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Abstract 

Continuous flow methodology for the synthesis of perfluoroaryl difluoroamine derivatives by 

reaction of fluorine gas with an appropriate perfluoroaniline substrate is described, further 

demonstrating the efficient use of flow regimes for reactions involving highly reactive and toxic 

reagents. 

 

Introduction 

Continuous flow methods for the production of a wide range of commodity chemicals have, of 

course, been used extensively in many large scale manufacturing processes but the transfer of flow 

techniques to the laboratory has, in contrast, only begun to develop recently to any real extent.1-2 

There are many advantages associated with using flow reactors for chemical synthesis at both the 

laboratory and manufacturing stages and among those often discussed2 and debated3 include high 

throughput, use of very small quantities of material when appropriate, reduced waste streams, low 
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manufacturing, operation and maintenance costs, low power consumption, increased precision and 

accuracy and disposability. Miniaturisation may also lead to increased performance of a system due 

to optimisation of contact between reagents because of very rapid mixing in such devices. The 

concept of scale-up by operating reactors in parallel is advantageous, where laboratory operation 

would exactly mirror the manufacturing situation. The ready availability of an increasingly wider 

range of commercially available stand-alone flow synthesis equipment has helped the adoption of 

flow techniques into academic and discovery research laboratories and synthetic applications 

continue to develop. 

Flow techniques can be particularly useful for carrying out reactions with potentially hazardous 

reagents because the small inventories of reagents in contact within a flow reactor channel is very 

small compared to a conventional batch process, minimising associated risks. In addition, 

exothermic reactions may be controlled much more effectively in flow processes where the 

opportunity for efficient heat transfer is available. 

In a series of papers from Durham,4 we have engaged in developing the use of fluorine gas as a 

reagent for organic synthesis and, in particular, using continuous flow methodology5-6 for the 

preparation of, for example, a range of fluoro-aromatic,7 -heterocyclic,8-9 -diketone10 and –

ketoester11 derivatives. Scale-out of direct fluorination reactions was achieved by the fabrication 

and implementation of parallel multi-channel flow reactors5 that enable large quantities of 

commercially valuable fluorinated fine chemicals to be prepared in high yield and purity from 

inexpensive fluorine gas. 

In this paper, we report the synthesis of a short series of perfluoroaryl difluoroamine systems from 

corresponding aniline substrates and fluorine gas by continuous flow processes. Whilst a number of 

approaches have been described for the synthesis of aliphatic difluoroamine species,12-25 the 

synthesis of aryl difluoroamines has been less widely reported. Existing methodology generally 



3 

 

involves batch fluorination with elemental fluorine in either liquid HF or acetonitrile,26-27 although 

the use of nitrogen trifluoride as a difluoroaminating agent has also been explored.28 

We chose to study the fluorination of perfluorinated aniline derivatives as model substrates due to 

the low reactivity of the perfluoroaryl ring towards fluorination which would minimise competing 

by-product formation and as part of a wider programme of research into the synthesis and properties 

of perfluorinated aromatic and heteroaromatic systems.29-30 

 

Results and discussion 

A short series of perfluoroaniline derivatives 2 were synthesised by nucleophilic aromatic 

substitution reactions of appropriate perfluoroaryl substrates 1 with ammonium hydroxide in 

acetonitrile at room temperature (Scheme 1). 

 

Scheme 1. Synthesis of perfluoroaniline substrates 2 
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Cyano- and trifluoromethyl-benzene derivatives 1a and 1b gave the corresponding 4-amino 

derivatives 2a and 2b respectively, regiospecifically in high yield, reflecting the activating influence 

of fluorine atoms ortho and meta to the site of nucleophilic attack in SNAr processes involving 

perfluorinated aryl systems, following well established principles.31 Amination of 

perfluoronitrobenzene 1c gave a mixture of products 2c-e arising from substitution of fluorine ortho 

and para to the nitro group demonstrating the very effective ortho activating influence of nitro 

groups in these systems. All products were isolated by recrystallization or column chromatography 

as appropriate and NMR spectral data was consistent with the structures proposed. 

