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ABSTRACT

We present the results from the first public blind point-spread function (PSF) reconstruction challenge, the
GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge. Reconstruction of a spatially varying
PSF, sparsely sampled by stars, at non-star positions is a critical part in the image analysis for weak lensing where
inaccuracies in the modeled ellipticity e and size R2 can impact the ability to measure the shapes of galaxies. This
is of importance because weak lensing is a particularly sensitive probe of dark energy and can be used to map
the mass distribution of large scale structure. Participants in the challenge were presented with 27,500 stars over
1300 images subdivided into 26 sets, where in each set a category change was made in the type or spatial variation
of the PSF. Thirty submissions were made by nine teams. The best methods reconstructed the PSF with an accuracy
of σ (e) ≈ 2.5 × 10−4 and σ (R2)/R2 ≈ 7.4 × 10−4. For a fixed pixel scale, narrower PSFs were found to be
more difficult to model than larger PSFs, and the PSF reconstruction was severely degraded with the inclusion
of an atmospheric turbulence model (although this result is likely to be a strong function of the amplitude of the
turbulence power spectrum).
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1. INTRODUCTION

In this paper we present the results from the GRavitational
lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge.
GREAT10 was an image analysis challenge for cosmology that
focused on the task of measuring the shapes of distant galaxies.
Light from distant galaxies is deflected during its journey to
us via gravitational lensing, and the images appear distorted
into characteristic patterns (Hu 1999; Bartelmann & Schneider
2001). The amount of distortion depends on the intervening
distribution of matter (including dark matter) and the geometry
of spacetime (which is currently governed by dark energy). Such
measurements thus probe directly the invisible dark sector and
the fundamental nature of gravity—see reviews by Albrecht
et al. (2006), Réfrégier (2003), Hoekstra & Jain (2008), Massey
et al. (2010), and Weinberg et al. (2012).

All real imaging data are necessarily seen after convolution
with (i.e., blurring by) a telescope’s point-spread function (PSF).
The PSF arises from the finite aperture of the telescope, charge
diffusion within digital detectors, any imperfect elements along
the optical path, and turbulence in the Earth’s atmosphere
(unless the telescope is in space). This increases the size of
faint galaxies, and can spuriously change their ellipticity by an
order of magnitude more than gravitational lensing (Bernstein

& Jarvis 2002; Hoekstra 2004; Paulin-Henriksson et al. 2008,
2009; Massey et al. 2013). To recover the shape of the galaxy
after only cosmological effects, it is necessary to (1) model the
PSF and (2) somehow correct for its effect on the images of
galaxies. The second half of this task has been widely addressed
by teams analyzing individual surveys and as a vital community
effort through the public Shear TEsting Programme (STEP)
(Heymans et al. 2006; Massey et al. 2007), the GRavitational
lEnsing Accuracy Testing (GREAT) galaxy challenges (Bridle
et al. 2010; Kitching et al. 2012b), and the Mapping Dark Matter
challenge (Kitching et al. 2012c). The first task (modeling the
PSF) has so far only been investigated internally within teams
(e.g., Bacon et al. 2003; Hoekstra et al. 2004; van Waerbeke
et al. 2005; Rhodes et al. 2007; Schrabback et al. 2010; Hoekstra
2004; Rowe 2010; Jarvis & Jain 2005; Bergé et al. 2012). Here
we present the results of the first blind, public trial of methods
to model and interpolate the PSF of a typical astronomical
telescope.

The PSF in an astronomical image can be measured from
stars that happen to fall inside the field of view. Stars are so
small that they are intrinsically point-like, and adopt the size
and shape of the telescope’s PSF. However, the PSF typically
varies across the field of view, and stars only sparsely cover the
extragalactic sky (Jarvis & Jain 2005; Jain et al. 2006; Heymans
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et al. 2012; Chang et al. 2012). It is therefore necessary to model
the shapes of stars, then interpolate their shapes to the locations
of galaxies (where there is necessarily not a bright star because
otherwise the galaxy could not be seen). In practice the PSF also
varies as a function of the wavelength of observed light, due to
diffraction, reflection, and transmission effects in the telescope
optics, filters, and CCDs and so must also be interpolated from
the colors of the stars to the colors of the galaxy (Cypriano
et al. 2010; Voigt et al. 2012; Plazas & Bernstein 2012). Color
dependence is an important second order effect but in this paper
we do not address this, focusing only on the primary changes in
PSFs.

We simulated the spatial variation in the PSF of generic
but realistic ground-, balloon-, and space-based telescopes
(Kitching et al. 2012a, and see www.greatchallenges.info).
We realized a large suite of sparse stellar fields in these
different observing regimes, and publicly released most of
the star images. Entrants were asked to then reconstruct the
images of the missing stars on a pixel grid, at pre-defined
locations. The performance of each entry was measured in real
time using a single number, the “quality factor,” which was
designed to provide a crude ranking such that it could not be
reverse-engineered to reveal the full solutions. In this paper,
we analyze in detail the quantitative performance of 12 distinct
algorithms submitted to model and interpolate the simulated
PSFs. In particular we quantify how well the ellipticity and
size of a spatially varying PSF can be reconstructed in a blind
challenge.

