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Generic picture of the emission properties of III-nitride polariton laser diodes:
Steady state and current modulation response
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The main emission characteristics of electrically driven polariton lasers based on planar GaN microcavities
with embedded InGaN quantum wells are studied theoretically. The polariton emission dependence on pump
current density is first modeled using a set of semiclassical Boltzmann equations for the exciton polaritons that are
coupled to the rate equation describing the electron-hole plasma population. Two experimentally relevant pumping
geometries are considered, namely the direct injection of electrons and holes into the strongly coupled microcavity
region and intracavity optical pumping via an embedded light-emitting diode. The theoretical framework allows
the determination of the minimum threshold current density Jthr,min as a function of lattice temperature and
exciton-cavity photon detuning for the two pumping schemes. A Jthr,min value of 5 and 6 A cm−2 is derived
for the direct injection scheme and for the intracavity optical pumping one, respectively, at room temperature
at the optimum detuning. Then an approximate quasianalytical model is introduced to derive solutions for both
the steady-state and high-speed current modulation. This analysis makes it possible to show that the exciton
population, which acts as a reservoir for the stimulated relaxation process, gets clamped once the condensation
threshold is crossed, a behavior analogous to what happens in conventional laser diodes with the carrier density
above threshold. Finally, the modulation transfer function is calculated for both pumping geometries and the
corresponding cutoff frequency is determined.
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I. INTRODUCTION

In recent years, the physics of polariton condensates—
systems of condensed bosonic quasiparticles resulting from
the strong coupling of cavity photons and excitons in semi-
conductor microcavity (MC) structures1,2—has become one of
the most flourishing fields of contemporary condensed matter
physics. This can be partly attributed to the wealth of such
condensates in terms of exotic physical properties that lie at
the frontiers of several areas, such as nonlinear optics, laser
physics, and quantum phase transitions leading to macroscopic
coherent states, to cite just a few.

In the field of quantum phase transitions, research was
mainly triggered by the report of the Bose-Einstein conden-
sation of polaritons occurring in CdTe-based planar MCs at
cryogenic temperatures.3 This was soon followed by reports
of effects associated with condensation, such as polariton
lasing occurring at room temperature (RT) in wide band gap
semiconductors (inorganic or organic) exhibiting highly stable
excitons/polaritons.4–6 Other collective polariton phenomena

of interest include, e.g., (i) hints of superfluidity such as
the signature of integer and half-quantized vortices7,8 and
the ballistic motion of condensates,9,10 and (ii) spontaneous
coherent oscillations between adjacent condensates that share
similarities with the ac Josephson effect.11

One aspect of polariton condensates that has remained
relatively unexplored so far deals with the realization of
polariton laser diodes (LDs) able to operate at RT. As far
as electrical injection is concerned, well defined electro-
luminescence (EL) features have already been reported12

between cryogenic and room temperatures in GaAs-based
polariton light-emitting diodes (pol-LEDs). Those structures,
obviously operating in the strong coupling regime (SCR),
have a design relatively close to that of their near-infrared
vertical cavity surface emitting laser (VCSEL) counterparts
(which are based on the same material system) operating in
the weak coupling regime. However, the realization of RT
GaAs-based polariton LDs is probably precluded by the value
of the exciton binding energy (EB

X) in this material system
[usually less than 10 meV for the quantum wells (QWs) of
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interest],13 which is small compared to the thermal energy at
300 K. Indeed, it was previously shown that the value of EB

X is
the main limiting factor for the high-temperature observation
of optical nonlinearities of polaritonic origin under resonant
excitation.14 In this connection, two of the current authors
emphasized in a recent review15 the potential of III-nitride
compounds compared with organic semiconductors or ZnO as
suitable candidates to realize polariton LDs that could display
a threshold current density (Jthr) down to ∼10 A cm−2 at RT, a
decrease of more than two orders of magnitude compared with
that of state-of-the-art GaN-based edge-emitting LDs.16 The
reason for such a low threshold originates from the fact that the
condensation process is expected to occur at medium quasipar-
ticle densities—well before the appearance of screening and
phase space filling effects that would lead to the transition of
polaritons and excitons toward an electron-hole plasma—due
to the low effective density of states of polaritons resulting
from their very light mass near the center of the Brillouin
zone.

At this stage, it is helpful to recall briefly the operating
principle of polariton LDs, which differs from that of con-
ventional semiconductor lasers. As originally described by
Imamoğlu and co-workers,17 in a polariton laser the relaxation
of polaritons is governed by scattering processes stimulated by
final-state occupation, and the spontaneous radiative decay of
these short-lived particles (lifetime in the picosecond range)
forming a condensate leads to a coherent emission of photons
without requiring population inversion. As will be shown
hereafter, one can describe the operation of such a laser
close to threshold using coupled rate equations governing
the electron-hole plasma, exciton reservoir, and polariton
condensate densities in a way similar to that employed
for conventional semiconductor LDs when considering the
electron-hole plasma and photon densities.18 In particular, it is
possible to obtain an accurate understanding of the operation of
polariton LDs, in both the continuous-wave regime and under
high-speed current modulation. Our work is also motivated by
the possibility to electrically manipulate spinor condensates
that are characterized by unique spin-dependent properties.
In particular, polariton LDs could become key elements in
the burgeoning field of polariton signal processing based on
the creation and control of in-plane propagating polarized
polariton wave packets.19

