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The potential impact of climatic change on bird species’ distributions in Europe was re-
cently modeled for several scenarios of projected late 21st century climate. The results in-
dicate mean range shifts of hundreds of kilometres north for many of European bird spe-
cies. Here we consider the implications from such distributional shifts for the bird com-
munities of Norway spruce (Picea abies) monocultures in southern Sweden, a forest type
likely to remain prevalent due to forestry, despite climate change. Our assessment led us to
three key findings. First, the monocultures offer suitable habitat to only two bird species
projected to extend their breeding distribution northwards into southern Sweden this cen-
tury. Second, species richness was projected to decline overall, which would accentuate
the depauperate nature of these stands. Third, all conifer-associated arboreal granivores
and three of four conifer-associated arboreal insectivores were projected not to occur, re-
ducing both the functional richness and functional redundancy. We discuss caveats re-
lated to our approach, including the potential for bioclimatic projections – used in this
study – to be hampered by the artificial retention of dominant vegetation. We also discuss
the implications of our results for avian biodiversity in what is today the most prevalent
forest type in southern Sweden and in many other regions of Europe.
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1. Introduction

The potential impact of climatic change on bree-
ding bird species’ distributions in Europe by the
end of this century was recently modeled (Huntley
et al. 2007, 2008), with the results indicating mean
range shifts of hundreds of kilometres north for
many species. The climatic envelope models used
in these studies are explicitly based on the assump-
tion that, when species’ distributions are consid-
ered at a sufficiently extensive spatial scale (conti-
nental in this case) and coarse enough grain (50 km
× 50 km grid cells in this case), climate is the ulti-
mate determinant of observed patterns of species’
occurrence (Huntley et al. 2008, Araujo et al.

2009, Gregory et al. 2009). This expectation has
been supported by comparisons of projected
changes in the regional climatic suitability for bird
species with observed population trends (Green et

al. 2008, Gregory et al. 2009, Jiguet et al. 2010a),
as well as by a modeling study using a range of
grain sizes (Luoto et al. 2007). However, when at-
tempting to apply the outcomes of such models to
specific ecosystems at smaller spatial extents and
finer grain, the complicating influence of vegeta-
tion structure and composition (Lee & Rotenberry
2005, Matthews et al. 2011), land-use practices
(Peterson et al. 2002, Felton et al. 2010b), and spe-
cies’ habitat requirements (Fearer et al. 2007),
need also to be taken into account.

Approximately one third of Sweden’s bird spe-
cies are associated with forests (Gerell et al. 1996).
Nevertheless, only ca. 5% of Swedish forest areas
are protected, with the rest having largely been
transformed by production forestry in terms of tree
species composition, age structure, spatial struc-
ture and disturbance regimes (Gustafsson &
Perhans 2010). In the south of the country, produc-
tion forestry has often led to the conversion of
broadleaf and mixed broadleaf-conifer forests to
even-aged monocultures of the Norway spruce
(Picea abies, hereafter spruce) (Lindbladh & Fos-
ter 2010, Lindbladh et al. 2011). This has resulted
in spruce monocultures becoming the most com-
mon forest type in southern Sweden, accounting
for 50% of standing volume (SFA2009). This dra-
matic increase in the abundance and distribution of
spruce in the region (Lindbladh et al. 2000,
Lindbladh & Foster 2010), has been to the detri-
ment of deciduous and old-growth forests and

their associated bird communities (Felton et al.

2010b, 2011). As forest land in southern Sweden is
dominated by spruce monocultures, projecting
how climatic change will likely affect the bird
communities found in these environments is rele-
vant to understanding the future of southern Swed-
ish forest-associated bird diversity in general.

Here, we use bird habitat associations, in com-
bination with the climatic change modeling results
from Huntley et al. (2007, 2008), to consider the
potential bird-community composition of spruce
monocultures in southern Sweden at the end of this
century. Several features of our approach should
increase the reliability of the projections. First, we
focus on a specific managed habitat type that, due
to production benefits, market incentives, long-
term planning, and rotation periods of 60–70 years
(Carbonnier & Hägglund 1969, Bergquist et al.

