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ABSTRACT

We derive expressions, in terms of ‘polar shapelets’, for the image distortion operations as-

sociated with weak gravitational lensing. Shear causes galaxy shapes to become elongated,

and is sensitive to the second derivative of the projected gravitational potential along their line

of sight; flexion bends galaxy shapes into arcs, and is sensitive to the third derivative. Polar

shapelets provide a natural representation, in which both shear and flexion transformations are

compact. Through this tool, we understand progress in several weak lensing methods. We then

exploit various symmetries of shapelets to construct a range of shear estimators with useful

properties. Through an analogous investigation, we also explore several flexion estimators.

In particular, some of the estimators can be measured simultaneously and independently for

every galaxy, and will provide unique checks for systematics in future weak lensing analyses.

Using simulated images from the Shear TEsting Programme, we show that we can recover

input shears with no significant bias. A complete software package to parametrize astronomical

images in terms of polar shapelets, and to perform a full weak lensing analysis, is available on

the Internet.
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1 I N T RO D U C T I O N

Weak gravitational lensing is a powerful method to map the distri-

bution of mass in the Universe, regardless of its nature or state

(for reviews see Mellier 1999; Bartelmann & Schneider 2001;

Refregier 2003a). The apparent shapes of background galaxies be-

come distorted as their light travels near mass concentrations along

their line of sight to the Earth. The well-known shearing of galaxies,

in which intrinsically circular sources would be seen as elongated el-

lipses, is induced by an amount proportional to the second derivative

of the projected foreground gravitational potential. Such distortion

has been measured around individual galaxy clusters (e.g. Wittman

et al. 2001; Bacon & Taylor 2003; Wittman et al. 2003; Bradač et al.

2005; Wittman et al. 2006) and, in a statistical fashion, by large-

scale structure (recent measurements include Massey et al. 2005;

Heymans et al. 2005; Van Waerbeke, Mellier & Hoekstra 2005;

Jarvis et al. 2006; Hoekstra et al. 2006; Hetterscheidt et al. 2007;

Schrabback et al. 2006; Kitching et al. 2007; Semboloni et al. 2006;

Massey et al. 2007b).

A higher order effect, known as ‘flexion’, is also emerging as a

probe of the distribution of mass on small scales, and particularly

in the inner cores of galaxy clusters (Goldberg & Natarajan 2002;

⋆E-mail: rjm@astro.caltech.edu

Irwin & Shmakova 2003; Goldberg & Bacon 2005; Bacon et al.

2006; Irwin & Shmakova 2006; Okura, Umetsu & Futamase 2006;

Goldberg & Leonard 2007). Variation in the shear signal across the

width of a background galaxy causes bending in its apparent shape.

This is the next term in a lensing expansion that leads towards the

formation of an arc, as in strong lensing. The flexion is sensitive to

the third derivative of the projected gravitational potential.

Precise image analysis techniques are required to detect weak

gravitational lensing, because the shapes of galaxies are changed by

the effect by only a few per cent. In fact, the lensing contribution

to the shape is about an order of magnitude smaller than the disper-

sion of galaxies’ intrinsic morphologies and the spurious distortions

introduced by typical imperfections in telescopes. The widely used

shear measurement method by Kaiser, Squires & Broadhurst (1995,

KSB hereafter) has been successful in many contexts, but contains

several documented shortcomings: it is found to be insufficiently

accurate to measure shears with a desired accuracy of less than

1 per cent [cf. Bacon et al. 2001; Erben et al. 2001; Heymans et al.

2005 Shear Testing Programme 1 (STEP1); Massey et al. 2007a

(STEP2)], and it is mathematically ill defined for realistic point

spread functions (PSFs) (cf. Kuijken 1999; Kaiser 2000; Hirata &

Seljak 2003).

Several new shear measurement methods are being developed, to

fully exploit future space-based weak lensing surveys with Hubble

Space Telescope (HST) or the proposed SNAP, DUNE or JDEM
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missions, and ground-based wide-field surveys such as those with

Megacam, CTIO DES, VISTA darkCAM, Pan-STARRS and LSST.

A review of the various shear measurement methods is found in

STEP2, along with their division into ‘active’ and ‘passive’ cat-

egories. Active techniques work by modelling galaxies as intrin-

sically circular, then shearing the models until they most closely

match the observed ellipticities. Passive methods work by measur-

ing the apparent ellipticities of objects as well as higher order shape

statistics, which are used to calibrate the ellipticities.

Flexion measurement methods are still in relative infancy. Ini-

tial attempts to mathematically describe the flexion distortion

(Goldberg & Natarajan 2002; Irwin & Shmakova 2003) were

formidably complicated. A passive estimator has been constructed

by Okura et al. (2006), and further expanded by Goldberg & Leonard

(2007). A completely different, probabilistic approach is taken by

Irwin & Shmakova (2006) and Irwin et al. (2006). However, sev-

eral important features in these approaches remain to be developed,

and they remain mathematically complex; it is therefore desirable

to find a formalism which allows maximum physical insight into the

problem. An advance towards this was made by Goldberg & Bacon

(2005), who related flexion to the formalism of Cartesian shapelets

(Refregier 2003a; Refregier & Bacon 2003). Shapelets contain all

the mechanics necessary to deconvolve galaxies and flexion estima-

tors from the effects of a PSF. The active method of Goldberg &

Bacon (2005) and Goldberg & Leonard (2007) has been used to suc-

cessfully detect the flexion signal. The mathematics has a simpler

form, although it is still not as elegant as possible.

Here, we present the image manipulations of lensing theory in

terms of the ‘polar shapelets’ formalism (Refregier 2003a; Massey

et al. 2005). This suggests a complete, orthonormal set of basis

functions into which any galaxy shapes can be decomposed. It also

provides a neat way to deconvolve arbitrary galaxy shapes from

an arbitrarily complicated PSF, so we can set out under the as-

sumption that this problem is solved. Polar shapelets then provide

a natural representation for both shear and flexion operations, with

simple mathematical forms that yield transparent physical inter-

pretation. The complex number approach used throughout polar

shapelets matches very conveniently with the complex ellipticity

notation of Blandford et al. (1991) now ubiquitous in shear litera-

ture, and with the complex formalism of flexion developed by Bacon

et al. (2006). A complete software package to decompose images

into polar shapelets is available from the shapelets web site.1

We then exploit the inherent symmetries of polar shapelets to ex-

plore a comprehensive range of passive measurement methods for

both shear and flexion. To create a shear or flexion estimator, we sim-

ply need to find a combination of shapelet coefficients that has the

desired properties under each transformation. We generally keep the

estimators as close as possible to linear in the image, to minimize

both noise and bias in the final result. The shapelet methodology

resembles a continuation of the KSB method to higher order. How-

ever, the inclusion of higher order shape information, and a complete

parametrization of galaxy morphology, provides several new oppor-

tunities to improve on KSB, and to remove its instabilities. Some

of the shear and flexion estimators that we describe are also inde-

pendent, and can be obtained simultaneously for each galaxy. These

will provide invaluable new cross-checks for systematics in the data

analysis, which are unique to this method, and can also be combined

to increase the overall ratio of signal to noise. As we shall discuss,

one of the shear estimators has already been proved highly success-

1 http://www.astro.caltech.edu/∼rjm/shapelets.

ful in a blind test on simulated images containing an applied shear,

as part of the STEP programme (Heymans et al. 2006; Massey et al.

2007a). We defer detailed testing of the remainder until the next

STEP cycle.

This paper is organized as follows. In Section 2 we describe the

shapelet decomposition and the action of weak gravitational lensing

in shapelet space. In Section 3 we derive several possible weak shear

estimators, and discuss the performance of a key estimator on the

simulated STEP images. In Section 4 we derive several possible

weak flexion estimators. We conclude in Section 5.

2 W E A K G R AV I TAT I O NA L L E N S I N G I N

P O L A R S H A P E L E T S PAC E

We shall first describe the action of weak shears and weak flexions

in polar shapelet space. This is seen as a mixing of power between

an object’s various shapelet coefficients, or equivalently how much

those coefficients change under each operation. To first order, a

vector of shapelet coefficients is acted upon by simple matrices

that contain small mixing components in their off-diagonal terms.

For example, a shear takes some power from the circular (m = 0)

shapelet coefficients and redistributes it into the elliptical (m = 2)

shapelet coefficients, turning a circle into an ellipse.

The effect of shear as an abstract coordinate transformation has al-

ready been derived in Cartesian shapelet space by Refregier (2003b),

and in polar shapelet space by Massey et al. (2005). Here, we review

this shear in the physical context of weak gravitational lensing. Op-

erators to perform flexion have been derived in Cartesian shapelet

space by Goldberg & Bacon (2005). Here, we translate those re-

sults into polar shapelet space, where they become much simpler.

The flexion operators fit naturally into the complex notation of polar

shapelets. Furthermore, the two distinct types of flexion identified

by Bacon et al. (2006) mix distinct sets of polar shapelet coefficients,

which can be separated elegantly.

2.1 Polar shapelet space in the absence of lensing

The observed image of every galaxy f (r, θ ) can be decomposed into

a sum of (complex) orthogonal 2D basis functions

χn,m(r , θ ) =
(−1)(n−|m|)/2

β |m|+1

[ (
n−|m|

2

)
!

π
(

n+|m|
2

)
!

]1/2

× r |m|L
|m|
(n−|m|)/2

(
r 2

β2

)
e−r2

/(2β2)e−imθ (1)

weighted by (complex) shapelet coefficients fn,m

f (r , θ ) =
∞∑

n=0

n∑

m=−n

fn,mχn,m(r , θ ). (2)

The basis functions, which are illustrated in Fig. 1, are fully de-

scribed in Massey & Refregier (2005) and Bernstein & Jarvis (2002).

They are Laguerre polynomials in r multiplied by sines and cosines

in θ , and a circular Gaussian of width β. This scale size is chosen to

match the observed size of each galaxy, and the functions are placed

at the galaxy’s centre of light. The shape of each galaxy can then be

completely described by the array of its shapelet coefficients fn,m .

These are complex numbers, with fn,−m = f ∗
n,m . The indices n and

m correspond to the numbers of radial and tangential oscillations,

respectively: n can take any nonnegative integer, and m can take any

integer between −n and n, in steps of two. The index m will be the

most significant in this paper, because coefficients with the same
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Figure 1. The polar shapelet basis functions, with indices n and m that

describe the number of radial and tangential oscillations. The functions are

complex, but several symmetries exist to ensure that a reconstructed image

is wholly real, and these have been used to condense the plot. Basis functions

(and shapelet coefficients) with opposite signs of m are complex conjugate

pairs. Only the real part is shown here for basis functions with m � 0 and

only the imaginary part for those with m < 0. The basis functions with m = 0

are wholly real. Units of the colour scale assume that β = 1. The boxes have

also been enlarged into the spaces between allowed coefficients for clarity.

value of m describe features of a galaxy with the same degree of

rotational symmetry.

