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CONSPECTUS 

Graphene is a true wonder material and is the newest member of the nanocarbon family. The 

continuous network of hexagonally arranged carbon atoms give rise to some exceptional 

electronic, mechanical and thermal properties, which could see the application of graphene in 

new generation electronic components, energy-storage materials such as capacitors and batteries, 

polymer nanocomposites, transparent conducting electrodes and mechanical resonators. The 

application that has caught the eye of many is that of optically transparent conducting electrodes 

or films where graphene has the potential to rival indium tin oxide (ITO) and be used in next 

generation displays, solar cells and sensors. Typically, graphene has been produced from 

graphite using a variety of methods however these techniques are not suitable for growing large-

area graphene films. Much effort has therefore been focused on developing methodology to grow 

graphene films across extended surfaces. Graphene film growth can be achieved on a variety of 

polycrystalline metal substrates using a range of experimental conditions. In particular graphene 

films can be grown over Group 8 metals, iron and ruthenium; Group 9 metals, cobalt, rhodium 

and iridium; Group 10 metals, nickel and platinum; Group 11 metals, copper, gold. It has also 
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proved possible to grow graphene films over alloys such as stainless steel and other commercial 

copper-nickel alloys. At present copper and nickel dominate the field, producing large-area films 

that have already been efficiently transferred and tested in a number of electronic devices. 

Graphene has even been grown over 30 inches in width on copper and subsequently transferred 

onto a display plastic ready for incorporation into new generation displays. Looking to the future 

high quality, reproducible growth at ambient pressure and low temperature from cheap, readily 

available carbon sources will be important for the further development of graphene films in 

commercial applications. The growth of graphene on metal surfaces does have its drawbacks in 

that it is necessary to transfer the graphene from the metal or to remove the metal by etching. 

Thus there is still much to do in the field. 

 

1.0 Introduction 

Graphene is a single layer of graphite and is the newest member of the nanocarbon family. The 

continuous network of hexagonally arranged carbon atoms give rise to some exceptional 

electronic, mechanical and thermal properties, which could see the application of graphene in 

new generation electronic components, energy-storage materials such as capacitors and batteries, 

polymer nanocomposites, transparent conducting electrodes and mechanical resonators.1-3 

Graphene can be prepared using ‘top-down’ approaches from graphite such as micromechanical 

cleavage, oxidation and thermal expansion followed by reduction, and by extensive sonication in 

solvent systems with surface energies that match that of graphite.1,4 ‘Bottom-up’ methods of 

graphene synthesis, that are perhaps more amenable to scale, have included decomposition of 

ethanol in a microwave plasma5 and the spray pyrolysis of sodium ethoxide.6 It is also possible to 
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obtain graphene by the longitudinal cutting of carbon nanotubes.7 All of these methods produce 

platelets of graphene. However, this account will focus on the synthesis, mainly by chemical 

vapour deposition (CVD) and temperature-programmed growth (TPG), of large area graphene 

films. This is a highly relevant topic given the excitement around producing optically transparent 

conducting films that could rival indium tin oxide (ITO) and be used in next generation displays, 

solar cells and sensors or that could even be patterned to make new electronic components and 

devices. It is worth mentioning that graphene films can be grown on silicon carbide wafers by 

high temperature reduction and represents a very active area of research in electronic devices, 

that has been reviewed recently, and will not be discussed here.8 This account details current 

progress in the formation and control of graphene films on polycrystalline metal surfaces. 

1.1 Introduction to growth on metal surfaces 

There are a number of factors that affect the potential of a metal to produce high quality 

graphene films; from an industrial point of view cost is important as metals are normally etched 

during the transfer process, but more fundamental differences between the metals also play a big 

part in their selection. Metals can promote graphene formation by a surface growth mechanism, 

where the metal catalyses the decomposition of a carbon feedstock promoting carbon 

fragmentation at the metal surface, or by segregation where carbon is absorbed in the metal at 

high temperature and then segregates to the surface forming graphene on cooling. Many of the 

inferences about graphene growth on metals have been made based on information gained from 

density function theory (DTF) calculations and experimental observations from single-crystal 

systems.9 While these studies provide valuable insight into the effect of interaction strength and 

lattice mismatch on graphene growth along with the mechanism of formation, single crystal 

systems are not suitable for the production of large-scale graphene film. This is primarily due to 
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the difficulty in growing large single-crystal metals. Instead the future of large-scale graphene 

film production lies with polycrystalline metal films, which can be deposited on substrates of 

variable size using techniques such as sputtering or evaporation.  

