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Abstract

In this paper we compare ten correlation coefficients using a three-step bootstrap approach (TSB). A three-step bootstrap
is applied to determine the optimal repetitions, B, to estimate the standard error of the statistic with certain degree of
accuracy. The coefficients in question are Pearson product moment (r), Spearman’s rho (ρ), Kendall’s tau (τ) , Spearman’s
Footrule (Ft), Symmetric Footrule (C), the Greatest deviation (Rg), the Top - Down (rT ), Weighted Kendall’s tau (τw),
Blest (ν), and Symmetric Blest’s coefficient (ν∗). We consider a standard error criterion for our comparisons. However,
since the rank correlation coefficients suffer from the tied problem that results from the bootstrap technique, we use
existing modified formulae for some rank correlation coefficients, otherwise, the randomization tied-treatment is applied.

Keywords: A three-step bootstrap, Correlation coefficients, Pearson product moment, Spearman’s rho, Kendall’s tau,
Spearman’s Footrule, Symmetric Footrule, Greatest deviation, Top-Down, Weighted Kendall’s tau, Blest, Symmetric
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1. Introduction

One may be interested in the relationship between two factors or two variables and would wish to represent this rela-
tionship by a number or even using a statistical technique to make an inference. This number is called a correlation
coefficient. The most common and well known correlation coefficient is the Pearson moment product coefficient. Some
people may use this coefficient immediately ignoring the bivariate normality assumption of the data. Others may use a
nonparametric rank correlation coefficient such as Spearman rho or Kendall tau for the same purpose. However the Pear-
son coefficient examines different aspects compared to Spearman and Kendall. Pearson coefficient considers the linearity
of the relationship whereas Spearman and Kendall study the monotonicity of this relationship.

In some circumstances, we may have data with some outliers, in which case using the Greatest deviation correlation coef-
ficient would be more suitable due to its robustness property against outliers. However, in other situations, assigning more
emphasis on the top of the observations is required. For this purpose, several nonparametric coefficients are suggested,
namely: the Top-Down, Weighted Kendall’s tau, Blest, and Symmetric Blest’s coefficient.

Usually the variance of the correlation coefficients is derived under the assumption that the null hypothesis that there is no
correlation is true. Otherwise, it is intractable to calculate the variance without this assumption. Surely one would prefer
using the correlation coefficient which produces small variation, and, consequently less standard error.

Borkowf (2000) presented a new nonparametric method for estimating the variance of Spearman’s rho by calculating
ρ from a two-way contingency table with categories defined by the bivariate ranks. His method is a computer method
depending on the data at hand like the bootstrap and jackknife methods. There are claims that his method is more accurate
than the bootstrap and jackknife methods. However, it is more complicated and the differences in accuracy are small in
comparison with other methods.

In this paper, we will apply the bootstrap method. Yet, the common issue is how many replications, B, should run to
get the most accurate results required. One such approach is introduced by Andrews and Buchinsky (2000; 2001; 2002)
which is called a three-step approach. We will use this approach to determine the optimal number of replications for
different degrees of accuracy. In addition we will use it for comparison, precisely, to estimate the standard error of the
estimators, in our case the correlation coefficients, without imposing the null hypothesis. However, by using the bootstrap
technique, the rank correlation coefficients suffer from tied problem. Therefore, we will use the existing adjusted formula
for Spearman and Kendall coefficients (Hollander & Wolfe, 1999); otherwise, the randomization tied-treatment is applied
(Gibbons, 1971).
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Overviews of the correlation coefficients that are used in comparisons are given in Section 2. In Section 3, we will
introduce some bootstrap notation and motivations. Then, in Section 4, we will summarize the three-step approach for
estimating the standard error. The application of this approach on the correlation coefficients is introduced via the example
in Section 5. Finally, conclusions are reported in the last section.

