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Abstract

Introduction: Climate and environmental change have driven widespread changes in body size, particularly
declines, across a range of taxonomic groups in recent decades. Size declines could substantially impact on the
functioning of ecosystems. To date, most studies suggest that temporal trends in size have resulted indirectly from
climate change modifying resource availability and quality, affecting the ability of individuals to acquire resources
and grow.

Results: Here, we investigate striking long-term body mass declines in juvenile Alpine chamois (Rupicapra rupicapra),
within three neighbouring populations in the Italian Alps. We find strong evidence that increasing population density
and warming temperatures during spring and summer are linked to the mass declines. We find no evidence that the
timing or productivity of resources have been altered during this period.

Conclusions: We conclude that it is unlikely that environmental change has driven body size change indirectly via
effects on resource productivity or phenology. Instead, we propose that environmental change has limited the ability
of individuals to acquire resources. This could be due to increases in the intensity of competition and decreases in time
spent foraging, owing to high temperatures. Our findings add weight to a growing body of evidence for long-term
body size reductions and provide considerable insight into the potential drivers of such trends. Furthermore, we
highlight the potential for appropriate management, for instance increases in harvest size, to counteract the impacts of
climate change on body mass.

Keywords: Body size, Body mass, Chamois, Climate change, Environmental change, Hunting, NDVI, Population density,
Temperature, Ungulate
Introduction
Climatic and other environmental change has impacted
species in a variety of ways, from altering their spatial
distributions (e.g. [1]) to changing the timing of their
annual events (e.g. [2]). Recently, focus has broadened to
include the impacts of climate change on life-history
traits, body condition and population processes (e.g.
[3-6]). One emergent generality is that responses to
climate change include widespread body size changes, par-
ticularly declines, which could have pronounced negative
impacts on the functioning and productivity of ecosystems
[7,8]. Body size declines driven by climate change have
been recorded in the past, for instance in large ungulates
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during the Pleistocene, and are thought to have led to the
extinction of some species [9].
A variety of climatic drivers of recent body size de-

clines have been proposed. In ectotherms, higher meta-
bolic rates are predicted in warmer environments [10],
so climate change might lead to decreased body size,
unless individuals can increase their rate of food intake
[8]. In endotherms, in line with Bergmann’s rule [11], it
could be beneficial to be smaller (and thus have a larger
surface area to volume ratio) in warmer environments,
due to a reduced need for heat conservation and a
greater need for heat loss [12]. In mammals and birds,
intra-specific trends between body size and both latitude
[13,14] and temperature [15,16] have been observed,
providing some support for this theory. However, the
most frequently cited climatic driver of body mass de-
clines is the indirect link via climatic impacts on resource
availability, which has been implicated considerably more
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frequently than any other mechanism (reviewed in [7]).
Climate and environmental change can alter the timing,
quality and quantity of resources, affecting the rate at
which individuals acquire resources to invest in growth
and energy storage, and ultimately body size (e.g. [6,17]).
Non-climatic processes can also drive body size change
and could be playing a role alongside climate change. For
example, in harvested animal populations, a preference for
larger bodied individuals by hunters can drive selection
for decreased body size [18,19].
In ungulates, body mass is an important indicator of

fitness [20,21] and can respond rapidly to environmental
change [6]. High body mass is commonly related to high
reproductive success (e.g. [22]) and survival (e.g. [23]).
As such, changes in body mass can have important
effects on population dynamics [6,21]. The indirect link
between climate, resources and ungulate body mass is
well studied and could be strongly influenced by climate
change [24,25]. However, environmental change could
also directly affect the ability of ungulates to acquire
resources, particularly in seasonal environments, which
could lead to temporal body mass change. For instance,
changes in population density can alter the intensity of
competition for resources, affecting the ability of individ-
uals to forage and grow [26,27]. There is some evidence
from other taxa of links between density and temporal
body size change [28]. In recent decades, warming cli-
mates have led to changing snow cover and depth in some
areas [29], altering the costs of locomotion and foraging
for some species [30]. In alpine species, high temperatures
in spring and summer can cause heat-stress, reducing the
time individuals can spend foraging [31]. As a result, we
propose that, in alpine areas, which have been strongly
affected by climate warming [32], reductions in time spent
foraging due to higher thermoregulatory costs could lead
to reduced body size. Climate change is predicted to drive
similar changes in temperature-dependent activity budgets
in other taxa [33,34]. Furthermore, temperature induced
changes in foraging behaviour have been detected in
experimental studies [35].
Here, we explore long-term variation in the body mass