In practice, the shapelet expansion must be truncated, and we

typically use coefficients with n less than some maximum amount

or, conveniently in this context, n + |m| less than some amount.

The latter, ‘diamond’-shaped truncation scheme is a cut in the total

number of oscillations, so is more consistent with arguments con-

cerning information content in Fourier space, like the θmin and θmax

of equation (24) in Refregier (2003b). It is also better matched to

the empirically observed distribution of power in shapelet space for

typical galaxies. In Fig. 1, the absolute values of coefficients with

n = 7, 8 or 9 and low |m| (which are not shown) would typically

be higher than those towards the top right-hand side and bottom

right-hand side of those that are shown. For galaxy shapes this trun-

cation scheme therefore improves the data compression ratio, or the

accuracy of image recovery using a fixed number of free parameters.

In the absence of lensing, we first assume that galaxy shapes are

randomly oriented. This must be true for a sufficiently large and

widely separated ensemble of galaxies, if there is no preferred di-

rection in the Universe, and if galaxies are not intrinsically aligned.

The unlensed ensemble of galaxies cannot contain any angular in-

formation, so must therefore have mean shapelet coefficients f nm

that obey

〈 fnm〉 = 0, if m 
= 0. (3)

Thus, only the m = 0 coefficients of the ensemble average are pop-

ulated. This is the only information available about an unlensed

galaxy ensemble. It encodes the galaxies’ flux

F ≡
∫ ∫

f (r , θ ) r dr dθ = β
√

4π

even∑

n

fn0, (4)

and radial profile (see Massey & Refregier 2005), including their

average size

R2 ≡
1

F

∫ ∫
r 2 f (r , θ ) r dr dθ =

β3
√

16π

F

even∑

n

(n + 1) fn0 (5)

and higher order shape moments like

ξ ≡
∫ ∫

r 4 f (r , θ ) r dr dθ = β5
√

64π

even∑

n

(n2 + 2n + 2) fn0,

(6)

as defined by Okura et al. (2006). All of these will be used later.

Although the following quantities will be zero on average for

the population, for each galaxy we can also define an unweighted

centroid

xc ≡
1

F

∫ ∫
reiθ f (r , θ ) r dr dθ =

β2
√

8π

F

odd∑

n

√
n + 1 fn1, (7)

ellipticity

ε ≡
1

F R2

∫ ∫
r 2e2iθ f (r , θ ) r dr dθ

=
β3

√
16π

F R2

even∑

n

√
n(n + 2) fn2 (8)

and trefoil

δ ≡
1

ξ

∫ ∫
r 3e3iθ f (r , θ ) r dr dθ

=
β4

√
32π

ξ

odd∑

n

√
(n − 1)(n + 1)(n + 3) fn3,

(9)

the numerator of which is the β-invariant quantity Q obtained by

setting s = 4 and m = 3 in equations (56) and (58) of Massey &

Refregier (2005).

2.2 Effect of shear in shapelet space

As a bundle of light rays from a distant galaxy passes through a

foreground gravitational field characterized by the lensing potential


(x, y), the rays are differentially deflected, and the apparent shape

of the galaxy is distorted (cf. Bartelmann & Schneider 2001). The

shape of the galaxy f (x, y) is sheared by an amount

γ ≡ γ1 + iγ2 =
1

2

(
∂

2


∂x2
−

∂
2


∂y2

)
+ i

∂
2


∂x∂y
. (10)

Positive values of the real part, γ 1, correspond to elongations

of the galaxy along the x-axis and compressions along the y-axis.

Positive values of the imaginary part, γ 2, correspond to elongations

of the galaxy along the line y = x and compressions along the

line y = −x. In both cases, negative values indicate the opposite.

This complex shear notation (and an analogous form of complex

ellipticity) is useful in weak lensing because both components are

expected to be zero on average in the absence of a signal. In this case,

a modulus-argument form for shear would have a zero modulus, but
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no well-defined angle. The complex form also arises very naturally

in polar shapelet space.

As shown in Massey & Refregier (2005), under a weak lensing

shear Ŝ to first order, the shapelet coefficients f nm transform as

Ŝ : fn,m → f ′
n,m = fn,m

+
γ

4

{√
(n + m)(n + m − 2) fn−2,m−2

−
√

(n − m + 2)(n − m + 4) fn+2,m−2

}

+
γ ∗

4

{√
(n − m)(n − m − 2) fn−2,m+2

−
√

(n + m + 2)(n + m + 4) fn+2,m+2

}
,

(11)

where the asterisk denotes complex conjugation. For an intrinsically

circular galaxy, or a galaxy ensemble whose unlensed coefficients

〈f nm〉 obey equation (3), the lensed coefficients 〈f ′
nm〉 are left un-

changed

〈 f ′
n,m〉 ≃ 〈 fn,m〉 if m 
= ±2, (12)

except for the |m| = 2 modes, where

〈 f ′
n,2〉 ≃

√
n(n + 2)

4
〈 fn−2,0 − fn+2,0〉γ, (13)

with n = 2, 4, 6, . . .. After lensing, the galaxy has nonzero m = 0 and

|m| = 2 coefficients (but no others). Fig. 2 illustrates the action of

mixing between nearby shapelet coefficients. The most obvious con-

sequence is that the galaxy’s unweighted ellipticity (8) also becomes

non-zero. However, the fractional amount by which it changes de-

pends upon the galaxy’s radial profile. This idea will be explored in

Section 3, along with other combinations of combinations of m = 2

coefficients.

Figure 2. The mixing of polar shapelet coefficients under weak lensing

transformations. If a galaxy initially contains power in its f 6,0 coefficient, it

will contain additional power in f 4,±2 and f 8,±2 after shear. After both types

of flexion, it will contain additional power in eight shapelet coefficients,

as illustrated. The directions in which power moves between adjacent co-

efficients are the same for a given operator wherever there are non-zero

coefficients across shapelet space, although the amount of mixing varies.

Wherever the pattern would seem to couple coefficients that do not exist, the

amount of mixing is zero.

Note that even a pure shear to first order can change the size of

a galaxy, if it is not intrinsically circular. But propagating series (5)

through operation (11), and comparing the result to series (8), it is

easy to deduce that

Ŝ : R2 → R2′ = R2(1 + γ ε∗ + γ ∗ε) = R2(1 + 2γ1ε1 + 2γ2ε2).

(14)

In fact, there are (only) two different linear combinations of shapelet

coefficients that are invariant under a first-order shear:

Ŵ1 = (4π)1/2β
∑

( f0,0 + f4,0 + f8,0 + · · ·), (15)

Ŵ2 = (4π)1/2β
∑

( f2,0 + f6,0 + f10,0 + · · ·). (16)

Furthermore, their sum is the total flux F, whose measurement is

also independent of the choice of scale size β.

2.3 Effect of flexion in shapelet space

If the shear field varies significantly across the width of an object,

one side is distorted more than the other, and it becomes bent into

an arclet. This effect has been dubbed ‘flexion’. Building upon the

work of Goldberg & Bacon (2005), we shall now describe the distor-

tions that arise from such gradients in the shear field, ∂γ /∂x. The

calculations will remain in the weak lensing regime, in the sense

that no terms of order γ 2 will be considered. However, flexion is

most apparent along lines of sight close to foreground mass concen-

trations, where the shear is also likely to be strong. The more rapid

fall-off of a flexion signal as a function of distance from foreground

mass can be used to probe smaller physical scales than a weak shear

analysis, which produces relatively non-local mass reconstructions.

Bacon et al. (2006) demonstrate that it can be used to more precisely

measure substructure of dark matter haloes, and their inner profile

or concentration.

Bacon et al. (2006) pointed out that the flexion signal can be split

into two separate (complex) terms, the first and second flexions

F ≡
(

∂

∂x
− i

∂

∂y

)
γ = (γ1,1 + γ2,2) + i(γ2,1 − γ1,2), (17)

G ≡
(

∂

∂x
+ i

∂

∂y

)
γ = (γ1,1 − γ2,2) + i(γ2,1 + γ1,2). (18)

We assume that these have the same units as 1/β which, in the public

code, is always expressed in terms of image pixels. Via a derivation

analogous to that in Cartesian space by Goldberg & Bacon (2005),

we can determine the action of the flexion operators F̂ and Ĝ in

polar shapelet space. These are much simpler than corresponding

expressions in Cartesian shapelet space, because distinct sets of

coefficients are coupled in polar shapelet space by the two opera-

tions, and the flexion also fits naturally into our current complex

notation.

F̂ : fn,m → f ′
n,m = fn,m

+
Fβ

16
√

2
{ 3

√
(n − m)(n + m)(n + m − 2) fn−3,m−1

+ (3n − m + 10)
√

(n + m) fn−1,m−1

− (3n + m − 4)
√

(n − m + 2) fn+1,m−1
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− 3
√

(n + m + 2)(n − m + 2)(n − m + 4) fn+3,m−1}

+
F∗β

16
√

2
{ −3

√
(n + m)(n − m)(n − m − 2) fn−3,m+1

+ (3n + m + 10)
√

(n − m) fn−1,m+1

− (3n − m − 4)
√

(n + m + 2) fn+1,m+1

− 3
√

(n − m + 2)(n + m + 2)(n + m + 4) fn+3,m+1}, (19)

where the asterisk denotes complex conjugation. Similarly,

Ĝ : fn,m → f ′
n,m = fn,m

+
Gβ

16
√

2
{
√

(n + m)(n + m − 2)(n + m − 4) fn−3,m−3

+
√

(n + m)(n + m − 2)(n − m + 2) fn−1,m−3

−
√

(n + m)(n − m + 2)(n − m + 4) fn+1,m−3

−
√

(n − m + 2)(n − m + 4)(n − m + 6) fn+3,m−3}

+
G∗β

16
√

2
{
√

(n − m)(n − m − 2)(n − m − 4) fn−3,m+3

+
√

(n − m)(n − m − 2)(n + m + 2) fn−1,m+3

−
√

(n − m)(n + m + 2)(n + m + 4) fn+1,m+3

−
√

(n + m + 2)(n + m + 4)(n + m + 6) fn+3,m+3}. (20)

These operators are illustrated graphically in Fig. 2.

One crucial difference from the shear operator is that applying a

flexion shifts the galaxy’s observed centroid (7) by an amount

� =
R2

4β
(6F + 5F∗ε + Gε∗), (21)

in units of β, with the real part corresponding to the x direction and

the imaginary part to the y direction. The elements of expression (21)

are easily understood in terms of shapelet coefficients. A galaxy’s

centroid is constructed from its m=1 coefficients. These coefficients

are altered during a first flexion F̂ if the galaxy has power in any

m = 0 or |m| = 2 coefficients. The m = 0 coefficients are never

all zero, so the centroid will always shift. The centroid is altered

during a second flexion Ĝ if the galaxy has power in any |m| =
2 coefficients, but the effects of its |m| = 4 coefficients happen

to cancel out in summation (7). Therefore an object’s ellipticity

uniquely determines this centroid shift. No comparable shift was

introduced during shearing, so dealing with this will present a new

technical challenge for weak lensing measurement.

