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ABSTRACT

It is now routine to measure the weak gravitational lensing shear signal from the mean ellipticity of distant
galaxies. However, conversion between ellipticity and shear assumes local linearity of the lensing potential (i.e.,
that the spatial derivatives of the shear are small), and this condition is not satisfied in some of the most interesting
regions of the sky. We extend a derivation of lensing equations to include higher order terms, and assess the
level of biases introduced by assuming that first-order weak-lensing theory holds in a relatively strong shear
regime. We find that even in a worst-case scenario, a fully linear analysis is accurate to within outside ∼1.071%
times the Einstein radius of a lens, by deriving an analytic function that can be used to estimate the applicability
of any first-order analysis. The effect is too small to explain the discrepancy between weak- and strong-lensing
estimates of the mass of the Bullet Cluster, and should not impact cluster surveys for the foreseeable future. In
fact, it means that arclets can be used to measure shears closer to a cluster core than has been generally appreciated.
However, the bias is significant for galaxy group or galaxy-galaxy lensing applications. At the level of accuracy
demanded by dedicated future surveys, it also needs to be considered for measurements of the inner slope of
cluster mass distributions and the small-scale end of the mass power spectrum.

Subject heading: gravitational lensing

1. INTRODUCTION

Gravitational lensing is the deflection of light rays from a
background light source by an intervening gravitational field
(Mellier 1999; Refregier 2003). It is one of the most promising
probes of the distribution of dark matter, and hence the effects
of dark energy. Along lines of sight where the deflection is
sufficient, “strong lensing” visibly distorts (and often multiply
images) the shapes of individual background galaxies. How-
ever, only “weak lensing” is produced along most lines of sight,
even those passing through the outskirts of galaxy clusters.
This weaker but ubiquitous signal has to be collected statisti-
cally. To first order in a Taylor series, it is obtained from the
mean ellipticity of an otherwise uncorrelated set of galaxies
(Bartelmann & Schneider 2001).

Weak-lensing measurements have now been well used to
map the distribution of mass (Clowe et al. 2006; Gavazzi &
Soucail 2007; Massey et al. 2007b) and characterize its large-
scale statistical properties (Massey et al. 2007a; Benjamin et
al. 2007; Kitching et al. 2007). However, it is often the most
massive structures that are of particular interest in the maps
(e.g., Wittman 2005; Schirmer et al. 2007; Miyazaki et al. 2007)
and that dominate the contribution to the power spectrum on
small scales (e.g., Smith et al. 2003). Near such regions, the
first-order assumptions implicit in a weak-lensing analysis no
longer necessarily hold. In this Letter, we expand the Taylor
series of the weak-lensing equation to include the next-highest
terms, and investigate the level of bias in shear measurements
that rely on simple measurements of ellipticity.

We derive the lensing equations in § 2. We check our results
using ray-traced simulations in § 3, and we discuss their im-
plications in § 4.
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2. LENSING TRANSFORMATIONS

2.1. The Usual First-Order Treatment

A general gravitational lens deflects light from position ′x
in a background (source) image to position in the observedx
(lens) plane, such that

′x p x � a(x), (1)

where the deflection angle is predicted by gen-a(x) p �W(x)
eral relativity in the weak field limit, and is the NewtonianW(x)
potential of the lens, , projected onto the plane of theF(x, z)
sky.

Crucially, the gravitational field and the deflection angle vary
across the sky. Assuming (the local linearity condition) that the
change is linear on scales the size of a galaxy, it can be de-
scribed to first order by a coordinate transformation

�W � �W′ …x p x � � Dx � . (2)i i j( ) ( )�x �x �xi j i

The first derivative term represents an unmeasurable centroid
shift. Placing the origin of the coordinate system at the galaxy’s
observed center of light, we are left with

′ …x p A x � , (3)i ij j

where the Jacobian of the transformation is

2� WA p d � , (4)ij ij
�x �xi j

1 � k � g �g1 2A { . (5)( )�g 1 � k � g2 1

We have introduced the usual notation of convergence
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, and two components of shear . The2k(x) { � W(x)/2 g (x)i

inverse mapping is simply

�1 ′ …x p (A) x � . (6)i ij j

The shape of a galaxy image can be quantified via its′I(x )
intrinsic ellipticity

int int intQ � Q 2Q11 22 12int int{ }x , x { , , (7)1 2 { }int int int intQ � Q Q � Q11 22 11 22

where its quadrupole moments are

′ ′ ′ 2 ′I(x )x x d x∫ i jintQ { . (8)ij ′ 2 ′I(x )d x∫

Under the (locally linear) lensing transformation (6), the gal-
axy’s observed ellipticity becomes

lin int int int …x p x � 2g � x (x g ) � (9)i i i i j j

to first order in g (Seitz & Schneider 1995). Averaging over
a population of galaxies with uncorrelated intrinsic shapes

, an estimator can then recover the gravitationalint ˜Ax S p 0 g
shear signal

linAx Si 2˜Ag S { p Ag S � O(g ). (10)i iint 22 � A(x ) Si

The variance in the denominator can be closely approximated
by the observed value, which is typically ∼0.4 (Leauthaud et
al. 2007).