of juveniles in three neighbouring populations of Alpine
chamois (Rupicapra rupicapra) in the Italian Alps. The
body condition of juvenile ungulates is particularly
responsive to environmental variation [25,26,36]. This is
largely because juveniles invest highly in growth, and
not in reproduction, meaning that their body condition
is very sensitive to the availability of resources. Experien-
cing poor environmental conditions in youth can sup-
press growth rates and result in smaller body size at
maturity [6], which could have important implications
for population dynamics. We begin by investigating
whether there have been consistent, long-term changes
in chamois body mass across sexes and populations.
Having identified the existence of temporal trends in
body mass, we seek to tease apart the different drivers of
these trends. For reasons discussed below (see Methods),
we dismiss the role of artificial selection driven by hunt-
ing. Consequently, motivated by the findings reviewed
above, we seek to evaluate the evidence for three plaus-
ible drivers of body size change:

1. Climate-mediated changes in vegetation productivity
or phenology, altering resource quality and
availability.

2. Climate-mediated changes in behaviour, altering
access to resources.

3. Changes in population density, altering per-capita
resource availability.

Methods
Study area
The study area is located in Trento Province in the
Central-Eastern Italian Alps (46°02’N, 10°38’E), across three
chamois hunting districts: Adamello (area = 373 km2),
Presanella (146 km2) and Brenta (263 km2). The area is
forested up to the tree-line at about 2,000 m, above
which it consists of Alpine meadows, rocky outcrops,
scree fields and open rock faces. The average altitude
varies among the districts, though with considerable
overlap (mean altitude ± SD: Adamello, 1,901 ± 616 m;
Presanella, 2,098 ± 540 m; Brenta, 1,594 ± 603 m). Adamello
and Presanella are characterised by nutrient-poor sili-
ceous vegetation whilst Brenta is characterised by nutrient-
rich calcareous vegetation [37]. Typically, meadows in
Adamello and Presanella are dominated by Festuca
scabriculmis and Carex curvula, whilst those in Brenta are
composed of Sesleria albicans and Carex firma. Through-
out the study area, meadows are grazed by small herds of
livestock (sheep, goats and cows) during summer, a prac-
tice that has been maintained at consistent levels through-
out the study period. Several potential predators of
chamois were present during the study, including a small,
stable population of brown bear (Ursus arctos) in Brenta,
a very small number of Eurasian lynx (Lynx lynx) and the
golden eagle (Aquila chrysaetos). However, predation on
chamois is very rare here (personal communication,
Adamello Brenta Nature Park, Trento Province, Italy).

Body mass data
Chamois are hunted every year between mid-September
and late-December. Data were collected on the eviscer-
ated body mass and day of shooting of 10,455 yearling
(≈1.5 year olds; hereafter juveniles) Alpine chamois
(5,762 males and 4,693 females), hunted between 1979
and 2010 (see Additional file 1 for annual breakdowns of
sample size). Hunting is heavily regulated and there is
little potential for artificial selection by hunters, as
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chamois can easily detect hunters in the predominantly
open habitat and will flee from hunters at particularly
large distances [38,39]. Moreover, there is no evidence of
hunters preferentially harvesting larger bodied age-
classes in these populations [38]. Hunting pressure on
yearlings varies among sites (mean proportion of year-
lings hunted in census years: Adamello males, 0.40 ±
0.01; Adamello females, 0.32 ± 0.01; Presanella males,
0.32 ± 0.01; Presanella females, 0.24 ± 0.02; Brenta males,
0.37 ± 0.01; Brenta females, 0.31 ± 0.02). In order to
account for intra-seasonal variation in body mass, which
is not the focus of this study, a published model of
seasonal body mass change [38], which considers inter-
annual mass variation, was used to estimate juvenile
mass standardised to a specific day of the year. Annual
estimates (n = 32) of mean juvenile body mass were pro-
duced for each sex, within each site, standardised to day
300 of the year (27th October) (see Figure 1). Body mass
was estimated after the vegetation growing season (here-
after ‘growing season’) because body condition at that
time will have been influenced by the spring and sum-
mer environment, which is thought to have a strong
influence on ungulate body mass [40].
There were clear negative temporal body mass trends

in all sexes and sites (Figure 1). In order to examine
drivers of deviations from the long-term trends (i.e.
years in which mean body mass was particularly high or
low, even given the trend), the body mass time series
were detrended by fitting linear models and calculating
residuals. However, detrending can remove long-term
fluctuations related to environmental trends [41,42],
which are of primary interest to us. As a result, we mod-
elled body mass data, to examine drivers of long-term
a

Figure 1 Temporal juvenile body mass trends. Long-term temporal tren
three study sites between 1979 and 2010. Points are annual mass estimate
trends, and also modelled body mass residuals, to exam-
ine drivers of deviations from the trends.