This paper is organized as follows. In Section 2, we describe
the simulations and competition in detail. In Section 3, we
present results. We discuss and conclude in Section 4.

2. METHOD

In this section we describe the simulations and the com-
petition. For a full exposition of the background of the Star
Challenge, see Kitching et al. (2012a).

2.1. Simulation Structure

In the simulations we aimed to generate simplified repre-
sentations of possible observing scenarios and telescopes, such
that through analysis we could make general statements about
how methods perform in a coarse-grained sense in each of these
categories.

The simulations contained two possible types of PSF func-
tion: a Moffat function (Moffat 1969) and an Airy disk, param-
eterized by a FWHM size. To simulate diffraction spikes caused
by obscuration of the telescope pupil the intensity distributions
of these functions were optionally combined with single-slit
diffraction intensity patterns, approximating the effects of rect-
angular obscurations in the pupil plane as would be caused by
struts supporting a secondary mirror. The dimensions of these
single-slit obscurations were chosen to produce simulated PSFs
of reasonable realism on visual inspection; for the Airy disk this
corresponded to a strut obscuration of width 4% of the pupil
diameter. The configurations chosen for these diffraction spike
patterns were a “plus-sign” four-fold symmetric mask + , or an
“asterisk-sign” six-fold symmetric pattern ∗.18 The combined
pattern was then given a linear coordinate shear to create ellip-
tical PSF patterns, and the PSF spatial variation for any image

18 We use the term “mask” to label such configurations, but we remind the
reader that for the ∗ pattern a telescope would only have three struts arranged in
a trefoil shape—it is the slit diffraction that results in six spikes in the images.

then contained three components, similar to the PSF described
in Kitching et al. (2012b: Appendix C, where we refer the reader
to figures that show the PSF variation):

1. Static component. This was spatially constant across the
image and consisted of (1) a Gaussian smoothing kernel
that was added to the PSF size, which had a variance of
0.1 present in all images, and (2) a static additive ellipticity
component of 0.05 in e1,PSF and e2,PSF, to simulate tracking
error (e1 and e2 are defined in Section 2.3). Details are
explained in Kitching et al. (2012b).

2. Deterministic component. This was to simulate the impact
of the telescope on the spatially varying PSF size and
ellipticity. We used the Jarvis et al. (2008) model with
fiducial parameters given in Kitching et al. (2012b) (a0 =
0.014, a1 = 0.0005, d0 = −0.006, d1 = 0.001, c0 =
−0.010), which is dominated by primary astigmatism (a0),
primary de-focus (d0), and coma (c0).

3. Random component. To simulate the random turbulent
effect of the atmosphere we additionally included a random
Gaussian field in some images in the ellipticity only, with a
Kolmogorov-like power spectrum of C� = �−11/6. In fact,
subsequent to the formulation of this challenge and launch
in 2010, Heymans et al. (2012) found that C� ∝ �−11/3,
the exact power was not known accurately beforehand
hence we refer to the C� ∝ �−11/6 as Kolomogorov-like;
this is approximately similar to short exposures from a
ground-based observatory for a Moffat PSF, or balloon-
based if an Airy PSF is used. We note that the amplitude of
the power is also very high, corresponding to exposures of
�1 s (see Heymans et al. 2012): we leave an investigation
into the impact of varying amplitudes of Kolmogorov power
to future work.

The integration of the PSF intensity distribution onto square
pixels was achieved by multiplication with a Sinc function in
Fourier space (equivalent to convolution with a square boxcar
function in real space), followed by sampling at the locations of
pixel centers.

2.2. Data Structure

The simulation was designed within the constraint that both
the download size of the simulation and the upload size of the
submissions should be manageable (we limited the download
size to 50 Gb). Participants were provided with FITS (Wells
et al. 1981) images containing “known stars” that were delta
functions convolved with a spatially varying PSF. Each star
within each image was embedded in a postage stamp of 48 ×
48 pixels, and to reduce the size of the images there was no
noise in between postage stamps. Participants were then asked
to submit a 2D image of the reconstructed PSF at positions
in between the known stars; these positions were provided as
a catalogue of “asked star” positions. Participants were asked
to submit FITS cubes of the reconstructed PSFs (the x and
y dimensions representing the 2D image and the z dimension
varying the asked-star positions).