In the present paper, following a description of the
specific sample design requirements to achieve polariton
lasing under electrical injection in planar III-nitride MC
samples (Sec. II), we provide a generic description of po-
lariton LDs. We do the latter by using a system of coupled
Boltzmann equations for the exciton polaritons based on
experimental parameters and scattering rates deduced from
microscopic modeling to describe the evolution of the carrier
densities (Sec. III A). Then above threshold those equations
are reduced to a quasianalytical model based on three or
just two coupled rate equations, depending on the pumping
geometry, for the electron-hole plasma, exciton reservoir, and
polariton condensate. In this way, we describe the steady-
state regime (Sec. III B) before analyzing the response of
such lasers when subjected to high-speed current modulation
(Sec. III C). Finally, the main conclusions are summarized
(Sec. IV).

II. DESIGN OF III-NITRIDE POLARITON LASER DIODES

To begin, it is necessary to recall some aspects of III-nitride
structures relevant to the implementation of an electrical
injection scheme suitable for polariton LDs.15 Recently, a
theoretical study reported on the characteristics of a bulk GaN
polariton LD, which predicts a Jthr value of ∼50 A cm−2 at
RT, thereby indicating the potential of such devices as low
threshold coherent light emitters.20 Though such a structure
has the advantage of simplicity, it should be noted that a
realistic design for RT operation will likely rely on a multiple
QW (MQW) active region because of the improved carrier
confinement and the higher exciton binding energy over bulk
in such two-dimensional heterostructures.

First, it should be noted that the number of quantum
wells (NQW) should be large enough to achieve a well
defined SCR signature at RT, i.e., to get a sufficiently large
normal mode splitting (�VRS) to polariton linewidth ratio.21

This is due to the detrimental impact of the inhomogeneous
linewidth broadening of III-nitride QWs, which can blur the
signature of polaritons if it is too large for a small NQW

value (note also that the homogeneous broadening is usually
non-negligible at 300 K).22 Then to get efficient electrical
injection, the most appropriate choice of active region would
be obtained by switching from the usual GaN/AlGaN MQW
system to InGaN/GaN MQWs,5,23 since obtaining good
p-type conductivity becomes progressively more difficult
when increasing the Al content of the AlGaN layers due to the
significant rise of the activation energy of the deep Mg acceptor
level.24 At first glance, InGaN/GaN MQWs could seem to be an
unpromising choice for SCR applications because of their large
inhomogeneous QW linewidth. However, low indium content
(7% < x < 10%) InxGa1−xN/GaN MQW MC structures with
a design close to that of GaN/AlGaN MQW MC samples5,21

are expected to exhibit clear SCR features and polariton
lasing under optical pumping at RT. This approach is also
motivated by the recent development of crack-free, lattice-
matched AlInN/GaN distributed Bragg reflectors (DBRs)
grown on free-standing GaN substrates that combine low dis-
location density (�106 cm−2 ), smooth rms surface roughness
(∼0.26 nm for a 4 × 4 μm2 area), and high peak reflectivity
(R ∼ 99.6%).25 Microcavity structures grown on such a DBR
would certainly exhibit a much improved optical quality, i.e.,
a reduced in-plane cavity disorder compared with similar
structures grown on c-plane sapphire substrates.26

With such MC samples, another matter to be addressed
is the achievement of a uniform injection of electrons and
holes in the active region, which is known to be an issue in
III-nitride optoelectronic devices.27 A way to circumvent the
conflicting requirements presented by a structure where NQW

should be large for SCR purposes and small for electrical
injection would be to use an intracavity pumping geometry
(Fig. 1).28 Within such a pumping scheme, a small number of
QWs sandwiched in the intrinsic region of a p-i-n diode would
be electrically pumped. This QW subset (QWs-1), a priori not
taking part in the formation of polaritons, would emit photons
at an energy greater than the absorption edge of a MQW region
(second QW subset, QWs-2) located underneath and which
would be in the SCR so that QWs-1 could act as an efficient
internal pump for the generation of polaritons. Other specific
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FIG. 1. (Color online) Schematic 3D cross section of an In-
GaN/GaN MQW polariton LD based on an intracavity pumping
geometry.

constraints regarding the design of polariton LDs have been
described in Ref. 15 and are included in the three-dimensional
(3D) cross section of the InGaN/GaN MQW polariton LD
displayed in Fig. 1. An intracavity contact scheme is used, as
has already been discussed in the case of III-nitride VCSEL
structures.29 To compensate for the relatively poor lateral hole
spreading into the p-type GaN layer, which is mainly due
to current crowding—a detrimental effect whose impact is
enhanced by the annular contact geometry—and thus to get
light emission from the active region sandwiched between
the DBRs, various approaches can be implemented. First, a
buried oxidized AlInN interlayer can be inserted on the n-side
underneath QWs-1 in a similar fashion to that implemented for
micro-LEDs30 to confine the electron current flow in the central
part of the device. A transparent conductive oxide (TCO), such
as indium tin oxide or ZnO, sandwiched between the p-type
GaN layer and the top dielectric DBR31 (cf. Fig. 1) also appears
well suited to improve the lateral spreading of the hole current.
Then the use of an electron-blocking layer (EBL) located on
top of the electrically pumped region is intended to avoid an
excess of electrons on the p-type side and thus limit unwanted
electron-hole recombination.32