2. Overview of the correlation coefficients

Our data set consists of n observations, where (xi, yi), i = 1, 2, ..., n is a random sample from a continuous bivariate popu-
lation, and let pi and qi be the ranks of xi and yi, respectively. Here, we have ten correlation coefficients; Pearson moment
product coefficient as a parametric correlation coefficient (Hollander & Wolfe, 1999; Gibbons, 1971), five nonparametric
correlation coefficients: Spearman’s rho, Kendall’s tau (Hollander & Wolfe, 1999; Gibbons, 1971; Kendall, 1975), Spear-
man’s Footrule or simply Footrule (Diaconis & Graham, 1977; Franklin, 1988; Salama & Quade, 2002; Ury & Kleinecke,
1979), Symmetric Footrule (Salama et al., 2001), the Greatest deviation (Gideon & Hollister, 1987), and four weighted
nonparametric correlation coefficients: the Top-Down (Iman & Conover, 1987), Weighted Kendall’s tau (Shieh, 1998),
Blest (Blest, 2000), and Symmetric Blest’s coefficient (Genest & Plante, 2003).

In Table 1 we summarize these coefficients which are involved in our comparisons. In the second and third columns their
formulae are stated, yet the fourth column contains the adjusted formulae for Spearman and Kendall coefficients for when
ties occur. For others coefficients where no adjusted formula is found in current literature, we will use the randomization
tool (Gibbons, 1971) to deal with tied problem . The justification behind using the randomization method is that it behaves
randomly as the bootstrap does. However, the most important property is that the randomization methods do not affect the
null distribution of the rank correlation coefficient, so we do not need to adapt the null distribution for these coefficients.

3. Bootstrap Motivation and Notation

The bootstrap technique was first introduced by Efron in 1979 (Efron & Tibshirani, 1994). It is a computer intensive
method of statistical analysis that uses resampling to calculate standard errors, confidence intervals and significance tests.
There are various applications of the bootstrap techniques in life sciences such as medical, social, and business science.
They are applicable as a parametric or semi-parametric or nonparametric technique. In this paper we will consider the
nonparametric bootstrap since the correlation coefficients (except Pearson) in question are nonparametric rank correlation
coefficients.

Actually, the most common problem in bootstrap literature is choosing the optimal number of repetitions, B. By choosing
different, small values it can result in different answers. By choosing extremely large values it gives a more accurate
result, however more costly. Andrews and Buchinsky (2000; 2001; 2002) introduced a three-step approach to determine
the number of repetitions B with pre-fixed degrees of accuracy which is applied for many different bootstrap problems,
such as estimating the standard error, confidence interval, and p-value for classical statistical techniques.

The aim is to achieve the desired level of accuracy by choosing B. Accuracy is measured by the percentage deviation
of the bootstrap standard error estimate, confidence interval length, test’s critical value, test’s p-value, or bias-corrected
estimate based on B bootstrap simulations from the corresponding ideal bootstrap quantities for which B = ∞. A bound
of the relevant percentage deviation, pdb, is specified such as the actual percentage deviation is less than this bound with
a specified probability, (1 − δ) tends to one. That is, for given (pdb, δ), the optimal number of repetitions, B∗, satisfies

P∗
(
100

|λ̂B∗ − λ̂∞|
λ̂∞

≤ pdb

)
= 1 − δ, (1)

where λ is a quantity of interest (the standard error in our case), λ̂∞ is an “ideal” bootstrap estimate, and λ̂B is the
bootstrap approximation of λ̂∞ based on B bootstrap repetitions. Also, P∗ here represent the probability with respect to
the randomness in the bootstrap samples.

In the rest of this section we will present the notation which we will use in the bootstrap framework. Our observed data is a
sample of size n: X = (X1, ..., Xn)′, where Xi = (xi, yi); i = 1, 2, ..., n. Let X∗ = (X∗

1, ..., X
∗
n)′ be a bootstrap sample of size n

based on the original sample X. When the original sample X is comprised of independent and identically distributed (iid)
or independent and nonidentically distributed (inid) random variables, the bootstrap sample X∗ often is an iid sample of
size n drawn from some distribution F̂. In this paper, F̂ is the empirical distribution due to that we use the nonparametric
bootstrap.

Let θ̂ = θ̂(X) be an estimator of a parameter θ0 based on the sample X. Let θ̂∗ = θ̂(X∗) denote the bootstrap estimator. Let
{X∗

b
: b = 1, ..., B} denote B iid bootstrap samples, each with the same distribution as X. Let θ̂∗

b
= θ̂(X∗

b
), for b = 1, ..., B,

denote the corresponding B bootstrap estimators.