For each image, 1000 asked stars were required. The images
were subdivided into 26 sets of 50 images where in each set
the properties of the spatial variation, telescope, and static
components of the PSF were kept statistically constant, but
each had a different realization of any random component, and
each also had the asked and known star positions varying. The
properties of each set are summarized in Table 1. One aspect to
note is that when varying, the size of the PSF in the total flux was
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Table 1
The Properties of Each Set of Images

Set Atmosphere PSF-Type Mask NStars PSF Size (pixels) Telescope Variation

1 (fid. Airy) No Airy None 1000 3 None
2 No Airy + 1000 3 None
3 No Airy ∗ 1000 3 None
4 No Airy None 2000 3 None
5 No Airy None 500 3 None
6 No Airy None 1000 1.5 None
7 No Airy None 1000 6 None
8 (fid. Moffat) No Moffat None 1000 3 None
9 Yes Airy None 1000 3 None
10 Yes Moffat + 1000 3 None
11 Yes Moffat ∗ 1000 3 None
12 Yes Moffat None 2000 3 None
13 Yes Moffat None 500 3 None
14 Yes Moffat None 1000 1.5 None
15 Yes Moffat None 1000 6 None
16 No Airy None 1000 3 Astigmatism a0

17 Yes Moffat None 1000 3 Astigmatism a0

18 No Airy None 1000 3 De-focus d0

19 Yes Moffat None 1000 3 De-focus d0

20 No Airy None 1000 3 Coma c0

21 Yes Moffat None 1000 3 Coma c0

22 No Moffat + 1000 3 None
23 No Moffat ∗ 1000 3 None
24 No Moffat None 2000 3 None
25 No Moffat None 500 3 None
26 No Moffat None 1000 1.5 None

Notes. Details are described in Section 2.1. Each category allows a different test: PSF Size allows us to test under-sampling;
Atmosphere tests ground-based exposure time dependence; NStars tests spatial sampling; Mask tests telescope structure
dependence; PSF-Type tests the impact of high spatial frequencies in the PSF profile vs. smooth profiles; Telescope variation
allows us to test the impact of three typical distortions found in data. The set order was semi-random so as to prevent participants
exploiting any pattern in the set numbering. We label the fiducial sets for the Moffat and Airy profiles.

kept constant for each profile with an integrated signal-to-noise
of 100.

2.3. Competition Structure

The competition started in 2010 December and ran for
nine months until 2011 September; this was concurrent with the
GREAT10 Galaxy Challenge (Kitching et al. 2012a, 2012b).
As stated previously the total simulation size was ∼50 Gb and
the total size of the uploaded submissions was ∼1 Gb (we
allowed participants to tar, zip, or FITS-compress19 submissions
to reduce size). Data and example code were provided online
for participants.20

The two parameters of the PSF that most directly impact the
ability to interpret observations of galaxies are the ellipticity
and the size of the PSF; any residual difference between the
ellipticity or size of true PSF, and the respective quantities of
the modeled PSF at any particular position, will result in errors
and biases in parameters assigned to any galaxy at that position.
Weak gravitational lensing is particularly sensitive to these types
of error (Massey et al. 2013; Paulin-Henriksson et al. 2008,
2009). The ellipticity and size are defined here using the second
order brightness moments of the image as

qij =
∑

p wpIp(θi − θ̄i)(θj − θ̄j )
∑

p wpIp

, i, j ∈ {1, 2}, (1)

19 http://heasarc.nasa.gov/fitsio/fpack/
20 http://great.roe.ac.uk/data

where the sums are over pixels, Ip is the flux in the pth pixel,
and θ is a pixel position (θ1 = xp and θ2 = yp). In order
to make the results regular with regard to the impact of noise
but not to constrain the interpretation to compact objects in
the postage stamp, we include a weight function wp chosen
to be a broad Gaussian with a width of 24 pixels (we leave
an investigation of how results vary as a function of weight for
future work). These are almost unweighted quadrupole moments
in this respect, and as a result, smooth analytical functions may
be favored compared to models that try to reproduce details in
the wings of the PSF. The weighted ellipticity (or technically
the “polarizability”) for a PSF in complex notation is defined as

e = q11 − q22 + 2iq12

q11 + q22 + 2
(
q11q22 − q2

12

)1/2 , (2)

where we have used a definition of ellipticity |e| = (1 − r)(1 +
r)−1, where r is the ratio of minor to major axes of the ellipse.
For the weighted size we have a similar expression

R2 = q11 + q22. (3)

We can calculate the variance between the ellipticity of the
model and true PSF σ 2(e) ≡ 〈(e − et