Beyond issues related to electrical pumping, another critical
parameter when considering the above-mentioned geometry
is the significant increase in the effective cavity length (Leff).
Indeed, it is known that as a first approximation, �VRS scales
like 1/

√
Leff.33 However, Leff also accounts for the penetration

depth of the electromagnetic field into the DBRs, and one
way to compensate for its unavoidable increase is to use a
top dielectric DBR with a short penetration depth. This can
be achieved by adopting the SiO2/TiO2 bilayer system since
it exhibits a very large refractive index contrast [nTiO2 (λ =
415 nm) = 2.6 versus nSiO2 (λ = 415 nm) = 1.495].15 As an
illustration, the penetration depth obtained at λ = 415 nm only
amounts to 0.83λ/2 for a SiO2/TiO2 DBR against 2.47λ/2 for
the more conventional SiO2/Si3N4 structure, where nSi3N4 (λ =
415 nm) = 1.83.34–36 Note, however, that the former type of
DBR is not suited for a nonresonant optical pumping geometry
due to the strong rise in the absorption occurring in TiO2

layers for wavelengths shorter than 375 nm. The electric
field profile of the complete structure, derived from transfer
matrix simulation, along with the corresponding refractive
index profile are displayed in Fig. 2 at λ = 415 nm. Refractive

FIG. 2. (Color online) Results of a transfer matrix simulation of
the field intensity profile of a polariton LD centered at λ = 415 nm
along with the corresponding refractive index profile.

indices for the III-nitride compounds were taken from the
work of Brunner et al.37 (AlGaN alloys), Carlin et al.38,39

(AlInN alloys), and Bergmann and Casey40 (InGaN alloys),
respectively, and the refractive index value for ZnO was taken
from the work of Schmidt et al..41

III. FORMALISM

A. Coupled semiclassical Boltzmann equations
for an electrically driven exciton-polariton device

To predict the main characteristics of polariton LDs, we
first consider a kinetic model based on a set of coupled
semiclassical Boltzmann equations for exciton polaritons, in
which all polariton states within the light cone are accounted
for. To better illustrate the particular properties of the polariton
LD based on intracavity optical pumping that was introduced
in the previous section, two pumping schemes are considered.
In the first scheme, it is assumed that electrically pumped
electrons and holes are uniformly injected into the set of
strongly coupled QWs, emitting at ∼415 nm (i.e., the QW
subset QWs-1 is ignored). Such a scheme is not well suited
to III-nitride structures with a large NQW but it is adopted as
a simplified approach, and one that is potentially applicable
to low-temperature GaAs-based polariton LDs. After some
time, charge carriers are either removed due to nonradiative
recombination occurring at dislocations, trapping, or Auger
recombination, or they bind into pairs forming excitons.
Those excitons may be characterized by various energies and
in-plane wave vectors (k) and their ensemble is described as an
incoherent reservoir pumped from the electron-hole plasma.
This exciton reservoir then feeds the condensate of exciton
polaritons, which is a coherent multiparticle state responsible
for polariton lasing.

The second scheme concerns the design shown in Fig. 1,
where the region QWs-1, ideally emitting in the 390–400 nm
range, is uniformly electrically pumped by charge carriers,
and high-energy photons subsequently emitted by those QWs
are then absorbed by QWs-2,15 which is the set of strongly
coupled QWs, that will lead to the formation of an incoherent
exciton reservoir. This intracavity optical pumping geometry
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essentially differs from the first one due to the following
reasons: (i) Overall, for a given current density, the population
of excitons in the reservoir feeding the condensate will be
smaller due to the internal quantum efficiency (IQE), which is
less than 100%. This latter quantity is taken to be 90%, which
corresponds to that of state-of-the-art LEDs. (ii) The density
of free carriers in the region QWs-2 is constant since they are
located in the n-type region (cf. Fig. 1), whereas this density
is current-dependent in the previous injection scheme and will
have an impact on the injection dependence of the exciton–
free-carrier scattering term. (iii) While one can assume that in
the intracavity optical pumping scheme, free electrons in the
n-doped region are thermalized and obey Fermi statistics with
an effective temperature (Teff) close to the lattice temperature
(Tlatt), in the direct electrical pumping scheme electrons are not
thermalized with the lattice. In this latter situation, we consider
a Boltzmann carrier distribution with Teff > Tlatt.

