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Abstract: We investigate infinite families of 3d N = 2 superconformal Chern-Simons

quivers with an arbitrarily large number of gauge groups arising on M2-branes over

toric CY4’s. These theories have the same matter content and superpotential of those

on D3-branes probing cones over La,b,a Sasaki-Einstein manifolds. For all these infinite

families, we explicitly show the correspondence between the free energy F on S3 and

the volume of the 7-dimensional base of the associated CY4, even before extremization.

Our results add to those existing in the literature, providing further support for the

correspondence. We develop a lifting algorithm, based on the Type IIB realization of

these theories, that takes from CY3’s to CY4’s and we use it to efficiently generate the

models studied in the paper. We also introduce a procedure, based on the mapping be-

tween extremal points in the toric diagram (GLSM fields) and chiral fields in the quiver,

which systematically translates symmetries of the toric diagram into constraints of the

trial R-charges of the quiver, beyond those arising from marginality of the superpo-

tential. This method can be exploited for reducing the dimension of the space of trial

R-charges over which the free energy is maximized. Finally, we show that in all the

infinite families we consider F 2 can be expressed, even off-shell, as a quartic function

in R-charges associated to certain 5-cycles. This suggests that a quartic formula on

R-charges, analogous to a similar cubic function for the central charge a in 4d, exists

for all toric toric CY4’s and we present some ideas regarding its general form.
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1. Introduction

In recent years we have witnessed remarkable progress in the study of 3d superconformal

field theories (SCFTs) on two tightly interconnected fronts. Progress in any of the two

directions has fueled new advances in the other one.

The first front involves the determination of SCFTs describing the low energy

dynamics of M2-branes. Following the seminal ideas of [1, 2, 3, 4], which culminated

with the construction of a 3d superconformal Chern-Simons (CS) theory with maximal

N = 8 supersymmetry (SUSY), a theory describing N M2-branes over C4/Zk was

proposed by Aharony, Bergman, Jafferis and Maldacena (ABJM) [5]. The ABJM

theory is an U(N)×U(N) CS gauge theory with levels k and −k and a matter content

and superpotential equal to the ones for N D3-branes on the conifold [6]. Soon after

the appearance of this model, a lot of activity was devoted to extending these results

to cases with reduced SUSY, resulting in the proposal of several gauge theories as

candidates for M2-branes over various geometries [7]-[12]. Several works focused on

M2-branes over toric Calabi-Yau 4-folds (CY4) [13]-[25].

A remarkable feature of the SCFT on a large number N of M2-branes, which

was originally identified in [26] from a gravity dual viewpoint, is that its free energy

scales as N3/2. The attempt to reproduce this scaling from the field theory has been a

major driving force for the second front of progress, which concerns the development of

methods for counting degrees of freedom in 3d SCFTs (SCFT3). Using localization [27],

it has been possible to match the free energy of the field theory with the dual gravity

result for theories with N ≥ 3 SUSY [28, 29, 30, 31, 32]. The problem becomes more

involved for N = 2 theories, for which the free energy is singular. After appropriate

regularization, a general expression for the free energy in theories with reduced SUSY

was proposed in [33, 34]. In these cases, the free energy becomes a function of the scaling

dimensions (which in 3d are equal to the superconformal R-charges) of fields. Moreover,

[33] showed that the exact superconformal R-charge is obtained by extremizing the free

energy, in the same spirit of a-maximization in 4d [35]. This proposal has been tested

both at the perturbative [36, 37, 38, 39, 40] and non-perturbative levels [41, 42, 43].

Actually, in all examples the free energy has been found not only to be extremized

but to be maximized. This observation has led [43] to conjecture the existence of an

F -theorem in three dimensions. Several checks of this conjecture have appeared in

[39, 44, 45, 46, 47].

Borrowing from the 4d nomenclature, it is useful to distinguish between chiral-like

and non-chiral-like theories. As the name indicates, non-chiral-like quivers are those

in which every bifundamental field is accompanied by another bifundamental with

opposite charges. These techniques have allowed non-trivial checks of the AdS4/CFT3
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for non-chiral-like theories [41, 42, 43, 48]. The N3/2 scaling of the free energy has

not been observed in chiral-like theories yet. This fact might indicate some problem

in taking the large-N limit or, more drastically, it can mean that these theories do

not describe SCFTs on M2-branes. The answer is still inconclusive, even though some

partial results pointing in the first direction have appeared in the literature [31, 48,

49, 50]. One of the main purposes of this paper is, in the spirit of similar calculations

for 4d SCFTs (SCFT4) [51, 52, 53, 54], to explicitly show the agreement between the

field theoretic and gravity determinations of the free energy in infinite classes of models

with an arbitrarily large number of gauge groups. In doing so, we accumulate evidence

that not only supports the application of the localization ideas to the determination of

the free energy in theories with reduced SUSY, but also validates the gauge theories

we consider as the correct theories on M2-brane over the corresponding CY4’s.

This paper is organized as follows. In Section 2, we review the computation of the

volume of Sasaki-Einstein 7-manifolds at the base of toric CY4 cones, the calculation

of the free energy of SCFT3’s, and the correspondence between gauge theory, geometry

and dimer models. Section 3 discusses the La,b,a
~k

infinite family of gauge theories, which

are the main focus of the paper. These theories have the same quiver and superpotential

of La,b,a models in 4d and [52, 53, 54], in addition, CS couplings encoded in ~k. Section

4 is devoted to the Type IIB realization of these theories and introduces an algorithm

that lifts the cone over La,b,a to the toric CY4 that corresponds to the mesonic moduli

space of the CS quiver. The lifting algorithm is used in Section 5 to generate infinite

classes of models, for which the agreement between the geometric and field theoretic

determinations of the free energy is established. In Section 6 we show that, in all

the infinite classes of models considered in the paper, it is possible to express the free

energy as a quartic function of the R-charges of extremal perfect matchings, even before

extremization. We present some thoughts about a general expression for such a quartic

function. In Section 7, we show that the free energy is invariant for certain toric duals

obtained by permuting 5-branes in the Type IIB construction of the La,b,a
~k

models. We

conclude in Section 8.

2. Some Background

In this section we review some topics we will later use throughout the paper.

2.1 Sasaki-Einstein Volumes

We are interested in the quiver gauge theory on the worldvolume of M2-branes probing

a CY4 that is real cone over a 7-dimensional Sasaki-Einstein (SE) manifold Y7. The
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volume of Y7 is expected to control the number of degrees of freedom of the gauge

theory. For toric CY4’s, this volume can be computed from the toric diagram in terms

of the Reeb vector b = (b1, b2, b3, b4) [56], which is a constant norm Killing vector field

commuting with all the isometries of the SE manifold.

There is a one-to-one correspondence between extremal perfect matchings, i.e. cor-

ners, of the toric diagram and a basis of 5-cycles Σi in the base over which M5-branes

can be wrapped.1 The R-charge of a single M5-brane wrapped over Σi is given by

∆i =
π

6

Vol(Σi)

Vol(Y7)
. (2.1)

This is a function of the Reeb vector b, and the exact superconformal R-charge is

obtained by extremizing the function ZMSY defined as

ZMSY =
d∑

i=1

Vol(Σi), (2.2)

where d is the numer of corners of the toric diagram. In terms of ZMSY, the volume of

Y7 and the R-charges of extremal perfect matchings are

Vol(Y7) =
π4

12
ZMSY, ∆i =

2Vol(Σi)

ZMSY

. (2.3)

The volumes Vol(Σi) can be calculated from the toric diagram thanks to the algorithm

introduced in [56], extended to CY4’s in [17]. Every point in the toric diagram is given

by a 4-vector that, due to the Calabi-Yau condition, can be taken to the form vi =

(ṽi, 1), with ṽi a 3-vector. Considering the counterclockwise sequence wk, k = 1, . . . , ni

of vectors adjacent to a given vector vi one has

Vol(Σi) =

ni−1∑

k=2

〈vi, wk−1, wk, wk+1〉〈vi, wk, w1, wni
〉

〈vi, b, wk, wk+1〉〈vi, b, wk−1, wk〉〈vi, b, w1, wni
〉 , (2.4)

where · indicate column 4-vectors and 〈·, ·, ·, ·〉 is the determinant of the resulting 4× 4

matrix.

2.2 Free Energy

We now briefly review the calculation of the free energy in 3d, vector-like, CS quivers

in the large-N limit. The free energy is computed in terms of the partition function on

a 3-sphere ZS3 as

F = − log |ZS3| . (2.5)

1The concept of perfect matching becomes important when realizing these theories in terms of

brane tilings. This is discussed in Section 2.3. For the purpose of this section, it is sufficient to regard

perfect matchings as points in the toric diagram.
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The partition function has been calculated in [33, 34] by exploiting the localization

technique [27], which reduces it to a matrix integral. For a gauge group G, with CS

level k, and matter in the representation R of the gauge group with quantum scaling

dimension ∆, one has

ZS3 =

∫
d

[
λ

2π

]
e

ikTrλ2

4π
−∆mTrλ detAdj

(
2 sinh

λ

2

)
detRe

l(1−∆+i λ
2π ). (2.6)

The integral is performed over the Cartan subgroup of the gauge group. The first

exponential corresponds to the CS and monopole contributions. The determinants

come from the 1-loop contributions of the vector multiplet and the matter fields. For

N = 2, the 1-loop determinant of matter fields is expressed in terms of the function

l(z), which is defined through its derivative as follows

l′(z) = −πz cot πz, (2.7)

and an appropriate normalization.