One mapping that will be required later is

Ĝ : ξ → ξ ′ = ξ + Gρ∗ + G∗ρ, (22)

where

ρ ≡ β6
√

32π

∑
(n + 1)

√
(n − 1)(n + 1)(n + 3) fn,3. (23)

Operators (19) and (20) are useful for applying an artificial flex-

ion to an unlensed galaxy (e.g. during the manufacture of simu-

lated images). However, for a practical, passive flexion measurement

method, the natural location for the centre of a shapelet decomposi-

tion is the post-lensing (observed) centre of light xc, it being impos-

sible to predict the pre-lensing sky position of the source. This point

will be crucial in our later analysis because, for example, determi-

nations of ellipticity and particularly flexion depend upon the origin

of the coordinate system. To ensure that we account for this centroid

shift, we are greatly aided by the linear dependence of operator (21)

upon the coefficients that will make up our flexion estimators. The

change in coordinate frame can be simultaneously corrected for by

simply incorporating an appropriate translation in the operator used

for flexion estimation

F̂T ≡ F̂ − T̂

(
R2

4β
(6F + 5F∗ε)

)
,

ĜT ≡ Ĝ − T̂

(
R2

4β
Gε∗

)
, (24)

where, from Massey & Refregier (2005), the translation operator is

T̂ (�) : fn,m → f ′
n,m = fn,m

+
�

2
√

2
{
√

(n + m) fn−1,m−1

−
√

(n − m + 2) fn+1,m−1}

+
�∗

2
√

2
{
√

(n − m) fn−1,m+1

−
√

(n + m + 2) fn+1,m+1}. (25)

These practical flexion operations for analysis of observed images

effectively isolate the observable, shape-changing part of the flexion

transformation by subtracting off the centroid shift.

As described in Goldberg & Bacon (2005), for the purposes of

constructing workable flexion estimators the ellipticity ε can be

estimated from the lensed galaxy image even though it will itself

have changed during the lensing. The change in the centroid shift

this represents is small, which can be seen from equation (21), and

such changes will cancel on average due to the differing rotational

symmetries of γ,F and G. If deemed necessary, an estimate of

the ellipticity corrected for locally measured shear could even be

used, as there is nothing to prevent the galaxy shear analysis from

being independently performed prior to any flexion analysis. These

operators will be used to form flexion estimators from observed

galaxy shapes in Section 4.

2.4 Effect of convergence in polar shapelet space

Convergence changes a galaxy’s size and brightness. Actually mea-

suring convergence is difficult because galaxies are intrinsically of

very different sizes and magnitudes, and it is very hard to know what

these quantities would have been before lensing, even statistically.

(Measurements of shear and flexion are made possible by the sta-

tistical assumption that an unlensed population of galaxies would

be round.) However, it is important to take account of the effect of

convergence on these measurements, which is given by

κ =
1

2

(
∂

2


∂x2
+

∂
2


∂y2

)
. (26)

Increases in apparent galaxy size potentially cause ellipticities

to be measured in different parts of a galaxy’s profile – further

towards the core or out in the wings. This is compensated for by the

adaptative choice of the shapelet scale size β during the shapelet

decomposition described in Massey & Refregier (2005). Indeed,

the operators K̂ and Ŝ are commutative. Changes in galaxy flux,

or the averaging of shear estimators from bright and faint galaxies,

can be controlled by constructing estimators that are invariant to

object flux. This is trivially implemented for all of the estimators

discussed in this paper by dividing by the flux. To first order in γ ,

this quantity is invariant under a shear. It is also the most easily

measured, zeroth-order aspect of morphology: very important since

this appears on the denominator of shear estimators, where noise

can translate into biases overall.
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Note that this does not mean that the issues of ‘reduced shear’

(Bartelmann & Schneider 2001) or indeed ‘reduced flexion’ (cf.

Okura et al. 2006) have been solved. Pure gravitational shear or

flexion is not observable in isolation. It is only possible to measure

a degenerate combination of the shear or flexion with additional

terms including the convergence. For the unweighted shear esti-

mator γ̂unweighted, which is described in Section 3.4, the observable

quantity is γ /(1 − κ). However, as shown in Appendix A, this rep-

resents a limiting case that no longer holds for arbitrary weighting

schemes. For convenience, the observable shear distortion will be

labelled γ hereafter in this paper; it should be understood that this

really refers not to the gravitational shear but to the reduced shear g

corresponding to the estimator in question. In practice these reduced

shears will be close to the g = γ /(1 − κ) for the limiting unweighted

case, but in Appendix A we discuss how shapelets might be used

to calculate the generalized reduced shear for each shear estimation

method.

2.5 Effect of convolution in polar shapelet space

Galaxy shapes also change during convolution with a telescope’s

PSF. In shapelet space, convolution is another simple matrix oper-

ation (Refregier & Bacon 2003). Deconvolution can be performed

via a matrix inversion or simultaneously with shapelet decomposi-

tion via a method presented in (Massey & Refregier 2005). We shall

not further discuss the challenge of deconvolution in this paper,

leaving it as a separable, and essentially solved, problem. The main

effect of deconvolution is to correlate shapelet coefficients (since the

basis functions no longer remain completely orthogonal after con-

volution). The full covariance matrix can easily be obtained during

decomposition. It could, in principle, be used to perfect the weights

on coefficients in the shear estimators, although we have derived

results only in the limit where the covariance is nearly diagonal –

which is approached by basis functions with oscillations larger than

the PSF size.

3 S H E A R E S T I M ATO R S

To measure weak shear, we would like to construct some combi-

nation of each galaxy’s observed shape components that is related

to the shear field it has experienced. The combination can be of ar-

bitrary complexity. For individual galaxies, the measured quantity

will inevitably be noisy, because galaxies have their own intrin-

sic shapes, which are changed only very slightly by weak lensing.

However, we shall aim to construct a shear estimator γ̃ for which

〈γ̃ 〉 = 0 (27)

when averaged over a large galaxy ensemble in the absence of shear;

and, more importantly,

Ŝ : γ̃ → γ̃ + γ (28)

individually. As discussed in Section 2.1, the first condition is easy

to achieve by making sure that (the numerator of) γ̃ contains only

shapelet coefficients with m 
= 0. The second, calibration of the shear

estimator, ensures that the estimator is always unbiased

〈γ̃ 〉 = γ, (29)

but this is notoriously difficult to satisfy (cf. Bacon et al. 2001; Erben

et al. 2001; Heymans et al. 2005; Massey et al. 2007a). Our effort

will primarily be directed here.

The easiest methodical approach towards a passive shear estima-

tor is to first construct a ‘polarization’ estimator p̃ with the same

rotational symmetries as shear. We then need to calculate its ‘shear

susceptibility’

P
γ

i j =
∂pi

∂γ j

, (30)

so that

Ŝ : p̃i → p̃i + P
γ

i j γ j [+O(γ 2)]. (31)

The shear susceptibility can usefully be thought of as two complex

numbers; one for each component of shear. However, it is more

commonly expressed as a real, 2 × 2 tensor and, for the sake of

familiarity, we shall adopt that notation here. Its diagonal (real) terms

describe the amount by which the polarization will change under a

shear. The off-diagonal (imaginary) terms describe a peculiar mixing

by which a shear in one direction can affect the polarization in a

direction at 45◦. This is introduced by complex galaxy morphologies

when a galaxy’s isophotes are not concentric.

We can then construct a shear estimator

γ̃i = (Pγ )−1
i j p̃ j (32)

to make sure that indeed

〈γ̃i 〉 =
〈(

P
γ

i j

)−1
p̃ j +

(
P

γ

i j

)−1
P

γ

i j γi

〉
, (33)

=
〈(

P
γ

i j

)−1
p̃ j

〉
+ 〈γi 〉, (34)

= γi , (35)

where the random intrinsic ellipticities of galaxies ensure that the

first term vanishes, and thus condition (29) is satisfied.

However, we immediately encounter four difficulties with shear

susceptibilities that account for most of the problems in the current

generation of shear measurement methods:

(i) P
γ is noisy. It is usually constructed from an object’s higher

order shape moments, which are even harder to measure than the

polarization. Since this appears on the denominator, it dramatically

increases the scatter of the shear estimator: any ratio of quantities

with Gaussian errors produces the extended wings of a Cauchy

distribution (as seen for a KSB analysis in fig. 2 of Massey et al.

2004), whose moments like σ γ do not even converge.

(ii) P
γ is a tensor. The matrix inversion in equation (32) is unsta-

ble, except for circularly symmetric galaxies, or an unlensed popu-

lation ensemble, in which case the off-diagonal elements are always

zero. In all other cases, shearing in one direction mixes ellipticity

from all other directions, and this must be unmixed.

(iii) P
γ is required pre-shear. Each galaxy is observable only after

it has been lensed. Unfortunately, the shear susceptibility factor may

change during shear, to first order in γ for most galaxies, and to

second order for even circularly symmetric ones.

(iv) The P
γ formalism ignores terms of second order in shear.

This omission may bias shear measurements at the sub-per cent

level of precision, and introduce non-linearities that depend upon

an object’s intrinsic ellipticity and |m| = 4 shapelet coefficients.

A frequently adopted solution to the first three difficulties is to

average P
γ from a set of intrinsically similar galaxies, or to fit a

value from a large galaxy ensemble as a function of other observ-

ables. This approach ought to find a suitable, statistical value for all

galaxies. It diagonalizes the shear susceptibility; reduces noise; and,

if the population is so large that it contains effectively no coherent

shear signal, satisfies the requirement for the pre-shear measure-

ment. The fourth difficulty is particularly troublesome because an

object’s measured ellipticity is degenerate with the shear – but may
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also be resolvable in averages over a large population of galaxies

chosen without shear-dependent biases. Unfortunately, averaging

over any large population of galaxies is inelegant, in the sense that

shear estimators for individual galaxies are no longer self-contained.

It also introduces new problems: the main issue being the practical

identification of a set of intrinsically similar galaxies. Most observ-

able properties of a galaxy do change during a shear, and grouping

galaxies by these leads to ‘Kaiser flow’ (Kaiser 2000). The common

challenge facing all modern shear measurement methods is to either

understand Kaiser flow statistically, or to control shear susceptibility

and thus avoid it. In Appendix B, we show how measurements with

one polarization estimator can be averaged to avoid Kaiser flow, and

maximize the weak lensing signal.

For the rest of this section, we shall construct progressively more

elaborate polarization estimators that ameliorate the four difficulties.

We begin with simple polarizations that are compactly represented

in polar shapelet space. These still suffer from all four difficulties.

We then gradually exploit the symmetries of shapelets to add more

complex features. The process is helped by the convenient shapelet

notation, although the expressions do become more complicated.

Which of these advanced shear estimators is most appropriate to

a given data set will depend on the desired application, the image

quality (e.g. whether it was taken from the ground or in space), and

the number of shapelet coefficients available for each galaxy.