In order for applications to develop it is important that graphene films formed on metal 

surfaces can be removed or transferred to other substrates, in particular plastics on which it is 

difficult to grow graphene directly. Typical methods of film transfer have included stamping 

using poly(methyl methacrylate) (PMMA) or polydimethylsiloxane (PDMS),10,11 where the 

polymer is added to the graphene surface, the metal removed via chemical etching, the 

graphene/polymer stamped onto a second substrate and the polymer removed. It is also possible 

to use rolling or ‘roll-to-roll’ processes that are compatible with industry techniques, where 

graphene grown on flexible metal films is rolled onto flexible substrates, followed by removal of 

the metal layer to yield bare graphene on the substrate surface.12 The transfer of 30 inch graphene 

films grown on Cu has been achieved using the roll-to-roll process.13  

2.0 Large-area growth of graphene on polycrystalline metal surfaces  

The growth of large-area graphene films requires large metal surfaces, which are generally 

prepared by sputter coating or electron beam evaporation of the desired metal. This results in 

metal films with multiple grains that are then typically annealed to improve surface roughness 

and/or to promote formation of a particular metal facet. Selecting metals suitable for large-scale 

graphene growth is complicated by a number of additional considerations that are not relevant 

for growth on single crystals. Key to this is the behaviour of graphene towards grain boundaries 

in the underlying metal. Growth over grain boundaries or large metal grain sizes is favourable for 

high quality graphene as underlying grain boundaries often result in graphene defects including 
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nucleation of multilayer graphene.14 Grain size is ultimately related to the metal film thickness,15 

with larger grains forming for thicker films, however as metal thickness is also a key factor for 

graphene growth over certain metals,16 enlarging grain size by using thicker metal films is not 

appropriate in all cases. Larger grains can be promoted by annealing at high temperatures but 

surface defects such as pits can be formed during this process that can degrade the quality of the 

graphene.16,17 

A study on engineering polycrystalline Ni films to achieve improved uniformity of CVD 

grown graphene highlights a number of additional factors that affect metal grain size, including 

the temperature and pressure conditions during the initial metal deposition, and the method used 

to prepare the underlying SiO2/Si substrate.17 Furthermore improved graphene uniformity for 

metal films deposited on c-plane sapphire rather than SiO2/Si has been reported for multiple 

metals due to preferred single crystal metal growth over sapphire.18-21 It is also important to 

reduce the number of graphene nucleation sites as defects can form at graphene domain 

boundaries due to misalignment of the carbon atoms.22 For surface catalysed reactions the 

number of graphene nucleation sites can be controlled not only by the reduction of surface 

defects of the metal, but also by the rate of carbon exposure, where slower rates result in fewer 

nucleation sites and hence larger graphene domains.23 This prolonged exposure to the growth 

temperature to reduce graphene nucleation must be balanced with the detrimental effect that 

prolonged exposure may have on the metal surface and the graphene quality. 

Graphene growth on single crystals should provide some insight into the expected growth of 

graphene on polycrystalline surfaces with regard to the number of layers anticipated. However, 

care must be taken as many of the single crystal studies are performed under ultra-high vacuum 

(UHV) conditions, whereas atmospheric pressure conditions are generally more favourable for 
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growth at the industrial scale due to cost of maintaining low pressure systems. Graphene growth 

has been seen to alter with pressure, for example while growth on Cu has been found to be ‘self-

limiting’ to monolayer graphene at UHV, few layer graphene has been observed for atmospheric 

pressure growth.24 

2.1 Group 8 

2.1.1 Iron 

Studies on polycrystalline Fe generally report the growth of multilayer graphene via CVD at 

low pressures and relatively low temperatures (600 – 800 °C). The exposure to acetylene is 

found to be important to graphene formation, with both reduced surface coverage and reduced 

graphene thickness being observed at lower exposures.25 Graphene thickness can also be 

controlled using Fe film thickness,26 with thinner graphene forming on thicker Fe. Interestingly 

for Fe films 6 – 20 nm thick multilayer graphene grew on-top of carbon nanotubes (CNTs) while 

for films <5 nm CNTs were formed exclusively. Increasing growth temperature is found to 

increase graphene thickness but reduce the number of defects,25 so growth of thin, high quality 

graphene on Fe requires careful balancing of conditions. 

2.1.2 Ruthenium 

Growth of graphene on Ru sputtered coated on SiO2,27 fused silica and sapphire has been 

reported.18,28 The Ru films deposited on SiO2 and fused silica have a columnar structure with 

strongly aligned grains exposing flat (0001) surface facets, whereas on sapphire the Ru is 

described as being ‘single crystalline’ Ru(0001). Exposure to ethylene at high temperatures 

(800 °C,28 950 °C18,27) followed by slow cooling in UHV affords uniform monolayer graphene 
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that is continuous across grain boundaries and is ‘slightly wavy’ in appearance.27 Etching of the 

underlying Ru deposited on sapphire, using an aqueous solution of ceric ammonium nitrate and 

acetic acid, has been demonstrated for monolayer graphene with domains <60 µm in size,18 

where the growth is halted prior to formation of the continuous graphene film. The etchant is 

said to etch down between the graphene domains then sideways underneath them to release the 

graphene so may not be suitable for continuous films where access to the underlying Ru would 

be restricted. 

