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1 Introduction and summary

Gauge theories with compact seven-branes play a central role in F-theory GUTs (see

e.g. [1–4]) and are basic building-blocks in string compactifications with all moduli sta-

bilized [5]. They may also lead to new types of gauge/gravity dualities [6] and geomet-

ric transitions. In this work we investigate quiver gauge theories arising on systems of

D-branes at singularities that include D7-branes wrapped on vanishing 4-cycles (“color”

seven-branes).

A systematic construction and analysis of such theories has not been undertaken yet.

This is partly because gauge theories with color D7-branes are in general anomalous. Can-

cellation of gauge anomalies then requires adding non-compact (“flavor”) D7-branes and/or
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O7-planes. These gauge theories have rather intricate moduli spaces and nonperturbative

dynamics which are not fully understood at present. Gravity solutions capturing these

effects are not known. In this work we focus on the gauge theory side, constructing the

anomaly-free quivers from cones over toric del Pezzos, with D7 charge. Properties of the

associated supergravity solutions will be presented in [7].

We consider theories on toric singularities that preserve four supercharges; these can

be efficiently studied using dimer model techniques [8–10]. First, section 2 reviews basic

properties of quiver gauge theories with nonzero seven-brane charge. We discuss cancel-

lation of anomalies with O7 planes or D7 flavor branes and present the quiver theory for

branes on the Calabi-Yau cone over P
2. This is the simplest del Pezzo cone, and plays an

important role in our work.

Section 3 presents a detailed analysis of the gauge theory on the Calabi-Yau cone over

dP0 = P
2, which displays all possible behaviors that arise in more complicated examples.

The singular limit is simply the orbifold C
3/Z3, with a finite P

2 corresponding to a small

resolution. We classify the anomaly-free supersymmetric gauge theories with O7-planes on

this background geometry, up to the addition of vector-like matter. We find theories with

compact O7-planes (namely, with their internal dimensions wrapped over the vanishing

4-cycle) and others with noncompact orientifolds. Moreover, all these theories are chiral.

Based on the results for dP0, we propose a series of rules for identifying and characterizing

orientifolds in section 3.3.

In section 4 we analyze the orientifolds of the first del Pezzos, dP1, dP2 and dP3. These

theories are free of gauge anomalies only after adding flavor D7-branes. Some of these con-

structions are found to be related by partial resolution. Section 5 discusses some nonpertur-

bative effects in quivers with D7-branes and orientifolds. We focus on geometric transitions

with non-compact O7-planes and also explain how different orientifold theories are related

by Seiberg duality, extending the notion of toric duality [11, 12] to orientifold theories.

The theories introduced in this paper have a natural application to the recently intro-

duced F(uzz) theory limit of F-theory [6]. Section 6 is devoted to studying the emergence of

fuzzy internal dimensions on the moduli space of quiver theories with D7-branes wrapped

over vanishing 4-cycles. This is done both from a four-dimensional and eight-dimensional

perspective, connecting noncommutative instantons on a del Pezzo surface to the baryonic

branch of the four-dimensional theory. While this work was in preparation, a very nice

paper that also explains how fuzzy geometries arise from quivers appeared [13]. We feel

our discussion complements the one in that article, to which we refer the reader for various

explicit examples.

We include an appendix summarizing the rules for orientifolding toric quivers based

on dimer models [10].

Our results constitute a necessary step towards a more complete understanding of

gauge theories with color D7-branes at Calabi-Yau singularities. Some of the known phe-

nomena on 5-branes (like the duality cascade [14] and geometric transitions [15, 16]) may

have analogs in theories with 7-branes. In particular, geometric transitions with compact

orientifolds are expected to be related to gaugino condensation. It would be interesting to

construct supergravity duals of these theories. On the other hand, these seven-brane gauge
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theories present certain distinctive features: they are chiral and contain 2-index tensor rep-

resentations under the gauge group. Understanding their nonperturbative dynamics may

require new field theory and supergravity techniques which are worth exploring.

2 Quivers from wrapped D7-branes

Placing D-branes at a singularity gives, in the absence of orientifolds, a quiver gauge

theory [17] with gauge group
nG
∏

i=1

U(Ni) (2.1)

and matter fields in various (bi)fundamental and adjoint representations. Microscopically,

the D-branes at a singularity split into a collection of fractional branes; for four-dimensional

theories in IIB, the fractional charges take the general form

Fi = (Q7,i, Q5,i, Q3,i) , i = 1, . . . , nG

where the number of independent fractional branes nG is equal to the maximum number

of gauge groups that a quiver living on D-branes at such singularity can have.