3.1 Gaussian-weighted quadrupole moment

We shall start with the simplest possible combination of shapelet

coefficients that can be used to build a polarization estimator. Re-

call that the first shapelet coefficients to be affected by a shear are

those with |m| = 2. Like shear, these rotate as e−2φ , and they are

therefore suitable for our purposes. The simplest possible polariza-

tion estimator is simply the first shapelet coefficient with m = 2,

that is, p̃ = f2,2. This has shear susceptibility

P
γ

11 = ( f0,0 − f4,0)/
√

2 −
√

3 Re { f4,4}, (36)

P
γ

22 = ( f0,0 − f4,0)/
√

2 +
√

3 Re { f4,4}, (37)

P
γ

12 = P
γ

21 = −
√

3 Im{ f4,4}. (38)

In images from the HST COSMOS survey (Scoville et al. 2007),

for example, 〈| f4,4|/ f0,0〉 ≈ 0.079, which is not entirely negligi-

ble at the desired level of precision. By averaging the components

of P
γ from a sufficiently large population of observed galaxies, or

fitting them as a function of other observables like galaxy size and

magnitude, we can explicitly force the mean m = 4 coefficients to

be zero, and ensure that the measured m = 0 coefficients are sta-

tistically corrected before shear. With this simplification, the shear

susceptibility factor can then be trivially inverted, and we arrive at

the shear estimator

γ̃Gaussian =
√

2 f ′
2,2

〈 f0,0 − f4,0〉
. (39)

This recovers the methods of Refregier, Rhodes & Groth (2002,

hereafter RRG) (excluding the smear correction) and Refregier &

Bacon (2003), casting them into the more succinct framework of

polar shapelets. It recovers the P
sh component of KSB up to the

normalization of the polarization estimator. To avoid biases and

instability at low signal-to-noise ratio, we have chosen to keep the

polarization and shear susceptibility linear in the image brightness.

As a result however, both quantities vary widely in the full galaxy

ensemble which typically encompasses large ranges of flux and

sizes, increasing the rate of Kaiser flow. A similar decision, that is,

whether to normalize by flux or not, will also have to be made for

all of the following shear estimators.

3.2 Order-by-order shapelet shear estimator

A successful shapelet decomposition contains all of the available

information about a galaxy’s shape, and more information can be ex-

tracted than that available with previous shear estimators. Since all

of the |m| = 2 shapelet basis functions have the same rotational sym-

metries, each of the corresponding shapelet coefficients can be used

to form independent (except for the covariance between shapelet

coefficients after deconvolution) polarization estimators p = fn,2.

These have shear susceptibilities

(
Pγ

n

)
11

=
1

4
{
√

n(n + 2)( fn−2,0 − fn+2,0)

+
√

(n − 4)(n − 2) Re{ fn−2,4}

−
√

(n + 4)(n + 6) Re{ fn+2,4}}, (40)

(
Pγ

n

)
22

=
1

4
{
√

n(n + 2)( fn−2,0 − fn+2,0)

−
√

(n − 4)(n − 2) Re{ fn−2,4}

+
√

(n + 4)(n + 6) Re{ fn+2,4}}, (41)

(
Pγ

n

)
12

= (Pγ
n )21

=
1

4
{
√

(n − 4)(n − 2) Im{ fn−2,4}

−
√

(n + 4)(n + 6) Im{ fn+2,4}}, (42)

which reduce to

Pγ
n =

√
n(n + 2)

4
〈 fn−2,0 − fn+2,0〉 (43)

when averaged over an ensemble of galaxies as before. Thus, for

each even order n available in a shapelet decomposition, we can

construct one independent, unbiased shear estimator

γ̃n =
4

√
n(n + 2)

f ′
n,2

〈 fn−2,0 − fn+2,0〉
, for n = 2, 4, 6, . . . . (44)

As before, these estimators are by construction unbiased, when av-

eraged over the galaxy population.

One way to use these additional estimators is to diagnose prob-

lems in the measurement. Because we obtain multiple shear mea-

surements for each galaxy during a single PSF deconvolution, their

agreement provides a strong new test of systematics. If a pure shear

signal is being successfully measured, all of the estimators from a

given galaxy should average to the same value. However, if residual

PSF effects are polluting the signal, the separate estimators will dis-

agree. A weak lensing pipeline must be highly robust to pass such

stringent tests, and they will provide a unique discriminatory power

in future analyses.

Alternatively, the separate estimators can be linearly combined,

with arbitrary weightings

p =
∞∑

n=2

wn fn,2, (45)

where the summation runs only over even indices n, for only those

coefficients exist. In this case

P
γ =

∞∑

n=0

wnP
γ
n . (46)

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 229–245



236 R. Massey et al.

The weights wn can be carefully constructed to optimize the signal-

to-noise ratio of the shear measurement (such as inverse variance

weighting, as suggested by Refregier & Bacon 2003) or to remove

systematic biases plaguing the particular data set. For the rest of this

section, we shall explore various options for this weight function.

By staying linear in shapelet coefficients during this process, the

polarization and susceptibility also stay linear in the image, thus

preserving a Gaussian-like distribution of estimators. In real space,

changing the weights wn is equivalent to changing the weight func-

tion used for the polarization estimator.

3.3 Using galaxies’ radial profiles to reduce σγ

A galaxy’s observed m = 2 coefficients consist of intrinsic ellip-

ticity, shear-induced ellipticity and noise. For an individual galaxy,

there is no way to tell what fraction of each is intrinsic, and what

fraction is the signal. However, a shapelet decomposition contains

a great deal more information about a galaxy’s morphology that has

not yet been tapped. In particular, it is the galaxy’s intrinsic radial

profile (m = 0 coefficients) that contribute most to any change in

observed ellipticity during a shear. Since the m = 0 coefficients are

typically much larger than any others, they are also, fractionally, the

least changed themselves under a small shear. We shall therefore

approximate the unlensed radial profile as the observed, measured

radial profile. We can then work out the ‘radial profile’ of m = 2

coefficients that could possibly have been induced by lensing. Any

component of the intrinsic ellipticity that does not have the appro-

priate ‘radial profile’ cannot possibly have been induced by lensing

and, for our purposes, can be ignored. Thus we reduce the contami-

nation of intrinsic galaxy ellipticity in our shear estimators, to only

include components of intrinsic ellipticity that happen to have the

right profile.

We determine the required weights wn by applying a unit shear

to the rotationally invariant part of a model, and find

γ̃profile ≡ 4

∑√
n(n + 2) ( fn−2,0 − fn+2,0) fn,2〈∑
n(n + 2) ( fn−2,0 − fn+2,0)2

〉 , (47)

where one factor in the denominator comes from the shear suscep-

tibility factor and one from the weighted average. Of course, we

have not taken measures to eliminate the |m| = 4 and off-diagonal

terms in the shear susceptibility factor. The shear susceptibility will

therefore need to be fitted from a galaxy population as a function of

size, magnitude and possibly radial profile. Several shapelet-based

parameters to span morphology variation are suggested in section 7

of Masssey & Refregier (2005).

3.4 Diagonal shear susceptibility

One of the difficulties with general shear estimators, as described at

the start of Section 3, is that they require the inversion of a (noisy)

shear susceptibility tensor (46). This inversion is often unstable,

and various implementations have chosen to either ignore the off-

diagonal elements, or average over a large population of galaxies

so that they disappear. The problem could be solved more easily if

the shear susceptibility were explicitly a simple scalar (times the

identity matrix) for each galaxy. Indeed, it is possible to weight the

various orders of γ̃n in such a way that the off-diagonal terms in

their combined susceptibility tensor from successive orders cancel

each other. The off-diagonal terms, and the differences between the

on-diagonal terms, involve |m| = 4 coefficients that are introduced

by the γ ∗ terms in equation (11). With these removed, the shear

susceptibility (46) will be diagonal and only involve terms with

m = 0. This can be trivially inverted.

A simple calculation to obtain the desired wn yields

p = 4
√

πβ3

∞∑

n

√
n(n + 2) fn2, (48)

where the pre-factor has been added to reproduce familiar quantities.

In fact, p = FR2ε, a version of the (radially) unweighted ellipticity

without size (or flux) normalization. This cannot normally be calcu-

lated from images because background noise makes the real-space

integrals diverge. A shapelet decomposition removes noise by act-

ing as a prior on the permitted physical properties of a galaxy shape.

This polarization has shear susceptibility

P
γ

unweighted = 16π
1/2β3

∞∑

n

√
n + 1 fn0 = 2F R2, (49)

where the right-hand side refers to quantities measured before shear-

ing. The susceptibility is the size and magnitude of galaxies, in a

curious contrast to the previous shear susceptibilities that needed to

be ensemble averaged and fitted as a function of those observables.

Furthermore, as shown in equation (14), to first order in γ , the size

R2 changes under a shear in a way that affects the overall shear

estimator

Ŝ :
p

2F R2
→

p′

2F ′ R2′ =
p + 2F R2γ

2F R2(1 + γ ε∗ + γ ∗ε)
. (50)

Ensemble averaging, and expanding to first order in γ , we recover
〈

p′

2F ′ R2′

〉
=

〈
p

2F R2

〉
+ γ

(
1 −

〈ε2〉
2

)
(51)

with the same ‘shear responsivity’ factor of 1 − 〈ε2〉/2 that appears

in equation (A14). Thus we obtain an unbiased shear estimator

γ̃unweighted ≡
∑√

n(n + 2) fn2

(2 − 〈ε2〉)
∑√

(n + 1) fn0

(52)

that is written in terms of observable quantities alone, and requires

minimal averaging of shapelet coefficients from a population of

galaxies.

This particular shear estimator emerged as one of the most suc-

cessful shear measurement methods during blind tests as part of

the STEP programme (Massey et al. 2007a). This programme con-

structed simulated images that exhibit all the statistical properties

of real astronomical images, but contain a known shear signal.

While the measurement was performed (by JB), these input shears

were kept hidden. They were then revealed publicly after all the

pipelines had been run. Fig. 3 shows the impressive performance of

our γ̃unweighted shear estimator for STEP2 image set A, which was

specifically designed to mimic deep Suprime-Cam images from the

Subaru telescope (Miyazaki et al. 2002). A linear fit to these results

shows a shear calibration factor (multiplicative measurement bias)

of m = 0.023 ± 0.029 for the real component of shear, and m =
0.053 ± 0.029 for the imaginary component. There is no significant

residual shear offset (additive measurement bias), with the fitted

values being c = (−6.8 ± 6.5) × 10−4 for the real component of

shear and c = (1.3 ± 6.6) × 10−4 for the imaginary component. This

estimator demonstrated the best performance throughout the STEP2

project and, as suggested by that analysis, we shall reduce our er-

ror bars before the next round by incorporating a galaxy weighting

scheme into our weak lensing pipeline.