PSF)2〉 and similarly for
the size σ 2(R) ≡ 〈(R − Rt

PSF)2〉. Submissions were scored
in real-time on a leaderboard that displayed the metric P ≡
(1/1/2〈σ 2(R) + σ 2(e)〉) where the average was taken over
images in each set only (the total number of asked star positions
is NStars = Nimages × Nstarsperimage, the average was only taken
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Figure 1. The change in the square root of the inverse variance in the residual ellipticity for each method for each category varied. The sets used in differencing
the categories are shown in the upper panels (Seti–Setj ), and we refer the reader to Table 1. Each point represents a method (the stars represent method
B-Spline) and points within a bin are randomized within an x-bin for clarity. The log of the change is shown, with the sign preserved (i.e., sgn[x] log10[|x|]
where x = (1/σ (e)fiducial) − (1/σ (e))) so that negative values represent a decrease in accuracy and positive values an increase in accuracy. The first seven vertical
panels show changes for the Moffat (red) and Airy profile (blue); the rightmost panel shows the change in accuracy when the profile is changed from Airy to Moffat
but all other aspects of the PSF are kept the same. The parameters varied are the mask (4-arm or 6-arm; changed from no mask), number of stars (500 or 2000; changed
from 1000), PSF size (1.5 or 6.0 pixels; changed from 3.0 pixels), and the addition of Kolmogorov power in ellipticity.

(A color version of this figure is available in the online journal.)

Table 2
The Results for Ellipticity and Size squared on Set 1

(the Fiducial Airy Set) for Each Method Tested in This Paper

Method Name 1/σ (e) σ (e)/10−4 1/[σ (R2)/R2] [σ (R2)/R2]/10−3

B-Splines 3953 2.53 1348 0.742
IDW 3448 2.90 1212 0.825
RBF 3155 3.17 1259 0.794
RBF-thin 2985 3.35 1258 0.795
Kriging 1049 9.53 490 2.042
Gaussianlets 1473 6.79 392 2.548
IDW Stk 1058 9.45 277 3.604
PSFEx 1279 7.82 378 2.647
Shapelets 1256 7.96 379 2.642
PCA+Kriging 1339 7.47 314 3.180
MoffatGP 2545 3.93 429 2.331
Stacking 1441 6.94 309 3.237

over Nimages), such that that a mean variance of 10−3 in both
ellipticity and size would have P ∼ 1.0.

The P metric, while indicatively ranking the methods, does
not offer any insight into the performance of a method on
ellipticity and size reconstruction. In this paper we will present

Table 3
The Results for Ellipticity and Size squared on Set 8

(the Fiducial Moffat Set) for Each Method Tested in This Paper

Method Name 1/σ (e) σ (e)/10−4 1/[σ (R2)/R2] [σ (R2)/R2]/10−3

B-Splines 3690 2.71 1406 0.711
IDW 3215 3.11 1309 0.764
RBF 2967 3.37 1167 0.857
RBF-thin 2809 3.56 1163 0.860
Kriging 1477 6.77 645 1.551
Gaussianlets 2041 4.90 476 2.099
IDW Stk 1250 8 362 2.759
PSFEx 610 16.40 296 3.374
Shapelets 1931 5.18 696 1.436
PCA+Kriging 1161 8.61 351 2.853
MoffatGP 2857 3.50 139 7.209
Stacking 1259 7.94 309 3.236

quantities that relate to the principal properties of the PSF more
directly. These are the standard deviation of the mean of the
residuals of the ellipticity σ (e) and size squared σ (R2)/R2

over all asked stars, i.e., we compute the error on the mean
of the residuals (the sample variance computed using centered
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Figure 2. The change in the square root of the inverse variance in the residual size squared for each method for each category varied. The sets used in differencing
the categories are shown in the upper panels (Seti–Setj ), and we refer the reader to Table 1. Each point represents a method, the stars represent method
B-Spline, points within a bin are randomized in within an x-bin for clarity. The log of the change is shown, with the sign preserved (i.e., sgn[x] log10[|x|]
where x = (1/[σ (R2)/R2]fiducial) − (1/[σ (R2)/R2])) so that negative values represent a decrease in accuracy and positive values an increase in accuracy. The first
seven vertical panels show changes for the Moffat (red) and Airy profile (blue), the rightmost panel shows the change in accuracy when the profile is changed from
Airy to Moffat but all other aspects of the PSF at kept the same. The parameters varied are the mask (4-arm or 6-arm; changed from no mask), number of stars (500
or 2000; changed from 1000), PSF size (1.5 or 6.0 pixels; changed from 3.0 pixels) and the addition of Kolmogorov power in ellipticity.

(A color version of this figure is available in the online journal.)

second order moments). We assume that any mean bias could be
removed through cross-validation, in this sense it is a generous
analysis to those methods with a mean residual. We average
these quantities over the 50 images in each set, but in fact for
all methods we find that the fractional error between images in
a set is �10%.

3. RESULTS

In total, 30 submissions were made from 9 teams. As a
baseline benchmark, a method in which all stars were simply
stacked in an image was created, where no spatial variation in
the reconstructed stars was present. Several methods generated
low scores due to misunderstanding of simulation details,
resulting in scores below the benchmark, and in this paper
we summarize only those not affected by these issues. In the
following we choose the best performing submission, for size,
for each of the 12 distinct method entries. All of the submitted
methods are described in the Appendix. We show the results on
the fiducial Airy set (set 1 in Table 1) and the fiducial Moffat set
(set 8 in Table 1) in Tables 2 and 3, respectively. In Figures 1
and 2 we present general behaviors of methods over the sets
as categories were changed, but for a quantitative presentation
of each method we refer the reader to Figures 3–7 where we

show pictographic tables of results. In the square root of the
inverse variance, and referring to Figures 1 and 2, for example,
the error between images in a set of 10% results in changes of
Δ[1/σ (e)] ≈ ±200 and similarly for R2, not being significant for
most methods individually, but can be significant collectively.