Direct fluorination of anilines 2 were carried out using a flow reactor constructed from nickel metal 

and narrow bore nickel and PTFE tubing as described previously5 in detail and shown in Figure 1. 

Briefly, fluorine gas, diluted to 10% v/v solution in nitrogen was added via a mass flow controller to 

the microchannel via Input A, the aniline substrate 2, dissolved in acetonitrile, was added at a 

prescribed flow rate by syringe pump into the flow channel via Input B and reacts with fluorine as 

both these starting materials pass down the reactor channel in a ‘pipe flow’ regime (Fig. 2) as 

observed in previous direct fluorination reactions using this reactor design.5 The crude reaction 

mixture was then passed into a vessel containing water to quench the reaction. Work-up by 

extraction of the crude reaction mixture by dichloromethane, drying and evaporation of the organic 

solvent gave a crude product which could be further purified by column chromatography.   

 

 

Input 1 

Input 2 

Output 
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Figure 1. Single channel continuous flow device for direct fluorination processes 

 

 

Figure 2. ‘Pipe-flow’ within continuous flow reactor 

 

After our initial experiments involving fluorination of cyanoaniline 2a, we found that passing a 6-

fold excess of fluorine at a rate of 6 mmol h-1 and aniline 2a at 1 mmol h-1 gave good yield of 

difluoroamine product 3a (Scheme 2). 19F NMR analysis of the crude product mixture before work-

up showed very high conversion of 2a to 3a (Fig. 3) and subsequent column chromatography gave 

pure 3a. A 19F NMR resonance observed  at +63.8 ppm is the diagnostic signal corresponding to an 

NF2 group as compared to literature data for other N-F bonds.32 Syntheses of other difluoroamine 
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systems were carried out by similar processes after adjusting flow rates of fluorine to achieve full 

conversion of the aniline starting material. 

Certain difluoroamine compounds are known to be sensitive explosives.14,38 Whilst no difficulties 

were encountered in this work and, indeed, standard work-up and chromatographic purification 

techniques were utilised to isolate the difluoroamine products 3, appropriate precautions should be 

taken when handling potentially explosive materials. 

 

Scheme 2. Synthesis of difluoroamine systems 3 
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Figure 3. 19F NMR analysis of crude reaction mixture of fluorination of 4-aminobenzonitrile  

derivative  2a 

The mechanism of these fluorination processes is unclear but we can postulate both electrophilic 

and free radical pathways (Scheme 3). 

 

Scheme 3. Possible fluorination mechanisms 
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Whilst fluorine is considered to act as an effective electrophile in acetonitrile media,10 the low 

nucleophilicity of the perfluoroaniline substrates provides support for a free radical process in 

which the intermediate radical may be stabilised by conjugation with the aryl ring and this is 

consistent with a similar mechanism proposed previously.26  

 

Conclusions 

Efficient synthesis of perfluoroaryl difluoroamine derivatives 3 is possible using fluorination of 

appropriate anilines 2 in continuous flow techniques, further demonstrating the possibilities for flow 

syntheses using highly reactive, yet potentially very useful, reagents. 

 

Experimental 

General 

Unless otherwise noted, commercially available reagents were used without purification. DMF was 

purified and dried using an Innovative Technology Inc. Solvent Purification System fitted with a 

Metrohm 831 Karl Fischer Coulometric Titrator. Hexane and DCM were purchased from Fischer 

and used without further purification. Flash column chromatography was performed using 

Fluorochem silicagel LC60A (40-63 micron). Proton, carbon and fluorine nuclear magnetic 

resonance spectra (1H NMR, 13C NMR and 19F NMR) were recorded on a Varian Inova-500 (1H 

NMR, 500 MHz; 13C NMR, 126 MHz; 19F NMR, 470 MHz) or a Varian DD-700 (1H NMR, 700 