2.2 Group 9 

2.2.1 Cobalt 

A number of studies have been undertaken for the growth of graphene on polycrystalline Co 

deposited on SiO2/Si,16,29,30 along with growth over c-plane sapphire.19 CVD of methane at high 

temperature affords a uniform monolayer of graphene for Co deposited over sapphire (single 

crystalline Co) but an inhomogeneous film containing both monolayer and multilayer graphene 

flakes for Co deposited over SiO2/Si (polycrystalline Co, grain size <3 µm). This is attributed to 

the high density of Co grain boundaries in the SiO2/Si based sample, Figure 1. 

<Figure 1>  

Non-uniform graphene of varying thickness has been reported for CVD of acetylene over Co at 

low pressures and moderate/high temperatures (800 – 1000 °C). Graphene thickness is seen to 

decrease with shorter growth times and increased temperature, which can be attributed to 

reduced carbon exposure and the increased desorption coefficient of carbon at higher 

temperatures.29 Co film thickness is also found to be an important factor as the percentage of 
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multilayer graphene decreases with decreasing Co thickness,16 resulting in 80% monolayer 

graphene for 100 nm Co films. Thinner Co films (~60 nm) agglomerated and formed surface pits 

so entirely monolayer growth could not be achieved. Multi-layer graphene is seen to nucleate at 

grain boundaries,30 and growth of uniform, monolayer graphene has been reported for single 

crystalline Co deposited over sapphire.19 Etching of Co to release graphene has been 

demonstrated using aqueous solutions of FeCl3 and HCl.19,29 

2.2.2 Rhodium 

Graphene formation on Rh foils, repeatedly annealed under UHV to promote the emergence of 

the Rh(111) face, have been reported.31 Growth via carbon segregation occurs after exposure of 

the metal surface to benzene vapour, where graphene islands begin to form upon reaching the 

carbon solubility limit of Rh. These islands coalesce resulting in complete surface coverage of 

monolayer graphene. However, multi-layer graphene forms upon cooling due to further 

segregation of carbon from the bulk metal, highlighting the importance of growth temperature 

for the control of graphene thickness. 

2.2.3 Iridium 

Graphene growth has been reported on single crystalline Ir(111) films deposited on sapphire 

and  yttria stabilised zirconium oxide (YSZ) by pulsed laser deposition and electron beam 

evaporation respectively.20,32 On sapphire, high quality monolayer graphene was grown via CVD 

of ethylene at 677 °C under UHV conditions, and found to cover >95 % of the surface for 10 min 

carbon exposure. Whereas, for YSZ, temperature programmed growth (TPG) of Ir(111) exposed 

to acetone (the carbon source) graphene formation begins around 327 °C and proceeds to a well 

ordered graphene monolayer upon heating to 727 °C. 
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2.3 Group 10 

2.3.1 Nickel 

CVD growth of graphene over polycrystalline Ni has primarily been performed at atmospheric 

pressure, yielding graphene that extends across nickel grain boundaries to form continuous 

films.33,34 Slow annealing of the polycrystalline nickel,35 or increase in deposition temperature,17 

promotes large grain sizes of Ni(111) over Ni(100) improving graphene film quality. A study on 

the effect of growth temperature, gas mixing ratio and growth time on the CVD of 

acetylene/hydrogen shows that high temperature, high hydrogen concentration and short growth 

time are important for producing few-layer graphene with minimal defects.36 A similar study 

involving methane showed the importance of cooling rate and short growth times for reducing 

graphene thickness to grow primarily single and bilayer graphene films.14,37 Etching of nickel to 

release graphene has been widely demonstrated using aqueous FeCl3,37 enabling the study of 

nickel-grown graphene in a number of electronic devices.38 

Growth of graphene on nickel surfaces has also been demonstrated based on diffusion and 

segregation of carbon from underlying amorphous carbon or nanodiamond films.39,40 Conversely 

nickel films have been shown to transform the underlying carbon source to graphene at high 

temperature, forming bilayer graphene films directly on insulating substrates from polymers or 

self-assembled monolayers (SAMs) at low pressure conditions,41 and few-layer graphene on 

SiO2/Si from SAMs at atmospheric pressure, Figure 2.42 

<Figure 2> 

2.3.2 Platinum 
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The growth of uniform monolayer and bilayer graphene films has been achieved for CVD of 

methane at low pressures and high temperatures (1000 – 1050 °C). Temperature is found to be an 

important factor for controlling graphene thickness, with thicker films (>5 layers) being 

produced at higher temperatures.43 Graphene uniformity is seen to alter with carbon exposure, 

forming irregularly shaped islands of bilayer graphene upon increasing growth time or flow rate 

of carbon sources, Figure 3.44  

<Figure 3> 

2.4 Group 11 

2.4.1 Copper 

Graphene growth on Cu foils has been extensively studied under both low and ambient 

pressure conditions, and has been reviewed recently.45 An early study reported the growth of 

centimetre scale graphene films on Cu foils via high temperature CVD of methane under UHV 