Environmental and demographic data
A range of climatic and non-climatic factors might be
expected to influence chamois body mass. Negative
effects of population density on mass are common in
ungulates [26,27]. In the absence of natural predation,
these effects generally operate through increased intra-
specific competition at higher population densities,
resulting in lower per-capita food intake, particularly
during periods when food is scarce [43-45]. To investi-
gate density-dependence in these chamois populations,
site-specific population density estimates were used from
total population censuses performed in September every
year between 1981 and 2009 (with the exception of 1990
and 1991; data from these years were excluded from the
analysis). Each year, a set of simultaneous censuses was
performed from vantage points across different blocks of
each hunting district. It was assumed that density esti-
mates from this time of year would reflect the popula-
tion density over the previous growing season.
To investigate a possible direct thermoregulatory link

between climate and body mass, we calculated yearly
site-specific estimates of mean daily growing season
temperature between 1982 and 2007 from high-altitude
meteorological stations located in each of the three study
sites (Data provided by The Forecasts and Organization
Office, Civil Protection and Infrastructures Department,
Trento Province, Italy). Differences in the elevation of
weather stations among sites contributed to inter-site
temperature differences (see Figure 2a). However, this did
not affect our analysis since the drivers of body mass
b

ds in body masses of a) male and b) female juvenile chamois in the
s standardised to day 300 and straight lines are fitted trends.
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Figure 2 Temporal trends in population density and mean growing season temperature. Long-term variation in a) mean growing season
daily maximum temperature, between 1982 and 2007, and b) population density, between 1981 and 2009, in Adamello (black), Presanella (red)
and Brenta (green). Gaps show years with missing data. Whilst the three study areas do differ in their climate, some of the observed inter-site
differences in temperature in a) are due to variation in the elevation of weather stations among areas.
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trends were examined separately in each site and, addition-
ally, temperatures were standardised within sites, along
with all other environmental predictors (see ‘Modelling
variation in mass and mass residuals’). The bounds of the
growing season were estimated using snow cover data,
also from meteorological stations located within each site.
The growing season was defined as the period between
the snow-melt in spring, when snow cover was reduced to
0% (which generally occurs between late March and early
May), and the first significant snowfall in winter that re-
sults in new snow settling on the ground (which generally
occurs between early November and late December).
To investigate the effect of vegetation productivity and

phenology on mass, NDVI (normalised difference vege-
tation index) data were used as a measure of vegetation
productivity, processed by the Global Inventory Model-
ling and Mapping Studies group (GIMMS; [46,47]).
These data are global at a 0.07 degree resolution (ap-
proximately 8 km by 8 km) and are available at fort-
nightly intervals between 1982 and 2006 (thus slightly
restricting the yearly data range for analyses). In order
to focus on vegetation types utilised by chamois for
foraging, such as alpine meadows and sparsely vegetated
areas, only NDVI pixels dominated by such vegetation
types were considered. To do this the Corine land-cover
2006 data-set at a 100 m resolution [48] was used to
select only NDVI pixels within each site containing less
than 25% coniferous woodland. As each of the three
sites encompassed a number of these NDVI pixels, mean
NDVI from these pixels was calculated for each fortnightly
time period, within each site. Previous studies have impli-
cated a number of metrics relating to annual NDVI vari-
ation as being important to ungulate body condition (e.g.
[24,25]). Here, we seek to derive NDVI metrics in a stan-
dardised fashion, despite inherent noise in NDVI estimates
caused by factors such as cloud cover, water, snow or
shadow [47]. As in previous studies [49], we used a
smoothed function to characterise variation in NDVI with
time in a given year. The following function was used (see
Additional file 2, for an illustration of the functional form):