MHz; 13C NMR, 176 MHz; 19F NMR, 658 MHz) spectrometer with solvent resonance as the 

internal standard (1H NMR, CHCl3 at 7.26 ppm; 13C NMR, CDCl3 at 77.26 ppm; 19F NMR, CFCl3 

at 0.00 ppm). 1H, 13C and 19F spectroscopic data are reported as follows: chemical shift, integration, 

multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz), and 
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assignment. GC-MS analysis was performed on a Thermoquest Trace and elemental analysis data 

was collected using an Exeter Analytical E-440 Elemental Analyser. Infra-red spectra were 

recorded on a Perkin Elmer Spectrum RX1 fitted with an ATR attachment whilst X-ray analysis 

was performed using a Rigaku R-Axis SPIDER IP diffractometer equipped with Cryostream 

(Oxford Cryosystems) low-temperature device at 120 K using graphite-monochromated MoKalpha-

radiation (lambda = 0.71073 A). All reactions were heated in a Biotage InitiatorTM Sixty 

microwave. 

 

Synthesis of perfluoroaniline derivatives 2 

General procedure 

The perfluoroarene 1 was added to a flask which was then sealed and purged with argon. 

Ammonium hydroxide and MeCN were added and the reaction mixture was stirred at room 

temperature for 22 hours. The reaction mixture was quenched with water (40 mL) and extracted 

with DCM (3 × 50 mL). The organic extracts were washed with water (150 mL) and brine (150 

mL), dried (MgSO4) and concentrated under reduced pressure to give the crude product. Column 

chromatography on silica gel and re-crystallization gave the pure aniline derivative. 

 

4-Amino-2,3,5,6-tetrafluorobenzonitrile 2a        

Pentafluorobenzonitrile 1a (6.0 g, 31.0 mmol), ammonium hydroxide (7.0 mL, 40 mmol) and 

MeCN (40 mL), after column chromatography on silica gel using hexane : ethyl acetate (4:1) as the 

eluent and re-crystallization (chloroform), gave 4-amino-2,3,5,6-tetrafluorobenzonitrile 2a (4.41 g, 

74 %) as white crystals; mp 95–96 oC (lit.,33 95–96 oC); νmax (cm-1) 3228, 3358 and 3476 (NH2), 

2236 (CN), 1168, 1315, 1506 and 1640; δH (400 MHz, CDCl3) 4.64 (2H, b, NH2); δC (176 MHz, 

CDCl3) 80.4 (tm, 2JCF 17.6, C-4), 109.0 (t, 3JCF 3.6, -CN), 132.6 (tt, 2JCF 13.4, 3JCF 4.6, C-1), 135.6 
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(dddd, 1JCF 242.0, 2JCF 14.4, 3JCF 6.0, 4JCF 3.9, C-3), 147.9 (dddd, 1JCF 256.4, 2JCF 10.0, 3JCF 5.8, 4JCF 

3.7, C-2); δF (376 MHz, CDCl3) -135.5–-135.6 (2F, m, F-2), -160.7–-160.9 (2F, m, F-3); m/z (EI+) 

190 ([MH]+, 100%), 162 (20), 143 (24), 124 (18). 

 

2,3,5,6-Tetrafluoro-4-(trifluoromethyl)aniline 2b                                

Octafluorotoluene 1b (3.0 g, 12.72 mmol), ammonium hydroxide (12.0 mL, 120 mmol) and MeCN 

(10 mL), after column chromatography on silica gel using hexane : ethyl acetate 4:1 as the eluent, 

gave 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline 2b (1.43 g, 48 %) as a clear orange oil; νmax (cm-

1) 3600 and 3428 (NH2), 1127, 1330, 1506 and 1654; δH (400 MHz, CDCl3) 4.38 (2H, b, NH2); δC 

(176 MHz, CDCl3) 97.0 (qt, 2JCF 34.8, 2JCF 21.6, C-4), 121.8 (qm, 1JCF 272.7, CF3), 130.2 (tt, 2JCF 