2009, Felton et al. 2010a), is likely to persist in
southern Sweden over the course of this century,
thus reducing confounding influences of climate-
associated changes to vegetation structure and
floristics. Second, the results of response-surface
models are more reliable when applied to regions
of low topographical relief, and in regions for
which regular and widespread systematic monitor-
ing of species take place (Huntley et al. 2007).
Southern Sweden possesses both of these charac-
teristics. Third, as spruce monocultures also occur
in more temperate biogeographic zones of West-
ern Europe, we can use bird surveys from these re-
gions to identify species that use spruce mono-
cultures as habitat, but do not as yet breed regu-
larly in Sweden. We discuss our results with re-
spect to the potential costs to forest bird communi-
ties from retaining boreal-associated tree species
cover in what are increasingly temperate climatic
conditions, and raise caveats relevant to our ap-
proach and the interpretation of bioclimatic pro-
jections.

2. Materials and methods

2.1. Bird communities assessed

We used the Swedish standard for defining spruce
monocultures, as managed stands of trees in which
Norway spruce (Picea abies) comprise the major-
ity of the stand’s basal area, with no other species
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contributing �30% of total basal area (NFI 2007).
Using electronic databases and Boolean search
terms, we searched the scientific literature for
studies that assessed bird-community composition
for spruce monocultures in Southern Sweden and
north-western Europe. To ensure all potentially
relevant studies were considered, we used inclu-
sive search terms: (“Picea abies” or “Norway
spruce”) and “bird*”. The databases used were:
Web of Science (http://www.isiwebofknowledge.
com/), Google Scholar (http://scholar. google.se/)
and Google (http://www.google.se/). Information
on bird dietary guilds, foraging ecology, mass and
migratory status were obtained from Birds of the
Western Palearctic (BWPi 2007) and Lindell
(2002).

Three published studies (Nilsson, 1979a,
1979b, Felton et al. 2011) surveying a total of nine
mature stands were used to provide the bird-com-
munity composition and relative abundance for
bird species currently associated with spruce
monocultures in this region. These studies took
place in the south eastern counties of Blekinge,
Kalmar, and Kronoberg (Fig. 1), with stands lo-
cated at least 2 km apart to ensure independence of
the surveyed bird communities. The results from
these studies enabled us to identify which species

occur in spruce monocultures, and their abun-
dance. Although two of the studies are more than
30 years old, all of the species encountered are
consistent with recent surveys (Lindström et al.

2012a) and the distribution maps for breeding Eu-
ropean bird species in the present climate (Huntley
et al. 2007, 2008).

We reviewed relevant literature on the habitat
associations of all forest birds in Sweden and
Western Europe (Lindell 2002, BWPi 2007). This
review provided us with a list of European bird
species considered to be associated with spruce
monocultures, often due to their provision of suit-
able breeding sites or adequate food resources
(Lindell 2002, BWPi 2007). Of the species associ-
ated with spruce monocultures, we refer to those
projected to find suitable climatic conditions in
southern Sweden by the end of this century as “es-
tablishing species”, though we emphasise that es-
tablishment itself is not a given, and address this
uncertainty as part of our analysis.

2.2. Background

to climatic change projections

Huntley et al. (2007, 2008) simulated the potential
distributions of bird species breeding in Europe at
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Fig. 1. The loca-
tion of the study
area in Götaland,
southern Sweden,
and the spatial ar-
rangement of the
study sites.



the end of this century (2070–2099) for six IPCC
climate-change scenarios. Their models were
based on presence/absence records of breeding
birds within 50 km × 50 km grid cells used by the
European Bird Census Council (Hagemeijer &
Blair 1997), and mean monthly climatic data at
0.5°C × 0.5°C resolution for 1961–1990 (New et

al. 1999). Huntley et al. (2007, 2008) fitted re-
sponse-surface models, using locally-weighted re-
gression, to the distribution of each bird species,
using three bioclimatic variables shown to give the
best-fitting models of breeding distribution across
all species. The three variables used were: mean
temperature of the coldest month; annual tempera-
ture sum above 5°C; and an estimate of the ratio of
actual to potential evapotranspiration. Model per-
formance was assessed using area under the curve
of a receiver-operating characteristic plot (Metz
1978). The probability of occurrence for a species
for a given grid cell was simulated by the model,
and was converted to presence/absence record us-
ing the threshold probability that maximises Co-
hen’s K (Cohen 1960). See Huntley et al. (2007,
2008) for a detailed description of these methods.