conditions.46 These films were characterised as ~95 % monolayer with small regions of bi- and 

multi-layer graphene and were found to be ‘self-limiting’; producing similar films for short and 

long methane exposures. Graphene thickness is found to be independent of copper thickness, 

with similar graphene films being observed for foils of thickness between 12.5 – 50 mm. A 

similar method has been utilised for the production of >95 % monolayer films on Cu foils with a 

diagonal length up to 30 inches.13 Here curving of the Cu foils around a 7.5 inch quartz tube is 

necessary to combat graphene inhomogeneity brought about due to the temperature gradient 

across the radius of the tubular reactor. For both of these studies higher quality graphene is 

observed for larger grain sizes. The effect of Cu purity and pre-treatment on UHV graphene 

growth have been investigated along with the effect of hydrocarbon concentration.47 Sonication 
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in acetone prior to annealing and the reduction of annealing pressure from 80 to 20 mbar were 

found to be beneficial to graphene uniformity, while Cu purity was found to impact graphene 

thickness, with monolayer graphene reported on 99.999 % Cu foil and bilayer graphene being 

reported for 99.8 %. Hydrocarbon concentration can also impact graphene uniformity due to its 

effect on the number of graphene nucleation sites; with few sites, and hence more uniform 

graphene, being produced at lower hydrocarbon concentrations. Growth of graphene with 

average domain sizes of ~140 μm2 has been reported for a low pressure CVD using carefully 

controlled hydrocarbon exposures.23 Methane exposure is kept low at the beginning of the 

process, to reduce the number of graphene nucleation sites, and then increased during the 

reaction to promote continuous graphene coverage, Figure 4.  

<Figure 4> 

Under ambient pressure conditions, graphene growth on large polycrystalline Cu films using 

methane as the carbon source occurs readily,48,49 and is continuous across Cu grain boundaries.50 

Using these conditions predominately mono- and bi-layer graphene is formed when using Cu 

(700 nm) deposited on SiO2/Si.48 When using electropolished Cu foils, 95 % monolayer coverage 

can be obtained under low methane concentrations, whilst increasing the methane concentration 

affords thicker graphitic regions.49 Similarly, chemical mechanical polishing of Cu foils results in 

improved graphene films when compared to unpolished samples. This can be attributed to the 

reduction in graphene nucleation sites on the smoother metal surfaces.51  

An alternative method of graphene growth on Cu foils involves depositing the carbon source 

on the metal surface prior to heating to high temperatures. Using this method, growth of 

monolayer graphene has been achieved by annealing Cu foils with an amorphous carbon coating 
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at 1035 °C under a flow of hydrogen.52 The flow of hydrogen was also found to be important for 

growth of graphene at 800 °C on Cu foils coated with PMMA, where graphene thickness was 

controlled by adjusting argon and hydrogen flow rates, forming monolayer graphene at higher 

hydrogen flows.53 Monolayer growth for Cu covered with sucrose and fluorine has also been 

reported under the same conditions. The growth of monolayer graphene can even be achieved by 

heating  ‘food’, ‘insects’ or ‘waste’ deposited on Cu to 1050 °C.54 Etching of copper has been 

reported using aqueous solutions of iron chloride,49 ammonium salts,47 or by using Cu etchant 

solution (CE-100, Transene).51 

2.4.2 Gold 

Ambient pressure CVD growth of graphene on gold has been reported for gold foils 25 µm 

thick.55 The partially (111) orientated gold surfaces exposed to methane at 850 - 1050 °C produce 

a high percentage of monolayer graphene. Temperature has a minimal effect on graphene 

thickness and defect concentration for this range, but higher temperatures resulted in the 

formation of highly defective multilayer graphene. Etching of the gold to allow film transfer is 

readily achieved using the commercial gold etchant TFA from Transene Co. Inc., which contains 

a KI-I2 complex.  

2.5 Alloys 

2.5.1 Stainless steel 

Inhomogeneous growth of graphene films has been reported by CVD at moderate temperature 

(800 – 850 °C) in both low and ambient pressure conditions. The rate of cooling is found to be 

an important factor, with no graphene being detected for high cooling rates ≥140 °C/min and 
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graphite-like material being formed for very slow cooling rates.56  Interestingly, the duration of 

carbon exposure has a less marked influence on mono, bi or multi-layer graphene formation, 

although it is noted that longer exposure times resulted in higher quality graphene and 

significantly shorter exposure times resulted in discontinuous graphene growth.57  

2.5.2 Copper – Nickel alloy 

Cu-Ni alloys can be used for graphene growth where the substrates are initially prepared as 

Cu/Ni/SiO2/Si sandwich structures,58,59 and the Cu-Ni alloy formed in situ upon high temperature 

annealing under UHV, Figure 5. Carbon impurities in the nickel film (~2.6 atom %) act as the 

carbon source, diffusing along with the Ni atoms during the high temperature annealing, 

resulting in graphene formation on the surfaces of the Cu-Ni binary alloys. The number of 

graphene layers synthesised varied depending on the thickness of the Ni layer deposited; for 