We include in the model three possible mechanisms of
exciton(-polariton) scattering into the condensate: phonon
scattering (acoustic-phonon assisted scattering, which consists
of the deformation potential and piezoelectric terms, and
LO-phonon assisted scattering mediated by the Fröhlich
interaction), exciton(-polariton)-exciton(-polariton) scatter-
ing, and exciton(-polariton)–free carrier scattering. Note that
this last scattering term should a priori differ significantly
between the two pumping schemes due to the different free
carrier distributions considered in each case. Besides this, the
radiative recombination of excitons lying at higher k states,
which do not contribute to polariton lasing, is also taken into
account by introducing the exciton radiative lifetime. The
depletion of the polariton condensate occurs both through
spontaneous radiative recombination and by the absorption
of acoustic phonons, which brings exciton polaritons back
to k states beyond the inflection point of the lower polariton
branch (LPB).42,43 We neglect other mechanisms of depletion
of the condensate (e.g., due to polariton-polariton scattering)
assuming they are less probable.

All the above-mentioned processes are described by the
following set of rate equations:

dnk

dt
= Pk − nk

τk

+
∑
k′ �=k

[Wk′knk′(nk + 1) − Wkk′nk(nk′ + 1)].

(1)

Here nk is the concentration of exciton polaritons with in-
plane wave vector k, and Pk describes the electronic pumping
rate. τk is the polariton radiative lifetime, Wkk′ is the total
scattering rate between quantum states indicated by k and k′
with k = (kx,ky), kx,y = ±2πj/L, j = 0,1,2, . . . , and |k| <

ω/c, where L is the lateral size of the system, ω is the frequency
of the exciton resonance, and c is the speed of light.

We first consider the direct electrical pumping geometry.
For the sake of simplicity, it is convenient to define the pumping
as a function of the energy along the lower polariton branch Ek :

Pk = 0 (2)

if Ek − EX < �, and

Pk = Wne-h

Ñ
(3)

if Ek − EX � �, where EX is the exciton energy at the center
of the first Brillouin zone and � = 45 meV is the exciton bind-
ing energy deduced from the variational approach developed
by Leavitt and Little.21,44 W is the exciton formation rate from
the electron-hole plasma, Ñ is the number of states within the
light cone which satisfy the condition Ek � EX + �, and ne-h

is the concentration of electron-hole pairs, which is given by

dne-h

dt
= J

q
− ne-h

τe-h
− Wne-h, (4)

where J is the electric pumping rate, q is the elementary
charge, and τe-h is the decay rate of the electron-hole plasma.

Equation (4) can be solved analytically to yield a simple
dependence:

ne-h(t) = J

q

τe-h

1 + Wτe-h

[
1 − exp

(
−Wt − t

τe-h

)]
, (5)

assuming an electron-hole plasma density equal to zero
at t = 0.

For the intracavity optical pumping geometry, we consider
that strongly coupled quantum wells are indirectly optically
pumped with an energy-dependent pump intensity given by

Pk = ηintJ√
2π (δE)

exp

(
− (Ek − Epump)2

2(δE)2

)
. (6)

Here ηint is the internal quantum efficiency of the pumping
LED,45 Epump is the central energy of the LED, which is
set equal to the exciton energy of QWs-1, and δE is the
linewidth of the LED, which is set to 90 meV and is considered
temperature-independent as a first approximation.46 Note here
that for the sake of illustration, we consider the limiting case
in which the pumping QW set (QWs-1) is resonant with the
exciton energy of the second QW set (QWs-2), which leads to
the formation of polaritons, to make a clear distinction between
the two possible pumping geometries. However, in the more
general case, a nonresonant intracavity pumping scheme would
likely apply.

The scattering rates Wkk′ are decomposed as

Wkk′ = W
phon
kk′ + W el

kk′ + W
pol-pol
kk′ , (7)

where W
phon
kk′ is the combination of acoustic-phonon and

LO-phonon assisted scattering rates, W el
kk′ is the scattering

rate assisted by free electrons or holes, and W
pol-pol
kk′ is the

polariton-polariton scattering rate. We obtain these rates using
the formalism developed in Ref. 47.

Note that the model we use differs from the system
of rate equations proposed by Tassone and Yamamoto to
describe optically pumped microcavities in the polariton lasing
regime.48 In particular, it explicitly accounts for the electron-
hole plasma and introduces the exciton-electron scattering
as one of the important mechanisms of exciton(-polariton)
relaxation into the condensate.

In the numerical calculations, we have used the following
set of parameters: τk is calculated assuming a cavity photon
lifetime τcav = 1 ps and an exciton lifetime τx = 1 ns.49 The
lateral size of the system was taken equal to L = 50 μm,
τe-h = 5 ns,50 and W = 0.01 ps−1. When calculating the
matrix elements Wkk′ , we have also considered an exciton
binding energy of 45 meV, a normal mode splitting of
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FIG. 3. (Color online) (a)–(c) Occupancy of the polariton ground
state vs pump current density calculated for the two pumping
geometries at various temperatures and detunings (see text for details).