For practical purposes, a weight function with finiteW(x)
support is also usually applied to the integrals in equation (8).
This complicates the shear estimator: the shear polarizability
tensor in Kaiser et al. (1995), which generalizes the de-gP
nominator of equation (10), involves derivatives of . How-W(x)
ever, is typically fitted from a large ensemble of galaxygP
shapes to reduce noise, and almost all of those galaxies will
be on lines of sight unaffected by higher order lensing terms.
We therefore ignore the effect here.3

2.2. Higher Order Terms

Continuing the Taylor series in equation (2), we can write
(cf. Goldberg & Natarajan 2002)

31 � W′x p A x � x xi ij j j k2 �x �x �xi j k

41 � W …� x x x � . (11)j k l6 �x �x �x �xi j k l

Repeatedly substituting the simple form

1 1
�1 ′x p (A) x � W, x x � W, x x x (12)i ij j jkl k l jklm k l m( )2 6

3 As pointed out during the derivation of “reduced shear” by Bartelmann
& Schneider (2001) a galaxy’s flux could be replaced in eq. (8) and′I(x )
throughout by a monotonic function of intensity , without any change′f(I(x ))
in the formalism. This approximates a useful weighting scheme.

into itself then yields the inverse mapping

�1 ′x p (A) xi ij j

1
�1 �1 �1 ′ ′� (A) (A) (A) W, x xij k p lq jkl p q2

1
�1 �1 �1 �1 ′ ′ ′� (A) (A) (A) (A) W, x x xij k p lq mr jklm p q r6

1
�1 �1 �1 �1 �1� (A) (A) (A) (A) (A)ij k p lm nq sr2

′ ′ ′ …#W, W, x x x � . (13)jkl mns p q r

The various terms are listed in order of decreasing importance.
Third derivatives of W are related to the flexion signal (Gold-
berg & Bacon 2005; Bacon et al. 2006). This is small for
realistic potentials; higher derivatives of W will be smaller still.
Note that this relation still holds locally even if there are mul-
tiple images, but that there will be different values of at eachA
image.

To complicate matters, this mapping now shifts the galaxy’s
center of light by less than . If the coordinate system werea
located as in the linear case, the observed centroid would now
be

1
�1 �1 �1 intAx S ≈ (A) (A) (A) W, Q , (14)i ij km ln jkl mn2

plus smaller contributions coming from the galaxy’s intrinsic
octopole moment. In a coordinate system centered on the ob-
served image, the mapping (for a fully general potential) is
therefore (cf. eq. [6])

�1 ′x p (A) xi ij j

1
�1 �1 �1 ′ ′ int� (A) (A) (A) W, x x � Q( )ij k p lq jkl p q pq2

1
�1 �1 �1 �1 ′ ′ ′� (A) (A) (A) (A) W, x x xij k p lq mr jklm p q r6

1
�1 �1 �1 �1 �1� (A) (A) (A) (A) (A)ij k p lm nq sr2

′ ′ ′ …#W, W, x x x � . (15)jkl mns p q r

In practice, a galaxy’s intrinsic quadrupole moments cannot be
observed. We could expand them as a function of the galaxy’s
observed shape using equation (11). However, several non-
negligible coefficients produce an unwieldly general
expression.

To make the equations more tractable, we now fix various
properties of the lens. It is always possible to adopt an arbitrary
choice of rotation for the coordinate system such that W, p12

(so is diagonal), and invoke parity symmetry to consider0 A
only that the potential increases to the right (hence ). Weg ! 01

also work only in the “positive parity” lensing regime (outside
the critical curve), where . Our analysis is equallydetA 1 0
valid inside the critical curve, but breaks down if a part of the
image crosses the critical curve (cf. Schneider & Er 2007). We
additionally approximate as zero all derivatives of W that are
“odd” at ( , , , and ). This is explicitly90� W, W, W, W,112 222 1112 1222
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Fig. 1.—Observed ellipticity of an intrinsically circular galaxy with a Gauss-
ian radial profile, seen at various radii behind a singular isothermal sphere
lens. The two groups of curves represent the cases of a typical galaxy cluster
lens and a galaxy group lens. In both, the solid lines depict analytic models:
with the assumption of local linearity (these produce the same curve) and
including second-order terms. The dotted lines show measured values from a
fully ray-traced simulation.

true for a circular potential or at the major and minor axes of
an elliptical potential.