13.9, 3JCF 4.4, C-1), 136.3 (ddm, 1JCF 240.0, 2JCF 16.0, C-3), 144.9, (dm, 1JCF 255.3, C-2); δF (376 

MHz, CDCl3) -55.3 (3F, t, 4JFF 21.1, CF3); -144.0–-144.3 (2F, m, F-3), -162.0–-162.2 (2F, m, F-2); 

m/z (EI+) 233 ([M]+, 42 %), 214 (82), 183 (64), 117 (34), 69 (100); and as compared to literature 

data.34  

 

Tetrafluoro-4-nitroaniline 2c and tetrafluoro-6-nitroaniline 2d                             

Pentafluoronitrobenzene 1c (2.3 g, 10.8 mmol), ammonium hydroxide (2.2 mL, 22 mmol) and THF 

(20 mL), after column chromatography on silica gel using hexane : ethyl acetate (2:1) as eluent, 

gave tetrafluoro-4-nitroaniline 2c (0.37 g, 15 %) as yellow crystals; mp 105–106 oC (lit.,35 106–108 

oC); δH (400 MHz, CDCl3) 4.62 (2H, b, NH2); δC (176 MHz, CDCl3) 119.6–120.2 (m, C-1), 131.2 

(tt, 2JCF 13.9, 3JCF 4.1, C-4), 135.3 (ddm, 1JCF 243.6, 2JCF 14.2, C-3), 142.1 (dddd, 1JCF 260.6, 2JCF 

13.4, 3JCF 4.0, 4JCF 2.6, C-2); δF (376 MHz, CDCl3) -147.6–-147.8 (2F, m, F-2); -161.6–-161.8 (2F, 

m, F-3); m/z (EI+) 210 ([M]+, 80%), 180 (67), 164 (57), 144 (42), 137 (100); tetrafluoro-6-

nitroaniline 2d (0.85 g, 37%) as red crystals; mp 45–46 oC (lit.,36 43–44 oC); δH (400 MHz, CDCl3) 

5.87 (2H, b, NH2); δC (176 MHz, CDCl3) 120.7–121.1 (m, C-6), 132.12 (dddd, 1JCF 245.6, 2JCF 16.5, 
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3JCF 13.7, 4JCF 2.9, C-2), 132.3 (ddd, 2JCF 13.2, 3JCF 3.8, 4JCF 1.9, C-1), 136.2 (dddd, 1JCF 243.2, 2JCF 

12.5, 3JCF 5.5, 4JCF 2.3, C-5), 143.7 (ddt, 1JCF 262.4, 2JCF 12.8, 3JCF 4.7, C-3 or C-4), 144.2 (dtd, 1JCF 

260.2, 2JCF 13.9, 3JCF 4.6, C-4 or C-3); δF (376 MHz, CDCl3) -145.5 (1F, dt, 3JFF 22.6, 4JFF 8.9, F-3 

or F-4), -147.5 (1F, td, 3JFF 21.4, 4JFF 8.9, F-3 or F-4), -160.5 (1F, ddd, 3JFF 20.6, 4JFF 8.9, 5JFF 5.9, 

F-2 or F-5), -164.3 (1F, td, 3JFF 22.4, 4JFF 5.8, F-2 or F-5); m/z (EI+) 207 ([M]+, 81%), 177 (50), 161 

(58), 134 (100); and 2,4,5-trifluoro-6-nitrobenzene-1,3-diamine 2e (0.42 g, 19 %) as yellow 

crystals; mp 145–147 oC (lit.,35 147–148oC); δH (400 MHz, CDCl3) 4.48 (2H, b, NH2), 5.86 (2H, b, 

NH2); δC (176 MHz, CDCl3) 113.6–113.9 (m, C-3), 131.8 (ddd, 1JCF 234.5, 2JCF 16.4, 3JCF 7.9, C-4), 