In this paper, we are interested in computing (2.6) in the large-N limit of vector-like

quiver gauge theories with gauge group G =
∏

a U(N)ka and
∑

a ka = 0.

The integral is dominated by the minimum of the free energy. One can distinguish

two contributions to the equations of motion, so called long and short range forces.

Long range forces cancel in this class of models and only the short range ones contribute

[30, 41, 43]. The eigenvalue λi(a) of the a-th gauge group scale as

λ
(a)
i = N1/2xi + iy

(a)
i , (2.8)

where x and y are real [43]. The real part of (2.8) becomes dense, with density ρ(x),

while the imaginary part becomes a continuous function of x, y
(a)
i → ya(x).

The free energy follows from the saddle point equations ∂λF = 0 [43]. The relevant

contributions for the case of vector-like theories with bifundamental and adjoint matter

and
∑

a ka = 0 are

FCS =
N3/2

2π

∫
ρ(x)x

|G|∑

a=1

kayadx

Fbifab = −N3/2 2−∆+
ab

2

∫
ρ2dx

((
δyab + π∆−

ab

)2 − π2

3
π2∆+

ab(4−∆+
ab)

)

Fadj =
8N3/2

3
π2∆(1−∆)(2−∆)

∫
ρ2dx (2.9)
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where the first equation is the CS contribution, the second one is the contribution of

a bifundamental-antibifundamental pair connecting the a-th and the b-th nodes, and

the last one is the contribution of an adjoint field. We have defined ∆
(±)
ab = ∆ab ±∆ba.

In the partition function one should take into account the diagonal monopole charge,

which is given by ∆m = ∆(T )−∆(T̃ ), where T and T̃ are the diagonal monopole and

antimonopole operators. Since vector-like models are charge conjugation invariant,

∆(T ) = ∆(T̃ ), and we can set ∆m = 0. The bifundamental contribution is only valid

when δyab = ya − yb is in the regime |δyab + π∆−
ab| ≤ π∆+

ab. The leading contribution

to the free energy in the large-N limit is then obtained by extremizing the free energy

functional over ρ and ya while imposing the normalization of ρ.

As shown in [28, 29, 43], the supergravity scaling N3/2 [5] is recovered and the

free energy matches the volume computation from AdS/CFT for theories with N > 2

SUSY. The N = 2 case is more involved, because R-charges of matter fields usually

differ from the classical value ∆ = 1/2. Indeed, the exact superconformal R-charges is

obtained by extremizing the free energy itself [33].

Some examples of the agreement between the field theory computation of the free

energy and the geometric calculation of volumes have been presented in [41, 42, 43, 48,

49]. One of the main goals of this paper is to extend this matching to infinite classes

of theories with arbitrarily large number of gauge groups, in the spirit of similar tests

performed in the context of the AdS5/CFT4 correspondence [51, 52, 53, 54]. Some

infinite families of models, consisting of flavored quivers with one or two gauge groups

and necklace quivers with N ≥ 2 SUSY, have already been considered in the literature

[30, 31, 43, 55].

The general conjecture is that the free energy of the gauge theory on S3 is related

to Vol(Y7) via

F = N3/2

√
2π6

27Vol(Y7)
. (2.10)

We will later see that, in an infinite number of examples, the previous expression holds

even off-shell, i.e. even before maximizing the free energy or minimizing the volume.

2.3 Geometry, Dimer Models and R-charges

In this paper we will focus, as we will discuss in greater detail in Section 3, on theories

with the same quivers of 4d parents and with additional CS couplings for gauge groups.

This class of theories can be encoded in terms of brane tilings [53, 63], as originally

studied in [14]. Their mesonic moduli space is most efficiently described in terms of

perfect matchings of the tiling, which are in one-to-one correspondence with the gauged

linear sigma model (GLSM) fields in the toric construction of the moduli space, i.e.
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they map to points in the toric diagram.2 The mapping between chiral fields in the

quiver Xi and perfect matchings pα is given by

Xi =

c∏

α=1

pPiα
α , (2.11)

where c is the total number of perfect matchings, and Piα is equal to 1 if the edge in

the brane tiling associated to the chiral field Xi is contained in pα and zero otherwise.

Piα =

{
1 if Xi ∈ pα
0 if Xi /∈ pα

(2.12)

A prominent role is played by the subset of extremal perfect matchings, i.e. those

corresponding to corners of the toric diagram, which we call p̃µ, µ = 1, . . . , d. The

gauge theory contains a U(1)R × U(1)3F × U(1)a+b−2
B global symmetry group, where F

and B indicate flavor and baryonic symmetries, and the extremal perfect matchings

are the only ones with non-trivial charges under them [58]. In other words, the global

U(1) symmetries of all chiral fields in the quiver are determined by their p̃µ content.

It is then useful to construct a reduced matrix P̃ , which is simply a restriction of P to

the columns associated with extremal perfect matchings. Its entries are given by

P̃iµ =

{
1 if Xi ∈ pµ
0 if Xi /∈ p̃µ

(2.13)

Consider any of the global U(1) symmetries, under which p̃u has charge aµ. The charge

of a chiral field is then given by

Q(Xi) =
d∑

µ=1

P̃iµaµ. (2.14)

In the case of the R-symmetry, the charges of the extremal perfect matchings are

constrained by
∑d

µ=1 aµ = 2. For other U(1) symmetries, the constraint is
∑d

µ=1 aµ = 0.

In what follows, we will use these ideas to organize the computation of the free

energy, which will involve two steps:

• Use (2.14) to parametrize R-charges of matter fields in terms of those of extremal

perfect matchings. A corollary of this parametrization is that symmetries of

the toric diagram that reduce the number of independent R-charges of extremal

perfect matchings also result in a lower dimensional space of R-charges for the

R-charges of chiral fields in the quiver. We will exploit this fact in Section 5.

2When constructing a toric Calabi-Yau as the moduli space of a gauge theory, more than one

perfect matching might correspond to the same point in the toric diagram.

7



• Maximize the free energy over the resulting (d − 1)-dimensional space. In some

cases, we will impose further symmetries to reduce the problem to an extremiza-

tion over a 1-dimensional space.

3. La,b,a
~k

Theories

In Section 1, we reviewed the extent to which quiver CS theories have been tested as

theories on M2-branes and mentioned the difficulties encountered when trying to do

so. In order to remain on the conservative side, we will focus in this paper in theories

with toric, non-chiral, 4d parents. These parents can be fully classified using toric

geometry. They correspond to all toric Calabi-Yau 3-folds (CY3) without compact 4-

cycles, i.e. those with toric diagrams without internal points. All geometries satisfying

this condition are C3/(Z2 × Z2) and the infinite La,b,a family. Figure 1 shows the toric

diagram for the cones over La,b,a manifolds, consisting of two parallel lines of (a + 1)

and (b+ 1) points, respectively.

1

aa−110

bb−1b−220

Figure 1: Toric diagram for the real cones over La,b,a manifolds.

The corresponding gauge theory can be taken to the form given in Figure 2 [52,

53, 54]. The superpotential is given by

W =

b−a∑

i=1

Xi,i (Xi,i+1Xi+1,i −Xi,i−1Xi−1,i) +

b+a∑

i=b−a+1

(−1)b+a+iXi,i−1Xi−1,iXi,1+1Xi+1,i,

(3.1)

whereXi,j indicates a bifundamental field connecting nodes i and j andXi,i corresponds

to an adjoint of node i. The nodes in the quiver are identified according to a+b+1 ≡ 1.

Marginality of the superpotential, which is necessary for conformal invariance, re-

quires that all superpotential terms have R-charge equal to 2. As discussed in the

previous section, the number of independent R-charges can be further reduced by the

parametrization in terms of extremal perfect matchings in the presence of symmetries

of the toric diagram. In the examples studied in Section 5, symmetries are such that

8



2a

∆

∆∆

∆ 1−∆

1−∆1−∆

1−∆

1−∆

1−∆ 1−∆

1−∆1−∆

1−∆1−∆

1−∆

2∆2∆2∆

b−a

Figure 2: Quiver diagram for La,b,a theories and a one parameter parametrization of the

R-charges.

it is possible to express all R-charges in terms of a single parameter ∆ as shown in

Figure 2. This parametrization will be used in Section 5 to deal with some of the more

involved examples.