45 meV, deduced from transfer matrix simulations, a number of
QWs NQW = 65, an exciton inhomogeneous line broadening
γex = 45 meV, effective electron and hole masses equal to
me = 0.2m0 and mh = 1.1m0, respectively,51 where m0 is the
free-electron mass, a bulk exciton Bohr radius aB = 3.2 nm,
an effective refractive index n = 2.6, an LO-phonon energy
ELO = 92 meV, a deformation potential D = 11.1 eV,52 a
mass density ρ = 6150 kg/m3, and a speed of sound (in
the [0001] direction) cs = 7960 m/s.53 These parameters
correspond to what we expect for state-of-the-art GaN-based
microcavities with embedded InGaN/GaN quantum wells. The
internal quantum efficiency of the pumping LED in the case of
intracavity pumping was set to 0.9 and the effective electron
temperature in the case of direct electrical pumping was set to
800 K.

Figure 3 shows the evolution of the ground state polariton
occupation number versus pump current density for different
temperatures and detunings for the two pumping geometries.
The threshold current density for condensation (Jthr) can be
clearly identified in each case.

We have also displayed the Jthr dependence as a function
of temperature and detuning in Fig. 4. In this way, one obtains
the polariton condensation phase diagram under electrical
pumping, which is analogous to that derived under optical
pumping for GaN/AlGaN MQW MCs.23,43 One can see that
at room temperature, the lowest threshold current density
(Jthr,min) is obtained for a negative detuning of −19 meV
and amounts to ∼5 A cm−2 for the direct electrical pumping
geometry, while a Jthr,min value of ∼6 A cm−2 at a negative
detuning of −32 meV is derived for the intracavity pumping
geometry. Those values are in good agreement with that
predicted in previous work.15,16 This optimum detuning (δopt)
corresponds to the case in which the mean polariton relaxation
time equals the mean polariton lifetime.43,54 The system then
switches from the kinetic to the thermodynamic regime. In
other words, it undergoes a crossover from a regime where Jthr

decreases with increasing detuning (decreasing δ in absolute
value) because of the enhancement of the total scattering rate
to the ground state, to a regime where Jthr increases concomi-
tantly with δ due to the combined effects of the increasing
polariton effective mass (which leads to a larger value of the
critical density for polariton condensation, n2D,crit) and thermal
detrapping from the ground state.43 It is also noticeable that
the temperature dependence of δopt significantly differs from

FIG. 4. (Color online) Plots of Jthr vs detuning and temperature
for (a) the direct electrical and (b) the intracavity optical pumping
schemes. The red dashed line in each plot corresponds to the evolution
of Jthr,min as a function of temperature. (c) Evolution of the optimum
detuning (black solid and black dashed lines) and condensation
threshold current density (red solid and red dashed lines) at the
optimum detuning as a function of lattice temperature for the direct
electrical (solid lines) and the intracavity (dashed lines) pumping
schemes.

one geometry to the other [Figs. 4(a)–4(c)]. This is attributed
to the difference in the efficiency of the free electron scattering
mechanism as a function of temperature.55 For the direct
electrical pumping geometry, the electron distribution does not
depend on Tlatt since electrons are not thermalized, thus leading
only to slight changes in the free electron scattering rate with
temperature and thereby explaining the weak δopt(T ) variation
displayed in Figs. 4(a) and 4(c). For the intracavity optical
pumping geometry, electrons are thermalized to Tlatt, which
leads to a behavior closer to that reported for GaN/AlGaN
MQW MCs under nonresonant optical pumping [Figs. 4(b)
and 4(c)].43 However, it should be recognized that assuming
an electron temperature equal to Tlatt is a crude approximation.
We should also point out that, for the sake of simplicity, we did
not account for the large activation energy of the Mg acceptor
in GaN compounds, which would most likely degrade the
electrical characteristics and thus lead to an increase in Jthr at
low temperatures.

The low threshold values reported for the intracavity
pumping geometry can probably be explained by the broad
spectral distribution of the pump Pk . In the direct electrical
injection geometry, excitons characterized by high energies
and large in-plane wave vectors are created from the electron-
hole plasma, which requires a comparatively long time to relax
to the k = 0 state. However, in the case of intracavity optical
pumping, a broad distribution of excitons centered on the
QW-1 exciton energy, but also covering lower energy states,
is created. Those excitons which occupy lower energy and
lower k states compared with the direct electrical pumping
geometry quickly relax to the lower polariton branch ground
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(a) (b) (c)

FIG. 5. (Color online) Averaged scattering rates a, b, and c as
a function of detuning obtained by fitting the full semiclassical
Boltzmann system of equations at various temperatures for the two
pumping schemes: electrical (solid lines) and intracavity (dashed
lines) pumping.

state and enhance polariton relaxation, which results in the
lower threshold for this geometry. However, if the intracavity
emission line is strongly blueshifted from the polariton modes,
the ratio between the polariton lasing thresholds for the two
pumping configurations is expected to be modified. One would
then expect a higher threshold for the intracavity pumping
geometry due to the IQE of the internal pump, which is less
than 100%.