�p s; y; tð Þ ¼ αs;y þ βs;y−αs;y
� �

exp −
t−t�

σs;y

����
����
zs;y� �

:

Here, �p s; y; tð Þ is predicted NDVI at time-period t in
site s and year y, αs,y and βs,y are minimum and
maximum NDVI respectively in site s and year y, σs,y is a
parameter related to the width of the function and zs,y is
a parameter describing the shape of the function. Vari-
ation in NDVI data, p(s,y,t), about the predicted mean
was beta distributed. Thus, the likelihood of the model pa-
rameters, θs,y, given the data, parameterised by �p s; y; tð Þ
and the dispersion coefficient ϕs,y, is

L θs;y
� � ¼ Y

t

Γ as;y;t þ bs;y;t
� �

Γ as;y;t
� �

Γ bs;y;t
� �pas;y;t−1s;y;t 1−ps;y;t

� �bs;y;t−1
;

where Γ(x) is the gamma function, as;y;t ¼ �ps;y;t=ϕs;y

and bs;y;t ¼ 1−�ps;y;t=ϕs;y

� �
. The most parsimonious fit
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was identified using Akaike’s Information Criterion
(AIC) [50,51].
The most parsimonious fitted relationships between

mean NDVI and time in each year and site were
calculated. Using these relationships, four NDVI metrics,
described below, were calculated relating to vegetation
productivity and phenology. All four of the metrics
selected have been highlighted as important either to
juvenile chamois specifically or to other ungulate species
[47,52]. Previously, climate-induced changes in spring
growing conditions [53] have been linked to higher
juvenile body mass in ungulates, including chamois [52],
due to longer growing-seasons and higher vegetation
quality [24]. However, warmer springs have also been
linked to negative impacts on body mass as higher
temperatures lead to faster rates of vegetation ‘green-up’
and, thus, a shorter period of access to nutrient-rich
emergent vegetation associated with early spring [25,54].
Here, the following four metrics were used: maximum
rate of spring green-up, growing season duration, max-
imum NDVI and total growing season NDVI. Maximum
rate of spring green-up (NDVIrate) was calculated as the
maximum first derivative of �ps;y tð Þ (i.e. the maximum
rate of NDVI increase). The duration of the growing
season (NDVIdur) was calculated as the length of time
between the maximum second derivative of �ps;y tð Þ (the
start date of the growing season; when the rate of NDVI
increase is increasing at its maximum rate) and the
minimum second derivative of �ps;y tð Þ (the end date of
the growing season; when NDVI is decreasing most
rapidly). Maximum NDVI (NDVImax) was calculated as
the maximum value of �ps;y tð Þ and total growing-season
NDVI (INDVI) as the integral of �ps;y tð Þ within the
bounds of the growing-season. An illustration of the cal-
culation of these metrics can be seen in Additional file 2.

Modelling variation in mass and mass residuals
Environmental predictors were standardised by z-
transformation within each site, as follows: zs;y ¼ xs;y−�xs

� �
=

σ , where zs,y is a z-transformed predictor in year y and site
s, xs,y is the untransformed predictor, �xs is the site-specific
mean of that predictor and σs the site-specific standard
deviation. General linear models were fitted to examine
variation in body mass and body mass residuals using R
version 2.12.0 [55]. Juvenile phenotypic quality is thought
to be strongly influenced by lagged environmental effects
[40]. As such, lagged environmental factors [56,57], affect-
ing the availability and accessibility of resources to
mothers, as well as population density [36,58], affecting
the intensity of competition for resources, can be strong
predictors of juvenile body mass. To account for lagged
environmental effects on juvenile mass, density, tem-
perature and NDVI data were used not only from year y
(the year a cohort was shot), but also from year y-1 (the
year of a cohort’s birth). Models were fitted with all pos-
sible biologically meaningful combinations of population
density, NDVIrate, NDVIdur, NDVImax, INDVI and tem-
perature, from years y and y-1. Models were considered
with either the same intercept or different intercepts
for males and females. In each site, several of the
predictors were highly correlated (Pearson correlation
coefficients ≥ 0.6), for instance NDVIdur with INDVI, and
densityy with densityy-1. To avoid problems of multicolli-
nearity, highly correlated predictors were not permitted in
the same model (but were permitted separately). Given
the temporal range of the predictors, and to use the same
temporal range of data in each model, data were used for
the 19 years between 1983 and 2006, excluding 1990, 1991
and 1992, years for which estimates of densityy and/or
densityy-1 are not available (population censuses were not
performed in 1990 and 1991). In order to identify the most
parsimonious models, we used the two-step model selec-
tion process suggested by Richards [51]. First, all models
having an AIC within six units of the smallest AIC calcu-
lated were selected (i.e. ΔAIC ≤ 6). Second, in order to
remove overly complex models, we disregarded those that
had a higher AIC than any simpler nested model. To
investigate the potential for sex-specific environmental
effects, we tested for sex interaction terms with all predic-
tors within models in each site’s top model set. To assess
the relative importance of different predictors, Akaike
model averaged coefficients were calculated from all
models in each site’s top model set [50]. Since we wanted
to compare how the relative importance of predictors
varied among sites, model averaged coefficients were
z-transformed within each site. This standardised coeffi-
cients from different sites to the same scale, allowing the
most important effects to be readily compared among
sites.