We will add to these models CS couplings for the gauge groups, which can be

arranged in a vector ~k = (k1, . . . , ka+b). We will often use the notation

~k = (k1, . . . , kb−a||kb−a+1, . . . , ka+b), (3.2)

where we use a double line to separate nodes with and without an adjoint field. We

denote the resulting theories La,b,a
~k

. In Section 4, we introduce an algorithm that

determines how the inclusion of ~k lifts the CY3 given by the real cone over La,b,a to a

CY4.

The N = 3 necklace quivers of [30, 31, 55] have the same matter content of our

models for a = b, but additional quartic superpotential interactions. N = 2 deforma-

tions of these theories, obtained by integrating-in adjoint fields and adding polynomial

superpotential interactions for them, have also been considered [43].

4. Lifting Calabi-Yau 3-folds to Calabi-Yau 4-folds

By now, it is well-known that candidates for 3d theories on M2-branes over toric CY4’s

can be constructed by starting from theories with the same quivers and superpotentials

of 4d theories on D3-branes over toric CY3’s, to which we refer as “parents”, and adding

CS terms for the gauge groups. This strategy was exploited soon after the introduction

of the ABJM model for generating potential M2-brane theories with reduced SUSY

[8, 14, 15, 18, 20]. The 3d toric diagram of the “uplifted” CY4 is such that it reduces

to the 2d one of the parent CY3 when projected along a direction determined by the

CS levels. From the perspective of the computation of moduli spaces, this additional

9



projection arises from an extra D-term constraint that is imposed in the 4d theories.

Models in which such a projection is not possible, and hence do not descend from a 4d

parent, have also been proposed [17, 18, 19, 21, 22].

In what follows, we will focus our discussion on La,b,a
~k

theories. The most general

uplift of Figure 1 into a 3d toric diagram corresponds to the two lines turning into

convex polygons living on parallel planes, as sketched in Figure 3.

3 3

2

Projec
t

(a)

(b)

Figure 3: A pictorial representation depicting the projection of a toric diagram of a CY4 onto

that of a CY3: a) 3d toric diagram of a CY4 and b) its projection onto the La,b,a geometry.

4.1 A Lifting Algorithm

In this section we introduce a general algorithm for lifting cones over La,b,a to CY4’s

by appropriate choices of CS levels in the corresponding quivers. We will exploit this

procedure in Section 5 for generating interesting classes of models. The method is a

specialization of the ideas in [15] to La,b,a theories.

A useful starting point is the Type IIB brane realization of La,b,a
~k

theories. They

can be engineered in terms of an elliptic model consisting of a stack of N D3-branes

with one of their worldvolume directions compactified on a circle, suspended between

a set of (b + a) (1, pi) 5-branes. An (1, pi) 5-brane is a bound state of one NS5-brane

and pi D5-branes. The pi integers determine the CS levels in the quiver according to

the following expression

ki = pi−1 − pi. (4.1)

We split the 5-branes, i.e. the integers pi, into two sets: Qα, α = 1, . . . , a, and Pβ,

10



b−a+1

(1,P  )β

α(1,Q  )

D3

b
1

2 b−a

b−1

... ... ...

...
......

1

2

a−1
a

...
... ... ...

Figure 4: Tybe IIB brane system engineering the L
a,b,a
~k

theories.

β = 1, . . . , b. The branes in the configuration are extended as follows

Brane 0 1 2 3 4 5 6 7 8 9

D3 × × × ×
NS5α × × × × × ×
D5α × × × × × ×
NS5β × × × × × ×
D5β × × × × × ×

The SCFT lives in the (0, 1, 2) directions common to all the branes. The D3-branes are,

in addition, extended along x6, which is compactified on a circle. The (1, Qα) 5-brane

is a bound state of the NS5α and Qα D5α branes and extends along (0, 1, 2, [37]θα,

4, 5). Similarly, the (1, Pβ) 5-brane is a bound state of the NS5β and Pβ D5β branes

and extends along (0, 1, 2, [37]θβ , 8, 9). The final configuration is shown in Figure 4. In

order to reproduce the quiver in Figure 2, we distribute the 5-branes on the circle as

follows. First we put (b − a) (1, Pβ) 5-branes and then we alternate the remaining a

(1, Pβ) and a (1, Qα) branes. It is possible to reorder the 5-branes along the x6 circle,

which results in dual gauge theories.

The D3-branes stretched between each pair of 5-branes gives rise to a gauge group

in the quiver. Each 5-brane is associated to a pair of bifundamental chiral fields as

shown in Figure 5. In addition, we have an adjoint chiral field for each consecutive pair

of 5-branes of the same type.

The toric diagram for La,b,a theories was given in Figure 1. As we will now explain,

the Pβ’s control how the top line of the toric diagram is lifted to a plane. Similarly,

the Qα’s determine the lift of the bottom line. The degeneracies of perfect matchings

associated to points in the toric diagram are
(
b
µ

)
and

(
a
ν

)
, where µ = 0, . . . , b and

ν = 0, . . . , a run over the points on the bottom and top row respectively.
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bbP 2Q Qa1Q b−a+1PPb−ab−a−1PP1 P

Figure 5: Quiver diagram for La,b,a theories showing the Pβ and Qα charges.

Perfect matchings correspond to certain collections of edges in the associated brane

tilings, which map to sets of chiral fields in the quiver. Indeed, thinking in terms of

the quiver provides a clear visualization of these multiplicities. Let us first consider the

(b + 1) points in the lowest line of the toric diagram. The perfect matching for µ = 0

consists of all the fields in the quiver with the arrows pointing from right to left. The

perfect matchings for the µ-th point correspond to reversing the orientation of µ of the

fields, giving rise to the multiplicity described by the binomial coefficients. Repeating

this procedure, we reach the µ = b point in which all the fields are arrows in the quiver

point from left to right. The line with (a+1) is constructed in the same way, by using

the fields labeled by Qα, but also including the adjoint fields.

The new mesonic direction in the CY4 is determined by the Pβ or Qα charges. We

set the CS “fluxes” such that every bifundamental field pointing from left to right carries

a flux Pβ orQα, while fields from right to left carry zero flux. The new mesonic direction

in the CY4 is determined by the Pβ or Qα charges following a simple prescription:

Every perfect matching in the 2d toric diagram gets a shift into the third

dimension equal to the total CS flux it carries.

Let us first consider the effect of this rule on the lowest line. The first point, µ = 0,

does not have any flux and hence does not move. The other endpoint of the line,

µ = b, gets the maximum possible shift, equal
∑b

β=1 Pβ. The intermediate points are

not only shifted but they can also be split, depending on the total flux of each of the

perfect matchings associated to a given point. The expansion of the top line of the toric

diagram into the third dimension follows the same prescription, with fluxes determined

by Qα. Positivity of the Pβ and Qα charges guarantees the convexity of the resulting

3d toric diagram.

It is possible to take the theory to a conventional form in which the Pβ are arranged

in increasing order

P1 ≤ P2 ≤ · · · ≤ Pb−1 ≤ Pb , (4.2)

and similarly for the Qα. In order for all perfect matchings to get different shifts, they

must have different fluxes. Then, a necessary condition for fully lifting the degeneracy
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of points in the bottom and top lines of the toric diagram is that all Pβ and ll Qα are

different, respectively.

The algorithm we have just described leads to a broad range of results. For example,

in the simple case in which Pβ ≡ P for all β and Qα = Q (with Q 6= P ) for all α, the

two lines are lifted to lines, giving rise to the toric diagram for C2/Za × C2/Zb. This

is the situation considered in [8]. On the other end of the spectrum, we have cases

in which every internal point of the lines is expanded and generates two new corners.

Together with the four external points of the original 2d toric diagram, they lead to a

toric diagram with 2(a + b) corners. A necessary condition for this to happen is that

all the inequalities in (4.2) are strict.

Let us now discuss in further detail the lift of internal points inside the two lines

in the La,b,a toric diagram. We discuss the bottom line, the other one behaves in a

similar way. The µ = 1 point expands into a segment in which, if we sort the Pβ’s as in

(4.2), the bottom and top endpoints are shifted by P1 and Pb units, respectively. I.e.,

this point turns into segment of length (Pb − P1).
3 The µ = b − 1 point also expands

into a segment, with its endpoints shifted by
∑b−1

β=1 Pβ and
∑b

β=2 Pβ. Once again, the

length of the resulting segment is (Pb−P1). The same phenomenon occurs for all other

internal point, i.e. the µ-th and (b − µ)-th points turn into segments of equal length.

The maximal length is attained for the (b− 1)/2-th and the (b+1)/2-th points for odd

b, and for the b-th point for odd b.

An Example

Let us illustrate the previous ideas with an explicit example. Consider the L2,5,2 theory

and take

Pβ = {1, 2, 3, 1, 2}
Qα = {2, 1} (4.3)

which, following (4.1), generates the following CS levels for the quiver

ki = {1,−1,−1, 1, 1, 0,−1}. (4.4)

Figure 6 shows the result of applying the lifting algorithm. We see the, in this case

partial, lift of degeneracies of points in the toric diagram and the appearance of new

corners.