B. Simplified rate equation modeling: Steady-state solutions

To obtain a qualitative understanding of the functionality
of polariton laser diodes, we compare the modeling results
obtained with the full set of semiclassical Boltzmann equa-
tions with a simplified quasianalytical model. For the direct
electrical pumping geometry, the model is based on three rate
equations describing the electron-hole plasma [namely Eq. (4)
introduced in Sec. III A], the exciton reservoir, and ground
state polaritons, respectively:
dnx

dt
= −nx

τx

+ Wne-h − anx(np + 1) + ae−β�escnpnx

− bn2
x(np + 1) − cne-hnx(np + 1), (8)

dnp

dt
= −np

τp

+ anx(np + 1) − ae−β�escnpnx + bn2
x(np + 1)

+ cne-hnx(np + 1), (9)

where nx and np are the concentrations of excitons and
exciton polaritons, respectively. τp is the lifetime of exciton
polaritons in the ground state. a accounts for the acoustic
and optical phonon relaxation rates, β = 1/kBT , and �esc

is the characteristic energy splitting between the bottom of
the LPB and states beyond the inflection point of the LPB

where zero in-plane wave-vector polaritons are scattered,
which is a quantity sensitive to the detuning.23,42,43 b is the
exciton-exciton scattering rate and c is the rate of exciton
relaxation mediated by free carriers. The solid curves in Fig. 5
show the detuning dependence of the fitting parameters a,
b, and c (for different temperatures) for them to yield the
same threshold pumping current density for the direct electrical
pumping scheme as the full semiclassical Boltzmann model
(considered as a reference).

If now the more realistic intracavity optical pumping
geometry is considered, the previous quasianalytical three-
level model can be simplified further to a two-level model
since the free carrier dynamics does not have to be accounted
for explicitly. Then
dnx

dt
= Px − nx

τx

− anx(np + 1) + ae−β�escnpnx

− bn2
x(np + 1) − cndnx(np + 1), (10)

dnp

dt
= −np

τp

+ anx(np + 1) − ae−β�escnpnx + bn2
x(np + 1)

+ cndnx(np + 1), (11)

where nd is the concentration of free carriers obtained from
the doping level in the region QWs-2, and taken equal to 2 ×
1012 cm−2. In the simplest approximation, Px can be taken
to be Px = ηintJ/q, where ηint is the IQE of the electrically
pumped region QWs-1. The dashed lines in Fig. 5 show the
values of the fitting parameters a, b, and c which yield the same
threshold pumping current density for the intracavity optical
pumping scheme as the full semiclassical Boltzmann model
for different temperatures and detunings.

One can see in this latter figure that—overall—all the
scattering mechanisms that contribute to populate the polariton
lasing mode become more efficient with decreasing negative
detuning (in absolute value). It stems from the reduced exciton
fraction of polariton states at large negative detuning, so that all
interactions involving polaritons become weaker than at zero
or positive detuning. In some cases, the detuning dependence
of the scattering rates is nonmonotonic and it is also sensitive to
the pumping scheme. This is due to the complexity of the lower
polariton branch dispersion. The average scattering rates are
therefore sensitive to both the shape of the polariton dispersion
and the excitation spectrum profile.

Above threshold, the (1 + np) and (1 + nx) terms appearing
in the rate equations can be approximated as np and nx ,
respectively. After some algebra, the steady-state solutions
(t = +∞) for the electron-hole pair, exciton, and polariton
populations for the direct electrical pumping geometry are
obtained as

ne-h∞ = Jτe-h

q(1 + τe-hW )
, (12)

nx∞ =
−cne-h∞ + a(e−β�esc − 1) +

√
[−cne-h∞ + a(e−β�esc − 1)]2 + 4b

τp

2b
, (13)

np∞ = τp

(
Wne-h∞ − nx∞

τx

)
. (14)
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FIG. 6. (Color online) Left-hand side vertical scale: evolution of
nx∞ as a function of temperature calculated at the optimum detuning
using the exact expressions for the electrical (connected black dots)
and the intracavity (connected black circles) pumping geometries
(see text for details). Right-hand side vertical scale: relative deviation
between the exact and the approximated expressions for the electrical
(connected red dots) and the intracavity (connected red circles)
pumping geometries.

Note that for the intracavity optical pumping geometry,
slight changes occur since ne-h∞ in Eq. (13) has to be replaced
by nd , and Wne-h∞ in Eq. (14) has to be replaced by Px .
We should emphasize that for this latter geometry, the carrier
population, which acts as a reservoir for the stimulated relax-
ation process (here the excitons), gets clamped once it crosses
the condensation threshold, which is expected due to the
similarities of the above-mentioned rate equations with those
describing conventional laser diodes.18 A similar treatment
can be used for the direct electrical pumping geometry since
4b/τp � [−cne-h∞ + a(e−β�esc − 1)]2. Thus, for both cases,
we obtain nx∞ ≈ 1/

√
bτp. The evolution of nx∞ as a function

of temperature at the optimum detuning is shown in Fig. 6
using both the exact expression and the approximate one for
the two pumping geometries. The validity of the approximation
for nx∞ is confirmed by the close correspondence between the
two quantities independent of the temperature. Considering its
approximate expression, the increase with temperature of nx∞
can be directly inferred from the results displayed in Fig. 5,
which show a decrease in the exciton-exciton scattering rate
b with increasing Tlatt, and it is also fully consistent with the
overall temperature dependence of the analytical expression
for b derived by Tassone and Yamamoto.48 Note that one also
expects a decrease in nx∞ with increasing detuning56 likely
due to the concomitant increase in the relaxation process from
the excitonic reservoir (which coincides with the decrease or
even the disappearance of the relaxation bottleneck) and that
of τp.48