4. A three-step method for choosing the number of bootstrap repetitions B for standard error estimates

One of the application is to bootstrap standard error estimates for a scalar estimator θ̂, in our case θ̂ is a correlation coef-
ficient. The quantities (se, ŝe∞, ŝeB) in this case are the standard error, the “ideal” bootstrap standard error estimator, and
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the bootstrap standard error estimator based on B bootstrap repetitions, respectively, where E∗ represent the expectation
with respect to the randomness in the bootstrap samples. These quantities are given as

se =
[
E[θ̂(X) − E(θ̂(X))]2

]1/2
, (2)

ŝe∞ =
[
E∗[θ̂(X∗) − E∗(θ̂(X∗))]2

]1/2
, (3)

ŝeB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1
B − 1

B∑
b=1

⎛⎜⎜⎜⎜⎜⎝θ̂∗b − 1
B

B∑
c=1

θ̂∗c

⎞⎟⎟⎟⎟⎟⎠2⎤⎥⎥⎥⎥⎥⎥⎥⎦
1/2

. (4)

The three-step method, introduced by Andrews and Buchinsky (2000), depends on the estimation of the coefficient of
excess kurtosis, γ2, of the bootstrap distribution of the parameter estimator, where

γ2 =
E∗[θ̂(X∗) − E∗(θ̂(X∗))]4

ŝe4
∞

− 3.

By using the three-step method we aim to choose a value of B to achieve a desired accuracy of ŝeB for estimating ŝe∞
using pre-specified values of (pdb, δ). The method involves the following steps:

Step(1): Suppose γ2 = 0, and a preliminary value of B, denoted B0 where

B0 = int

⎡⎢⎢⎢⎢⎢⎣5000 z2
1−δ/2

(pdb)2

⎤⎥⎥⎥⎥⎥⎦
and int(a) be the smallest integer greater than or equal to a, zα represents the α quantile of the standard normal distribution.

Step(2): Simulate B0 bootstrap, and compute

γ̂2B0 =

1
B0−1

∑B0
b=1(θ̂∗

b
− μ̂B0 )4

(ŝeB0 )4 − 3 , μ̂B0 =
1
B0

B0∑
b=1

θ̂∗b .

Simulate R, say R = 500, bootstrap samples from (θ̂∗1, ..., θ̂
∗
B0

), which can be written as Θ∗∗
r = (θ∗∗1r

, . . . , θ∗∗B0r), r = 1, ...,R.
Then compute

γ̂2B0R = 2γ̂2B0 −
1
R

R∑
r=1

γ̂2(Θ∗∗
r )

where

γ̂2(Θ∗∗
r ) =

1
B0−1

∑B0
b=1

(
θ̂∗∗

rb
− 1

B0

∑B0
b=1 θ̂

∗∗
rb

)4[
1

B−1
∑B

b=1

(
θ̂∗∗

rb
− 1

B

∑B
c=1 θ̂

∗∗
rc

)2]2 − 3 .

Step(3): Let B∗ = max(B0, B1), where

B1 = int

⎡⎢⎢⎢⎢⎢⎣2500 z2
1−δ/2 (2 + γ̂2B0R)

(pdb)2

⎤⎥⎥⎥⎥⎥⎦
such that, if γ̂2B0R ≤ 0 then the desired number of bootstrap repetitions is B∗ = B0, and if γ̂2B0R > 0, compute B1 − B0
additional bootstrap estimate {θ̂∗

b
: b = B0 + 1, ..., B1} before computing ŝeB∗ .

5. Example

Let us consider the data from a study designed to ascertain the relative importance of the various factors contributing
to tuna quality and to find objective methods for determining quality parameters and consumer preference (Hollander &
Wolfe, 1999). Table 2 gives values of the Hunter L measure of lightness (X), along with panel scores (Y) for nine lots of
canned tuna (also see Figure 1).