One additional benefit of this estimator is that both the polar-

ization and the shear susceptibility are independent of the shapelet
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Figure 3. Performance of the shear estimator with an explicitly diagonal

shear susceptibility tensor, on simulated images containing a known true

shear. Points show both components of the mean shear, measured in 7 ×
7-arcmin2 patches of sky where the input shear was held constant. For a

perfect shear estimator, these would lie on the solid line. The dashed line is

a linear fit to deviations from it.

scale β. Although the ensemble average of any shear estimators 〈γ̃n〉
should always be independent of β, in general, individual estima-

tors γ̃n may not be. But in the current case, once a shapelet series

has converged, F, R2 and ε combine coefficients in such as way as

to not depend upon the choice of β (Massey & Refregier 2005).

This result is non-trivial: in our image decomposition pipeline, we

choose β to optimize the image reconstruction and stabilize the

PSF deconvolution. However, this is only one possible goal. In IM-

CAT implementations of the KSB method, the equivalent of β is

instead chosen to maximize the signal-to-noise ratio for detection

of the object. In SEXTRACTOR implementations of KSB, a scaling of

SEXTRACTOR parameters is used. In all cases, the choice of β will

also be affected by any applied shear that changes a galaxy’s appar-

ent size. Whether this change is negligible depends on the specific

implementation of the algorithm to determine β and must be tested

experimentally. In this case, it is reassuring to note that this effect

is formally absent, modulo the convergence of the series.

Since the STEP tests, we have also derived the full ‘Kaiser flow’

behaviour of this estimator. This has a particularly interesting form,

and is discussed fully in Appendix B.

3.5 Shear-invariant shear susceptibility

The shear susceptibility can be further simplified, by continuing to

add terms to the polarization estimator. So far, we have used the

|m| = 2 coefficients, but no others. In fact, all shapelet basis func-

tions with |m| = 2, 6, 10, 14, . . . contain the rotational symmetries of

shear; the higher order functions just contain additional symmetries

as well. They cannot be used as shear estimators by themselves but,

because of this, it is possible to add them to the |m| = 2 coefficients.

The resulting polarization estimator will stay linear in shapelet coef-

ficients, linear in image flux, and keep all of the desired symmetries.

Here we shall demonstrate how higher order shapelet coefficients

can be used to ‘sweep’ terms in the shear susceptibility down to

m = 0, and construct a polarization

p =
∞∑

m=2,6,10,...

∞∑

n=2,4,6,...

wn,m fn,m (53)

with any desired susceptibility factor.

We begin with the f 2,2 polar shapelet coefficient. As shown in

Section 3.1, this has a shear susceptibility involving f 0,0, f 4,0 and

f 4,4. The weight on the f 2,2 coefficient in p can be used to create

any desired factor in front of the f 0,0 term in P
γ . In Section 3.4,

we added coefficient f 6,2 in such a way to cancel out the f 4,4

coefficient in the shear susceptibility. Instead, we shall now add

an amount of f 6,2 (then f 10,2, f 14,2, etc.) to shape the susceptibil-

ity’s f 4,0 (and f 8,0, f 12,0) terms in any way. Assuming extrapola-

tion to infinite n, we can thus construct a polarization estimator

with arbitrary m = 0 terms in its shear susceptibility tensor. How-

ever, it will also contain non-zero |m| = 4 terms and off-diagonal

elements.

Now consider the f 6,6 polar shapelet coefficient. This has a shear

susceptibility involving f 4,4, f 8,4 and f 8,8 coefficients. This can be

added to the polarization with a weight arranged so that the three f 4,4

terms in the shear susceptibility now cancel out. The f 10,6 coefficient

can then be added so that the four f 8,4 terms cancel, and so on. This

leaves ‘dangling’ terms in the shear susceptibility with |m| = 8 (and

due to series truncation, in practice, high n). Successive additions

of |m| = {10, 14, 18, . . .} terms to the polarization can push these

terms to higher and higher |m|. Since the magnitude of shapelet

coefficients for real galaxies typically fall off rapidly with n and

|m|, the contribution of any remaining dangling terms due to series

truncation decreases during this process.

A second, interwoven combination of shapelet coefficients start-

ing with f 4,2, f 8,2 and f 8,6 can also be constructed, to make a com-

pletely separate polarization whose shear susceptibility involves ar-

bitrary contributions of only f 2,0, f 6,0, . . . coefficients.

We are now free to decide the most suitable form for the shear sus-

ceptibility, and can construct any appropriate polarization estimator.

It would be easiest to satisfy requirement (28) if P
γ did not change

under shear. We could then use the observed (post-shear) value for

each individual galaxy. The only two quantities (15) and (16) like

this can clearly be constructed from these two interwoven combi-

nations of shapelet coefficients. We shall construct the polarization

estimator with shear susceptibility Ŵ1 + Ŵ2 = F, where F is the

flux. Clearly, any shear estimator must eventually be normalized

so that the same shape is calculated for two (otherwise identical)

galaxies of different brightness. The flux is the simplest, and most

robustly measured normalization, and the obvious choice to put on

the denominator; that is,

γ̃shear-invariant ≡
1

F

∑

n

∑

m

wn,m fn,m . (54)
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Table 1. Coefficient weights for the real part of the γ̃shear-invariant shear es-

timator (equation 54). The imaginary part of this shear estimator involves

complex conjugates of terms with every other value of m, but is most con-

veniently found by instead rotating the galaxies by 45◦ and then calculating

the real part a second time.

n m wn,m n m wn,m

2 2
√

2 6 6 8/(3
√

20)

4 2
√

2/3 8 6 4/(3
√

35)

6 2
√

4/3 10 6 8/(3
√

35)

8 2
√

4/5 12 6 8/(3
√

105)

10 2
√

6/5 14 6 8/(3
√

42)

12 2
√

6/7 10 10 16/(15
√

7)

14 2
√

8/7 12 10 16/(15
√

77)

16 2
√

8/9 14 10 96/(15
√

462)

18 2
√

10/9 14 14 64/(7
√

858)

Calculating wn,m for this case is an elementary but tedious pro-

cedure using the iterative method described above. The first terms

are listed in Table 1. Note that although each term in the series is

well defined, a real-space calculation in Appendix C demonstrates

that the summation approaches a solution that is not continuously

differentiable.

3.6 Convergence issues

Unweighted ellipticities (and higher order properties) cannot usu-

ally be measured from real images, due to the presence of noise that

makes the integrals diverge. However, this becomes possible with

shapelets (or IM2SHAPE or GALFIT) because a noise-free (and un-

pixellated and deconvolved) model of the galaxy is reconstructed.

For different weight functions, the question becomes one of the con-

vergence of galaxies’ radial profiles to zero at large radii, and the

suitable truncation of its measured shapelet series. A galaxy with

an exponential profile has polar shapelet coefficients fn,0 ∝ n−2.5

for a well-chosen β: for a sufficiently high nmax, all of the shear

estimators do converge. For a further discussion of the convergence

of shapelet series, see Massey & Refregier (2005).

Furthermore, although polar shapelet coefficients can be mea-

sured to infinite n using the linear overlap method (see Massey &

Refregier 2005) for idealized data, this is not the case using the now

standard χ 2 fitting method (see also Kuijken 2006; Nakajima &

Bernstein 2006), or in the presence of pixellization or a PSF (Berry,

Hobson & Withington 2004). We therefore need to ensure that suf-

ficient coefficients can be measured, particularly for the elaborate

polarization estimators that converge more slowly. They may there-

fore require galaxies of slightly higher signal-to-noise ratio and nmax.

This can be achieved by raising the magnitude or size cut in a lensing

catalogue, although the extent to which this is necessary has to be

determined by experiment. However, the more elaborate polariza-

tion estimators have correspondingly simpler shear susceptibilities,

which converge faster. As was the case for noise, the minimization

of truncation errors is particularly important in the denominator, and

this may in fact prove to be the deciding factor.

3.7 Active shear estimators with polar shapelets

Bernstein & Jarvis (2002), Kuijken (2006) and Nakajima &

Bernstein (2006) suggest a rather different philosophy for construct-

ing shear estimators. Instead of measuring an observed polariza-

tion, and calculating how that would have changed during shear,

Bernstein & Jarvis (2002) shear objects (or their coordinate sys-

tem) until they appear circular. Kuijken (2006) assumes that objects

were intrinsically circular (i.e. models with fn,m = 0 ∀ m 
= 0), then

shears them until they most closely resemble the data. This makes

for a simpler calculation because the shape of each object, includ-

ing its higher order moments, is known well before the operation.

Forward shearing of an image is also useful, because it can be per-

formed to arbitrarily high order in γ , addressing the fourth concern

in Section 3. In real space, the sheared ellipticity of the shapelet

basis functions in Bernstein & Jarvis (2002) can be chosen from a

continuous range; in shapelet space, operation (11) can be exponen-

tiated to include higher order terms. However, a shear susceptibility

factor is still needed (the calibration factor R in equation (5.33) of

Bernstein & Jarvis (2002) has the same origin as that in our equa-

tion 50). This too must be fitted or interpolated from a galaxy pop-

ulation as a function of other observables, so offers no advantage

over a shear susceptibility.

At first sight, this shear measurement philosophy seems more

efficient than the passive, moment-based shear estimators consid-

ered in the rest of this paper. Active methods do not require the full

model of each deconvolved galaxy shape, but extract only the re-

quired quantity γ . However, the decadence of obtaining a full shape

reconstruction can provide extra information that is invaluable. For

example, checking that the model’s residual image is consistent

with noise can indicate potential problems, and which shear esti-

mates to trust, in a way that is not possible if only a single number

is obtained for each galaxy. In principle, it is possible to expand

the definition of ‘circularity’ in Bernstein & Jarvis (2002) to in-

volve different shapelet coefficients, but this does not generate extra

information that is necessarily useful for systematic cross-checks.

In that case, each fit would require a separate non-linear iteration

to find the best-fitting parameters xc, β, nmax and γ , and therefore

could be subject to independent biases. Since altering the shear es-

timator could change any systematic influences in this method, it

would be difficult to interpret any variation between the estimators.

Instead fitting a model that is simultaneously capable of captur-

ing all the shape information also makes the PSF deconvolution

more robust and intuitive than methods that use a model repre-

senting only the best-fitting elliptical profile of a complex galaxy

shape.

