. Section 4.5)

by offsetting the magnitudes of objects in the deeper simulated data by

-1. The grey band indicates the relative calibration of the two methods in

simulated image set C, which is the most closely matched to the CFHTLS

data.

recalibration will probably be required. If our hypothesis of an ad-

ditional systematic is correct, this would have partially cancelled

the shear-calibration bias. Judging by the ratio of the observed cor-

relation functions, the net underestimation of σ 8 could have been

around 10–15 per cent. More work is needed to test this hypothe-

sis, but it is beyond the scope of this paper. A full reanalysis of the

CFHTLS survey, including the latest data, will therefore follow.

The striking confirmation of the STEP results on real data demon-

strates the success of our simulation project, and highlights the vi-

tal role that artificial images will play in the exploitation of future

surveys. Ideally, they ought not be relied on for simple empirical

recalibration, but they will be essential to verify the performance of

methods derived from first principles. The STEP images remain pub-

licly available to test future weak-lensing analyses. Simultaneously,

the complexity of our correlation function results also highlight the

importance of subtleties in weak shear measurement that may arise

only within the complex environment of real observational data. To

fully understand such effects, we will pursue further development of

the dataSTEP project2, an ongoing comparison of the output from

various shear-measurement methods on a common sample of real

data.

6 C O N C L U S I O N S

Performance has improved since STEP1, and the STEP project con-

tinues to drive progress and innovation in shear-measurement meth-

ods. The most-accurate methods, with better than ∼2 per cent level
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Figure 10. Comparison of shear-shear correlation functions measured from real CFHTLS deep survey data, after HH (squares) and ES1 (circles) analyses.

The correlation functions are split into E and B modes in two different ways: the variance of the shear in cells is shown on the left as a function of cell radius,

and the variance of the mass aperture statistic is shown on the right. In both cases, the solid points show the E mode, and the open points the B mode. The

error bars show statistical errors only (i.e. no account is made for cosmic variance since the survey region is identical), but note that the difference between the

two data sets is in fact more significant than indicated, because the same galaxies are used in each analysis, so noise enters only from the shape measurement

process and not from variation in intrinsic galaxy ellipticities. In the lower panels, the points show the ratio of the E modes calculated from the two analyses,

and the lines show the ratio of the E plus B modes. The grey bands indicate the relative calibration of the two methods in simulated image set C, which is the

most closely matched to actual observing conditions.

calibration errors for most of the tested observing conditions, were

the MJ2 implementation of BJ02, the TS and HH implementations

of KSB+, the KK and JB implementations of shapelets and the

RM implementation of Reglens. Particular advances are apparent

in methods that used the results of STEP1 to tune their algorithms,

which bodes well for the future of this project. For example, the

introduction of a calibration factor to the TS method has proved

reassuringly robust with our new, more realistic simulated images.

We have also verified the STEP results on real data, finding striking

confirmation of methods’ relative shear calibration in the CFHTLS

deep survey.

There is no one shear-measurement method that is doing every-

thing best. With the increased precision possible in this analysis,

we can now distinguish all the methods from perfect performance.

Since absolute shear calibration cannot be directly ascertained from

real data, this remains the most important issue. The calibration

bias in most methods leads to a slight underestimation of shear.

Both the shear-calibration (multiplicative) errors and anisotropic

PSF correction (additive) errors are also found to depend on char-

acteristics of the PSF. Technical advances in individual methods

will therefore still be required. Ideally, one would attempt to take

the most successful aspect of several methods and combine them.

The fundamentally different approaches to the two main tasks in

shear measurement make this difficult, but there is common ground

(e.g. object-detection algorithms, the shapelet basis functions, and

galaxy weighting schemes), so the individual lessons learned with

each method may not necessarily be irreconcilable. To this end,

we have developed a classification scheme for shear-measurement

methods, and have described all existing methods in a common

language so that their similarities and differences are apparent. De-

velopment is continuing in earnest.

We have used our improved simulations to identify various as-

pects of shear measurement that have been effectively solved at the

current level of precision. We have also uncovered other, specific

areas that remain problematic. Studying these may provide a route

to the most rapid technological advances. Development needs to be

focused towards

(i) pixellization;

(ii) correlated background noise;

(iii) PSF measurement; and

(iv) galaxy morphology evolution.

These four points are explained below.

This is the first STEP project in which the input shear has been

applied in arbitrary directions relative to the pixel grid. That this di-

rection affects the calibration of shear-measurement methods, even

for images with a circular PSF and no other preferred direction, im-

plies that pixellization is not fully controlled. Pixel effects may also

explain the general tendency of methods to underestimate shear.

Since no explicit provision is made for pixellization in many meth-

ods, this result is not surprising. This work has quantified just how

much of an effect it has, and thereby emphasized the importance

of a proper treatment in the future. High et al. (in preparation) are

specifically investigating pixellization through tailor-made image

simulations with varying pixel scales.

Although not all data sets have background noise that is signifi-

cantly correlated between adjacent pixels, it is particularly apparent

in natively undersampled data, for which several exposures dithered
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by subpixel shifts must be co-added. The introduction of correlated

background noise to the STEP2 simulations hindered several meth-

ods: during the detection of faint objects, the modelling of objects to

a specified fidelity, and the weighting of individual shear estimators.

Now that this issue has been raised, work is underway in the context

of several of the shear-measurement methods.