3Clearly, if all Pβ are equal, the segment degenerates into a point.
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53 42β 0 1 210α

510105

2

Figure 6: Lift of the toric diagram of L2,5,2 for Pβ = {1, 2, 3, 1, 2} and Qα = {2, 1}. We

indicate the multiplicity of internal points and identify the corners of the 3d toric diagram

with black circles.

5. Infinite Families

In this section we present various infinite families of gauge theories and the associated

CY4’s obtained from La,b,a models by the lifting algorithm introduced in Section 4. In

all these cases we show the volume computation and the gauge theory calculation of

the free energy agree. Interestingly, this agreement holds even off-shell.

We present geometries whose toric diagrams have 4, 6 and 8 extremal perfect

matchings. The latter models are interesting because they give rise to non-trivial R-

charges.

5.1 Four extremal points: La,b,a
(0,...,0||k,−k,...,k,−k)

We start our investigation of infinite classes of models by considering geometries whose

toric diagrams, shown in Figure 7, have four corners given by the vectors
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v1 v2 v3 v4
0 0 0 a

0 b 0 0

0 0 1 1

1 1 1 1




(5.1)

(0,0,0)

(0,1,0)

(a,0,1)
(0,b,0)

Figure 7: Toric diagram for the L
a,b,a
(0,...,0||k,−k,...,k,−k) family with k = 1.

These geometries are C2/Za × C2/Zb orbifolds and their dual gauge theories were

introduced and investigated in [8]. They are obtained via the lifting algorithm by

setting, for example,

Pβ = k, Qα = 0. (5.2)

The resulting CS couplings are

~k = (0, . . . , 0||k,−k, . . . , k,−k). (5.3)

Geometric computation

The ZMSY function is obtained by summing over the volumes of the 5-cycles corre-

sponding to the extremal points in the toric diagram. They are functions of the Reeb

vector b and ZMSY, which corresponds to the sum of these contribution, becomes

ZMSY =
4ab

b1b2 (b2 + b (b3 − 4)) (b1 − ab3)
, (5.4)

where we have set, as in all the examples that follow, b4 = 4. Assigning an R-charge ∆i

to each of the four extremal points vi, these R-charges, corresponding to the charges

of the extremal perfect matchings, can be expressed in terms of the Reeb vector as

∆1 = −b2 + b (b3 − 4)

2b
, ∆2 =

b2
2b

, ∆3 = −b1 − ab3
2a

, ∆4 =
b1
2a

, (5.5)
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and the ZMSY function becomes

Vol(Y7) =
π4

48abk∆1∆2∆3∆4

. (5.6)

Under the constraint
∑

i ∆i = 2, the volume is minimized for ∆i = 1/2. We have

included an extra k factor with respect to (2.3) in the denominator of the volume due

to an additional Zk orbifold action on the moduli space, where k = gcd({ka}) [5]. This
factor will also be present in the volumes of all the examples that follow.

Free energy computation

Let us now compute the free energy of this class of models. Recall that a perfect

matching is a subset of edges such that every vertex in the brane tiling is an endpoint

of precisely one edge in the set. Using the dictionary between brane tilings and gauge

theories [63], a perfect matching can be interpreted as a subset of the chiral fields in

the quiver such that it contains exactly one field for each superpotential term. The

four extremal perfect matchings can be simply represented in terms of the quiver as

shown in Figure 8.

v

v4

1

3v

v2

Figure 8: Perfect matchings associated to the four corners of the toric diagram given in

(5.1). Red arrows indicate the chiral fields associated with edges in the perfect matching.

It is then straightforward to determine the matrix P̃iµ and the R-charges of chiral

fields in terms of those of the extremal perfect matchings. We show the result in

Figure 9.

The free energy is given by the sum of the CS and the matter field (bifundamentals

and adjoints) contributions. As we already anticipated we are setting the monopole

charge to zero even off-shell. The CS contribution to the large-N free energy is

FCS

N3/2
=

a∑

i=1

k

2π

∫
ρ δyb−a+2i−1,b−a+2i x dx. (5.7)
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1∆∆ 11∆∆ 11∆∆ 11∆ 3∆∆ 33∆∆ 3

4∆∆ 44∆ ∆ 4

∆3434∆∆34

∆

Figure 9: R-charges of chiral fields in terms of the R-charges of extremal perfect matchings.

We have defined ∆34 ≡ ∆3 +∆4.

The matter contribution is

Fmatter

N3/2
= −

∑

i∈e(B)

2−∆
(+)
i,i+1

2

∫
ρ2
((

δyi,i+1 + π∆
(−)
i,i+1

)2
− π2

3
∆

(+)
i,i+1

(
4−∆

(+)
i,i+1

))
dx

−
∑

i∈e(W )

2−∆
(+)
i,i+1

2

∫
ρ2
((

δyi,i+1 + π∆
(−)
i,i+1

)2
− π2

3
∆

(+)
i,i+1

(
4−∆

(+)
i,i+1

))
dx

+
2π2

3

∑

i∈e(B)′

∆
(+)
i,i+1

(
1−∆

(+)
i,i+1

)(
2−∆

(+)
i,i+1

)∫
ρ2dx, (5.8)

where e(B) and e(W ) refer to the black and white nodes in the quiver as shown in

Figure 9. We moreover denote e(B)′ the subset of the black nodes containing adjoint

fields. We have defined ∆
(±)
i,j = ∆i,j+∆j,i. We solve the Euler-Lagrange equations with

the δy variables subject to the following constraint

δyb+a,1 =

b+a−1∑

i=1

δyi,i+1. (5.9)

R-charges are parametrized as in Figure 9. In the sum over black nodes, we can

rewrite ∆
(+)
i,i+1 = ∆1+∆2 = ∆12 and ∆

(−)
i,i+1 = ∆1−∆2. Similarly, in the sum over white

nodes we can rewrite ∆
(+)
i,i+1 = ∆3 +∆4 = ∆34 and ∆

(−)
i,i+1 = ∆3 − ∆4. The eigenvalue

distribution is reduced to a piecewise function over three connected domains as follows





δyW = − b
a
δyB = −4bkπ2x(b∆4∆3∆12+a∆1∆2∆34)+2bπµ(∆2∆3−∆1∆4+∆2∆4)

2abkπx(∆2∆3−∆1∆4+∆3∆4)−µ(a∆12+b∆34)

− µ
2bkπ∆4

< x < µ
2bkπ∆3

δρ = µ(a∆12+b∆34)−2abkπx(∆2∆3−∆1∆4+∆2∆4)
8π3∆12∆34(a∆1+b∆3)(a∆2+b∆4)

(5.10)

Out of this region, we have




δyW = − b
a
δyB = −2π∆1 − µ

2bkπ∆1
< x < − µ

2bkπ∆4

ρ = − b(µ+2akπx∆1)
8π3∆12(a∆1+b∆3)(a∆1−b∆4)

(5.11)
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and 



δyW = − b
a
δyB = 2π∆3

µ
2bkπ∆3

< x < µ
2akπ∆2

ρ = − b(µ−2akπx∆2)
8π3∆12(a∆2−b∆3)(a∆2+b∆4)

(5.12)

Integrating over the piecewise domain and imposing the normalization on ρ we obtain

F 2

N3
=

32

9
abkπ2∆1∆2∆3∆4, (5.13)

in perfect agreement with (5.6) via (2.10).

5.2 Six extremal points

5.2.1 Family 1: La,b,a
(k,0,...,0||−k,0,...,0)

We consider a family with the toric diagram shown in Figure 5.14, whose corners are

given by the following vectors




v1 v2 v3 v4 v5 v6
0 0 a a 0 a

0 0 0 0 1 1

0 b− a 0 b− a 0 0

1 1 1 1 1 1




(5.14)

(a,0,b−a)

(0,0,b−a)

(a,1,0)

(0,1,0)(0,0,0)

(a,0,0)

Figure 10: Toric diagram for the L
a,b,a
(k,0,...,0||−k,0,...,0) family with k = 1.

The charges associated to the lifting algorithm are

Type Multiplicity Value

P b− a 0

P a k

Q a k

(5.15)

18



which results in the following CS levels

~k = (k, 0, . . . , 0|| − k, 0, . . . , 0). (5.16)

This family contains and generalizes the D3 model considered in [17, 18], which corre-

sponds to L1,2,1
(k||−k,0).

Geometric computation

ZMSY can be written as

ZMSY =
16a(b− a)

(4a− b1) ((b− a) (4− b2) + b3) b1b2b3
. (5.17)

Exploiting the symmetries of the toric diagram,4 which identifies the R-charges of

certain perfect matchings, we can parametrize the components of the Reeb vector as

b1 = 2a, b2 = 4∆, b3 = 2(b− a)(1−∆) (5.18)

and the volume becomes

Vol(Y7) =
π4

48k a(b− a)(1−∆)2∆
. (5.19)

The volume is minimized for ∆ = 1/3.