20 nm Ni (5.5 atom % Ni) ~95 % of the surface was covered with monolayer graphene, and for 

40 nm Ni (10.4 atom % Ni) ~90 % of the surface was covered with bilayer graphene. At higher 

atom %, of Ni graphene growth becomes inhomogeneous, forming randomly distributed regions 

of multilayer graphene. Graphene growth also occurs on commercial, polycrystalline Cu-Ni alloy 

films 200 nm thick (67.8 weight % Cu and 31 weight % Ni) using methane as the carbon 

source,60,61 

<Figure 5> 

2.5.3 Gold – nickel alloy 

Au-Ni alloys prepared by from Au films (0 – 10 nm) thermally evaporated onto polycrystalline 

Ni films (~550 nm) on SiO2/Si substrates can be used to grow graphene with acetylene as the 
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carbon source.62 Graphene films with ~74 % monolayer coverage and domain sizes >15 µm is 

achieved for growth over the Ni-Au (5 nm Au) based alloy at 450 °C under low pressure 

conditions. Pre-annealing at 600 °C (under hydrogen) is vital for graphene formation. Successful 

etching away of the alloy can be achieved using a two-step process involving aqueous solutions 

of FeCl3 and KI/I2.  

2.5.4 Nickel – molybdenum alloy 

Growth of entirely monolayer graphene with 100 % surface coverage can be achieved from 

CVD of methane at 1000 °C over a Ni-Mo alloy.63 The alloy was prepared by deposition on Ni 

(200 nm) onto Mo foils (25 or 200 µm) and annealed at 900 °C prior to graphene growth. 

Graphene formation proceeds via a surface catalysed process rather than from carbon segregation 

as carbon dissolved in the bulk is ‘trapped’ as molybdenum carbide. 

3.0 Summary 

Graphene film growth on a variety of polycrystalline metals and metal alloys has been 

demonstrated across a range of experimental conditions, providing insight into the key factors 

effecting growth and the potential of different metals to produce high quality graphene. At 

present Cu and Ni dominate the field, producing large area films that have already been 

efficiently transferred and tested in a number of electronic devices. Looking to the future high 

quality, reproducible growth at ambient pressure and low temperature from cheap, readily 

available carbon sources will be important for the realisation of graphene films in commercial 

applications. A further, important advancement will be high quality graphene growth directly on 

insulating substrates, which is an area of growing interest in the field. 
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FIGURES  

 

Figure 1. Optical micrographs of graphene grown on (a) 100 nm Co film, showing large 

monolayer area along with small domains of bi- and multilayer area, and (b) 200 nm and (c) 300 

nm Co films. (d) Percentage surface area coverage by monolayer graphene as a function of Co 

film thickness. 16 
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Figure 2. Schematic of bilayer graphene formation from Ni coated polymers or SAMs on 

SiO2/Si substrates after annealing at high temperature under hydrogen.41 
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Figure 3. SEM image of single-layer graphene grown on Pt foils (a,b). SEM images (c–e) show 

sequential growth of bilayer flakes with orthogonal and irregular boundaries on Pt domains 

(brighter SEM contrast). (f) Optical image of monolayer graphene transferred onto a 300 nm 

SiO2/Si susbtrate.44 
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Figure 4. (a) TEM bright field image of monolayer graphene grown on Cu at a domain boundary 

(b) Mask-filtered image of (a). (c,d) Fast Fourier transform (FFT) from area in white and black 

box respectively in (a), which show that the monolayer graphene has two different crystal 

orientations at each respective area. (e) FFT of the whole image in (a) shows two sets of 

hexagonal FFT spots misoriented by approximately 18.5° from one another. (f,g) High-

resolution image cropped from white and black circled regions in (b) respectively.23 
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Figure 5. CVD growth and segregation behavior of graphene on Ni (a), Cu−Ni alloy (b) (5.5 at 

% Ni), Fe (c), and Co (d) and the corresponding layer thickness distributions at optimized growth 

temperature 1100, 900, 1000, and 1000 °C, respectively (e). The graphene was transferred to 300 

nm SiO2/Si substrates for taking the optical microscope images.58 

 

AUTHOR INFORMATION 

Corresponding Author 

*Dr. Karl S. Coleman. Email: k.s.coleman@durham.ac.uk   

Author Biographies 



 20 

Karl Coleman is a Reader in Nanomaterials in the Department of Chemistry at Durham 

University. He has extensive experience in the chemistry of carbon nanotubes and is interested in 

the synthesis and chemistry of graphene. He was named the Royal Society of Chemistry 

Entrepreneur of the Year in 2011 for his development of new intellectual property for the 

production of graphene and its commercial exploitation. He is the co-founder of the Chemical 

Nanosciences and Nanotechnology subject group of the Royal Society of Chemistry. 