Overall we find that the B-Splines, Inverse Distance Weight-
ing (IDW), and Radial Basis Function (RBF) methods recon-
struct the ellipticity and size most accurately (see Gentile et al.
2013), with σ (e) ≈ 2.5 × 10−4 and σ (R2)/R2 ≈ 7.4 × 10−4

over all sets.21 We note, however, that this is a snapshot of per-
formance and that further investigations into tunable aspects of
code could result in improvements in all methods.

We summarize the behavior of the submissions below. In each
test all other parameters are kept fixed except those discussed
(with fiducial values of 1000 known star positions, no mask, and
telescope parameters given in Section 2). We refer to Figures 1
and 2 which show the change in the square root of the inverse
variance of the reconstructed PSFs over the fiducial sets (set 1
for Airy and set 8 for Moffat profiles; see Table 2) when each
of the categories is varied. In Figures 3–7 we show pictographic
tables of results.

21 B-Splines also achieved the highest leaderboard P value.
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root of the inverse variance of the residual ellipticity and size squared where the area scales in proportion to these parameters and the numbers are given next to each
circle; a key is given in the top panel. Where no number/circle is provided there was no set for this combination of PSF type and mask type. Fractional errors on the
square root of the inverse variances are ≈10% for all methods.

(A color version of this figure is available in the online journal.)
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Figure 4. The square root of the inverse variance in the residual ellipticity and size squared for each method (horizontal panels) for the three known-star number cases
(500, 1000, 2000 stars) for the Moffat-plus-Kolmogorov case (green), Moffat with no Kolmogorov (red), and the Airy (blue) profile. The circles represent the square
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circle; a key is given in the top panel. Where no number/circle is provided there was no set for this combination of PSF type and number of stars. Fractional errors on
the square root of the inverse variances are ≈10% for all methods.

(A color version of this figure is available in the online journal.)
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Figure 5. The square root of the inverse variance in the residual ellipticity and size squared for each method (horizontal panels) for the three PSF size cases (1.5, 3.0,
and 6.0 pixels) for the Moffat-plus-Kolmogorov case (green), Moffat with no Kolmogorov (red), and the Airy (blue) profile. The circles represent the square root of
the inverse variance of the residual ellipticity and size squared where the area scales in proportion to these parameters and the numbers are given next to each circle; a
key is given in the top panel. Where no number/circle is provided there was no set for this combination of PSF type and PSF size. Fractional errors on the square root
of the inverse variances are ≈10% for all methods.

(A color version of this figure is available in the online journal.)
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inverse variances are ≈10% for all methods.

(A color version of this figure is available in the online journal.)

1. PSF type. For the best performing methods we find a trend
that both ellipticity and size are estimated more accurately
for the Airy PSF than for the Moffat PSF.

2. Addition of Kolmogorov power. For each set combination
where both Moffat and Moffat-plus-Kolmogorov power
are available (e.g., the 4 arm + masks) we find evidence
for methods performing less well with the addition of
Kolmogorov power (see also Figures 3–5). In Figure 6
we also show the impact of adding a Kolmogorov power
spectrum to a set that uses an Airy PSF profile. We find
that the addition of this random component degrades the
residual ellipticity reconstruction by a factor of �2–5,
but has less impact on size reconstruction, as expected,
since the power is in ellipticity only. These results will
necessarily depend on the amplitude of the assumed power
spectrum, which will vary for each ground-based telescope,
and knowledge/information about this is improving (e.g.,
Heymans et al. 2012). In addition, atmospheric turbulence
also changes the PSF size, but we do not simulate this here.
It is possible that, depending on the site and weather, the
impact of turbulence may be weaker or stronger than that
simulated for this study.

3. Masks. We show results for the mask variation in Figure 3.
We find that for all methods the presence of diffraction
spikes does not degrade the ability to measure the ellipticity
of the PSF. For the Airy function the diffraction spikes act
to increase the effective size of the PSF, which enables
methods to measure the fractional error σ (R2)/R2 more
accurately; but note that for a fixed σ (R2) a large size
will decrease the fractional error by definition. For the
Moffat PSF the diffraction spikes impact the size estimation
significantly. We note, however, that this was a simple
addition of a mask with no commensurate change in the

variation of ellipticity or size across a field of view. Also
the diffraction spikes contained low flux (only observable
with the eye if one stacked all stars); higher signal-to-noise
stars would change this. We leave an investigation of these
effects to future work.