In our experiments with elliptical shapelet basis functions, we

have confirmed that the choice of that ellipticity is the most unsta-

ble part of the iteration, particularly for objects at low signal-to-

noise ratio. We have had one idea for a different truncation scheme

with highly elliptical basis sets. A problem arises when fluctua-

tions along the minor axis become smaller than the PSF or a pixel

and therefore non-orthogonal. Simply decreasing nmax (Nakajima &

Bernstein 2006) also shortens the reach of the basis functions along

the major axis, and therefore could potentially bias a shear mea-

surement. However, it is possible to first rotate the basis functions

so that θ = 0 lies along the major axis of the ellipse, then truncate

the basis functions at different values of n1 and n2, the Cartesian

shapelet indices in the x and y directions. If the newly truncated

coefficients are kept, but initially set to zero, operation (37) from

Massey & Refregier (2005) can be used to recover the coefficients

that would have been obtained from an unrotated set of elliptical

basis functions and thus continue the Bernstein & Jarvis (2002)

method.
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4 F L E X I O N E S T I M ATO R S

4.1 Gaussian-weighted flexion estimators

We shall now try to develop estimators for the weak lensing flexion,

making use of our experience with the shear estimators, and drawing

tight analogies. The simplest passive simple flexion estimator can

be formed from a similar approach to that taken when constructing

our KSB-like shear estimator γ̃Gaussian. For that, we considered the

Gaussian-weighted quadrupole moments, which were the first per-

turbed under a shear. In this case, the shapelet coefficients primarily

affected by first and second flexions, transform as

F̂T : f1,1 → f1,1 +
Fβ

8

{
6

(
1 −

R2

β2

)
f0,0 + 6

R2

β2
f2,0

− 6 f4,0 − 5
√

2ε∗ R2

β2
f2,2

}

+
F∗β

8

{
−5ε

R2

β2
( f0,0 − f2,0)

+
√

2

(
1 + 6

R2

β2

)
f2,2, − 3

√
6 f4,2

}
, (55)

ĜT : f3,3 → f3,3 +
Gβ

8

{
ε∗ R2

β2
( f4,2 −

√
3 f2,2)

+
√

6 ( f0,0 + f2,0 − f4,0 − f6,0)

}

+
G∗β

8

{
2ε

R2

β2
f4,4 − 2

√
30 f6,6

}
. (56)

Therefore, the combinations

F̃T =
4β

3

f1,1

〈(β2 − R2) f0,0 + R2 f2,0 − β2 f4,0〉
(57)

and

G̃T =
4
√

6

3β

f3,3

〈 f0,0 + f2,0 − f4,0 − f6,0〉
(58)

can be used as simple flexion estimators.

Note that the ε values in equations (55) and (56) refer to the pre-

lensing ellipticity, and really do cancel out when averaging over a

population of galaxies, even in the presence of a shear field. Changes

in R2 due to flexion do not bias 〈R2〉 to first order either, as these

cancel when averaged over a population of galaxies.

4.2 Order-by-order shapelet flexion estimators

For the small and faint galaxies that make up the majority of a

weak lensing survey, it will be difficult to measure polar shapelet

coefficients beyond the n = 6 terms needed to estimate G̃ as de-

scribed above. However, for those galaxies whose higher order

shapes can be measured, it is possible to generalize the flexion

estimators.

The terms in curly brackets in equations (55) and (56) effectively

describe a flexion susceptibility factor, which we introduce by anal-

ogy with the shear susceptibility factor (31). We shall then be able

to form flexion estimators

F̃n ≡
[(

PF
n

)
i j

]−1
fn,1 (59)

and

G̃n ≡
[(

PG
n

)
i j

]−1
fn,m . (60)

The flexion susceptibility factors are real, 2 × 2 tensors, and can be

calculated using equations (19) and (20). The need to subtract away

an estimate of the shift in the galaxy centroid due to the flexion itself,

expressed by equations (24) and (25), necessarily complicates these

expressions. However, this then describes the measurable effect of

flexion on galaxy images. The first flexion susceptibility for general

m = 1 polar shapelet coefficients is

(
PF

n

)
11

+ i
(

PF
n

)
21

=
β

16
√

2

{
3
√

n + 1[(n − 1)( fn−3,0 − fn+1,0)

+(n + 3)( fn−1,0 − fn+3,0)]

+ 3
√

(n − 3)(n − 1)(n + 1) fn−3,2

+ (3n + 11)
√

n − 1 fn−1,2

− (3n − 5)
√

n + 3 fn+1,2

− 3
√

(n + 1)(n + 3)(n + 5) fn+3,2

+ 2
R2

β2
(6 + 5ε)

√
n + 1( fn+1,0 − fn−1,0)

+ 2
R2

β2
(6 + 5ε∗)(

√
n + 3 fn+1,2 −

√
n − 1 fn−1,2)

}
, (61)

(
PF

n

)
22

+ i
(

PF
n

)
12

=
β

16
√

2

{
3
√

n + 1[(n − 1)( fn−3,0 − fn+1,0)

+(n + 3)( fn−1,0 − fn+3,0)]

− 3
√

(n − 3)(n − 1)(n + 1) f ∗
n−3,2

− (3n + 11)
√

n − 1 f ∗
n−1,2

+ (3n − 5)
√

n + 3 f ∗
n+1,2

+ 3
√

(n + 1)(n + 3)(n + 5) f ∗
n+3,2

+ 2
R2

β2
(6 − 5ε∗)

√
n + 1( fn+1,0 − fn−1,0)

− 2
R2

β2
(6 − 5ε)

(√
n + 3 f ∗

n+1,2 −
√

n − 1 f ∗
n−1,2

)
}

. (62)

The second flexion susceptibility for m = 3 coefficients is

(
PG

n

)
11

+ i
(

PG
n

)
21

=
β

16
√

2

{√
(n − 1)(n + 1)(n + 3)

×( fn−3,0 + fn−1,0 − fn+1,0 − fn+3,0)

+
√

(n − 7)(n − 5)(n − 3) fn−3,6

+
√

(n − 5)(n − 3)(n + 5) fn−1,6
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−
√

(n − 3)(n + 5)(n + 7) fn+1,6

−
√

(n + 5)(n + 7)(n + 9) fn+3,6

+ 2
R2

β2
ε
(√

n − 1 f ∗
n+1,2 −

√
n + 3 f ∗

n−1,2

)

+ 2
R2

β2
ε∗

(√
n + 5 f ∗

n+1,4 −
√

n − 3 f ∗
n−1,4

)
}

,
(63)

(PG
n )22 + i(PG

n )12

=
β

16
√

2

{√
(n − 1)(n + 1)(n + 3)

×( fn−3,0 + fn−1,0 − fn+1,0 − fn+3,0)

−
√

(n − 7)(n − 5)(n − 3) f ∗
n−3,6

−
√

(n − 5)(n − 3)(n + 5) f ∗
n−1,6

+
√

(n − 3)(n + 5)(n + 7) f ∗
n+1,6

+
√

(n + 5)(n + 7)(n + 9) f ∗
n+3,6

+ 2
R2

β2
ε∗

(√
n − 1 fn+1,2 −

√
n + 3 fn−1,2

)

+ 2
R2

β2
ε
(√

n + 5 fn+1,4 −
√

n − 3 fn−1,4

)
}

. (64)

In all four cases, the last six terms are complex, and the final two

emerge from the shift in an object’s apparent centroid during flexion.

We shall now consider options by which m = 1 and 3 coefficients

of different orders n can be combined. We search for sophisticated

combinations that produce flexion estimators with useful properties,

analogous to those already created for shear estimators.

4.3 Using galaxies’ radial profiles to improve flexion

estimators

Exactly as was done for shear estimators in Section 3.3, it is pos-

sible to use knowledge of a galaxy’s radial profile to restrict which

component of its |m| = 1 or 3 polar shapelet coefficients could have

been induced by flexion. Via a parallel derivation, we obtain flexion

estimators

F̃profile ≡
16

√
2

3β

∑
wn fn,1〈∑(
w2

n+1

)〉 , (65)

where

wn =
√

n + 1(n − 1)( fn−3,0 + fn+1,0)

+
√

n + 1(n + 3)( fn−1,0 + fn+3,0)

+
4R2

β2

√
n + 1( fn+1,0 + fn−1,0); (66)

and

G̃profile ≡
16

√
2

β

∑
wn fn,3〈∑(
w2

n+3

)〉 , (67)

where

wn =
√

(n − 3)(n − 1)(n + 1)

×( fn−3,0 + fn−1,0 − fn+1,0 − fn+3,0).
(68)

These are guaranteed to converge for a typical galaxy if sufficient

terms are available in its shapelet series. The estimator for the second

flexion in particular should provide a very clean measurement with

minimal noise.

4.4 Diagonal flexion susceptibility

It might also be hoped that successive off-diagonal terms in the flex-

ion susceptibility matrices could be made to cancel via a suitable

weighting scheme wn , as was possible for shear in Section 3.4. Un-

fortunately, due to the presence of the centroid-shifting correction so

necessary for reliable flexion estimators, this is difficult; especially

for the first flexion.

For the second flexion we can come tantalizingly close, and indeed

if we only consider the pure Ĝ transformation of equation (20), the

weighting scheme wn =
√

(n − 1)(n + 1)(n + 3) can be used to

form a second flexion estimator

G̃diagonal ≡
2
√

2

3βR

∑√
(n − 1)(n + 1)(n + 3) fn,3∑

(n2 + 2n + 2) fn,0

. (69)

This is none other than the quantity 4δ/3, as developed for HOLICS

by Okura et al. (2006), except for the additional ‘flexion responsiv-

ity’ factor R. This arises because the denominator changes during

flexion (see equation 22), biasing the overall estimator by an amount

1 − 〈ρδ〉/2 in a completely analogous fashion to the shear respon-

sivity factor calculated in Section 3.4. Also, the inclusion of terms

from the flexion-induced centroid shift (24) results in off-diagonal

elements in P
G that cannot all be removed through any combination

of the m = 3 coefficients.

In the case of the first flexion, the prospects are worse: even if we

could omit theT part of a practical flexion operator (which, forF we

most certainly cannot), a wn capable of cancelling the off-diagonal

terms in the susceptibility matrix has yet to be found by the authors.

The complication arises from the mixing of power between �m,

�n = ±1 coefficients in the first flexion operation (19). Like a cen-

troid shift, flexion causes power to leak between adjacent shapelet

coefficients (cf. Fig. 2). However, whereas the centroid shift involves

only the single ladder-operator transformations â†
r , â

†
l , âr and âl

(see Refregier & Bacon 2003), flexion always acts via combinations

of three of these ladder operations, taking three steps but doubling

back to move only one overall. Since â†
r does not commute with

âr , nor â
†
l with âl , each �m, �n = ±1 term in equation (19) is

in fact a combination of five separate contributions, each of which

representing a different, independent path between the coefficients.

Worst of all, each path contributes a differing, n-dependant propor-

tion of the overall transformation. This added level of complexity for

the first flexion transformation therefore precludes any estimator of

first flexion with vanishing off-diagonal terms in the susceptibility

matrix.

The β-invariant quantity obtained by setting s = −1 and m = 1

in equations (56) and (58) of Massey & Refregier (2005) could be

used to measure first flexion. Unfortunately, this quantity does not

appear to have any other properties that are particularly interesting

in the context of weak lensing.