Free energy computation

Before computing the free energy, we specify the perfect matchings as collections of

chiral fields in the quiver. The six extremal perfect matchings for this class of models

are represented in terms of the quiver as shown in Figure 11.

The CS contribution to the free energy in this case is

FCS

N3/2
=

b−a∑

i=1

k

2π

∫
ρδyi,i+1xdx. (5.20)

The sum over matter fields can be organized as follows. First, we distinguish three

different kinds of δy’s: “red”, “green” and “blue” as in Figure 12. Notice that we
enforced the constraint

∑
δy = 0 by drawing δyb+a,1 in black. Moreover one can check

that the equations of motion give the same value to the δy’s with the same color. Using
the marginality of the superpotential and symmetries coming from the toric diagram,

4In this example and the ones that follow, it is possible to make the symmetries of the toric diagram

more manifest by acting with appropriate SL(3,Z) transformations.
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6v

v5

4v

v3

2v

v1

Figure 11: Perfect matchings associated to the six corners of the toric diagram given in

(5.14). Red arrows indicate the chiral fields associated with edges in the perfect matching.

Figure 12: Different sets of the imaginary parts of the eigenvalues.

we can parametrize the R-charges in terms of a single parameter ∆ as explained in
Section 3. We can then write the matter contribution to the free energy as

Fmatter

N3/2
= −∆

∫
ρ2
(
((b− a)δyb + (a− 1)δyr + aδyg)

2 − 4

3
π2
(
1−∆2

))
dx (5.21)

− (b− a)∆

∫
ρ2
(
δyb −

4

3
π2
(
1−∆2

))
dx− (a− 1)∆

∫
ρ2
(
δyr −

4

3
π2
(
1−∆2

))
dx

− a(1−∆)

∫
ρ2
(
δyg −

4

3
π2∆(2−∆)

)
dx+

8

3
(b− a)π2(1−∆)∆(1− 2∆)

∫
ρ2dx

The Euler-Lagrange equations give






ρ = a(2(b−a)kπx(1−∆)+µ)
16π3(1−∆)∆(a(2−∆)−b(1−∆))(b(1−∆)+a∆)

− µ
2(b−a)kπ(1−∆)

< x < − µ
2akπ

ρ = µ
16π3(1−∆)∆(b(1−∆)+a∆)

− µ
2akπ

< x < µ
2akπ

ρ = a(2(b−a)kπx(1−∆)−µ)
16π3(1−∆)∆(b(1−∆)−a(2−∆))(b+a∆−b∆)

µ
2akπ

< x < µ
2(b−a)kπ(1−∆)

(5.22)

Integrating this distribution, we have

F 2

N3
=

32

9
π2k a(b− a)(1−∆)2∆, (5.23)

in agreement with the geometric computation (5.19). As can be easily observed in

(5.15) b has to be greater than a otherwise all the CS levels vanish and the model is

not associated to a SCFT in 3d.
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5.2.2 Family 2: La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k)

We now consider models with toric diagram given in Figure 13. The six corners of the

toric diagram have coordinates given by the matrix




v1 v2 v3 v4 v5 v6
0 −1 −1 0 0 0

2a a 0 a a 0

0 0 0 a −a 0

1 1 1 1 1 1




(5.24)

(0,0,0)

(0,2a,0)

(0,a,−a)

(0,a,a)

(−1,a,0)
(−1,0,0)

Figure 13: Toric diagram for the L
a,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k) family with k = 1.

These models are constructed by setting b = 2a and applying the lifting algorithm

with

Type Multiplicity Value

P a 0

P a 2k

Q a k

(5.25)

The CS levels are

~k = (0, . . . , 0,−2k||k, k,−k, k,−k, . . . , k,−k, k). (5.26)

This class of theories contains and generalizes the modified SPP model studied in

[17], which corresponds in this notation to L1,2,1
(−2||1,1), for which the agreement between

the free energy and the volume has been shown in [41].
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Geometric computation

The volumes are written in terms of the components of the Reeb vector and we have

ZMSY =
8a2 (256a2 − 16b23 + b1 (128a

2 + a2b1 (20 + b1)− a (8 + b1) b2 + b22 − 3b23))

b1 (a2 (4 + b1) 2 − b23) (b
2
2 − b23) ((−a (8 + b1) + b2) 2 − b23)

.

(5.27)

Using the symmetry of the toric diagram we can set b3 = 0. By applying an SL(4,Z)

transformation one can see that ∆2 = ∆3. By imposing this symmetry on the compo-

nents of the Reeb vector we have

b2 =
a

2
(b1 + 8) . (5.28)

For ∆2 = ∆ the R-charges of the extremal perfect matchings can be parametrized as

∆1 = ∆6 =
2(∆− 1)2

4− 3∆
, ∆2 = ∆3 = ∆, ∆4 = ∆5 =

(∆− 2)(∆− 1)

4− 3∆
(5.29)

and the volume with this parametrization becomes

Vol(Y7) =
π4(4− 3∆)

96a2k∆(∆− 1)2(∆− 2)2
, (5.30)

which is minimized for

∆ =
1

18

(
19− 37

(
431− 18

√
417
)1/3 −

(
431− 18

√
417
)1/3

)
. (5.31)

We see that this infinite family of theories already generates rather non-trivial R-

charges. This is also the case for the families with eight corners in the toric diagram

discussed in the next section.

Free energy computation

On the field theory side the six extremal perfect matchings are associated to chiral fields

as in Figure 14. The geometric parametrization of R-charges in (5.29) then results in the

R-charges obtained from imposing marginality of the superpotential and symmetries,

which are shown in Figure 2.

After we parametrize the charges as in the geometrical side we can calculate the

large-N free energy and compare it to the volume. The large-N free energy has the

following contribution from the CS term

FCS

N3/2
=

a∑

i=1

k

2π

∫
ρ (2δya+2i−1,a+2i−2 + δya+2i,a+2i−1) x dx, (5.32)

22



1v

v2

3v

v4

5v

v6

Figure 14: Perfect matchings associated to the six corners of the toric diagram given in

(5.24). Red arrows indicate the chiral fields associated with edges in the perfect matching.

while matter fields give

Fmatter

N3/2
= (∆− 1)

∑

i∈e(B)

∫
ρ2
(
δy2i −

4

3
π2(2−∆)∆

)
dx−∆

∑

i∈e(W )

∫
ρ2
(
δy2i −

4

3
π2
(
1−∆2

))
dx

+
8π2(a− b) ∆(∆− 1)(2∆− 1)

3

∫
ρ2dx, (5.33)

where e(B) and e(W ) refer to white and black nodes as in Figure 9. Then we impose the

constraint
∑

i∈e(B) δyi+
∑

i∈e(W ) δyi = 0 and we compute the Euler-Lagrange equations

for ρ and δy . We find




δyW = 0

δyB = 4akπ2x(2−∆)(1−∆)
µ

− µ
2akπ(2−∆)

< x < µ
2akπ(2−∆)

ρ = µ
16aπ3∆(2−∆)(1−∆)

(5.34)

Out of this region we have





δyW = 0

δyB = −2π(1−∆) − µ
4akπ(1−∆)

< x < − µ
2akπ(2−∆)

ρ = 4akπx(1−∆)+µ
16Aπ3(1−∆)∆2

(5.35)

and 




δyW = 0

δyB = 2π(1−∆) µ
2akπ(2−∆)

< x < µ
4akπ(1−∆)

ρ = −4akπx(1−∆)−µ
16aπ3(1−∆)∆2

(5.36)

By integrating the piecewise function ρ over the domain where it is non-vanishing we

obtain
F 2

N3
=

64a2kπ2∆(1−∆)2(2−∆)2

9(4− 3∆)
, (5.37)
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which agrees with the result we got from the geometry.

5.3 Eight extremal points

5.3.1 Family 1: La,b,a
(0,...,0,k,−2k||k,0,...,0)

We continue our exploration considering a more involved family of geometries with

toric diagrams with eight extremal points. The 4-vectors giving the corners of the toric

diagram are given in matrix form in (5.38). The corresponding toric diagram is given

in Figure 5.38.




v1 v2 v3 v4 v5 v6 v7 v8
0 1 1 b− 1 b− 1 b 0 a

0 −1 1 −1 1 0 0 0

0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1




(5.38)

(b−1,1,0)

(a,0,1)
(1,−1,0)

(0,0,0)

(1,1,0)

(0,0,1)

(b,0,0)

(b−1,−1,0)

Figure 15: Toric diagram for the Laba
(0,...,0,k,−2k||k,0,...,0) family with k = 1.