4. Number of stars. We find that all methods are only weakly
dependent, or insensitive to the number of stars used to re-
construct the PSF in these simulations, except for those
sets in which we include a Kolmogorov power spec-
trum where we find that a larger number of stars re-
sults in a better reconstruction for the best methods (see
Figure 4). This indicates that PSFs with spatial power on
smaller scales require more stars for a particular reconstruc-
tion accuracy than PSFs without power on small spatial
scales.

5. Size of PSF. For the Airy profile we find that the larger
the PSF the more accurately its size can be measured; for
the Moffat we find a weak dependence with size. This is
understandable because a larger PSF is better sampled and
hence the size is easier to measure. This statement ap-
plies for PSFs with sizes 1.5 and 3 pixels in this study,
but is certainly not true in all generality: once the sam-
pling is better than critical, other factors (e.g., noise) take
over (which our results also support). We also stress that
an increase of the size of the PSF relative to the appar-
ent size of galaxies will cause the galaxies to be less
well-resolved, losing information and placing greater de-
mands on shape measurement (Paulin-Henriksson et al.
2008). Also with the simulations presented, the impact
of sampling on weak lensing shape measurement was not
tested, only the performances of the PSF interpolation meth-
ods. We show results for the PSF size variation in Figure 5.
When trading requirements of PSF model residuals against
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requirements for resolution (i.e., the absolute size of the
ellipticity and PSF) such behavior should be noted.

6. Telescope parameters. We show results for the PSF size
variation in Figure 7. In varying the telescope parameters
in the Jarvis et al. (2008) model we change the fiducial
parameters respectively (a0 = 0.014, d0 = −0.006, c0 =
−0.010) to a0 = −0.011, d0 = 0.009, and c0 = −0.011,
i.e., an opposite astigmatism, a positive de-focus, and a 10%
increased coma. We find that methods in this experiment
were not affected by the change in de-focus, but performed
better with the change in these astigmatism and coma
parameters.

We discuss each method individually in the Appendix.

4. CONCLUSIONS

This paper presents the first blind simulation challenge aimed
at testing optical PSF reconstruction methods. Simulations were
generated in which participants were presented with a spatially
varying PSF, sparsely sampled by stars, and asked to reconstruct
the PSF at non-star positions. The competition, the GREAT10
Star Challenge, attracted 30 submissions from 9 teams; several
of these teams were from non-astronomy backgrounds. The
simulation presented participants with 27,500 stars over 1300
images subdivided into 26 sets, where in each set a category
change was made in the type or spatial variation of the PSF.
The simulations were intentionally simplistic so as to present
the problem in an approachable way; in particular, the spatial
variation of the PSF and the form of the PSF use simple analytic
functions. In addition, only spatial variation, not temporal
variation, was tested; hence these results should not be used
to make specific statements about any particular experiment but
should provide a benchmark with which methods can be tested
and improved.22

In this paper we analyze the submissions by testing how well
each one can measure the ellipticity and size of the PSF. We
quantify this as the inverse variance in the modeled PSF in each
image for ellipticity and sized squared—defined using weighted
quadrupole moments. This study was motivated by a desire to
find methods that will be of use for weak gravitational lensing,
where the PSF must be reconstructed to high accuracy (Paulin-
Henriksson et al. 2008, 2009) at galaxy positions, but these
results should also be of more general interest for any science
case that analyzes galaxy images with optical data.

The submissions, and this paper, present a snapshot of
any methods’ ability to model the PSF. Due to the nature
of the competitive blind submissions, post-challenge tuning
of methods, which may yield significant improvements for
any given method over the results presented here (see Gentile
et al. 2013, for example), were not investigated. Each method
submitted is summarized in the Appendix. We can, however,
make some general statements about regimes in which methods
tend to perform well or poorly when run in a blind way.

The functional form of the PSF was either a Moffat function
or an Airy function, the spatial variation of the PSF was
modeled using the analytic function given in Jarvis et al.
(2008). In addition we optionally included diffraction spikes
( + or ∗ forms), changed the PSF size (from 3.0 pixels to
1.5 or 6.0 pixels), changed the number of stars (from 1000
to 500 or 2000), and added an atmospheric turbulence pattern in
ellipticity (with a Kolmogorov power spectrum). To summarize
the conclusions we find the following.

22 Data is available for download here http://great.roe.ac.uk/data/solutions/.

1. The best methods can reconstruct the PSF with an accuracy
of σ (e) ≈ 2.5 × 10−4 and σ (R2)/R2 ≈ 7.4 × 10−4 over
all sets.

2. Methods that performed poorly did so in part because the
functional form of the PSF was not modeled correctly (in
particular the Airy function).

3. Smaller PSFs were more difficult to model than larger PSFs
for the Airy function, but we add a caution that this does
not mean larger PSFs are better for weak lensing because
information on a target object is lost; instead this means
that well sampled PSFs are better for weak lensing.