 

Rebecca Edwards received her MChem from Durham University in 2010. She is currently 

studying for a PhD in chemistry, researching the synthesis and chemistry of graphene, in the 

nanocarbon group at Durham University led by Karl Coleman. 

 

ACKNOWLEDGMENT 

This research was supported by Durham University and the EPSRC (studentship RSE) 

 

REFERENCES 

(1) Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A.: Graphene: The New 

Two-Dimensional Nanomaterial. Angewandte Chemie-International Edition 2009, 48, 7752-

7777. 

(2) Geim, A. K.: Graphene: Status and Prospects. Science 2009, 324, 1530-1534. 



 21 

(3) Avouris, P.: Graphene: Electronic and Photonic Properties and Devices. Nano Letters 

2010, 10, 4285-4294. 

(4) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; 

Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; 

Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N.: High-yield production 

of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008, 3, 563-568. 

(5) Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M.: Substrate-free gas-phase 

synthesis of graphene sheets. Nano Letters 2008, 8, 2012-2016. 

(6) Herron, C. R.; Coleman, K. S.; Edwards, R. S.; Mendis, B. G.: Simple and scalable route 

for the 'bottom-up' synthesis of few-layer graphene platelets and thin films. Journal of Materials 

Chemistry 2011, 21, 3378-3383. 

(7) Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. 

K.; Tour, J. M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. 

Nature 2009, 458, 872-U5. 

(8) Riedl, C.; Coletti, C.; Starke, U.: Structural and electronic properties of epitaxial 

graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen 

intercalation. Journal of Physics D-Applied Physics 2010, 43. 

(9) Batzill, M.: The surface science of graphene: Metal interfaces, CVD synthesis, 

nanoribbons, chemical modifications, and defects. Surface Science Reports 2012, 67, 83-115. 



 22 

(10) Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; 

Yan, K.; Peng, H.; Li, Q.; Zhu, X.; Yuan, H.; Walker, A. R. H.; Liu, Z.; Peng, L.-m.; Richter, C. 

A.: Toward Clean and Crackless Transfer of Graphene. Acs Nano 2011, 5, 9144-9153. 

(11) Liu, N.; Pan, Z.; Fu, L.; Zhang, C.; Dai, B.; Liu, Z.: The Origin of Wrinkles on 

Transferred Graphene. Nano Research 2011, 4, 996-1004. 

(12) Juang, Z.-Y.; Wu, C.-Y.; Lu, A.-Y.; Su, C.-Y.; Leou, K.-C.; Chen, F.-R.; Tsai, C.-H.: 

Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 

2010, 48, 3169-3174. 

 (13) Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; 

Kim, H. R.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, 

S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature 

Nanotechnology 2010, 5, 574-578. 

(14) Reina, A.; Thiele, S.; Jia, X.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, 

J.: Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on 

Polycrystalline Ni Surfaces. Nano Research 2009, 2, 509-516. 

(15) Thompson, C. V.: Grain Growth in Thin Films. Annual Review of Materials Science 

1990, 20, 245-268. 

(16) Ramon, M. E.; Gupta, A.; Corbet, C.; Ferrer, D. A.; Movva, H. C. P.; Carpenter, G.; 

Colombo, L.; Bourianoff, G.; Doczy, M.; Akinwande, D.; Tutuc, E.; Banerjee, S. K.: CMOS-

Compatible Synthesis of Large-Area, High-Mobility Graphene by Chemical Vapor Deposition of 

Acetylene on Cobalt Thin Films. Acs Nano 2011, 5, 7198-7204. 



 23 

(17) Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P.-L.; Keast, C.; 

Schaefer, J.; Kong, J.: Engineering polycrystalline Ni films to improve thickness uniformity of 

the chemical-vapor-deposition-grown graphene films. Nanotechnology 2010, 21, 015601. 

(18) Sutter, P. W.; Albrecht, P. M.; Sutter, E. A.: Graphene growth on epitaxial Ru thin films 

on sapphire. Applied Physics Letters 2010, 97, 213101. 

(19) Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.-i.; 

Mizuno, S.: Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt 

Film Crystallized on Sapphire. Acs Nano 2010, 4, 7407-7414. 

(20) Vo-Van, C.; Kimouche, A.; Reserbat-Plantey, A.; Fruchart, O.; Bayle-Guillemaud, P.; 

Bendiab, N.; Coraux, J.: Epitaxial graphene prepared by chemical vapor deposition on single 

crystal thin iridium films on sapphire. Applied Physics Letters 2011, 98, 181903. 

(21) Hu, B.; Ago, H.; Ito, Y.; Kawahara, K.; Tsuji, M.; Magome, E.; Sumitani, K.; Mizuta, N.; 

Ikeda, K.-i.; Mizuno, S.: Epitaxial growth of large-area single-layer graphene over 

Cu(111)/sapphire by atmospheric pressure CVD. Carbon 2012, 50, 57-65. 

(22) Kim, K.; Lee, Z.; Regan, W.; Kisielowski, C.; Crommie, M. F.; Zettl, A.: Grain 

Boundary Mapping in Polycrystalline Graphene. Acs Nano 2011, 5, 2142-2146. 