This class of models is generated by the lifting algorithm by choosing the P (β) and

the Q(α) as

Type Multiplicity Value

P 1 0

P b− 2 k

P 1 2k

Q a k

(5.39)

The resulting CS levels are

~k = (0, . . . , 0, k,−2k||k, 0, . . . , 0). (5.40)
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Geometric computation

The ZMSY function in terms of the Reeb vector is

ZMSY =
8

b3 (b
2
1 − b22) (b

2
2 − (b3 − 4) 2) ((b1 + b (b3 − 4)− ab3) 2 − b22)

(8b22 − b2(b1 − b3 + 4)(b3 − 4)2 + b1(b1 − ab3)((a+ 2)b3 − 8) + b3((a− 2)b22 + a2(b3 − 4)b3)

−b(b3 − 4)(b21 + b22 + 2a(b3 − 4)b3 − 2b1((a + a)b3 − 4))). (5.41)

By exploiting the symmetries of toric diagram we can parametrize the components of

the Reeb vector as

b1 = 2(b(1−∆) + a∆), b2 = 0, b3 = 4∆, (5.42)

where ∆ has a simple relation to the R-charges of fields in the quiver as it will be shown

below. The volume function then becomes

Vol(Y7) =
π4(b+ 2)(1−∆) + a∆

96k(1−∆)2 (b(1−∆) + a∆)2∆
. (5.43)

Extremizing it, we obtain

∆ =
1

12

(
9 +

2a

b− a
+

5a

b− a+ 2

)
+

1

12f1/3

(
9b(b+ 2) + 2a

(
a

(
2 +

4

b− a
− 25

b− a+ 2

)
− 9

))

+
f1/3

12(a(a + 2) + (b− 2a)(b + 2))
, (5.44)

where we have defined

f = 8a6 − 24a5(−2 + b) + 81ab2(2 + b)3 + 24a4
(
−32− 22b+ b2

)
− 27a2b

(
24 + 68b+ 34b2 + 3b3

)

+ a3
(
280 + 1956b + 1074b2 + 19b3

)
+ 3

(
−72b3 − 108b4 − 54b5 − 9b6 + 2

√
3g
)
, (5.45)

and

g = a2(b− a)2(b+ 2)(b− a+ 2)2(12a3(b− 6)(b+ 10) − 4a4(b+ 18) − 9b2(b+ 2)(4 + (b− 28)b)

+ 2a(b− 14)b(b(11b + 52)− 4)− 3a2(b(b(2 + 7b)− 524) + 24)). (5.46)

As in the previous family of theories, these models exhibit highly non-trivial values of

the R-charges.

Free energy computation

We will now recover this complicated structure from the field theory computation of

the free energy at large-N . The eight extremal perfect matchings are associated to

chiral fields as in Figure 16.
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v2
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v4

5v

v6

7v

v8

Figure 16: Perfect matchings associated to the eight corners of the toric diagram given in

(15). Red arrows indicate the chiral fields associated with edges in the perfect matching.

As in previous examples, we use marginality of the superpotential and symmetries

to parametrize the R-charges of the extremal perfect matchings in terms of a single

parameter ∆ as follows

∆1,6 =
2(1−∆)2

((b+ 2)(1−∆) + a∆)
, ∆2,3,4,5 =

(1−∆)(b(1 −∆) + a∆)

2((b+ 2)(1−∆) + a∆)
, ∆7,8 = ∆.

(5.47)

The CS contribution to the free energy is

FCS

N3/2
=

k

2π

∫
ρ (δyb−a−1,b−a − δyb−a,b−a+1) xdx. (5.48)

The matter contribution is given by the general expression (5.33). After enforcing the

constraint
∑b+1

i=1 δyi,i+2 = 0, we solve the Euler-Lagrange equations to obtain





ρ = 4kπx(1−∆)+µ
16π3(1−∆)∆((b+2)(1−∆)+a ∆)

− µ
4kπ(1−∆)

< x < − µ
2kπ(b(1−∆)+a∆)

ρ = µ
16π3(1−∆)∆(b(1−∆)+a∆)

− µ
2kπ(b(1−∆)+a∆)

< x < µ
2kπ(b(1−∆)+a∆)

ρ = − 4kπx(1−∆)−µ
16π3(1−∆)∆((b+2)(1−∆)+a ∆)

µ
2kπ(b(1−∆)+a∆)

< x < µ
4kπ(1−∆)

(5.49)

The free energy is then

F

N3/2
=

64kπ2(1−∆)2∆(b(1−∆) + a∆)2

9((b+ 2)(1−∆) + a∆)
, (5.50)

in agreement with the geometric computation (5.43).
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5.3.2 Family 2: La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

In this section we study a second family with 8 extremal points. This family generates

the toric diagram in Figure 17. We can arrange the 4d vectors generating the diagram

in a matrix form




v1 v2 v3 v4 v5 v6 v7 v8
0 X X 0 0 Y Y 0

0 0 b−X b−X 0 0 a− Y a− Y

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1




(5.51)

(0,0,0)

(0,a−Y,1)

(Y,a−Y,1)

(Y,0,1)

(0,0,1)

(0,b−X,0)

(X,b−x,0)

(X,0,0)

Figure 17: Toric diagram for the La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y+1,0,...,0)

family with

k = 1.

This geometry follows from La,b,a by using the lifting algorithm with

Type Multiplicity Value

P X 0

P b−X k

Q Y 0

Q a− Y k

(5.52)

The resulting CS levels are

~k = (−k1, 0, . . . , 0, ka+b−2X , 0, . . . , 0,−ka+b−2Y , ka+b−2Y+1, 0, . . . , 0), (5.53)

where the subindices indicate the position of the non-zero entries in the vector ~k, which

only take values ±k. We will focus on the case in which b > a and X > Y . In the

notation of (3.2), we can thus distinguish two possibilities
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• b > X > a > Y → La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0||0,...,0,−ka+b−2Y ,ka+b−2Y+1,0,...,0)

,

• b > a > X > Y → La,b,a
(−k1,0,...,0||0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y+1,0,...,0)

.

(5.54)

The case b > a > Y > X can be studied in a completely analogous way.

Geometric computation

For this class of models, ZMSY takes the form

ZMSY =
4 (X (4− b3) + Y b3) ((b−X) (b3 − 4)− ab3 + Y b3)

b1b2 (b3 − 4) b3 (b1 +X (b3 − 4)− Y b3) (b2 + (b−X) (b3 − 4)− ab3 + Y b3)
.

(5.55)

Imposing marginality of the superpotential and symmetries, we have

b1 = 1
2
(4X − 4X∆+ 4Y∆)

b2 = 1
2
(4b− 4X + 4a∆− 4b∆+ 4X∆− 4Y∆)

b3 = 4∆

(5.56)

and the volume becomes

Vol(Y7) =
π4

48k(1−∆)∆((b−X)(1−∆) + (a− Y )∆)(X(1−∆) + Y∆)
. (5.57)

As in previous examples, it is straightforward to find the value of ∆ that minimizes the

volume analytically. The resulting expression is not terribly illuminating, so we do not

quote it here.

Free energy computation

The eight extremal perfect matchings are associated to chiral fields as in Figure 18.5

The free energy for the gauge theory can be written by distinguishing two different δy’s

as

FCS =
k

2π

∫
ρx ((b−X)δy1 + (a− x)δy2) dx, (5.58)

5The specific values X = Y = 1 used in Figure 18 have been chosen for illustration purposes

only. In this case, the two CS contributions ka+b−2X and ka+b−2Y correspond to the same entry in
~k and cancel each other, reducing the theories to L

a,b,a
(−k,0,...,0||0,...,0,ka+b−1,0)

. Determining the perfect

matchings for the X > Y regime considered in this section is straightforward.
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and

Fmatter = (b−X)Fbif(1−∆, δy1)+(a−Y)Fbif(∆, δy2)+(X−1)Fbif(1−∆, δy3)+Y Fbif(∆, δy4)

+ Fbif(1−∆, (b−X)δy1 + (a− Y )δy2 + (X − 1)δy3 + Y δy4) + (b− a)Fadj(2∆),

(5.59)

where Fbif and Fadj are the contributions to the free energy of a couple of bifundamental

anti-bifundamental and of an adjoint field. By computing the saddle point equations

we find

F

N3/2
=

32

9
kπ2(1−∆)∆((b−X)(1−∆) + (a− Y )∆)(X(1−∆) + Y∆), (5.60)

which matches the volume computation.

1v

v2

3v

v4

5v

v6

7v

v8

Figure 18: Perfect matchings associated to the eight corners of the toric diagram given in

(17), with X = Y = 1. Red arrows indicate the chiral fields associated with edges in the

perfect matching.