The preliminary and the final values of the number of the replications for estimating the standard errors of our correlation
coefficients are given in Tables 3 and 4. We will categorize our comparison in three blocks; a parametric correlation
coefficient (Pearson), nonparametric rank correlation coefficients (Spearman, Kendall, Spearman’s Footrule, Symmetric
Footrule and the Greatest deviation coefficient). Finally, weighted nonparametric rank correlation coefficients (Top-Down,
Weighted Kendall, Blest’s coefficient and Symmetric Blest’s coefficient).
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For example, let us focus on the situation when pdb = 5% and δ = 0.01, as in Table 5. Here the preliminary value of
B0 (for all correlation coefficients) is 1327 which is quite small as a starting point for any simulation, then the adjusted
number of replications, B1, is given in the third column in Table 5, which varies from one correlation coefficient to another.
For example, for the Pearson correlation coefficient, this number, B1 is more than double the preliminary value (increased
by 177%). However, for Footrule B1 is just increased by 2.4% (from 1327 to 1527). For Kendall and Weighted Kendall,
the number of replications, B1, increased almost the same (between 38.9% and 39.41%). Among the nonparametric
correlation coefficients, Spearman has the highest increase in the number of replications, increased by 72.57%.

According to the differences between the observed (calculated value from the data) and the bootstrap simulation estimate,
we can see that for Kendall correlation coefficient, the difference between the actual value of the statistic (observed value)
and the bootstrap estimate is small. However, the largest difference between the observed and the estimated values is
for Weighted Kendall since we choose m = 5 which means we ignore about a half of the data but this difference gap
will reduce and is equal to that of Kendall at m = n = 9. Also, the differences are quite similar for Pearson, Spearman,
Footrule, and Greatest, which are all between 0.0312 and 0.0520.

With respect to the standard error estimate, we found that the Pearson correlation coefficient has the smallest standard
error, however, the Weighted Kendall has the largest value of standard error. In fact it is twice as much as the standard
error of Pearson correlation coefficient. It is for the same reason that Weighted Kendall ignores some of the data (in our
case 4 pairs of observations are ignored). In block 2, we found that the Greatest correlation coefficient has the smallest
standard error which is expected since our data has some outliers (see Figure 1). However, Spearman and Footrule have
large standard errors within this block.

In block 3, when our interest is focused on the initial (top) data, we noticed that the Symmetric Blest’s coefficient has
a smaller standard error than its asymmetric version and is also smaller than the other weighted correlation coefficients.
However, as we mentioned above, Weighted Kendall has the largest standard error. Generally, the standard errors for
correlation coefficients in block 3 are larger than those in block 1 and 2.

6. Conclusion

To conclude, one should use the Pearson correlation coefficient if the data meets the normality assumption, otherwise, the
Greatest deviation performs well especially when the data has outliers. However, when we want emphasis on the initial
(top) data, the Symmetric Blest’s coefficient has lowest standard error amongst other weighted correlation coefficients.
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Table 1. Overview of some correlation coefficients

Corr.Coeff. Formula Definition Modified formula for tied ranks

Pearson r =

∑n
i=1(xi−x̄)(yi−ȳ)√∑n

i=1(xi−x̄)2 ∑n
i=1(yi−ȳ)2

Spearman’s rho ρ = 1 − 6D2
s

n(n2−1)
D2

s =
∑n

i=1(pi − qi)2 ρ =
n(n2−1)−6D2

s− 1
2

[∑g
i=1 ti(t2i −1)+

∑h
j=1 u j(u2

j
−1)

]
√

[n(n2−1)−∑g
i=1 ti(t2i −1)][n(n2−1)−∑h

j=1 ui(u2
i
−1)]

where g denotes the number of tied p groups,
ti is the size of tied p group i, h is the number
of tied q groups, and u j is the size of tied q

group j (Hollander & Wolfe, 1999).

Kendall’s Tau τ = 2K
n(n−1) K =

∑∑
i< j

sgn(xi − x j)sgn(yi − y j) τ = 2K√
[n(n−1)−∑g

i=1 ti(ti−1)][n(n−1)−∑h
j=1 u j(u j−1)]

where sgn(a) = 1 if a > 0, where g denotes the number of tied X groups,
sgn(a) = 0 if a = 0 and ti is the size of tied X group i, h is the number
sgn(a) = −1 if a < 0. of tied Y groups, and u j is the size of the tied

Y group j (Hollander & Wolfe, 1999).