Results
Juvenile chamois body masses decreased strongly be-
tween 1979 and 2010 in all three populations (Figure 1).
The extent of this decrease varied considerably among
sexes and sites but decreases in male mass have been
more pronounced than decreases in female mass in all
sites (slopes of temporal mass trends ± SE: Adamello
males, −0.11 ± 0.01; Adamello females, −0.03 ± 0.02;
Presanella males, −0.17 ± 0.02; Presanella females, −0.13 ±
0.01; Brenta males, −0.05 ± 0.01; Brenta females, −0.04 ±
0.01). Decreases have been less pronounced in Brenta than
in the other two sites. There have been striking increases
in growing season temperatures in all sites between 1982
and 2007 (Figure 2a). During the same period, all three
populations increased in density substantially, peaking in
the mid-1990s before declining slightly in recent years
(Figure 2b). This growth coincides with the implementation
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of stricter controls on hunting in the area (including
increases in the number of rangers and a more strictly
enforced quota system). In contrast, there have been no
pronounced long-term trends in the four NDVI metrics
between 1982 and 2006, although growing seasons have
tended to be longer (Figure 3b) and more productive
(Figure 3d) between 2004 and 2006.
The most parsimonious body mass models fitted the

observed data well (Table 1, Figure 4) (R2: Adamello,
0.78; Presanella, 0.83; Brenta, 0.69). In comparison, the fits
of body mass residual models were poor (R2: Adamello,
0.44; Presanella, 0.13; Brenta, 0.36; see Additional file 3);
thus, our inferences focus on models that describe longer-
term changes in body mass, rather than those focused on
explaining variation around the long-term trend. Tem-
perature, density and NDVI all appear to play a role in
describing long-term variation in juvenile body mass
(Table 1, Figure 5). Within each site, the top set of body
mass models contains a number of closely competing
models (Table 1) but clear and consistent patterns across
sites are illustrated by model averaging (Figure 5).
Temperature and/or density have the strongest negative
effects on mass in all sites (Figures 5 and 6). Furthermore,
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Figure 3 Temporal variation in standardised NDVI metrics. Long-term
b) growing season duration (NDVIdur), c) maximum NDVI (NDVImax) and d) to
(black), Presanella (red) and Brenta (green).
strong negative effects of temperature and density in the
current year are present in all of the top models within
Adamello and Presanella (Table 1), providing good evi-
dence for these effects. A slightly weaker negative effect of
lagged temperature appears in most of the top models for
these sites. In Brenta, there is some evidence for a negative
effect of temperature, which appears in the top three
models in this site but there is no evidence of a density
effect. Despite mass declines in males being consistently
stronger than in females (Figure 1), we found no support
for any interaction terms between sex and environmental
predictors, suggesting that there are not strong differences
in the magnitude of environmental effects on body mass
between males and females. The lack of evidence for
sex-specific effects could stem from the slightly restricted
temporal range of data used in the analysis.
The modelled effects of NDVI are much weaker than

the effects of density and temperature, and are generally
positive (Table 1, Figure 5). Only in Brenta is there
strong evidence for an influence of vegetation productiv-
ity and phenology; a strong, lagged, positive effect of
INDVI is present in all top models and there is some
evidence for a lagged, positive effect of maximum NDVI.
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Table 1 Set of most parsimonious body mass models

Site Tempy Tempy-1 Densy Densy-1 NDVIdur,y NDVIdur,y-1 INDVIy INDVIy-1 NDVImax,y NDVImax,y-1 NDVIrate,y NDVIrate,y-1 Sex K R2 ΔAIC Weight