4.5 Active flexion estimators with polar shapelets

In a similar way to the active shear estimators, it is also conve-

nient to use a shapelet representation when distorting a circular

object (or possibly an object with both circular m = 0 and elliptical

|m| = 2 components) by applying flexion until it matches the ob-

served shape. Goldberg & Bacon (2005) suggested a prescription

in Cartesian shapelets, which has been implemented by Goldberg

& Leonard (2007), to fit the odd shapelet coefficients by perturbing

the even ones. This results in a simple χ 2 minimization via ma-

trix inversion. However, their approach is not perfectly clean. The

even Cartesian shapelet coefficients mix a great deal of structure

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 229–245



Weak gravitational shear and flexion 241

beyond the circularly symmetric and elliptical components. These

are isolated using polar shapelets and, furthermore, so are the first

and second flexion signals. By using polar shapelets, it is possible

to fit F and G independently, from the |m| = 1 and 3 polar shapelet

coefficients. Since the flexion signal is spread evenly across fewer

polar shapelet coefficients than Cartesian ones, but noise from an

uncorrelated sky background is equal in all shapelet coefficients,

using fewer coefficients will result in a cleaner fit, with improved

signal-to-noise ratio.

5 C O N C L U S I O N S

We have described the mechanics of weak gravitational lensing in

terms of ‘polar shapelets’ (Refregier 2003b; Massey & Refregier

2005). This is a set of basis functions that can be used to parametrize

images, in a way that appears convenient for both weak shear and

flexion measeurement. The symmetries of polar shapelets are well

matched to those of lensing. For example, the complex notation

of polar shapelet coefficients, where their modulus represents the

amount of power, and their phase represents their orientation, mir-

rors that commonly used in the literature to define a complex ellip-

ticity. In addition, polar shapelets concisely encapsulate the ideas of

weak flexion that have been recently developed.

The symmetries inherent to the polar shapelet formalism provide

useful insight into the parallel symmetries of weak lensing distor-

tions. We have exploited this relation to construct estimators that

are able to simultaneously extract both the weak shear and flexion

signal from the observed shapes of distant galaxies. We attempt to

bypass some of the limitations of KSB and other shear measurement

methods that were reviewed in STEP2. Adopting the classification

scheme from that programme, we briefly discussed the recasting

of alternative, ‘active’ shear and flexion estimators into the polar

shapelet formalism, and more comprehensively explored the op-

tions available for ‘passive’ shear and flexion estimators.

The Gaussian-weighted shear estimator γ̃Gaussian recovers old

methods like KSB and RRG, but in a compact complex notation.

The unweighted shear estimator γ̃unweighted takes advantage of the

noise-free shapelet reconstructions to diagonalize the shear suscep-

tibility tensor into a scalar quantity. This particular quantity happens

to be easily derivable in real space as well. The simplification of the

shear susceptibility is completed with γ̃shear-invariant. With this, the

shear susceptibility is simply the object’s flux: a robustly measured

quantity, and one that does not change to first order during shear. The

growing complexity of these shear estimators solves progressively

more of the four issues highlighted with previous-generation shear

measurement methods. However, they also converge more slowly,

and require high-n coefficients to be available. The later estimators

may consequently be accessible only on galaxy images with higher

signal-to-noise ratio. The best estimator to use (which may not even

be the same for an entire population) may therefore depend on the

flux of an object, or the nature of residual problems found in any

particular data set. One final, particularly interesting alternative op-

tion is the estimator γ̃profile that can reduce the rms shear noise due

to intrinsic galaxy ellipticities, by exploiting additional information

about each galaxy’s radial profile. Analogous estimators for flexion

also exist for most of these options.

Interestingly, our method permits several independent shear esti-

mators and several flexion estimators to be obtained simultaneously

for each galaxy. Because we calculate them following a single PSF

deconvolution or non-linear iteration, their agreement (or otherwise)

will provide a stringent new test on the PSF modelling and for other

residual systematic effects. Such tests are unique to our approach,

as the interpretation of analogous active shear estimators would be

hindered by the need to perform a separate PSF deconvolution for

each estimator, and possibly removing any shared defects.

We have demonstrated the performance of one of our key shear

estimators via blind tests that were part of the STEP (Massey et al.

2007a). We shall compare the practical performance of our remain-

ing shear estimators in a future round of STEP simulations. We are

also implementing an option to input a known flexion signal in the

image simulation suite of Massey et al. (2004). We are planning a

smaller scale, flexion version of STEP, to calibrate the performance

of emerging weak flexion estimators, including the ones presented

in this work as well as others presented elsewhere. In the mean time,

a complete IDL software package capable of performing the shapelet

image decomposition, including the weak lensing manipulation and

analysis described in this paper, is available from the shapelets web

site http://www.astro.caltech.edu/∼rjm/shapelets.
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A P P E N D I X A : R E D U C E D S H E A R

A1 Idealized case – isophotal or no weighting

For the purposes of the following discussion we here reproduce

much of the work of Schneider & Seitz (1995). We use bs and else-

where the suffix ‘s’ to denote coordinates and quantities in the galaxy

source plane, and b and no suffix to denote coordinates and quanti-

ties in the lensed image plane. Let Is(bs) be the surface brightness

distribution of the source and let W(Is) be some weighting function

of the surface brightness. For the case of no weighting, W(Is) = Is.

We define the centre of the source by

b̄s ≡
∫

bs W (Is(bs)) dxsdys∫
W (Is(bs)) dxs dys

, (A1)

and the quadrupole matrix of the source by

Q
(s)
i j ≡

∫
(�bs)i (�bs) j W (Is(bs)) dxsdys∫

W (Is(bs)) dxsdys

, (A2)

where �bs = bs − b̄s. To describe the shape (including orientation)

of a source, we define the complex ellipticity,

εs =
(

Q
s)
11 − Q

s)
22

)
+ 2iQ

s)
12

Q
s)
11 + Q

s)
22

. (A3)

The gravitational imaging of a general source is described by the

lens equation

bs = b − α(b), (A4)

where the mass distribution is smooth on scales of galaxy images, the

imaging of the source can be approximated by the locally linearized

lens mapping

dx dy = A(b) dxs dys, (A5)

where

A(b) =
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
, (A6)

the Jacobian of the lens equation (A4).

Now, we can also define analogous second moments Qi j for the

lensed image of a source

Qi j =
∫

�bi�b j W (I (b)) dx dy∫
W (I (b)) dx dy

, (A7)

using (A5) and the fact that image surface brightness is conserved

under gravitational light deflection so that

W (Is(bs)) = W (I (b)). (A8)

Using the linearized mapping we may write �bi = Ai j (�bs)j , giving

the result

Q
s)
i j = Aik A jl Qkl , (A9)

that is, that Qi j transforms as a tensor for a locally linearized map-

ping. The applicability of this desirable result rests heavily on the

condition (A8). We may write the Jacobian as

A(b) = (1 − κ)

(
1 − g1 −g2

−g2 1 + g1

)
, (A10)

where we have defined the reduced shear g ≡ γ /(1 − κ). The

transformation between ε and εs can then be written as

εs =
ε − 2g + g2ε∗

1 + |g2| − 2Re {gε∗}
. (A11)

We see immediately that the transformation between the source and

image ellipticities εs and ε depends solely on the combination g.

Incidentally, we can continue this calculation one more step and

obtain, to first order in g,

ε = εs + 2g − 2ε(ε1g1 + ε2g2), (A12)

which, averaging over a population ensemble, is

〈ε〉 = 〈ε1〉 + 2
(

1 −
〈
ε2

1

〉)
g1 − 2〈ε1ε2〉g2

+ i
[
〈ε2〉 + 2

(
1 −

〈
ε2

2

〉)
g2 + 2〈ε1ε2〉g1

]
(A13)

= (2 − 〈ε2〉)g. (A14)

A2 More general case – weighting by a function of position

We noted above that the tensor transformation of Qi j relies on

the invariance under lensing transformation of the weighted sur-

face brightness distribution, a condition that is only satisfied for an

isophotal weighting function W = W(I). This schema carries prac-

tical difficulties for noisy images, and in general we wish to weight

objects by multiplying their image by a fixed function W(b), such

that

Qi j ≡
∫

�bi�b j W (b)I (b) dx dy∫
W (b)I (b) dx dy

. (A15)

It is from weighted moments such as these that weak lensing shear

is generally measured, and such moments (with Gaussian W func-

tions) are directly equivalent to combinations of the fn2 and fn0 polar

shapelet coefficients.

However, we see instantly that the combination I(b)W(b) is no

longer invariant under the lensing transformation

I (b)W (b) 
= Is(bs)Ws(bs) (A16)

in general. This prevents us from writing the transformation between

Qi j and Q
s)
i j in the simple form of (A9). The quadrupole moments

no longer transform as tensors and we must instead write

Q
s)
i j = Bi jkl Qkl , (A17)

where each element of Bi jkl depends upon γ 1, γ 2, κ and the func-

tional forms of I and W. Importantly, because each element of Bi jkl

will vary with each of these quantities, we cannot therefore assume

that the transformation between εs and ε will depend solely on the

combination g for an arbitrary weighting function.

The differences between (A9) and (A17) are generally assumed to

be small for practical weak lensing purposes. Shapelet space is con-

venient for the calculation of elements of Bi jkl . For a given weight-

ing function, the transformation may be written approximately as
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a power series in γ 1, γ 2, κ and the image moments/shapelet coeffi-

cients f nm . In this way, shapelets provides one method for estimating

the generalized reduced shear for each galaxy image, a complicated

function of γ 1, γ 2, κ , f nm and W in each case.

A P P E N D I X B : K A I S E R F L OW

B1 Population response

In Section 3.4, we obtained expressions for unweighted, unnormal-

ized second moments for each galaxy. We constructed an unnor-

malized size measure q0 ≡ FR2 and two unnormalized polarization

components q1 ≡ Fε1 and q2 ≡ Fε2, all of which have strong flux

dependencies.

We must now find an estimator for the local shear on an image

given these polarizations. If we were interested in a shear estimate

for a single galaxy, we might argue that since the lensed quantities

we measure are related to unlensed quantities by

q ′
0 = q0 + 2qβγβ , (B1)

q ′
α = qα + 2q0γα, (B2)

with α, β = 1, 2, we could use an estimator for the shear

γ̃α =
〈q ′

α〉
2〈q0〉

. (B3)

However, when we come to combining shear estimators from galax-

ies with different flux and size properties, this approach is not ad-

equate. First, it does not give a prescription for how to optimally

combine the estimates from galaxies with very different flux and

shape properties. Furthermore, it ignores the fact that, under shear,

some galaxies will flow out of a cell containing galaxies at a given

flux, q0 and ellipticity, while other galaxies will flow in – and these

flows may not cancel; a weighting scheme should take account of

this.

In seeking to address these issues, we closely follow the approach

offered by Kaiser (2000, section 3.2), although the fact that we are

dealing with unweighted moments simplifies our analysis.

We wish to obtain an estimator for the shear that takes into account

the shear-induced flow of galaxies in the parameter space (F, q0,

q2), where F is the flux and q2 = qαqα is an invariant measure of

the ellipticity amplitude of an object. We will find it convenient

to describe qα = qq̂α , with the unit polarization vector given by

q̂α = {cos φ, sin φ}, that is, φ gives the position angle of the galaxy.