The reliability of the climate-envelope ap-
proach at projecting shifts in species distributions
due to climatic change has been questioned (Araú-
jo & Rahbek 2006, Pearson et al. 2006, Zimmer
2007). Gregory et al. (2009) addressed such con-
cerns by (1) simulating observed species’distribu-
tions in one part of a species’ range using a model
based on data fitted from another part of the spe-
cies’ range; (2) comparing observed changes in
species’ distribution with projected changes to
distribution (eliminates effect of spatial auto-cor-
relation); and (3) comparing the capacity to project
changes for species for which climatic envelope
models were fitted to all or only part of their geo-
graphic range. Their results support

Huntley et al. (2007, 2008) and justify the use
of climate-envelope approaches as a means of pro-
jecting shifts in bird species distributions due to
climatic change.

We used a subset of results from Huntley et al.

(2007, 2008) that were based on the HadCM3 gen-
eral circulation model (Gordon et al., 2000) and
the IPCC 2001 synthesis SRES B2 and A2 emis-
sion scenarios (Nakicenovic & Swart 2000, Cu-
basch et al. 2001). We restricted our assessment to
the results provided for the HadCM3 model, be-

cause it is a “middle-of-the-road” model with re-
spect to simulating global mean temperature and
precipitation changes (Huntley et al. 2008). We
used the A2 emission scenario because it assumes
rapid human population growth and high emis-
sions, with end-of-the-century CO

2
emissions

equating to approximately five times the 1990 val-
ues. In contrast, we used the B2 emission scenario
because it assumes relatively slower population
growth, with more diverse technological advance-
ments contributing to the end-of-the-century CO

2

emissions equating to slightly more than two times
the 1990 values (see Cubasch et al. 2001, IPCC
2007).

2.3. Avian community composition

We used presence/absence results from Huntley et

al. (2007, 2008) for grid cells proximate to the
spruce stands considered to determine which of
the baseline “present” bird species for each stand
were projected to persist under A2 and B2 scenar-
ios. We applied the same approach to identify the
spruce-associated bird species projected to arrive
in southern Sweden for these scenarios. We then
considered two alternative outcomes: one in which
no new species would establish in spruce mono-
cultures by the end of this century (“Not establish-
ing species”), and another in which spruce-associ-
ated bird species do establish (“Establishing spe-
cies”). Projected species-richness results were
based on the net results of these two outcomes (not
establishing or establishing species) for the two
climate-change scenarios (A2 or B2).

2.4. Statistical analysis

To assess whether statistically significant differ-
ences occur between present and projected species
richness, we conducted paired t-tests contrasting
present species richness with projected species
richness as response variables, after testing for
normally distributed errors. We repeated this ap-
proach for A2 and B2 scenarios, and for the two
establishment scenarios. To compensate for the in-
flated risk of false discovery arising from multiple
comparisons, we applied the FDR correction pro-
cedure (Benjamini & Hochberg 1995). We also
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used Cohen’s D to calculate the effect size of the
projected response (Cohen 1988). We ran all sta-
tistical tests using R (R Development Core Team
2010).

3. Results

3.1. Bird communities in spruce

monocultures, and projected

climatic suitability

We recorded a total of 36 bird species to use the
managed spruce monocultures of southern Swe-
den (Nilsson 1979a, 1979b, Felton et al. 2011).
The analysis by Huntley et al. (2007, 2008) then
enabled us to consider which of these and addi-
tional species are likely to shift their distributions
to the inclusion or exclusion of southern Sweden
over the course of this century for different cli-
mate-change scenarios. Of those bird species pro-
jected to encounter suitable climate in southern
Sweden later on this century, most will not find
suitable breeding habitat or resources in spruce
production stands (Lindell 2002, BWPi 2007). For
example, although the Melodious Warbler (Hip-

polais polyglotta), Nightingale (Luscinia mega-

rhynchos), and Bonelli’s Warbler (Phylloscopus

bonelli) are all projected to experience suitable cli-
matic conditions in southern Sweden by the end of
this century for either the B2 or A2 scenarios
(Huntley et al. 2007, 2008), none of these have
habitat associations that overlap with the condi-
tions provided in dense coniferous production fo-
rests (BWPi 2007). Firecrest (Regulus ignicapilla)
and Short-Toed Treecreeper (Certhia brachy-

dactyla) are projected to experience suitable cli-
mates in southern Sweden under the A2 and B2
SRES scenarios (2007, 2008), have a defined
breeding habitat association with production co-
niferous forests (BWPi, 2007), and are found in
spruce monocultures in at least part of their present
range, albeit at low density (Steverding &
Leuschner 2002, Paquet et al. 2006, BWPi 2007,
de Warnaffe & Deconchat, 2008). The former of
these two is an extremely rare breeder in Sweden,
and the latter appears a vagrant (Lindell 2002,
Ottosson et al. 2012).