Adamello −0.42 −0.21 −0.61 −0.18 0.22 0.32 8 0.78 0.0 0.24

−0.35 −0.19 −0.60 −0.21 −0.13 0.32 8 0.77 0.7 0.17

−0.39 −0.18 −0.57 −0.21 0.32 7 0.76 1.8 0.10

−0.42 −0.21 −0.61 −0.18 0.22 7 0.75 2.4 0.07

−0.35 −0.19 −0.60 −0.21 −0.13 7 0.75 3.0 0.05

−0.39 −0.68 −0.22 −0.12 0.32 7 0.75 3.3 0.05

−0.47 −0.69 −0.17 0.21 0.32 7 0.75 3.6 0.04

−0.39 −0.16 −0.56 −0.18 0.32 7 0.75 3.6 0.04

−0.46 −0.20 −0.55 0.18 0.32 7 0.75 3.7 0.04

−0.38 −0.67 −0.13 −0.20 0.32 7 0.74 3.7 0.04

−0.39 −0.18 −0.57 −0.21 6 0.73 3.9 0.03

−0.42 −0.65 −0.22 0.32 6 0.73 3.9 0.03

−0.42 −0.64 −0.20 0.32 6 0.73 4.7 0.02

−0.39 −0.68 −0.22 −0.12 6 0.72 5.3 0.02

−0.47 −0.69 −0.17 0.21 6 0.72 5.5 0.02

−0.39 −0.16 −0.56 −0.18 6 0.72 5.5 0.02

−0.46 −0.20 −0.55 0.18 6 0.72 5.6 0.01

−0.42 −0.65 −0.22 5 0.71 5.6 0.01

Presanella −0.58 −0.27 −0.53 0.28 −0.17 0.19 −0.41 9 0.83 0.0 0.36

−0.59 −0.25 −0.58 0.19 −0.14 −0.41 8 0.81 1.7 0.15

−0.57 −0.27 −0.51 0.26 0.16 −0.41 8 0.81 1.9 0.14

−0.58 −0.26 −0.55 0.18 −0.41 7 0.80 2.3 0.11

−0.52 −0.26 −0.63 −0.14 −0.41 7 0.80 3.4 0.07

−0.51 −0.26 −0.60 −0.41 6 0.78 3.7 0.06

−0.67 −0.63 0.19 −0.41 6 0.78 4.8 0.03

−0.58 −0.26 −0.55 0.18 6 0.78 5.1 0.03

−0.63 −0.66 0.16 −0.41 6 0.77 5.6 0.02

−0.62 −0.70 −0.14 −0.41 6 0.77 5.8 0.02

−0.61 −0.68 −0.41 5 0.76 5.9 0.02
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Table 1 Set of most parsimonious body mass models (Continued)

Brenta −0.40 0.43 0.21 0.13 1.06 7 0.69 0.0 0.24

−0.32 0.38 0.27 −0.11 1.06 7 0.69 0.1 0.23

−0.34 0.38 0.25 1.06 6 0.67 0.1 0.23

−0.34 0.34 0.22 1.06 6 0.66 1.1 0.14

−0.32 0.36 0.21 1.06 6 0.65 2.8 0.06

−0.44 0.41 0.20 1.06 6 0.65 3.3 0.05

−0.37 0.29 1.06 5 0.62 4.6 0.02

−0.37 0.34 1.06 5 0.61 5.4 0.02

−0.36 0.32 1.06 5 0.60 5.9 0.01

Top model set containing models with a ΔAIC that is ≤6 and lower than all simpler nested versions [51]. The number of parameters in each model (K), R2 values, ΔAICs and Akaike model weights are shown. The most
parsimonious model for each site is displayed in bold. 'Sex' represents sex-specific model intercepts.
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a b c

Figure 4 Temporal variation in observed and fitted juvenile body mass. Fitted juvenile body mass predictions of best models for males
(red) and females (black) and observed body mass data in a) Adamello, b) Presanella and c) Brenta. Lines are predictions and points are observed
data for years used in modelling (i.e. years for which there are no missing data for any predictor). R2 shown.
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In Adamello and Presanella, NDVI effects are generally
weaker and inconsistent, although there is some support
for a positive effect of long growing seasons in Presanella
and, surprisingly, for a negative effect of INDVI in
Adamello.