C. Simplified rate equation modeling: High-speed current
modulation treatment

In this section, the dynamical response of polariton LDs to
a small perturbation, such as a modulation of the current above
threshold, is investigated. Since exact analytical solutions
to the full rate equations cannot be obtained, a differential
analysis of the simplified rate equations given in the previous

section using the approach described by Coldren and Corzine
for the case of conventional LDs is considered.57,58 The
resulting small-signal responses are derived by taking the
differential of the rate equations which can be written in
compact matrix form for the two pumping geometries as
follows:

Electrical pumping geometry:

d

dt

[
dnx

dnp

]
=

[ −γxx −γxp

γpx −γpp

] [
dnx

dnp

]
+

[
dne-h(W − cnx∞np∞ )

0

]
, (15)

where

γxx = 1

τx

+ anp∞ + 2bnx∞np∞ + cne-h∞np∞ − anp∞e−β�esc ,

(16)

γpp = 1

τp

− anx∞ − bn2
x∞ − cne-h∞nx∞ + anx∞e−β�esc , (17)

γxp = anx∞ + bn2
x∞ + cne-h∞nx∞ − anx∞e−β�esc , (18)

γpx = anp∞ + 2bnx∞np∞ + cne-h∞np∞ − anp∞e−β�esc . (19)

Intracavity pumping geometry:

d

dt

[
dnx

dnp

]
=

[ −γxx −γxp

γpx −γpp

] [
dnx

dnp

]
+

[ ηint

q
dJ

0

]
, (20)

where

γxx = 1

τx

+ anp∞ + 2bnx∞np∞ + cndnp∞ − anp∞e−β�esc ,

(21)

γpp = 1

τp

− anx∞ − bn2
x∞ − cndnx∞ + anx∞e−β�esc , (22)

γxp = anx∞ + bn2
x∞ + cndnx∞ − anx∞e−β�esc , (23)

γpx = anp∞ + 2bnx∞np∞ + cndnp∞ − anp∞e−β�esc . (24)

To obtain the small-signal response of the exciton (dnx)
and the polariton (dnp) populations to a sinusoidal current
modulation dJ , we assume solutions of the form dJ =
J1 exp(iωt), dne-h = ne-h1 exp(iωt), dnx = nx1 exp(iωt), and
dnp = np1 exp(iωt). The linear systems (15) and (20) can
then be solved for the small-signal polariton population by
simply applying Cramer’s rule. The small-signal solutions
after expansion of the determinants can be written as follows:

Electrical pumping geometry:

np1(ω) = γpx[W − cnx∞np∞ ] + (iω + γxx)cnx∞np∞

(γpx/τp − ω2 + iωγxx)

× J1/q

iω + W + 1/τe-h
= np1(0)H (ω), (25)
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where H (ω) is the modulation transfer function given by

H (ω) = γpx/τp(W + 1/τe-h)

γpx[W − cnx∞np∞ ] + γxxcnx∞np∞

× γpx

[
W − cnx∞np∞

] + (iω + γxx)cnx∞np∞

(γpx/τp − ω2 + iωγxx)(iω + 1/τe-h + W )
. (26)

Intracavity pumping geometry:

np1(ω) = γpxηintJ1/q

(γpx/τp − ω2 + iωγxx)
= np1(0)H (ω), (27)

where H (ω) is the modulation transfer function given by

H (ω) = γpx/τp

(γpx/τp − ω2 + iωγxx)
. (28)

For both pumping geometries, a relaxation resonance
frequency equal to ωR,polLD = √

γpx/τp can be defined while
the γxx term can be readily identified with a damping factor.

The expression for γpx derived for the two geometries
[Eqs. (19) and (24)] can be greatly simplified since the term
describing the exciton-exciton interaction (∝ b) dominates
over the phonon-exciton and the free-carrier–exciton scat-
tering terms (∝ a and c, respectively) independent of the
exciton-photon detuning and the temperature (cf. Fig. 6 and
corresponding comments in Sec. III B). Consequently, the
square of the resonance frequency reduces to

ω2
R,polLD ≈ 2bnx∞np∞

τp

≈ 2np∞

√
b

τ 3
p

. (29)

Therefore, within this theoretical framework, the resonance
frequency for polariton LDs is directly proportional to the
square root of the polariton population in the condensate
and inversely proportional to the square root of the polariton
lifetime (keeping in mind that the exciton population of the
reservoir nx∞ is clamped above threshold). In this respect,
such a dependence is similar to the dependence of ωR

in conventional LDs above threshold, since in this latter
case,

ω2
R ≈ vgadiffNp

τcav
, (30)

where vg is the group velocity, adiff is the differential gain,
Np is the average photon density in the cavity, and τcav is the
cavity photon lifetime already defined in Sec. III A.57

From Eqs. (16) and (21), the damping factor can be
rewritten as

γxx = 1

τx

+ γpx = 1

τx

+ ω2
Rτp. (31)

It is thus seen that for large resonance frequencies, the
damping of the response is ruled by the polariton lifetime. On
the other hand, the inverse of the exciton lifetime acts as a
damping factor offset, which is important for small polariton
condensate populations where the resonance frequency is
small.