Both of these species have closely-related con-

geners which breed in spruce monocultures of
southern Sweden, viz. the Goldcrest (Regulus re-

gulus) and the Eurasian Treecreeper (Certhia

familiaris). These congeneric pairs often co-occur
within stands (Steverding & Leuschner 2002, de
Warnaffe & Deconchat 2008). For our analysis,
we therefore considered climate projections for
the 36 bird species recorded to occur in the man-
aged spruce monocultures of southern Sweden
(Nilsson 1979a, 1979b, Felton et al. 2011), in
combination with projections for the Firecrest and
Short-Toed Treecreeper.

For both the B2 and A2 scenarios, the net im-
pact of climatic change on bird species associated
with spruce production forests was negative in
terms of species richness. Stands were projected to
have significantly lower than current species rich-
ness for both B2 and A2 scenarios (Fig. 2), regard-
less of whether the scenarios included the estab-
lishment of Firecrest and Short-Toed Treecreeper
(B2: t = 6.78, df = 8, P < 0.001, D = –0.54; A2: t =
4.05, df = 8, P < 0.001, D = –0.52), or excluded
their establishment (B2: t = 13, df = 8, P < 0.001, D

= –0.91; A2: t = 6.95, df = 8, P < 0.001, D = –0.91).
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Fig. 2. Species-richness scores for present bird
communities within surveyed Norway spruce
monocultures in southern Sweden, and the pro-
jected outcomes for B2 (light grey) and A2 (dark
grey) climatic-change scenarios (see text for de-
tails), with establishment (E) or no establishment
(N) of new bird species. Box plots are based on
overall means; P values are obtained from paired t
tests after FDR correction. *** = P < 0.001.



3.2. Bird species ecology

Bird dietary guilds, foraging ecology, mass, and
migratory status are provided in Table 1. As 12 of
the 36 species recorded in cited studies (Nilsson
1979a, 1979b, Felton et al. 2011) occurred at ex-
tremely low densities (e.g., were rare visitors to
these stands and absent from all but 1–2 of the sur-
veyed stands) and thus were unlikely to play major
roles in the bird-community composition, we re-
stricted this aspect of assessment (but not the sta-

tistical analysis) to those species that contributed
at least 1% of total abundance (Table 1). The bird
species excluded from this analysis thus were
Common Chiffchaff (Phylloscopus collybita),
Common Raven (Corvus corax), Eurasian Spar-
rowhawk (Accipiter nisus), European Greenfinch
(Carduelis chloris), European Starling (Sturnus

vulgaris), Long-Tailed Tit (Aegithalos caudatus),
Mistle Thrush (Turdus viscivorus), Redwing
(Turdus iliacus), Wood Warbler (Phylloscopus

sibilatrix) and Yellowhammer (Emberiza citri-
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Table 1. Bird species contributing �1% of relative abundance in spruce monocultures in southern Sweden. Characteris-
tics of the two species projected to both find suitable climate and use spruce monocultures in the future are also in-
cluded. Species are sorted according to their foraging and dietary ecology. Species are classified according to body
mass (g), foraging and dietary ecology during the breeding season, migratory status (R = resident, PM = partial migrant,
M = migrant), and the projected relative change in climatic suitability score from present to the A2 and B2 scenarios
(Huntley et al. 2007, 2008) for each species as an average across the surveyed sites. Categories for climatic suitability
change are; Substantial increase (SI) = >25% increase, Stable (S) = =10% change, Decrease (D) = >10-25% decline,
Substantial decrease (SD) = >25% decline, but still present, Unsuitable (U) = unsuitable climate. C/B = conifer/broadleaf.