Discussion
Pronounced long-term body mass declines were identified
in all three populations. Models of juvenile body mass
performed well in explaining these declines (Figure 4).
However, the poor performances of residual models show
that deviations from the general trends (i.e. years in which
juveniles are particularly heavy or particularly light relative
to the trend) cannot be explained as accurately. Mass
declines appear to be linked most strongly to increases in
growing season temperatures and population density;
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Figure 5 Model averaged standardised predictor effect sizes. Akaike m
body mass models within the top model set for each site (see Table 1 for
temperature and/or density have the strongest negative
effects on body mass and deviations from yearly trend in
all sites (Table 1, Figure 5). In comparison, there is no evi-
dence of a strong negative effect of vegetation productivity
or phenology on body mass, suggesting that body mass
declines were not mediated by vegetation change as
indexed by NDVI. Our results provide an interesting con-
trast to the majority of studies to date, which have impli-
cated changes in food availability and quality as the most
likely cause of body size declines [7].
Growing season temperature appears to be strongly

linked to mass declines in all three populations (Table 1,
Figures 5 and 6). However, despite significant tempera-
ture change (Figure 2a), there has been no consistent
change in either vegetation productivity or phenology
(Figure 3). Furthermore, there is no relationship between
y−1 INDVIy INDVIy−1 Maxy Maxy−1 Ratey Ratey−1

Adamello
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Brenta

odel averaged standardised predictor coefficients calculated from all
full model selection table).
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Figure 6 Modelled effects of temperature and population density on juvenile body mass. Modelled effects of a) mean growing season
temperature and b) population density on change in juvenile body mass since 1983 in Adamello (black), Presanella (red) and Brenta (green). Solid
lines are predictions of the most parsimonious body mass model for each site, with other predictors set to mean values. Dashed lines are 95%
confidence intervals calculated from 1000 bootstrapped replicates [59].
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temperature and any NDVI metric. As such, we find no
evidence for our first putative driver of mass change:
that climate change has affected body mass via effects
on resource productivity or phenology. Instead, our
results provide support for our second putative driver:
that climate change could be directly affecting chamois
behaviour or physiology, limiting their ability to acquire
resources. In another alpine ungulate, the ibex (Capra
ibex), temperatures above 15-20°C result in heat discom-
fort in males, reducing the time they can spend foraging
[31]. In ungulates, behavioural changes, such as allocat-
ing less time to foraging, play an important role in
thermoregulation because they can be more energetically
efficient than autonomic thermoregulation [60,61].
Higher daily temperatures during spring and summer
may have led to juvenile chamois spending more time
resting and less time foraging than in the past, reducing
their ability to store energy reserves and invest in
growth. Indeed, chamois, like many ungulates, reduce
their feeding activity during the hottest period of the day
[62]. Furthermore, chamois spend less time foraging
when it is hotter, independent of time of day [63]. Our
results suggest that temperature affects the ability of
juveniles to acquire resources themselves rather than via
lagged effects on their mothers (Figure 5). It is possible
that juvenile ungulates are more susceptible to higher
temperatures due to having higher relative metabolic
demands than adults [64,65]. Whilst we did not find any
evidence for sex-specific environmental effects on body
mass, that mass declines in juvenile males are consist-
ently more pronounced than in females (Figure 1) sug-
gests that, even in a relatively monomorphic ungulate
species, a more energetically demanding growth phase
could make males more susceptible to environmental
stressors [20].
Population density also appears to be strongly linked

to mass declines in juvenile chamois, providing support
for our third putative driver: that changes in density
affect per-capita resource availability (Table 1, Figures 5
and 6). The study populations have grown substantially
following the implementation of stricter controls on
hunting. As a result, increased intra-specific competition
for resources may have led to reduced rates of per-capita
food intake. Additionally, climate change may have af-
fected chamois survival or fecundity, contributing to this
population growth. Density dependence in body mass
has been detected in a range of ungulate species (e.g.
[27,36,66]) and even specifically in juvenile chamois [52].
At high latitudes and in alpine regions, this effect is most
likely to manifest during winter, when snow cover reduces
forage availability and increases forage patchiness, result-
ing in higher levels of agonistic interactions among indi-
viduals [67,68]. It is also possible that density dependence
could be mediated by overgrazing; however, no changes in
NDVI consistent with overgrazing, such as decreases in
maximum NDVI or INDVI [69], were detected. Overgraz-
ing can also encourage the colonisation of grazing-
tolerant, less palatable species [70], which might not result
in detectable changes in productivity. However, such
changes would not alter our finding that increases in dens-
ity appear to have influenced body mass via changes in
per-capita resource availability. As with temperature, the
effect of density in the year of shooting appears most im-
portant (Figure 5), suggesting that competition for forage