4. Diffraction spikes caused the size of Moffat PSFs to be
modeled less accurately, but Airy PSFs more accurately,
due to the increase in the effective size.

5. The addition of atmospheric Kolmogorov power (equiva-
lent to short exposure PSFs; see Heymans et al. 2012) made
ellipticity and size reconstruction less accurate by a factor
of �2–5 for all methods. We add the caveat that the tempo-
ral nature of varying PSFs was not investigated, therefore
methods such as cross-correlation between sequential im-
ages, which could potentially improve modeling, were not
investigated.

For subsequent blind PSF modeling challenges the realism of
the temporal and wavelength dependent nature of PSF variation
could be included, and the simulations could be tailored to
specific experiments.

Modeling the PSF is of critical importance in efforts to
understand the nature of dark energy and dark matter using
weak gravitational lensing where any inaccuracy in the modeled
PSF can cause biases, and increased errors of cosmological
parameters of interest. To address this crucial open problem
this initial presentation of a blind PSF reconstruction challenge
will hopefully provide a benchmark upon which methods can
continue to be refined and tested.
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APPENDIX

DESCRIPTION OF METHODS

Here we include a brief description and references for each
of the methods submitted to the challenge.

Several methods use the name “Kriging,” which is in fact
the same method as Gaussian process regression, the method
submitted for the methods MoffatGP; Kriging is a different
term which has been in use in the geostatistics field but all are
types of Gaussian processes.

A.1. PSFEx (Gruen)

PSFEx uses version 3.9.1 of the PSFEx software (Bertin
2011). The method models the PSF using a functional basis,
the coefficients of which are allowed to vary with a polynomial
dependence on the position in the field. Details of the configu-
ration can be found in the PSFEx manual.23 For the GREAT10
submission, the functional basis is chosen to be a sub-pixel grid,
from which PSF images on the input pixel scale are produced
using Lanczos interpolation of order 4. In order to improve
configuration parameters, the P metric is calculated on stars re-
served from the fit. For this a Gaussian weight function with
much smaller scale than in the final analysis (3 pixel FWHM)
is used in order to suppress the noise in the images. The spa-
tial variation was chosen to be of order 8 (4) on the sets with
(without) atmospheric Kolmogorov power and the size of the
sub-pixel grid to be 1/4.7 of the PSF FWHM on all sets ex-
cept the very undersampled sets 6, 14 and 26, where a scale of
0.25 pixels is used instead. Note that these choices were made
without knowledge of the true properties of the sets.

A.2. PCA+Kriging (Li, Xin)

The basic idea of this method is to find the principal
components of an ensemble of stars in an image. To find
the correct principal components (PCs), stars first had to be
centered: for this step a fast algorithm (Li et al. 2012) was
used to locate the centroid for each star and then an ordinary
Kriging fitting algorithm was used to reproduce the star, whose
center was exactly located at the center of the stamp grid.
Each star was represented by 5 PCs, with five corresponding
coefficients. According to the noise in the star stamp, an
additional Gaussian noise component was included in each
pixel and the corresponding coefficients were re-evaluated in
10 realizations; this helped us to estimate the uncertainties for
each coefficient of PCs and each star. An ordinary Kriging fitting
process was then used to predict the value of each coefficient at
the asked positions and the new stars were composed of these
5 PCs with the predicted coefficients.

A.3. Gaussianlets (Li, Xin)

Gaussianlets is a simplified version of shapelets without any
angular components, i.e., there are no shapelets with m �= 0. The

23 http://www.astromatic.net/software/psfex

ellipticity of each star was calculated at the first step, then the
size of each star Ri was estimated quickly using the algorithm
described in Li et al. (2012). One set of unique Gaussianlets with
a maximum order nmax = 4 were created with R = 〈Ri〉. These
Gaussianlets are circularly symmetric and were then reshaped
into elliptical profiles according to the ellipticities that were
measured in the first step to fit an individual star. The coefficients
of Gaussianlets were calculated by minimizing a chi-square
function. Finally each star was described by 7 parameters, e1,
e2 and the five coefficients of gaussianlets. Ordinary Kriging
interpolation was then used to predict these seven parameters
at the asked positions. To reproduce the expected virtual star,
the gaussianlets were reshaped according to e1 and e2 and were
added up together according to their coefficients.

A.4. B-Splines (Gentile, Courbin, Meylan)

The B-Splines method, like the IDW, RBF, and Kriging
schemes also described in this paper, uses the same underlying
PSF estimation scheme that consists of the following stages.
First, an elliptical Moffat profile is fitted to each star at a
known position. Fitting is performed using a custom-developed
minimizer based on an “adaptive cyclic coordinate descent
algorithm.” This minimizer is also used in the gfit galaxy
shape measurement method described in Kitching et al. (2012a).
Second, an analysis is performed of the spatial distribution
of each Moffat parameter across the image. Third, a spatial
interpolation scheme is adopted (here B-Splines) to predict the
values of each Moffat parameter p at asked positions. Finally,
pixelized star images are reconstructed at asked positions based
on the interpolated Moffat profile.