Scientific name Common name “Present” Body Migra- Foraging and diet B2 A2

relative mass tory sce- sce-

abun- (g) status nario nario

dance

Ficedula hypoleuca European Pied Flycatcher 1% 13.2 M Arboreal/aerial feeding insectivore U U

Pyrrhula pyrrhula Eurasian Bullfinch 1% 31.1 PM Arboreal/ground-feeding ominivore S S

Parus caeruleus Blue Tit 1% 11.4 R Broadleaf-preferring arboreal insectivoore S S

Parus major Great Tit 5% 18.5 R Broadleaf-preferring arboreal insectivoore S S

Phylloscopus trochilus Willow Warbler 3% 8.9 M Broadleaf-preferring arboreal insectivoore U U

Poecile palustris Marsh Tit 1% 11.8 R Broadleaf-preferring arboreal insectivoore S D

Sitta europaea Eurasian Nuthatch 1% 23.9 R Broadleaf-preferring arboreal insectivoore S S

Sylvia atricapilla Blackcap 1% 19.4 M Broadleaf-preferring arboreal insectivoore S S

Garrulus glandarius Eurasian Jay 1% 180.9 R Broadleaf-preferring arboreal omnivore S S

Certhia familiaris Eurasian Tree-creeper 5% 8.9 R C/B generalist arboreal insectivore U U

Fringilla coelebs Chaffinch 21% 24.5 PM C/B generalist arboreal insectivore S S

Dryocopus martius Black Woodpecker <1% 318 R C/B generalist arboreal insectivore U U

Dendrocopos major Great Spotted Woodpecker <1% 87.5 R C/B generalist arboreal insectivore S S

Carduelis spinus Eurasian Siskin 10% 13.2 PM Conifer-preferring arboreal granivore (nomadic) U U

Loxia curvirostra Red Crossbill 1% 40.4 PM Conifer-preferring arboreal granivore (nomadic) U SD

Parus cristatus Crested Tit 1% 11.2 R Conifer-preferring arboreal insectivore SD SD

Periparus ater Coal Tit 5% 9.0 R Conifer-preferring arboreal insectivore S S

Poecile montanus Willow Tit 2% 11.2 R Conifer-preferring arboreal insectivore U U

Regulus regulus Goldcrest 7% 5.8 PM Conifer-preferring arboreal insectivore SD SD

Columba palumbus Common Wood-Pigeon 3% 509.6 M Ground-feeding granivore S S

Anthus trivialis Tree Pipit 1% 23.4 M Ground-feeding insectivore S D

Erithacus rubecula European Robin 15% 16.4 M Ground-feeding insectivore S S

Prunella modularis Dunnock 3% 19.0 M Ground-feeding insectivore SD D

Troglodytes troglodytes Winter Wren 4% 8.9 M Ground-feeding insectivore S S

Turdus merula Eurasian Blackbird 3% 93.2 R Ground-feeding insectivore S S

Turdus philomelos Song Thrush 5% 69.7 M Ground-feeding insectivore S D

New arrivals

Certhia brachydactyla Short-toed Tree-Creeper – 9.2 C/B generalist arboreal insectivore SI SI

Regulus ignicapilla Firecrest – 5.6 C/B generalist arboreal insectivore SI SI



nella). Despite similar occurrence at less than 1%
of total abundance, we included Black Wood-
pecker (Dryocopus martius) and Great Spotted
Woodpecker (Dendrocopos major) due to their
potential ecological importance via their capacity
to create reproduction habitat for cavity-nesting
birds. None of the excluded species were projected
to experience an increase in climate suitability un-
der the considered climate-change scenarios. Of
the species commonly found in spruce mono-
cultures, five were projected to not occur due to a
loss of climatic suitability in the region under both
the B2 and A2 scenarios. These were Eurasian
Tree Creeper (Certhia familiaris), Eurasian Siskin
(Carduelis spinus), European Pied Flycatcher
(Ficedula hypoleuca), Willow Tit (Poecile mon-

tanus), and Willow Warbler (Phylloscopus trochi-

lus).

4. Discussion

4.1. Projected climate-induced

bird-community changes

Our assessment indicated a significant decrease in
bird species richness for managed spruce
monocultures of southern Sweden by the end of
this century. We projected declines in species rich-
ness for both B2 and A2 SRES scenarios, regard-
less of the establishment alternative considered for
newly-immigrating species. Notably, we found
such declines in species richness despite the al-
ready depauperate nature of these stands, and the
occupation of these stands by a bird fauna pre-se-
lected to be tolerant of human disturbance. Below
we discuss the specifics of our projections and po-
tential caveats.