Mason et al. Frontiers in Zoology 2014, 11:69 Page 11 of 13
http://www.frontiersinzoology.com/content/11/1/69
following weaning, rather than a lagged influence of com-
petition on mothers in the previous year, has a stronger
influence on juvenile mass. Indeed, intra-specific compe-
tition for resources is most likely to result in the displace-
ment of subordinate individuals, such as juveniles, from
food patches [71-73]. Previously, the importance of
lagged effects on juvenile condition has been stressed (e.g.
[56,58]). However, our findings are consistent with recent
work on juvenile chamois showing that environmental
conditions during the second year of life, which influence
the ability of juveniles to acquire resources directly, have
an important effect on investment in growth and energy
storage [37,52]. Only in Brenta is there no evidence for
density dependence in body mass (Figures 5 and 6). Brenta
is calcareous, harbouring a more nutrient-rich plant com-
munity [74], so forage availability could be less limiting
here than in the other populations. A hunting regime
maintaining this population below its carrying capacity,
and limiting the effect of resource competition on mass,
could also contribute to the less pronounced mass
declines observed in Brenta (Figure 1).
There was no evidence for a strong role of vegetation

productivity or phenology in the observed long-term
mass declines (Table 1, Figure 5). Given that NDVI is
only a proxy for vegetation productivity, it remains pos-
sible that other changes in vegetation quality and phen-
ology have had more of an effect than suggested here.
As with overgrazing, it is possible that warmer tempera-
tures in spring and summer could lead to increases in
the abundance of less palatable species [75], or reduc-
tions in the protein content of the species present [76],
changes which NDVI might not detect. Although they
do not appear to play a strong role in mass declines,
there is some evidence that vegetation productivity and
phenology influence variation in juvenile body mass.
This is particularly the case in the calcareous area, Brenta,
where there is strong evidence that productive growing
seasons (in terms of INDVI and maximum NDVI) have
positive effects on juvenile body mass (Table 1, Figure 5).
This is consistent with findings from another calcareous
Alpine area, where long growing seasons have been linked
to higher juvenile chamois body mass [52]. In our study, it
is intriguing that the relative importance of environmental
factors should vary among neighbouring areas that differ
predominantly only in their geological substrate. These
differences may arise because calcareous vegetation, whilst
being more nutrient-rich, varies more in quality in re-
sponse to environmental variation than siliceous vegeta-
tion [74,77]. The variation in substrate in this study area
has previously been shown to mediate differences in re-
productive strategy, body mass [38] and horn length [37];
this study further highlights the importance of considering
geological variation in studies of animal morphology,
physiology and life history.
Conclusions
We have detected strong links between recent environ-
mental change and negative temporal body mass trends
in juvenile chamois. Increases in both temperature, due
to climate change, and population density, due to stricter
controls on hunting, appear to be driving the mass de-
clines. Since we found no evidence for an effect of chan-
ging resource productivity or phenology on body mass,
the observed patterns may not be mediated by changes
in vegetation. We propose that heightened thermo-
regulatory demands and intra-specific competition, to
both of which juveniles are particularly susceptible, could
be responsible. These findings add an interesting contrast
to the large number of studies implicating climate-
mediated changes in resource productivity or phenology
as drivers of declines in animal body size. Interestingly,
our findings highlight that changes in management could
ameliorate negative impacts of climate change. For ex-
ample, future increases in hunting offtake could reduce
the intensity of resource competition, counteracting nega-
tive impacts of temperature warming on body mass. This
study further highlights the importance of considering
management when examining the influence of environ-
mental change on species, which is an increasingly
important focus of ecological research (e.g. [63,78,79]).
Future reductions in body size are likely to have
far-reaching effects on the functioning and productivity of
ecosystems [7,8]; decreases in juvenile body condition
could result in reduced survival of juveniles and depressed
population growth rates. An increasing focus on the links
between climate, management, body condition and dem-
ography will shed light on the influence of anthropogenic
and climate change on populations.
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