Spearmans Footrule F =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 4D

n2 if n is even

1 − 4D
n2−1

if n is odd
D(p, q) =

n∑
i=1

|qi − pi |

Symmetric Footrule C =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4S
n2 if n is even

4S
n2−1

if n is odd

S (p, q) = D(p,q∗)−D(p,q)
2

D(p, q∗) =
n∑

i=1
|pi + qi − (n + 1)|

Greatest deviation Rg =
d(ε o q)−d(q)

� n
2 �

di(q) =
i∑

j=1
I(q j > i)

where �.� is the greatest d(q) = max[di(q)]

integer di(ε o q) =
i∑

j=1
I(q j < n + 1 − i)

d(ε o q) = max[di(ε o q)]

Top - Down rT =

∑n
i=1 S pi

S qi
−n

n−S 1
S i =

n∑
j=i

1
j (Savage scores)

Weighted Kendalls τw =
2 Q

m(m−1) Q =
∑

1≤ j<i≤m
sgn(qi − q j) and

where m is the number p = m
n , m = �(n + 1)p�, where

of interesting rankings �.� is the greatest integer

Blests Correlation ν = 2n+1
n−1 − 12 w

n(n+1)2(n−1)
w =

∑n
i=1(n − i + 1)2qi

Symmetric Blest ν∗ = 2n+1
n−1 − 12 (w1+w2)

n(n+1)2(n−1)
w1 =

1
2
∑n

i=1(n + 1 − i)2qi

w2 =
1
2
∑n

i=1(n + 1 − qi)2i
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Table 2. Tuna Lightness and Quality data set

Lot Hunter L value (X) Panel scores (Y)
1 44.4 2.6
2 45.9 3.1
3 41.9 2.5
4 53.3 5.0
5 44.7 3.6
6 44.1 4.0
7 50.7 5.2
8 45.2 2.8
9 60.1 3.8

Table 3. TSB results of estimating the standard errors of the correlation coefficients

Pearson Observed (r) = 0.5712
δ = .05 δ = .01

pdb (%) B0 B1 r̂ seB B0 B1 r̂ seB

20 49 23 0.6621 0.2157 83 65 0.6365 0.2257
15 86 68 0.6368 0.2238 148 977 0.6165 0.2185
10 193 1180 0.6190 0.2193 332 1294 0.6188 0.2174
5 769 1992 0.6160 0.2180 1327 3669 0.6232 0.2187
1 19208 39025 0.6203 0.2186 33175 67616 0.6201 0.2193
Spearman Observed (ρ) = 0.6000

δ = .05 δ = .01
pdb (%) B0 B1 ρ̂ seB B0 B1 ρ̂ seB

20 49 56 0.5907 0.2727 83 83 0.5537 0.2867
15 86 88 0.5398 0.3254 148 346 0.5285 0.3008
10 193 420 0.5371 0.2965 332 570 0.5421 0.2895
5 769 1207 0.5471 0.3026 1327 2290 0.5548 0.2938
1 19208 29889 0.5569 0.2951 33175 51594 0.5555 0.2965
Kendall Observed (τ) = 0.4444

δ = .05 δ = .01
pdb (%) B0 B1 τ̂ seB B0 B1 τ̂ seB

20 49 40 0.4659 0.2448 83 74 0.4473 0.2574
15 86 75 0.4474 0.2564 148 336 0.4198 0.2726
10 193 402 0.4235 0.2674 332 534 0.4310 0.2638
5 769 1029 0.4345 0.2708 1327 1839 0.4401 0.2673
1 19208 22832 0.4449 0.2667 33175 39455 0.4445 0.2661
Footrule Observed (Ft) = 0.2000

δ = .05 δ = .01
pdb (%) B0 B1 F̂t seB B0 B1 F̂t seB

20 49 43 0.1816 0.2970 83 65 0.1663 0.3209
15 86 63 0.1581 0.3047 148 157 0.1166 0.3196
10 193 190 0.1202 0.3265 332 340 0.1253 0.3109
5 769 777 0.1344 0.3109 1327 1359 0.1527 0.3071
1 19208 20843 0.1496 0.3115 33175 35778 0.1495 0.3131
Symmetric Observed (C) = 0.4500
Footrule δ = .05 δ = .01
pdb (%) B0 B1 Ĉ seB B0 B1 Ĉ seB

20 49 49 0.4643 0.2481 83 83 0.4578 0.2662
15 86 82 0.4570 0.2521 148 281 0.4461 0.2615
10 193 321 0.4327 0.2571 332 507 0.4250 0.2726
5 769 1083 0.4344 0.2611 1327 1772 0.4391 0.2577
1 19208 26162 0.4363 0.2642 33175 44740 0.4363 0.2651
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Table 4. TSB results of estimating the standard errors of the correlation coefficients, contd.