Some methods seem to be having trouble with the initial mea-

surements of the PSF from individual stars. The measurement of

the shape of each star affects shear estimates from many galax-

ies, and is therefore of vital importance. When the PSF is highly

elliptical, this work has revealed some peculiar residual shear off-

sets, in the directions orthogonal (at 45◦) to that ellipticity. We have

not yet found a satisfactory explanation for this, but speculate that

it might be caused by difficulties measuring the centroid and the

ellipticity of stars that have substructure, skewness, and no single,

well-defined ellipticity. Methods that model the full PSF, and espe-

cially those that attempt PSF deconvolution, are less affected, but at

the expense of a having smaller number density of useable galax-

ies for which the complicated deconvolution algorithms currently

converge. We have not attempted to investigate the consequences of

spatial PSF variation, or the errors introduced by imperfect interpo-

lation of the PSF across a field (Massey et al. 2002; Hoekstra 2004;

Jarvis & Jain 2004). Such variation poses a significant challenge in

real data, the analysis of which is prone to additional systematics

missing from our idealized case. However, decoupling this layer of

uncertainty has simplified the interpretation of our results, allowing

us to concentrate on the main issue of galaxy-shape measurement.

Simultaneous investigation of shear measurement in a varying PSF

will eventually require a full simulation of telescope optics and at-

mospheric turbulence, combined with a mock lensing analysis con-

tinued to the calculation of correlation functions, where the residual

errors will become apparent.

Issues of galaxy morphology evolution become particularly im-

portant for those methods whose calibration relies on the overall

distribution of galaxies’ intrinsic ellipticities. High-redshift galax-

ies are both more elliptical and more irregular; and evolution in the

ellipticity variance directly affects the shear calibration. For a 2D

cosmic shear survey, even if the mean shear is correctly measured,

this can bias the effective redshift distribution of source galaxies

and the geometrical interpretation of the lensing signal, with all the

consequences discussed in Van Waerbeke et al. (2006). For a 3D

analysis, it can change the apparent redshift evolution of the signal

and hence the apparent cosmological matter distribution.

The next STEP project will analyse a set of simulated space-

based images. With their higher spatial resolution, we expect that

variation in galaxy morphology will more profoundly affect shear

measurement. We will therefore repeat the exercise of comparing

the analysis of complex shapelet galaxies with more idealized ob-

jects, and also separate the galaxy populations by morphological

class. The cuspy space-based PSFs will provide a different (easier)

régime in which to test centering, and we will explicitly avoid PSF

interpolation errors by allowing methods to assume that the PSF is

constant. This should make interpretation easier. Background noise

will also be left intentionally uncorrelated. However, variations in

the pixel scale will be introduced, to specifically test methods’ ro-

bustness to pixellization effects.

Such ongoing improvements are vital to the success of gravita-

tional lensing as a viable probe of cosmology. Although the measure-

ment of weak lensing is not limited by unknown physical processes,

the technical aspect of galaxy shape measurement at such high pre-

cision remains computationally challenging. In this paper, we have

demonstrated that simulated images can drive progress in this field,

and can provide a robust test of shear measurement on real data.

Previous cosmic shear measurements would have benefitted from

access to STEP, and the future exploitation of dedicated surveys re-

lies on the development of methods that are being tested here first.

Both the tools and the collective will are now in place to meet this

challenge. The STEP simulations remain publicly available, and the

weak-lensing community is progressing to the next level of techni-

cal refinement in a spirit of open cooperation. We conclude with

the hope that, by accessing the shared technical knowledge com-

piled by the STEP projects, all future shear-measurement meth-

ods will be able to reliably and accurately measure weak-lensing

shear.
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Ivezić Z. et al., 2004, Astronomische Nachrichten 325, 583

James B., Davis T., Schmidt B., Kim A., 2006, MNRAS, 370, 933

Jarvis M., Jain B., 2004, ApJ, submitted (astro-ph/0412234)

Jarvis M., Bernstein G., Jain B., Fischer P., Smith D., Tyson J., Wittman D.,

2003, ApJ, 125, 1014

Jarvis M., Jain B., Bernstein G., Dolney D., 2006, ApJ, 644, 71

Kaiser N., 2000, ApJ, 537, 555

Kaiser N., Squires G., Broadhurst T., 1995, ApJ, 449, 460

Kaiser N., Wilson G., Luppino G., 2000, preprint (astro-ph/0003338)

Kuijken K., 1999, A&A, 352, 355

Kuijken K., 2006, A&A, 456, 827

Luppino G. A., Kaiser N., 1997, ApJ, 475, 20

Mandelbaum R. et al., 2005, MNRAS, 361, 1287

Maoli R., Van Waerbeke L., Mellier Y., Schneider P., Jain B., Bernardeau

F., Erben T., 2001, A&A, 368, 766

Margoniner V. E., Lubin L. M., Wittman D. M., Squires G. K., 2005, AJ,

129, 20

Massey R., Refregier A., 2005, MNRAS, 363, 197

Massey R., Bacon D., Refregier A., Ellis R., 2002, in Shanks T., Metcalfe

N., eds, ASP Conf. Ser. Vol. 283, A New Era In Cosmology. Astron.

Soc. Pac., San Francisco, p. 193

Massey R., Refregier A., Conselice C., Bacon J., 2004a, MNRAS, 348, 214

Massey R., Refregier A., Bacon D., 2004b, in Meylan M., ed., Impact of

Gravitational Lensing on Cosmology

Massey R., Bacon D., Refregier A., Ellis R., 2005, MNRAS, 359, 1277

Massey R., Rowe B., Refregier A., Bacon D., Bergé J., 2007, MNRAS,
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