133.0 (dm, 1JCF 226.2, C-2), 133.0 (td, 2JCF 15.0, 3JCF 4.5, C-3), 143.6 (ddd, 1JCF 254.8, 2JCF 12.9, 

4JCF 3.2, C-5); δF (376 MHz, CDCl3) -147.9 (1F, dd, 3JFF 21.5, 4JFF 8.9, F-4), -163.4 (1F, dd, 4JFF 8.9, 

5JFF 2.0, F-2), -172.2 (1F, dd, 3JFF 21.5, 5JFF 2.0, F-5); m/z (EI+) 207 ([M]+, 81%), 177 (50), 161 

(58), 134 (100). 

 

Synthesis of Difluoramine derivatives 3 

General procedure 

CAUTION: Although 10% v/v fluorine in nitrogen is relatively easy to handle as described 

previously,37 it is still a potent oxidising agent and must be treated as such. Appropriate precautions 

must also be taken with regards to HF handling, including the provision of calcium gluconate 

antidote gel. Whilst fluorine is less toxic than widely used chlorine gas,39 appropriate safety 

precautions using standard research grade fume cupboards are required. 

Certain difluoroamine compounds are known to be sensitive explosives.14,38 Whilst no difficulties 

were encountered in this work, appropriate precautions should be taken when handling potentially 

explosive materials. 
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Using the continuous flow device shown in Figure 3, fluorine in N2 (10% v/v) was passed into the 

flow reactor channel via inlet 1 at an appropriate rate which was controlled by a gas flow meter 

(Brooks®) and, simultaneously, aniline derivative 2 in MeCN was added via inlet 2 at a rate 

controlled by syringe pump over a period of 30 min. All liquid products were collected in a vessel 

containing water (25 mL), whilst excess gasses were vented through a soda lime scrubber. The 

reactants were extracted from the aqueous layer using DCM (3 × 25 mL) and the organic extracts 

were dried (MgSO4), filtered and concentrated under reduced pressure to yield the crude product as 

an orange oil. Purification by column chromatography on silica gel gave the difluoroamine 3. 

 

4-(Difluoroamino)-2,3,5,6-tetrafluorobenzonitrile 3a      

F2 (10 % in N2, 6.0 mmol h-1), MeCN (10.0 mL h-1) and 4-amino-2,3,5,6-tetrafluorobenzonitrile 2a 

(0.283 g, 1.50 mmol, 10.0 mL h-1, 1.0 mmol h-1) in DCM (15.0 mL), after column chromatography 

on silica gel using hexane : DCM (2:1) as the eluent, gave 4-(difluoroamino)-2,3,5,6-

tetrafluorobenzonitrile 3a (0.24 g, 71 %) as a clear oil; δC (126 MHz, CDCl3) 98.9 (tt, 2JCF 17.1, 

3JCF 2.1, C-1), 106.1 (s, CN), 130.1 (t, 2JCF 8.9, C-4), 142.5 (dddd, 1JCF 267.9, 2JCF21.5, 3JCF 14.3, 

4JCF 8.1, C-2), 147.7 (ddm, 1JCF 268.0, 2JCF 12.6, C-3); δF (376 MHz, CDCl3) 63.8 (2F, t, 4JFF 10.3, 

NF2), -129.3 (2F, ddm, 3JFF 20.8, 4JFF 10.4, F-3), -140.2 (2F, ddm, 3JFF 20.3, 4JFF 10.3, F-2); m/z 

(ASAP) 227 ([MH]+, 5%), 207 (100), 191 (40), 160, (17). 