6. Free Energy as a Quartic Function in R-charges

In this section we would like to discuss the existence of a geometrical formula capable

of reproducing the free energy in terms of the charges of the perfect matchings similar

to the one derived in [58] for SCFT4’s.
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6.1 4d preliminaries

Before continuing our study of the free energy of SCFT3’s, it is useful discuss related

questions in 4d. The number of degrees of freedom of an N = 1 SCFT in 4d is counted

by the central charge a, which can be determined in terms of superconformal R-charges

[62, 35] as follows

a =
3

32
(3TrR3 − TrR). (6.1)

Furthermore, for SCFTs on D3-branes, TrR = 0 and (6.1) becomes purely cubic. In

[56, 58, 59, 61], it has been shown that a also admits a similar cubic expression based

on the underlying geometry, which takes the form

ageom =
9

32

∑

i,j,k

|〈vi, vj, vk〉|RiRjRk, (6.2)

where the vi are the 3-dimensional vectors defining the extremal points of the two

dimensional toric diagram and the Ri are the R-charges of the perfect matchings asso-

ciated to vi.

While (6.2) is written in terms of quantities that allow a direct contact with ge-

ometry, it is important to keep in mind that perfect matchings are indeed identified

with GLSM fields which, in turn, can be found in purely field theoretic terms starting

from the gauge theory and computing its moduli space. Equation (6.2) can also be

obtained by rewriting the inverse of the volume of the 5d Sasaki-Einstein base of the

corresponding toric CY3, which takes the form

Vol(Y5) =
∑

i

〈vi−1, vi, vi+1〉
〈b, vi−1, vi〉〈b, vi, vi+1〉

, (6.3)

where the vi vectors are the 3-vectors with the coordinates of extremal points in the

toric diagram and b = (b1, b2, 3) is the Reeb vector. Due to the Calabi-Yau condition,

we can take vi = (ṽi, 1), with ṽi a 2-vector. 〈·, ·, ·〉 is the determinant of the resulting

3× 3 matrix.

6.2 Free energy in 3d

In Section 2.2, we have explained how to compute the free energy of SCFT3’s. Further-

more, we have shown that its value agrees with the geometric computation in various

infinite classes of theories. It is natural to wonder whether a simple expression for the

free energy, similar in spirit to (6.1) exist in 3d. The main obstacle for going into this
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direction is the absence of anomalies associated to continuous symmetries in 3d. Hav-

ing said this, the similarity between the volume formulas (2.4), (2.3) and (6.3) suggest

that an expression in terms of R-charges of perfect matchings, i.e. of GLSM fields,

analogous to (6.2) might exist. The most naive generalization of (6.2) to 3d takes the

form

F 2
geom =

1

6

∑

i,j,k,l

|〈vi, vj , vk, vl〉|∆i∆j∆k∆l, (6.4)

where we have used ∆i instead of Ri to match the notation we have been using for

SCFT3’s. Remarkably, it has been observed in [48] that this formula reproduces the

free energy of several theories. Even in specific models for which (6.4) does not give

the correct result, it has been possible to introduce additional terms such that the free

energy is still given by a quartic formula in the R-charges of extremal perfect matchings.

Interestingly, in all the theories considered in [48] the corrections to (6.4) seem to be

connected to the existence of internal lines in the toric diagram, i.e. lines connecting

extremal points that do not live on edges or faces.

6.3 Quartic formulas for La,b,a
~k

theories

We now go over all the classes of models considered in Section 5 and show that, in all of

them, the free energy can be written as a quartic function of the R-charges of extremal

perfect matchings. It is important to emphasize that this agreement holds off-shell, i.e.

even before extremizing the free energy.

For the first two families of La,b,a
(0,...,0||k,−k,...,k,−k) and La,b,a

(k,0,...,0||−k,0,...,0) theories, dis-

cussed in Sections 5.1 and 5.2.1, the free energy is exactly reproduced by (6.4). Geo-

metrically, these two families distinguish themselves from the others in that their toric

diagrams do not contain internal lines, i.e. all lines connecting corners of the toric

diagram live on edges or external faces.

The remaining families require corrections to (6.4), but can still be recast in quartic

form. We reproduce the toric diagrams in Figure 19 for quick reference. Contrary to the

first two families of geometries, these models contain internal lines connecting extremal

perfect matchings in the toric diagram. The corrections are given by
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• L
a,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k) : ∆F 2 = −2a2(∆2

1∆
2
6 +∆2

4∆
2
5) + 4a2∆1∆6∆4∆5

• L
a,b,a
(0,...,0,k,−2k||k,0,...,0) : ∆F 2 = −2a(∆2

1∆
2
8 +∆2

6∆
2
7) + a∆1∆6∆7∆8

• L
a,b,a
(−k1,0,...,ka+b−2X ,0,...,−ka+b−2Y ,ka+b−2Y+1,0,...)

: ∆F 2 = −4X(a− Y )
(
∆2

3∆
2
5 +∆2

4∆
2
6 +∆2

1∆
2
7

+∆2
2∆

2
8 − 4∆2∆4∆6∆8 − 4∆1∆3∆5∆7

)

(6.5)

For the last family we have restricted to the case aX = bY because it exhibits additional

symmetries that simplify the computation.

(−1,0,0)

(0,a,−a)

(0,a,a)

(−1,a,0)
(0,0,0)

(0,a−Y,1)

(Y,a−Y,1)

(Y,0,1)

(0,0,1)

(0,b−X,0)

(X,b−x,0)

(X,0,0)

(0,0,0)

(0,0,1)

(1,1,0)

(0,0,0)
(1,−1,0)

(a,0,1)

(b−1,1,0)

(b−1,−1,0)

(b,0,0)

(c)(b)(a)

(0,2a,0)

Figure 19: Toric diagrams for: a) La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k), b) L

a,b,a
(0,...,0,k,−2k||k,0,...,0) and

c) La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

.

All these models contain terms of the form ∆2
i∆

2
j . Their coefficients seem to

admit some simple expression in terms of the toric diagram. For example, for the

La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k) models we have

∆2
1∆

2
6 → −2a2 = −4

|〈v2, v3, v1, v6〉||〈v3, v5, v1, v6〉||〈v5, v2, v1, v6〉|
|〈v2, v3, v5, v1〉||〈v2, v3, v5, v6〉|

,

∆2
1∆

2
6 → −2a2 = −4

|〈v2, v3, v4, v5〉||〈v3, v6, v4, v5〉||〈v6, v2, v4, v5〉|
|〈v2, v3, v6, v4〉||〈v2, v3, v6, v5〉|

. (6.6)

Identical expressions, even including the same (−4) numerical factor, apply for the

∆2
i∆

2
j terms for the La,b,a

(0,...,0,k,−2k||k,0,...,0) family.

6.4 Towards a general quartic formula

The previous examples lead us to some conjectures regarding the possible structure of

a general quartic formula. It appears that there are two possible types of corrections

to (6.4), which arise in the presence of internal lines in the toric diagram:
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1) A correction proportional to ∆2
i∆

2
j , whenever the line connecting extremal points

i and j of the toric diagram is internal.

2) A correction proportional to ∆i∆j∆k∆l, whenever the lines connecting the ex-

tremal points i and j, and k and l are both internal.

Furthermore, based on the examples, it is possible to conjecture an explicit ex-

pression for the numerical coefficient multiplying the corrections of type (1). If a line

connecting extremal point intersects an internal triangle, then one takes the product

of the volumes of the three possible tetrahedra (V1, V2 and V3) whose vertices are the

two endpoints of the line and a pair of vertices of the triangle, and divide it by the

product of the volumes of two tetrahedra (V4 and V5) given by the triangle and each

of the endpoints of the line. The corresponding correction to the free energy is of the

form

∆F 2
g = −4

V1V2V3

V4V5

∆2
i∆

2
j . (6.7)

The (−4) prefactor is universal whenever an internal line intersects a triangle. This

prescription admits a nice graphical representation as shown in Figure 20

Figure 20: Graphical representation for the numerical coefficient of the ∆2
i∆

2
j term in the

free energy as given by (6.7).

More complicated situations can be obtained by triangulation. For example, if a

line line (i → j) crosses a polygon formed by four extremal points of the toric diagram

({v1, v2, v3, v4}) we generate four tetrahedra with vertices being i and j and the other

two on the polygon, whose volumes are: V1 = |〈v1, v2, vi, vj〉|, V2 = |〈v2, v3, vi, vj〉|, V3 =

|〈v3, v4, vi, vj〉| and V4 = |〈v4, v1, vi, vj〉|. On the other hand, we construct two other

volumes made out of tetrahedra with a single vertex being i or j: V5 = |〈v1v2, v3, vi〉|+
|〈v2v3, v4, vi〉| and V6 = |〈v1v2, v3, vj〉|+ |〈v2v3, v4, vj〉|. The resulting correction is

∆F 2
g = −V1V2V3 + V2V3V4 + V3V4V1 + V4V1V2

V5V6

∆2
i∆

2
j . (6.8)
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In Appendix A, we present additional examples beyond the La,b,a
~k

theories, pro-

viding further support for the general ideas advocated in this section. Eventually, we

expect a geometric identity that systematically re-expresses the volume function (2.4)

as a quartic function in the volumes Vol(Σi) of elements in the basis of 5-cycles.