The species we projected to not occur, or to ex-
perience the most extensive decreases in climatic
suitability for B2 and A2 scenarios (Table 1) in-
cluded three of the most common species currently
found in southern Swedish spruce monocultures,
namely Eurasian Siskin, Goldcrest and Eurasian
Treecreeper. Considered together, these species
represent more than 20% of avian abundance pres-
ently encountered in these stands (Table 1). Fur-
thermore, five of the six conifer-associated species
were projected to not occur in the considered sce-
narios, or to experience substantial declines in cli-

matic suitability (with the exception of Coal Tit
Parus ater; Table 1). The net result is a projected
absence of all conifer-associated arboreal grani-
vores and three of the four conifer-associated ar-
boreal insectivores from these stands. This notably
equates with a decline in both functional richness
(the diversity and range of functional traits pos-
sessed by different species; Mayfield & Daily
2005, Wright et al. 2006) and functional redun-
dancy (when a given function is fulfilled by multi-
ple species; Walker 1992, 1995), which are impor-
tant determinants of resilience of ecological sys-
tems (Peterson et al. 1998, Allen et al. 2005).

In contrast to the projected reductions of coni-
fer specialists, among the six broadleaf-associated
insectivores, we projected only Willow Warbler to
decrease considerably according to the climatic
suitability in the B2 and A2 scenarios (Table 1).
The reason why a larger proportion of conifer-as-
sociated species was projected to be susceptible to
climatic change may relate to the boreo-nemoral
location of these coniferous stands. In southern
Sweden, current management practices are pro-
moting “borealised” forests (Emmer et al. 1998)
within an increasingly “non-boreal” climatic zone
(Koca et al. 2006). This has resulted in a managed-
forest type inhabited by a significant number of
boreal-forest-associated bird species, which ap-
pear to be more proximate to their limits of clima-
tic tolerance, and generally less well suited to the
direction the regional climate is projected to take
than are their broadleaf-associated counterparts.

Any projected species loss in these managed
forests may be compensated for by concomitant
projected increases in newly-establishing birds
from more temperate western European climates.
However, only two bird species – the Short-Toed
Treecreeper and the Firecrest – are likely to colo-
nize spruce monocultures under the assessed sce-
narios (Table 1). Furthermore, even these two spe-
cies are not specialized on these environments. Al-
though they inhabit spruce production forests
within their present range (Steverding &
Leuschner 2002, Paquet et al. 2006, de Warnaffe
& Deconchat 2008), neither of these species is a
conifer specialist, nor are they particularly well
adapted to structurally simplified stands (BWPi
2007). The Short-Toed Treecreeper is most com-
monly associated with tall rough-barked broad-
leaved tree species, whereas Firecrest prefers
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mixed forests with a distinct understorey (BWPi
2007). These ecological requirements do not align
with the environments found in spruce mono-
cultures in southern Sweden. Furthermore, these
ecological requirements are not characteristic of
the Eurasian Treecreeper or Goldcrest. As a result,
of all the species projected to newly encounter
suitable climatic space within southern Sweden
this century (Huntley et al. 2007, 2008), only two
inhabit spruce monocultures, and neither are likely
to be able to fulfill similar ecological roles to those
occupied by their departing congeners, either with
respect to abundance or ecological function. In
short, if spruce monocultures in southern Sweden
lose species due to climate change, replacement
candidates among northward-shifting bird com-
munities may not compensate this loss.

These results raise important issues for forest-
associated avian biodiversity in this region. Cli-
mate change appears likely to reduce the climatic
suitability for a number of bird species found in
these spruce monocultures over the forthcoming
century (however see caveats below), primarily
through the loss or decline of conifer-associated
species. In contrast, broadleaf-associated species
were projected to be relatively resilient to climatic
change for the considered projections (Table 1). In
combination, these findings indicate that climate
change may exacerbate the differences in biodi-
versity value between spruce monocultures and
mixed/broadleaved forests in this region during
this century. As spruce monocultures are already
associated with low ecological values in this re-
gion (Berg et al. 1994, Fridman 2000, Chapin et al.