(23) Li, X.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, M.; Cai, 

W.; Velamakanni, A.; Zhu, Y.; Fu, L.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S.: 

Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. 

Nano Letters 2010, 10, 4328-4334. 



 24 

(24) Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J.: Role of Kinetic Factors in 

Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. 

Nano Letters 2010, 10, 4128-4133. 

(25) An, H.; Lee, W.-J.; Jung, J.: Graphene synthesis on Fe foil using thermal CVD. Current 

Applied Physics 2011, 11, S81-S85. 

(26) Kondo, D.; Yagi, K.; Sato, M.; Nihei, M.; Awano, Y.; Sato, S.; Yokoyama, N.: Selective 

synthesis of carbon nanotubes and multi-layer graphene by controlling catalyst thickness. 

Chemical Physics Letters 2011, 514, 294-300. 

(27) Sutter, E.; Albrecht, P.; Sutter, P.: Graphene growth on polycrystalline Ru thin films. 

Applied Physics Letters 2009, 95. 

(28) Sutter, E.; Albrecht, P.; Camino, F. E.; Sutter, P.: Monolayer graphene as ultimate 

chemical passivation layer for arbitrarily shaped metal surfaces. Carbon 2010, 48, 4414-4420. 

(29) Zhan, N.; Wang, G.; Liu, J.: Cobalt-assisted large-area epitaxial graphene growth in 

thermal cracker enhanced gas source molecular beam epitaxy. Applied Physics a-Materials 

Science & Processing 2011, 105, 341-345. 

(30) Wang, S. M.; Pei, Y. H.; Wang, X.; Wang, H.; Meng, Q. N.; Tian, H. W.; Zheng, X. L.; 

Zheng, W. T.; Liu, Y. C.: Synthesis of graphene on a polycrystalline Co film by radio-frequency 

plasma-enhanced chemical vapour deposition. Journal of Physics D-Applied Physics 2010, 43, 

455402. 



 25 

(31) Rut'kov, E. V.; Kuz'michev, A. V.; Gall, N. R.: Carbon interaction with rhodium surface: 

Adsorption, dissolution, segregation, growth of graphene layers. Physics of the Solid State 2011, 

53, 1092-1098. 

(32) Mueller, F.; Grandthyll, S.; Zeitz, C.; Jacobs, K.; Huefner, S.; Gsell, S.; Schreck, M.: 

Epitaxial growth of graphene on Ir(111) by liquid precursor deposition. Physical Review B 2011, 

84, 075472. 

(33) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J.: 

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. 

Nano Letters 2009, 9, 30-35. 

(34) De Arco, L. G.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C.: 

Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition 

for Organic Photovoltaics. Acs Nano 2010, 4, 2865-2873. 

(35) Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C.; Badmaev, A.; 

Zhou, C.: Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by 

Chemical Vapor Deposition. Journal of Physical Chemistry Letters 2010, 1, 3101-3107. 

(36) Chae, S. J.; Guenes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H.-J.; 

Yoon, S.-M.; Choi, J.-Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H.: Synthesis of Large-

Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle 

Formation. Advanced Materials 2009, 21, 2328-2333. 



 26 

(37) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; 

Choi, J.-Y.; Hong, B. H.: Large-scale pattern growth of graphene films for stretchable 

transparent electrodes. Nature 2009, 457, 706-710. 

(38) Liu, W.; Jackson, B. L.; Zhu, J.; Miao, C.-Q.; Chung, C.-H.; Park, Y.-J.; Sun, K.; Woo, 

J.; Xie, Y.-H.: Large Scale Pattern Graphene Electrode for High Performance in Transparent 

Organic Single Crystal Field-Effect Transistors. Acs Nano 2010, 4, 3927-3932. 

(39) Zheng, M.; Takei, K.; Hsia, B.; Fang, H.; Zhang, X.; Ferralis, N.; Ko, H.; Chueh, Y.-L.; 

Zhang, Y.; Maboudian, R.; Javey, A.: Metal-catalyzed crystallization of amorphous carbon to 

graphene. Applied Physics Letters 2010, 96, 063110. 

(40) Garcia, J. M.; He, R.; Jiang, M. P.; Kim, P.; Pfeiffer, L. N.; Pinczuk, A.: Multi layer 

graphene grown by precipitation upon cooling of nickel on diamond. Carbon 2011, 49, 1006-

1012. 

(41) Yan, Z.; Peng, Z.; Sun, Z.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M.; Tour, J. M.: Growth 

of Bilayer Graphene on Insulating Substrates. Acs Nano 2011, 5, 8187-8192. 

(42) Shin, H.-J.; Choi, W. M.; Yoon, S.-M.; Han, G. H.; Woo, Y. S.; Kim, E. S.; Chae, S. J.; 

Li, X.-S.; Benayad, A.; Duong Dinh, L.; Gunes, F.; Lee, Y. H.; Choi, J.-Y.: Transfer-Free 

Growth of Few-Layer Graphene by Self-Assembled Monolayers. Advanced Materials 2011, 23, 

4392-4397. 