Since we are in a fairly strong lensing regime, it is not
unreasonable to also assume that , so the source galaxyintg k x
can be considered intrinsically circular. It still has a size

and concentration index2 int intR { 2Q p 2Q11 22

4 2I(x)FxF d x∫
c { , (16)

2 2 2(R ) I(x)d x∫

which is 2 for a Gaussian, 10/3 for an exponential, and higher
for a de Vaucouleurs profile.

The observed ellipticity then simplifies to

2 2 2a d Robs lin 2 2 2x p x � {(a W, � d W, )1 1 111 1222 2 24(a � d )
4 2 2 2 3 4 2�c[15a W, � (12a d � 4ad � 3d )W,111 122

2�2a d(2a � 3d)W, W,111 122

3 3�4a W, � 4ad(a � d)W, � 4d W, ]}. (17)1111 1122 2222

where and�1 �1 �1a { (A ) p (1 � W, ) d { (A ) p (1 �11 11 22

are unitless. For a singular isothermal sphere (SIS) lens,�1W, )22

,W(x) p v FxFE

2 3 2cR 4r � (9 � 1/c)r � 12r � 4obs linx p x � , (18)1 1 2 2 2 2v 4(r � 1) (2r � 2r � 1)E

where and .lin 2r { FxF/v x p (1 � 2r)/(2r � 2r � 1)E 1

3. VERIFICATION THROUGH RAY-TRACING

We have developed a simple ray-tracing routine to deflect
rays via equation (1), deforming the shapes of source galaxies
into arcs. Figure 1 shows the apparent ellipticity of an intrin-
sically circular Gaussian source with width j, when seen behind
a singular isothermal sphere lens with Einstein radius . ThevE

two examples, with and 0.12, illustrate a median-j/v p 0.006E

sized galaxy (Leauthaud et al. 2007) at behind′i p 25 z p 1
cluster Abell 1689, in which (Clowe & Schneider′′v p 45E

2001), and behind a more modest galaxy group. The Bullet
Cluster is not spherical, but has a mean Einstein radius of ∼35�
for the main and ∼30� for the secondary peak (M. Bradač 2007,
private communication).

The ray-tracing calculation and all analytic models converge
at large distances from the lens. However, while ellipticity in-
creases monotonically toward the Einstein radius under the
assumption of local linearity, in more realistic calculations,
image curvature due to higher order terms reduces the measured
ellipticity. Very close to the Einstein radius, our second-order
model 17 overestimates the deviation from a linear model com-
pared to ray-traced measurements due to even higher order
terms. It thus represents a worst-case scenario.

4. DISCUSSION

We have derived the next-highest terms in the coordinate
transformation relevant for weak gravitational lensing, by drop-
ping the assumption of “local linearity,” which acts as a useful
constraint on the applicability of the linear approximation. The
resulting equations are not elegant, but can be simplified by
making several reasonable assumptions about the galaxy’s in-

trinsic shape and the lens profile. We provide a convenient
formula in the case of a singular isothermal sphere lens. As
expected, the perturbations from linear lensing theory are
greatest for large galaxies; they increase as the size of the
galaxy squared. As with gravitational flexion, this is simply
due to the accumulating change in shear signal across the width
of a galaxy image.

A linear lensing analysis systematically overestimates the
shear signal near an Einstein radius. However, it is negligible
for galaxy cluster lenses surprisingly far into the nonlinear
regime. Assuming a value of 1.6 for the denominator of equa-
tion (10), the linear approximation is within 1% of the true
shear outside ∼1.07vE, where , and the reduced shear,g ≈ 0.47

. Compared to other potential errors in immediatelyg ≈ 0.93
forthcoming surveys, we therefore conclude that this will be
of only minor concern for measurements of the mass of in-
dividual (or even stacked) clusters. For example, the effect is
in the right direction but an order of magnitude too small to
explain the discrepancy between measurements of the mass in
the Bullet Cluster (Clowe et al. 2006) via strong and weak
lensing. However, the effect ought to be considered by mea-
surements of the inner slopes of cluster mass distributions or
the mass power spectrum on small scales. It is also more im-
mediately significant for mass measurements of galaxy groups
and galaxy-galaxy lensing.

We have not investigated the correction for a point-spread
function or the use of a weight function while measuring galaxy
shapes. A full analysis of these would be interesting in future
work.
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