7. Toric Duality and the Free Energy

A corollary of the lifting algorithm of Section 4 is that individual permutations of the

Pβ and Qα subsets of 5-branes lead to gauge theories with different CS couplings but the

same CY4 manifold as their mesonic moduli space. This invariance suggests that the

corresponding gauge theories are dual. Theories that share the same toric moduli space,

in any dimensions, go under the general denomination of toric duals [64]. In fact, some

of these permutations, those that exchange a pair of adjacent Pβ and Qα branes, indeed

correspond to the 3d version of Seiberg duality discussed in [18, 20, 21, 22, 65, 66]. It

was then shown in [30, 48, 55, 67] that the large-N free energy is preserved under this

duality.

We now show that, as expected for dual theories, the free energy is invariant under

permutations of Pβ and Qα branes. Let us start from the CS contribution which,

following (2.9), is proportional to

∑
kiyi =

∑
(pi−1 − pi)yi =

∑
piδyi. (7.1)

Following the separation of the pi into two sets {pi} = {Pβ, Qα} we also divide the

δyi as {δyi} = {δyβ, δyα}. The CS contribution then becomes

FCS =
N3/2

2π

∫
ρ x



∑

{α}

Qαδyα +
∑

{β}

Pβδyβ


 dx. (7.2)

Defining6

Fbif(∆, δy) = −(1−∆)

∫
ρ2
(
δy2 − 4

3
π2∆(2−∆)

)
dx

Fadj(∆) =
2

3
π2(1−∆)(2 −∆)∆

∫
ρ2dx (7.3)

6Here 2∆ = ∆(+) in 2.9 while ∆(−) has been set to zero. We assume that R-charges can be

parametrized as in Figure 2. This is the case in all the infinite families of models considered in this

paper and can occur whenever symmetries of the toric diagram impose further constraints on the

R-charges of extremal perfect matchings, which are then translated into constraints on the R-charges

of quiver fields.
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the matter contribution is given by

Fmatter =
∑

{α}

Fbif (1−∆, δyα) +
∑

{β}

Fbif (∆, δyβ) + (b− a)Fadj(2∆). (7.4)

Next, we consider the action of two arbitrary elements Sa and Sb of the symmetric

group acting on Qα and Pβ, respectively. We see that both (7.2) and (7.4) are preserved

if we simultaneously act with the same permutation actions Sa and Sb on δyα’s and

δyβ’s. This shows that, as expected from the invariance of the moduli space, the large-N

free energy is preserved.

8. Conclusions

Remarkable progress in understanding SCFT3’s on M2-branes and in the field theoretic

calculation of the number of degrees of freedom in these SCFTs has taken place in

recent years. One of the main goals of this paper has been to accumulate a large

body of evidence, in the form of infinite classes of theories, explicitly showing the

expected agreement [41, 43] between the volume of the Sasaki-Einstein horizon of the

probed CY4 cone and the free energy of the dual field theory computed on a round S3.

The infinite families of models we investigated in Section 5 belong to the La,b,a
~k

class,

and their corresponding gauge theories have generically N = 2 SUSY and the same

vector-like quivers and superpotentials of D3-branes on real cones over La,b,a manifolds.

These theories also include CS couplings, encoded in the vector ~k, which dictate how

the parent CY3 manifold is lifted to a CY4. Our results provide non-trivial checks of

the AdS4/CFT3 correspondence for infinite families of gauge theories and it is a step

towards a general proof of the equivalence between the ZMSY-minimization and the

F -maximization.

The infinite families we studied were generated with the aid of a lifting algorithm

we introduced in Section 4, which is based on the Type IIB realization of these theories

and allows us to efficiently generate the CY4 geometries for La,b,a
~k

theories.

Our results are similar to the equivalence between ZMSY-minimization and a-

maximization in 4d [56]-[61], whose proof for toric theories relies on the existence

of a geometric formula for the central charge, ageom, that is cubic in the R-charges of

extremal perfect matchings [56, 58]. This follows crucially from the relation between

the geometry of extremal perfect matchings and triangle anomalies in field theory [68].

Despite the absence of anomalies in 3d, the similarity of the geometric expression for

the horizon volumes between the 3d and 4d case makes it natural to expect that a

geometric expression for the free energy F 2
geom, quartic in the R-charges of extremal
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perfect matchings, exists in 3d. In Section 6, we have shown that this expression exists

for all the infinite families of theories we studied. Furthermore, the correspondence is

valid even before extremization. Counting with an infinite catalogue of examples has

allowed us to make various conjectures regarding the general form of the quartic for-

mula. These ideas were tested in additional, non-La,b,a
~k

models in Appendix A, verifying

that they indeed agree with the volume. We find all these results are encouraging and

make us expect that it is possible to rewrite the volume formula as a quartic expression

in volumes of 5-cycles. It would be very interesting to show that such a formula exists

and to give a systematic prescription for writing it based on the toric data.

In the future, it is certainly desirable to prove the equivalence between ZMSY-

minimization and F -maximization for general toric geometries. A more modest ob-

jective is to prove the equivalence within some sub-class of theories, such as the Laba
~k

models. Our results go a long way in this direction, but we had to be specific about

the choice of CS levels in order to perform the calculations. It would be interesting

to find an efficient procedure for dealing with a generic choice of CS levels. First, one

should manage to find the volume of Y7 for an arbitrary choice gauge theory data, a, b

and ~k. Hilbert Series techniques [22, 24] seem to be a promising direction for achieving

this goal. On the field theory, one should compute the free energy, i.e. solve the corre-

sponding Euler-Lagrange equations, for a generic distribution of CS levels. Computing

the free energy from a Fermi gas, as proposed in [32] for N ≥ 3 theories, is perhaps a

more promising approach, since no matrix model techniques are needed.

We conclude with some comments on toric duality. In Section 7, we have shown

that toric duals generated by permuting 5-branes in the type IIB realization of La,b,a
~k

theories preserve the large-N free energy without fractional branes, i.e. for all the

ranks of the gauge group being equal. It is natural to expect that at finite N the

precise ranks of the gauge groups might become important for the duality. This issue

can be investigated by rewriting the free energy as in [69], using the formalism of [70].

Imposing the correct balancing conditions on the integrals associated to the free energy

of the candidate dual phases, it should be possible to determine the number of fractional

branes required by duality.
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A. Non-La,b,a
~k

Theories and Quartic Formulas

In this appendix, we provide additional evidence supporting our proposals of Section

6.4. To do so, we consider two families of theories that do not fit within the La,b,a
~k

classification. In the first class of geometries, the toric diagram is given by




v1 v2 v3 v4 v5
1 −1 0 0 0

0 −1 1 0 0

0 0 0 X1 −X2

1 1 1 1 1




(A.1)

where Xi > 0. These theories have already been studied in [48], where it has been

shown that the geometrical free energy is given by (6.4) plus the following correction

∆F 2
geom = −4

(X1 +X2)
3

9X1X2
∆2

4∆
2
5. (A.2)

This correction is associated to an internal line connecting v4 and v5 in the toric di-

agram. The numerical coefficient of this correction is in perfect agreement with our

proposal (6.7). Using it, we obtain

∆2
4∆

2
5 → −4

|〈v1v2v4v5〉||〈v2v3v4v5〉||〈v3v1v4v5〉|
|〈v1v2v3v4〉||〈v1v2v3v5〉|

= −4
(X1 +X2)

3

9X1X2

. (A.3)

The final set of models we would like to consider has a toric diagram given by



v1 v2 v3 v4 v5 v6
X1 −X2 0 0 0 0

0 0 Y1 −Y2 0 0

0 0 0 0 Z1 −Z2

1 1 1 1 1 1




(A.4)

with Xi, Yi, Zi > 0. In this case, a quartic expression for the free energy also exists,

and it is given by (6.4) plus the rather non-trivial correction

∆F 2
geom = −

2 (X1 +X2)
3 Y1Y2Z1Z2

X1X2 (Y1 + Y2) (Z1 + Z2)
∆2

1∆
2
2 −

2X1X2 (Y1 + Y2)
3 Z1Z2

(X1 +X2)Y1Y2 (Z1 + Z2)
∆2

3∆
2
4 −

2X1X2Y1Y2 (Z1 + Z2)
3

(X1 +X2) (Y1 + Y2)Z1Z2

∆2
5∆

2
6

+
4 (X1 +X2) (Y1 + Y2)Z1Z2

Z1 + Z2

∆1∆2∆3∆4 +
4 (X1 +X2)Y1Y2 (Z1 + Z2)

Y1 + Y2

∆1∆2∆5∆6

+
4X1X2 (Y1 + Y2) (Z1 + Z2)

X1 +X2

∆3∆4∆5∆6. (A.5)

It is possible to check that the ∆2
1∆

2
2, ∆

2
3∆

2
4 and ∆2

5∆
2
6 terms are indeed in agree-

ment with (6.8), including its (−1) prefactor.
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