At this stage, we should point out that the validity of
the previous treatment for the intracavity pumping scheme
might be limited by the actual response of the pumping
LED. Therefore, it is necessary to determine the LED cutoff
frequency ω3 dB,LED, i.e., the frequency at which the electrical

power response drops to half its dc value, and compare it to
ωR,polLD.

Following the theoretical approach described in the previ-
ous sections, the rate equations governing the emission of the
LED are given by Eq. (4) and

dnx

dt
= −nx

τx

+ Wne-h (32)

(Ref. 59), from which one can deduce the modulation transfer
function HLED(ω) using harmonic analysis:

HLED(ω) =
1
τx

(
1

τe-h
+ W

)(
iω + 1

τx

)(
iω + 1

τe-h
+ W

) . (33)

The corresponding relaxation resonance frequency ωR,LED

and the damping factor γLED can be written as

ωR,LED =
√

1

τx

(
1

τe-h
+ W

)
≈ 3.2 GHz (34)

and

γLED = 1

τx

+ 1

τe-h
+ W = 11.2 GHz, (35)

respectively.
Additional features of the LED response can be derived

from the frequency dependence of the square modulus of
HLED(ω). On a general basis, such a response is character-
ized by a second-order, low-pass-band filter behavior with
a damped resonance appearing near the cutoff frequency
ωLED,3 dB. For |HLED(ω)|2, the expression for the peak fre-
quency of the resonance ωP,LED is given by

ω2
P,LED = ω2

R,LED

[
1 − 1

2

(
γLED

ωR,LED

)2 ]
, (36)

and that of the cutoff frequency ωLED,3 dB is given by

ω2
3 dB,LED = ω2

P,LED +
√

ω4
P,LED + ω4

R,LED. (37)

In the present case, since γLED > ωR,LED, the two previous
equations reduce to

ωP,LED = 0 (38)

and

ω3 dB,LED = ωR,LED ≈ 3.2 GHz. (39)

To evaluate the impact of the LED response on the
intracavity pumping geometry, one should first consider the
evolution of |H (ω)|2 at room temperature and at the optimum
detuning δopt for different values of the input current J using
Eqs. (26) and (28) [Figs. 7(a) and 7(b)]. Hence it is seen
that for the electrical pumping case [Eq. (26)] with current
densities in the range 10–20 A cm−2, the peak frequency ωP

lies in the range 6–12 GHz and the cutoff frequency ω3 dB is
expected to be ∼19 GHz [Fig. 7(b)]. Much larger values are
predicted for the intracavity pumping geometry when using
Eq. (28) (ω3 dB � 400 GHz). However, in this regime the
modulation transfer function of the device is limited by the
frequency response of the pumping LED, which has a cutoff
frequency given by Eq. (34). Finally, we have to point out that
the above-mentioned values are upper bounds since they do
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FIG. 7. (Color online) (a) Polariton condensate occupation num-
ber vs current density for the electrical (red line) and intracavity
(black line) pumping geometries determined at 320 K and at the
optimum detuning. (b) Frequency dependence (ν = ω/2π ) of the
square modulus of the modulation transfer function, |H (ω)|2. Each
curve corresponds to one of the steady-state solutions indicated
in Fig. 7(a).

not account, e.g., for possible electrical parasitic effects that
could potentially affect the transmission line impedance.

IV. CONCLUSIONS

In summary, we have theoretically investigated some
relevant electrical features of realistic III-nitride polariton LDs.
First a formalism relying on coupled semiclassical Boltzmann
equations adapted for an electrically driven exciton-polariton
device was used to derive the evolution of the occupation
number of the polariton ground state versus pump current
density calculated for two pumping geometries: namely,
the direct electrical and the intracavity optical pumping
schemes. The corresponding condensation phase diagrams

under electrical injection, i.e., plots of Jthr versus detuning and
temperature, were also extracted. It led to the determination
of the minimum threshold current density Jthr,min as a function
of lattice temperature for the two pumping schemes. A Jthr,min

value of ∼5 A cm−2 and 6 A cm−2 at RT has been derived
for the direct electrical and the intracavity optical pumping
geometries, respectively, which is close to previous estimates.
Then a simplified rate equation modeling treatment was
introduced to derive both steady-state and high-speed current
modulation solutions. This simplified analysis made it possible
to show that the carrier population which acts as a reservoir for
the stimulated relaxation process, namely that of the excitons,
gets clamped once it crosses the condensation threshold, which
is a direct consequence of the similarities of the simplified rate
equations with those describing conventional laser diodes. The
analysis of the modulation transfer function, derived from the
dynamical response of polariton LDs to a small modulation
of the current above threshold, demonstrates the interesting
potential of the direct electrical pumping scheme, since a cutoff
frequency ω3 dB up to ∼19 GHz is predicted, whereas for the
intracavity optical pumping scheme, the cutoff frequency is
shown to be limited by the frequency response of the pumping
LED, for which ω3 dB ≈ 3.2 GHz.
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R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett.
98, 126405 (2007).
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