B-Splines perform a spatial interpolation of individual Moffat
PSF parameters using the bivariate basis-spline algorithm de-
scribed in Dierckx (1980, 1995) and implemented in the Python
SciPy interpolate module. The main parameters affecting the
interpolation are the degree of the spline, the number of knots,
and a smoothing factor. A third-order spline was used but the
algorithm was allowed to automatically optimize the number of
knots and the smoothing factor.

A more thorough description of B-Splines, as well as the
IDW, RBF, and Kriging interpolation methods can be found in
Gentile et al. (2013).

A.5. Inverse Distance Weighting (IDW)
(Gentile, Courbin, Meylan)

The IDW interpolation algorithm (Shepard 1968) is used
to interpolate the Moffat parameters of the fitted PSF (see
B-splines). Weights are allocated to the stars or parameters to
interpolate. The closer the observations from a target location,
the greater the weight ascribed to them. The estimated value
of the parameter at the target point is a weighted sum of
the values of all neighboring observations considered. The
weighting power γ determines how fast the weights tend to zero
as distances increase. The Star Challenge results were obtained
with γ = 2 with a neighborhood size between 5 and 15 pixels
depending on the density of stars.

A.6. Radial Basis Function (RBF and RBF-thin)
(Gentile, Courbin, Meylan)

The RBF and RBF-thin methods make use of Radial Basis
Functions to predict the values of the PSF parameters at
non-star positions. As in B-splines the PSF is approximated
by a Moffat profile. A Radial Basis Function (Buhmann 2003;
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Press et al. 2007), is a radially symmetric, real-valued function,
whose value at a target location only depends on the distance
to some other point. The prediction at a target location is based
on the weighted sum of the RBFs evaluated in a neighborhood
centered at that location.

The RBF and RBF-thin methods respectively use the linear
and thin-plate functions. Their implementation is based on the
interpolation function available in the Python SciPy interpolate
module with a neighborhood size between 25 and 30 pixels.
For the submission to the challenge, smoothing was disabled,
i.e., exact interpolation was used where the PSF reconstructed
at known positions should be exactly the input data.

A.7. Kriging (Gentile, Courbin, Meylan)

Ordinary Kriging (e.g., Waller & Gotway 2004; Webster &
Oliver 2007) is used to interpolate PSF parameters (Moffat
profiles as in B-splines) across the PSF field. For the Star
Challenge, a unique implementation was created in Python for
greater flexibility and control of the algorithm. In this version,
no attempt was made to correct for any spatial anisotropy or
drift found in the data.

The experimental variograms were fitted using the
Levenberg–Marquardt (Levenberg 1980; Marquardt 1963) fit-
ting function from the SciPy optimize module. The program
dynamically selects the theoretical variogram models and pa-
rameters that produce the best fit. The area used for interpolation
is a circular area with a radius between 700 and 1000 pixels from
the center of the 4800 × 4800 PSF field. Lag distances were se-
lected in the range 100 pixels � h � 300 pixels depending on
the image and the PSF model parameter to estimate. The number
of observations N to include in the interpolation neighborhood
was typically 5 � N � 20 depending on the image star density.
As a rule of thumb a tolerance was adopted for the distances
Δh ≈ h/2 and angles Δθ = 22.◦5.

A.8. IDWStk (Gentile, Courbin, Meylan)

The IDWStk method experimented with an algorithm
whereby the star postage stamp to reconstruct at asked posi-
tion is estimated by stacking the pixels of nearby surrounding
stamps located at known positions. Each pixel carries a weight
that depends on its distance to the location where reconstruction
has to take place. These weighting factors are calculated using
IDW. For the Star Challenge, the number of surrounding nearby
stars in the stacking was typically 10.

A.9. MoffatGP (Georgatzis, Mariglis, Storkey)

Predictions for the parameters of the Moffat model were made
at the asked positions (with their corresponding offsets) and
then the star images at test positions were reconstructed using
the Moffat function (generating a 48 × 48 image for each star
patch). This was done by finding five coefficients per star patch
(position, ellipticity, and size) which were then used as training
outputs for the regression method. Regression was performed
using the Gaussian Process (GP) framework on an augmented
input space. Along with the stars’ center locations, for each
star patch a distinct variable the offset of the star center from
the bottom left corner of the center pixel was isolated, and
provided as an additional input to the GP. The neural network
covariance function Rasmussen & Williams (2006) was chosen
to encode correlations between data points. Predictions for
the coefficients were made at the asked positions (with their
corresponding offsets) and then the star images at test positions

were reconstructed using the Moffat model (generating a 48 ×
48 image for each star patch). The method is described in more
detail in Georgatzis (2011).
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2008, A&A, 484, 67
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