2007, Felton et al. 2010b, Gärdenfors 2010), any
further reduction in the capacity of these dominant
production forests to provide suitable habitat for
forest species is relevant to the future of Swedish
avian biodiversity in general. Furthermore, these
results highlight how existing biodiversity stress-
ors (i.e., intensive forest management) may inter-
act with climate change to escalate regional biodi-
versity loss (see Driscoll et al. 2011).

4.2. Caveats in the model predictions

The underlying assumption of bioclimatic projec-
tions is that if climatic conditions within all or parts
of a species’ present distribution are projected to
shift outside the range experienced within that cur-

rent distribution, then the species is unlikely to
thrive in those areas. The processes that drive such
induced declines in a species include habitat
change (Warren et al. 2001, Julliard et al. 2004),
physiological limitations (Angilletta et al. 2010,
Fuller et al. 2010, Boyles et al. 2011, Oswald &
Arnold 2012), species interactions (Van der Putten
et al. 2010), diseases (LaPointe et al. 2005) and
synergistic effects (Drake et al. 2005). However,
the circumstance considered in our study is dis-
tinct, in that the climate is projected to change
while the dominant vegetation cover – a key deter-
minant of suitable habitat for terrestrial species – is
artificially retained through human management.
This disconnects two important components of a
species’ niche that are normally coupled during
periods of relative climatic stasis. This fact has the
potential to hamper the accuracy of our climate-in-
duced projections. Specifically, if individuals of a
species are capable of persisting under a wider
range of climatic conditions than thee current
distribution of the species indicates, then retention
of the dominant vegetation may allow the species
to persist in areas where climatic conditions for the
scenarios considered shift outside the range expe-
rienced within the species’ current distribution.
Our projections may thus overestimate the extent
to which the bird communities of these spruce
monocultures will be affected by climatic change
over the forthcoming century.

The accuracy of these projections may also be
reduced if a species has been consistently eradi-
cated (e.g., due to habitat loss or persecution) from
areas experiencing a particular range of combina-
tions of climatic conditions. In such cases a
bioclimatic model will erroneously attribute the
absence of the species to that particular combina-
tion of climatic conditions, whereas in fact the ab-
sence was due to non-climate-related human activ-
ity. In such cases, any resultant projections could
mistakenly indicate a species’ absence from loca-
tions where climatic conditions may in fact be suit-
able. We cannot rule out this possibility. However,
the likelihood of this error is reduced by the fact
that all of the species we considered are exten-
sively distributed throughout much of Europe
(Huntley et al. 2007), and therefore are less likely
to have been consistently eradicated from all those
locations overlapping with a particular suite of cli-
matic conditions.
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Recent observations of population declines for
European bird species at the warmest edge of their
distribution (Jiguet et al. 2010a) may be indicative
of bird species experiencing temperature-related
physiological stress (Jiguet et al. 2010b, Oswald &
Arnold 2012). If this is the causal mechanism be-
hind populations exhibiting the so-called trailing-
edge retractions to their previous distribution
(Maggini et al. 2011), then the habitat provided by
mature spruce monocultures may buffer against
some of the species losses indicated in our projec-
tions. As currently managed, the vegetation of
Norway spruce monocultures is very dense during
some periods of the rotation (Linder & Östlund
1998), with the resultant understorey microclimate
capable of ameliorating local climatic extremes
(Merklova & Bednarova 2007). If so, then the cli-
mate-change projections for these locations may
diverge sufficiently from the microclimates actu-
ally experienced by birds within these stands to en-
able bird species to persist even when projections
indicate they would not (Fuller et al. 2010). In ad-
dition, this could contribute to a lag in the response
rate of bird communities to climatic change, as has
recently been observed throughout Europe (Brom-
mer et al. 2012, Devictor et al. 2012, Lindström et

al. 2012b). The degree to which such processes
would alter the outcomes of our projections re-
quires further research and is primarily speculative
at this stage.

We solely focused on species associated with a
managed habitat type (i.e., Norway spruce mono-
cultures) that is currently actively created
(planted) and maintained, and expected to remain
in this region over the course of this century. By so
doing we attempted to account for one of the pri-
mary limitations to species tracking climate
change, viz. the availability of suitable habitat
(Barbet-Massin et al. 2012, Barnagaud et al.