(43) Kang, B. J.; Mun, J. H.; Hwang, C. Y.; Cho, B. J.: Monolayer graphene growth on 

sputtered thin film platinum. Journal of Applied Physics 2009, 106, 104309. 



 27 

(44) Gao, T.; Xie, S.; Gao, Y.; Liu, M.; Chen, Y.; Zhang, Y.; Liu, Z.: Growth and Atomic-

Scale Characterizations of Graphene on Multifaceted Textured Pt Foils Prepared by Chemical 

Vapor Deposition. Acs Nano 2011, 5, 9194-9201. 

(45) Mattevi, C.; Kim, H.; Chhowalla, M.: A review of chemical vapour deposition of 

graphene on copper. Journal of Materials Chemistry 2011, 21, 3324-3334. 

(46) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; 

Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S.: Large-Area Synthesis of High-Quality and 

Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312-1314. 

(47) Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K.: Synthesis of high-quality monolayer 

and bilayer graphene on copper using chemical vapor deposition. Carbon 2011, 49, 4122-4130. 

(48) Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S.-E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, 

J.-H.: Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters 2010, 10, 490-493. 

(49) Luo, Z.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, 

A. T. C.: Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale 

Graphene at Atmospheric Pressure. Chemistry of Materials 2011, 23, 1441-1447. 

(50) Yu, Q.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; 

Wei, D.; Chung, T. F.; Peng, P.; Guisinger, N. P.; Stach, E. A.; Bao, J.; Pei, S.-S.; Chen, Y. P.: 

Control and characterization of individual grains and grain boundaries in graphene grown by 

chemical vapour deposition. Nature Materials 2011, 10, 443-449. 



 28 

(51) Han, G. H.; Guenes, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H.-J.; Choi, J.-Y.; Pribat, 

D.; Lee, Y. H.: Influence of Copper Morphology in Forming Nucleation Seeds for Graphene 

Growth. Nano Letters 2011, 11, 4144-4148. 

(52) Ji, H.; Hao, Y.; Ren, Y.; Charlton, M.; Lee, W. H.; Wu, Q.; Li, H.; Zhu, Y.; Wu, Y.; 

Piner, R.; Ruoff, R. S.: Graphene Growth Using a Solid Carbon Feedstock and Hydrogen. Acs 

Nano 2011, 5, 7656-7661. 

(53) Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M.: Growth of graphene from solid 

carbon sources. Nature 2010, 468, 549-552. 

(54) Ruan, G.; Sun, Z.; Peng, Z.; Tour, J. M.: Growth of Graphene from Food, Insects, and 

Waste. Acs Nano 2011, 5, 7601-7607. 

(55) Oznuluer, T.; Pince, E.; Polat, E. O.; Balci, O.; Salihoglu, O.; Kocabas, C.: Synthesis of 

graphene on gold. Applied Physics Letters 2011, 98, 183101. 

(56) John, R.; Ashokreddy, A.; Vijayan, C.; Pradeep, T.: Single- and few-layer graphene 

growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology 

2011, 22, 165701. 

(57) Gullapalli, H.; Reddy, A. L. M.; Kilpatrick, S.; Dubey, M.; Ajayan, P. M.: Graphene 

Growth via Carburization of Stainless Steel and Application in Energy Storage. Small 2011, 7, 

1697-1700. 



 29 

(58) Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z.: Universal 

Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Letters 

2011, 11, 297-303. 

(59) Liu, X.; Fu, L.; Liu, N.; Gao, T.; Zhang, Y.; Liao, L.; Liu, Z.: Segregation Growth of 

Graphene on Cu-Ni Alloy for Precise Layer Control. Journal of Physical Chemistry C 2011, 115, 

11976-11982. 

(60) Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, 

C. W.; Velamakanni, A.; Piner, R. D.; Kang, J.; Park, J.; Ruoff, R. S.: Oxidation Resistance of 

Graphene-Coated Cu and Cu/Ni Alloy. Acs Nano 2011, 5, 1321-1327. 

(61) Chen, S.; Cai, W.; Piner, R. D.; Suk, J. W.; Wu, Y.; Ren, Y.; Kang, J.; Ruoff, R. S.: 

Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu-

Ni Alloy Foils. Nano Letters 2011, 11, 3519-3525. 

(62) Weatherup, R. S.; Bayer, B. C.; Blume, R.; Ducati, C.; Baehtz, C.; Schlögl, R.; Hofmann, 

S.: In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth. Nano 

Letters 2011, 11, 4154-4160. 

(63) Dai, B.; Fu, L.; Zou, Z.; Wang, M.; Xu, H.; Wang, S.; Liu, Z.: Rational design of a binary 

metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nature 

communications 2011, 2, 522. 

  



 30 

Conspectus Figure 

 

 
 