In this case, we can describe a volume element for polarization by

qdqdφ, or (1/2) d(q2) dφ.

Let us consider the distribution of galaxies in this parameter space.

We will represent sheared distributions as primed quantities. If the

number density in this parameter space is n, then we can describe

the conservation of galaxies under shear by

n′
(

F ′, q ′
0, q ′2, φ′

)
dF ′dq ′

0d(q ′2)dφ′

= n(F, q0, q2, φ)dFdq0d(q2)dφ.
(B4)

Note that this differs from Kaiser’s (2000) analysis in not requiring

integration over distinct polarizabilities, as these polarizabilities are

themselves given by q0 and qα in our case, due to using unweighted

moments.

We now multiply both sides of this equation by W(F′, q′
0, q′

2)

q′
α = W(F, q0 + δq0, q2 + δq2)(qα + δqα), where W is an arbi-

trary function, and integrate over all variables. This will ultimately

allow us to obtain a relation between the average polarization, the

distribution of galaxies, and the shear. Initially we find
∫

dF ′dq ′
0d(q ′2)dφ′n′W

(
F ′, q ′

0, q ′2
)

q ′
α

=
∫

dFdq0d(q2)dφnW (F + δF, q0 + δq0, q2 + δq2)(qα + δqα).

(B5)

This can be simplified by noting that, because of the isotropy of the

unsheared population,
∫

dFdq0d(q2)dφnW (F, q0, q2)qα = 0. (B6)

Making a Taylor expansion of the left-hand side of equation (B5),

we obtain∫
dF ′dq ′

0d(q ′2)dφ′n′W (F ′, q ′
0, q ′2)q ′

α

=
∫

dFdq0d(q2)dφn

[
Wδqα +

∂W

∂q0

δq0qα +
∂W

∂(q2)
δ(q2)qα

]
.

(B7)

If we note from equations (B1) and (B2) that δq0 = 2qβγ β , δqα =
2q0 γ α , and δ(q2) = 4q0γ βqβ , we can integrate the above expression

by parts to obtain
∫

dF ′dq ′
0d(q ′2)dφ′n′W (F ′, q ′

0, q ′2)q ′
α

= γβ

∫
dFdq0d(q2)dφW

[
2nq0δαβ

− 2qβqα

∂n

∂q0

− 4q0qβqα

∂n

∂(q2)

]
. (B8)

Since W(F′, q′
0, q′

2) = W(F, q0, q2) to first order in the shear, we can

omit it on both sides (we are free to do this as it is arbitrary), to obtain

a relation between the mean of the sheared galaxies’ polarizations,

and the galaxy distribution function, sizes and shapes

∫
nqαdFdq0d(q ′2)dφ = γβ

∫ [
2nq0δαβ

−2qβqα

∂n

∂q0

− 4q0qβqα

∂n

∂(q2)

]
dFdq0d(q2)dφ. (B9)

We can usefully write this in terms of an average only over posi-

tion angles of galaxies. If we move to writing expressions in terms

of the density

n(F, q0, q2) =
∫

dφn(F, q0, q2, φ), (B10)

and note that the average over position angles 〈qβqα〉 = 1

2
q2δαβ ,

then we can write the average of qα over position angle only (i.e. at

fixed F, q0, q2) as

〈qα〉F,q0,q2 = γα

[
2q0 −

1

n

∂n

∂q0

−
2

n

∂n

∂(q2)
q0q2

]
, (B11)

where n is n(F, q0, q2) rather than n(F, q0, q2, φ). It will be useful to

introduce the susceptibility P, where 〈qα〉F,q0,q2 = P(F, q0, q2)γα

with

P(F, q0, q2) = 2q0 −
1

n

∂n

∂q0

−
2

n

∂n

∂(q2)
q0q2. (B12)

We have therefore obtained the appropriate polarization to use as

a function of flux, size and shape for an ensemble of galaxies. Hence
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we can construct a shear estimator for galaxies in a particular small

cell in (F, q0, q2) space

γ̂ cell
α =

1

N P

∑

gals in cell

qα, (B13)

where N is the number of galaxies in the cell in question. However,

we would like an estimator which did not require the splitting of

galaxies into cells in parameter space, and which optimally com-

bines the estimators from different galaxies. We discuss this problem

in the next section.

B2 Optimal weighting

Here we will discuss the optimal weighting of shear estimators for

a spatial cell-average shear. Again, we are following the work of

Kaiser (2000).

For our parameter-space cell shear estimate given in equa-

tion (B13) above, we can find the estimator variance

〈
(γ̂ cell)2

〉
=

2

N 2 P2

〈(∑
q1

)2
〉

=
1

N 2 P2

〈∑
q2

〉
, (B14)

where the final equality assumes that galaxy polarizations are es-

sentially uncorrelated in the weak shear regime. Thus we obtain

〈
(γ̂ cell)2

〉
=

q2

N P2
. (B15)

Since parameter-space cells provide shear estimates which are

uncorrelated from cell to cell, the optimal weighting Wcell is pro-

portional to 1/〈(γ̂ cell)2〉 = N P2/q2, as then the overall estimator

variance will be minimized. So the final total shear estimate for a

small spatial area will be given by

γ̂ total
α =

∑
cells

(N P2/q2)(
∑

gals in cell
qα/N P)

∑
cells

N P2/q2

=
∑

galaxies
Qq̂α∑

galaxies
Q2

,

(B16)

where Q ≡ P/q.

A P P E N D I X C : T H E M O S T N E A R LY L I N E A R

S H A P E E S T I M ATO R I N R E A L S PAC E

C1 Simple polarization estimators

The simplest polarization estimator can be constructed for a galaxy

image I(x, y) as

p̃1 ≡
1

F

∫ ∫
(x2 − y2) I (x, y) dx dy, (C1)

p̃2 ≡
1

F

∫ ∫
2xy I (x, y) dx dy, (C2)

where the flux F ≡
∫ ∫

I (x, y) dx dy. The diagonal components

of the shear susceptibility tensor for this estimator take the simple

form 2R2 (evaluated without the weight), and we recover the shear

estimator γ̃unweighted from Section 3.5. The F factor could also have

been incorporated directly into the shear susceptibility factor; then

both terms are formally linear, and it is only at the point of forming

a shear estimator that any ratios need to be taken.

If we ignore the correction for PSF convolution, the KSB method

can also be recast in these simple terms. This requires Gaussian-

weighted quadrupole ellipticities

p̃1 ≡
1

R2

∫ ∫
(x2 − y2) e−(x2+y2)/(2r2

g ) I (x, y) dx dy (C3)

p̃2 ≡
1

R2

∫ ∫
2xy e−(x2+y2)/(2r2

g ) I (x, y) dx dy, (C4)

where

R2 ≡
∫ ∫

(x2 + y2)e−(x2+y2)/(2r2
g ) I (x, y) dx dy (C5)

and rg is the scale size of a Gaussian weight function. This is in-

troduced to make sure the integrals converge in a noisy image, and

to eliminate the effects of neighbouring objects. Unfortunately, this

weight function complicates the correction for the PSF, and makes

the corresponding Psh tensor messy [see equations (5-2) to (5-4) in

KSB]. Introducing a ratio of moments at this early stage reduces

the dynamic range of the ellipticities and the shear susceptibility,

but also exacerbates the noise. KSB also derive a correction for the

effects of PSF convolution on a galaxy’s shape, with this Gaussian

and assumptions about the form of the PSF built-in.

C2 General linear shape estimators

We can generalize this procedure by defining two arbitrary weight

functions Wi (x, y), with i ∈ {1, 2}, that can be used to define two

linear polarizations

p̃i ≡
∫ ∫

Wi (x, y) I (x, y) dx dy. (C6)

The coordinate system is then distorted by a shear
(

x ′

y′

)
=

(
1 + γ1 γ2

γ2 1 − γ1

)(
x

y

)
(C7)

and our shape estimators for the observed image become

p̃i =
∫ ∫

Wi (x, y)

[
I (x, y)

− γ1x
∂I

∂x
+ γ1 y

∂I

∂y
− γ2x

∂I

∂y
− γ2 y

∂I

∂x

]
dx dy. (C8)

Integrating each term by parts, and including a boundary condition

on the rapid convergence of the image to zero at large radii, we

obtain

p̃i = pint
i + γ1

∫ ∫ [
x
∂Wi

∂x
− y

∂Wi

∂y

]
I (x, y) dx dy

+ γ2

∫ ∫ [
x
∂Wi

∂y
+ y

∂Wi

∂x

]
I (x, y) dx dy. (C9)

This pair of integrals, for each of the two weight functions, makes

up the four coefficients in the shear susceptibility tensor. This pro-

cedure can also be followed in polar coordinates, where we find

p̃i = pint
i

+ γ1

∫ ∫ [
r cos 2θ

∂Wi

∂r
− sin 2θ

∂Wi

∂θ

]
I (r , θ ) rdrdθ

+ γ2

∫ ∫ [
r sin 2θ

∂Wi

∂r
+ cos 2θ

∂Wi

∂θ

]
I (r , θ ) rdrdθ.

(C10)
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C3 Shear-invariant shear susceptibility

As was the case in Section 3, it is always impossible to form a com-

pletely linear shear estimator, since bright galaxies would then yield

larger shear estimators than faint ones; it will always be necessary

to normalize a shear estimator by something proportional to the ob-

ject’s flux. However, we can construct one ellipticity for which the

shear susceptibility tensor is diagonal and whose diagonal coeffi-

cients are exactly equal to that flux (this is equivalent to including

a factor of 1/F in an ellipticity estimator that has Pγ ≡ 1). This

will solve all three problems raised at the beginning of Section 3,

because the flux is the most easily measured quantity of an object,

the matrix inversion can be replaced by a division, and the flux is

not changed under a shear (nor will the overall shear estimator be

changed by lensing magnification).

To achieve this shear estimator with the desired integrals from

equation (C9), we require

x
∂W1

∂x
− y

∂W1

∂y
= y

∂W2

∂x
+ x

∂W2

∂y
= 1, (C11)

y
∂W1

∂x
+ x

∂W1

∂y
= x

∂W2

∂x
− y

∂W2

∂y
= 0, (C12)

so that

∂W1

∂x
=

x

x2 + y2
,
∂W1

∂y
=

−y

x2 + y2
, (C13)

∂W2

∂x
=

y

x2 + y2
,
∂W2

∂y
=

x

x2 + y2
, (C14)

or in polar coordinates

∂W1

∂r
=

cos (2θ )

r
,

∂W1

∂θ
= − sin (2θ ), (C15)

∂W2

∂r
=

sin (2θ )

r
,

∂W2

∂θ
= cos (2θ ). (C16)

These equations are inconsistent. Therefore no continuous, analytic

function exists with all the properties desired for a fully linear shear

estimator. However, a series approximation that tends to these re-

quirements is given by the expansion in Section 3.5.
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