2012). However, other studies have emphasised
the capacity of extensive land-use change to over-
ride observed impacts on bird-species populations
(Julliard et al. 2004, Eglington & Pearce-Higgins
2012). We therefore acknowledge that, even ac-
cepting that Norway spruce monocultures will re-
main in southern Sweden throughout this century,
substantial changes to management approaches
would have implications for these bird species
communities that to some extent could rival those
due to climatic change. These include, for in-

stance, rotation length, fertilization intensity, or
thinning regimes (Nilsson et al. 2011). At this
stage, such potential changes to Norway spruce
management remain experimental, and due to the
slow rate at which production forestry operations
can shift direction (Felton et al. 2010a), they prob-
ably only alter a small percentage of production
stands in the time period considered.

4.3. Conclusions

Although there is increasing empirical support for
spatial responses being a predominant adaptation
strategy among terrestrial species to climatic
change (Parmesan & Yohe 2003, Root et al. 2003,
Devictor et al. 2008, Green et al. 2008, Gregory et

al. 2009, Jiguet et al. 2010a, Thomas 2010, Brom-
mer et al. 2012, Devictor et al. 2012, Lindström et

al. 2012b), our results should not be conflated with
predictions. The response of any species to climate
change represents a complex interplay of vulnera-
bilities and opportunities (Williams et al. 2008),
with the net result being species specific. As such,
our results are best considered as indications of the
direction and potential extent to which climatic
change alters these bird communities, limited for
the scenarios, locations and habitat type consid-
ered. Accepting the caveats and limitations spe-
cific to our approach (see above), and that all
bioclimate projections will be to some extent inac-
curate, our results indicate that climate change re-
duces the avian diversity of Norway spruce
monocultures in southern Sweden. We emphasize
that Norway spruce monocultures are the most
prevalent forest type in southern Sweden, and also
one of the most prevalent production forest types
in Europe (Forest Europe 2011). Our results thus
appear relevant to European conservation biolo-
gists, forest managers and policy makers con-
cerned about the capacity of such plantations –
proximate to their recent natural low-latitude
range boundaries – to maintain their avian diver-
sity this century.

Conservation biologists need to consider the
projected forest-dependent species pool, if biodi-
versity is to be maintained over the forthcoming
century within dominant land-uses, such as pro-
duction forestry. For southern Sweden, further
studies are needed to confirm whether this requires
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a shift towards managed forests with a higher
share of broad-leaved trees better suited to the hab-
itat requirements of both present and colonizing
bird species in the region.
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Inverkan av antropogen klimatförändring

på sydsvenska fåglesamhällen i monokulturer

av gran: kommer det artfattiga att ytterligare

utarmas?

Forskare har nyligen modellerat hur europeiska få-
gelarters utbredning kan komma att påverkas av
eventuella klimatförändringar under detta århun-
drade. Resultaten visar att många arters utbredning
sannolikt kommer att förskjutas norrut med hund-
ratals kilometer. Vi presenterar här en analys av
vilka konsekvenser sådana förskjutningar kan ha
för fågelfaunan i södra Sveriges monokulturer av
gran (Picea abies), en skogstyp som med männi-
skans hjälp sannolikt kommer att bestå även under
ett förändrat klimat.

Vår analys ger tre viktiga slutsatser. För det
första, är det endast två arter med monokulturer av
gran som lämplig livsmiljö som kan tänkas ”vand-
ra norrut” och etablera sig i södra Sverige under
detta århundrade. För det andra, beräknas antalet
arter i denna skogstyp minska totalt sett, vilket i så
fall ytterligare utarmar mångfalden i dessa be-
stånd. För det tredje, förväntas alla fröätande arter
kopplade till barrskog försvinna från denna skogs-
typ i södra Sverige, liksom tre av fyra insektsätare,
vilket leder till en nedgång i både funktionell
diversitet och redundans.

Vi diskuterar flera källor för osäkerhet i våra
resultat, bland annat att bioklimatiska förutsägel-
ser kan minska i precision när den dominerande
vegetationstypen behålls artificiellt. Vi diskuterar
vidare vilka implikationer våra resultat kan ha för
fågelfaunan i brukade granskogar, som är den van-
ligaste skogstypen i Sverige och i många andra
regioner i Europa.
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