 

2,3,5,6-Tetrafluoro-4-(trifluoromethyl)difluoramine 3b                    

F2 (10 % in N2, 6.0 mmol h-1), MeCN (10.0 mL h-1) and 2,3,5,6-tetrafluoro-4-

(trifluoromethyl)aniline 2b (0.06 g, 0.25 mmol, 5.0 mL h-1, 0.5 mmol h-1) in DCM (2.5 mL), after 

column chromatography on silica gel using hexane : DCM (2:1) as the eluent, gave 2,3,5,6-
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tetrafluoro-4-(trifluoromethyl)difluoramine 3b (0.04 g, 54 %) as a clear oil; δC (126 MHz, CDCl3) 

95.1 (tt, 2JCF 17.0, 3JCF 3.8, C-1), 103.1 (m, CF3), 129.0 (t, 2JCF 9.4, C-4), 143.8 (ddd, 1JCF 262.0, 

2JCF20.5, 3JCF 14.0, C-2), 147.7 (ddm, 1JCF 268.0, 2JCF 12.3, C-3); δF (376 MHz, CDCl3) 64.0 (2F, t, 

4JFF 10.2, NF2), -57.1 (3F, t, 2JFF 22.3, CF3), -137.7 (2F, ddm, 3JFF 22.1, 4JFF 9.4, F-2), -141.8 (2F, 

ddm, 3JFF 19.3, 4JFF 9.7, F-3); m/z (ASAP) 270 ([MH]+, 18%), 217 (53). 

2,3,5,6-Tetrafluoro-4-nitro-1-difluoramine 3c        

F2 (10 % in N2, 6.0 mmol h-1), MeCN (10.0 mL h-1) and 2,3,5,6-tetrafluoro-4-nitroaniline 2c (0.21 

g, 1.0 mmol, 10.0 mL h-1, 2.0 mmol h-1) in DCM (5.0 mL), after column chromatography on silica 

gel using hexane : DCM (4:1) as the eluent, gave 2,3,5,6-tetrafluoro-4-nitro-1-difluoramine 3c 

(0.16 g, 65%) as a yellow oil; δC (126 MHz, CDCl3) 128.3 (t, 2JCF 9.7, C-4), 133.0–133.4 (1C, m, C-

1), 140.4 (ddd, 1JCF 266.0, 2JCF 14.8, 3JCF 6.1, C-3), 142.9 (ddd, 1JCF 270.0, 2JCF 12.9, 3JCF 6.8, C-2); 

δF (376 MHz, CDCl3) 64.2 (2F, t, 4JFF 10.0, NF2), -138.8–-139.3 (2F, m, F-2), -143.8–-144.1 (2F, m, 

F-3); m/z (ASAP) 247 ([MH]+, 25%), 217 (100), 194 (33), 84 (81). 

 

2,3,4,5-Tetrafluoro-6-nitro-1-difluoramine 3d                

F2 (10 % in N2, 6.0 mmol h-1), MeCN (10.0 mL h-1) and 2,3,4,5-tetrafluoro-6-nitroaniline 2d (0.63 

g, 3.0 mmol, 10.0 mL h-1, 2.0 mmol h-1) in DCM (15.0 mL), after column chromatography on silica 

gel using hexane : DCM (2:1) as the eluent, gave 2,3,4,5-tetrafluoro-6-nitro-1-difluoramine 3d 

(0.44 g, 59%) as a pale yellow oil; δC (126 MHz, CDCl3) 124.2–124.5 (m, C-6), 132.1–132.9 (m, C-

1), 140.3 (ddd, 1JCF 264.5, 2JCF 13.8, 3JCF 5.7, C-2/5), 143.4 (dt, 1JCF 265.0, C-3/4), 143.7 (dm, 

270.0, C-2/5), 144.4 (dt, 1JCF 268.5, C-3/4); δF (376 MHz, CDCl3) 64.2 (2F, t, 4JFF 10.0, NF2), -

136.1–-136.9 (1F, m, F-2/5), -141.6 (1F, tm, 3JFF 20.6, F-3/4) -145.2 (1F, ddd, 3JFF 21.7, 4JFF 9.2, 

5JFF 5.4, F-5/2), -145.6 (1F, td, 3JFF 20.5, 4JFF 5.3, F-4/3); m/z (ASAP) 247 ([MH]+, 27 %), 217 

(100), 194 (44), 84.0 (70). 
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