Greatest Observed (Rg) = 0.2000
δ = .05 δ = .01

pdb (%) B0 B1 R̂g seB B0 B1 R̂g seB

20 49 51 0.2706 0.1952 83 104 0.2596 0.2444
15 86 108 0.2630 0.2440 148 204 0.2235 0.2404
10 193 259 0.2247 0.2434 332 390 0.2369 0.2345
5 769 790 0.2311 0.2348 1327 1444 0.2312 0.2351
1 19208 22685 0.2311 0.2297 33175 37942 0.2301 0.2296
Top-Down Observed (rT ) = 0.7392

δ = .05 δ = .01
pdb (%) B0 B1 r̂T seB B0 B1 r̂T seB

20 49 38 0.6375 0.3793 83 61 0.6290 0.3615
15 86 61 0.6247 0.3615 148 185 0.6169 0.3767
10 193 260 0.6020 0.3770 332 367 0.5986 0.3714
5 769 986 0.6281 0.3607 1327 1861 0.6329 0.3544
1 19208 25664 0.6341 0.3537 33175 44175 0.6333 0.3548
Weighted Observed (τw) = 0.8000 , m = 5
Kendall δ = .05 δ = .01
pdb (%) B0 B1 τ̂w seB B0 B1 τ̂w seB

20 49 44 0.4859 0.3721 83 65 0.4762 0.3702
15 86 65 0.4720 0.3784 148 175 0.4155 0.4304
10 193 217 0.4132 0.4181 332 327 0.4160 0.4069
5 769 968 0.4355 0.4209 1327 1850 0.4329 0.4150
1 19208 26252 0.4394 0.4200 33175 45077 0.4402 0.4189
Blest Observed (ν) = 0.6000

δ = .05 δ = .01
pdb (%) B0 B1 ν̂ seB B0 B1 ν̂ seB

20 49 40 0.6012 0.2655 83 74 0.5808 0.2818
15 86 71 0.5825 0.2776 148 344 0.5722 0.3009
10 193 344 0.5492 0.3151 332 648 0.5503 0.3153
5 769 1247 0.5400 0.3171 1327 1994 0.5313 0.3169
1 19208 27959 0.5391 0.3154 33175 49867 0.5381 0.3150
Symmetric Observed (ν∗) = 0.6250
Blest δ = .05 δ = .01
pdb (%) B0 B1 ν̂∗ seB B0 B1 ν̂∗ seB

20 49 37 0.6159 0.2492 83 68 0.5968 0.2645
15 86 66 0.5981 0.2614 148 342 0.5855 0.2869
10 193 347 0.5685 0.2981 332 667 0.5667 0.2980
5 769 1246 0.5593 0.2987 1327 1975 0.5514 0.2973
1 19208 28237 0.5586 0.2977 33175 50212 0.5575 0.2976

Table 5. TSB results when pdb=5% and δ=0.01

Corr.Coeff. Observed (O) B1 100 B1−B0
B0

Estimate(E) |O − E| seB

Pearson 0.5712 3669 176.49 0.6232 0.0520 0.2187
Spearman 0.6000 2290 72.57 0.5548 0.0452 0.2938
Kendall 0.4444 1839 38.58 0.4401 0.0043 0.2673
Footrule 0.2000 1359 2.41 0.1527 0.0473 0.3071
Symmetric footrule 0.4500 1772 33.53 0.4391 0.0109 0.2577
Greatest 0.2000 1444 8.82 0.2312 0.0312 0.2351
Top-down 0.7392 1861 40.24 0.6329 0.1063 0.3544
Weighted Kendall 0.8000 1850 39.41 0.4329 0.3671 0.4150
Blest 0.6000 1994 50.26 0.5313 0.0687 0.3169
Symmetric Blest 0.6250 1975 48.83 0.5514 0.0736 0.2973
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Figure 1. A simple scatter plot for Tuna Lightness and Quality data
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