In this work, we focus on the case in which the branes are placed at Calabi-Yau (CY)

cones over del Pezzo surfaces. Recall that these are P
2 blown up at n generic points,

0 ≤ n ≤ 8 (or P
1 × P

1 blown at n − 1 generic points). Geometrically, nG is given by the

Euler number of the complex surface being wrapped,

nG = χ(dPn) = n + 3 . (2.2)

One of the simplest quivers arises from placing branes on the cone over P
2 = dP0. Theories

including seven-branes in this geometry will be investigated in detail in section 3. In this

case we have nG = 3.

D7 and D5-brane charges can have various components if the geometry has more than

one compact 4-cycle or 2-cycle. Fractional brane charges determine the chiral content of

the quiver through

Nij = rk(Fj) deg(Fi) − rk(Fi) deg(Fj) , (2.3)

where Nij counts the number of chiral fields in bifundamental representations (Ni, N̄j),

and deg(Fi) = c1(Vi) · K, with K the canonical class.

Given a basis of fractional branes Fi, the ranks of the gauge groups are related to the

total D-brane charges via

(Q7, Q5, Q3)tot =
∑

NiFi . (2.4)

Finally, the superpotential of the gauge theory is a polynomial on gauge invariant operators

formed from the bifundamental fields (closed, oriented loops in the quiver). Superpotentials

for del Pezzo’s can be found in [18].

– 3 –
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2.1 Anomaly cancellation: flavoring and orientifolding

Quivers with wrapped D7-branes (as well as some wrapped D5-branes) suffer from gauge

anomalies. An explicit example will be discussed shortly. In order to cancel them, new

ingredients have to be added. Two possibilities (which might be introduced simultane-

ously) are:

• O7-planes: O7-planes can cancel the charge of the corresponding D7-branes. From

a gauge theory point of view, they can turn some of the gauge groups into Sp /O

and/or project matter fields into symmetric/antisymmetric representations (or their

conjugate).

• Flavor D7-branes: they introduce matter transforming in the (anti)fundamental rep-

resentation of certain gauge groups.

There is an important difference between the two options. While flavor branes can

cancel anomalies introduced by an arbitrary number of D7-branes over vanishing 4-cycles,

the allowed number of 7-branes in the case of just O7-planes is always fixed in terms of the

orientifold charge.

It is interesting to observe that these anomalies and the resulting constraints also arise

in F-theory constructions. Geometrically, the anomaly-free condition comes from tadpole

cancellation of twisted fields, localized at the singularity [19]. This is fulfilled in F-theory

compactifications on CY four-folds. At weak coupling the tadpole cancellation in the four-

fold can be interpreted in terms of orientifolds or anomaly inflow from flavor D7s. This

agrees with the previous gauge theory viewpoint.1

2.2 Review of the quiver for dP0

Our analysis will start from the quiver over dP0, so for completeness let us review some basic

properties of this theory. The BPS spectrum and properties of this theory were studied

in [20]. The CY cone over P
2 has a degeneration limit where the geometry is C

3/Z3.

There are three fractional branes, whose charges are [20, 21]:

F1 = (1, 0, 0)

F2 = (−2,H, 1/2)

F3 = (1,−H, 1/2)

(2.5)

where H is the hyperplane class of P
2. The total brane charges in this basis,

(ND7, ND5, ND3) =
3
∑

k=1

Nk Fk (2.6)

The gauge group ranks are thus given by

N1 = ND3 +
3

2
ND5 + ND7

N2 = ND3 +
1

2
ND5

N3 = ND3 −
1

2
ND5 . (2.7)

1We thank D. Morrison for conversations on this point.

– 4 –



J
H
E
P
0
1
(
2
0
1
1
)
0
1
7

1

31X

X 23
i

X 12
i

23

i

Figure 1. Quiver diagram for dP0.

3N

D3D3N

D7D3N   +N

D7

N

Figure 2. One possible anomaly-free quiver diagram for dP0 with ND3 D3-branes, ND7 D7-branes

over the vanishing 4-cycle and 3ND7 non-compact flavor D7-branes.

The resulting quiver diagram is shown in figure 1. The theory has a global SU(3) sym-

metry under which Xi
12, Xi

23 and Xi
31 (i=1,2,3) transform as triplets. The superpotential is

WdP0
= ǫijkX

i
12X

j
23X

k
31 . (2.8)

For example, consider we want to construct a theory with total D-brane charge (ND7, 0,

ND3). Using the charges in (2.5), we conclude that the ranks are

N1 = ND3 + ND7 , N2 = ND3 , N3 = ND3 .

This quiver would be anomalous, due to the imbalance between incoming and outgoing

arrows at nodes 2 and 3. A simple way of cancelling this imbalance is by introducing flavor

D7-branes. Figure 2 shows the resulting anomaly-free quiver.

There are a variety of holomorphic embeddings of the flavor D7-branes leading to the

quiver in (2) (see e.g. [22–24] for some issues regarding flavor D7-branes that are relevant
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Figure 3. Fixed point orientifold for dP0.

for our discussion). Different embeddings map to different superpotential couplings of the

flavors. Also, a discrete choice of Chan-Paton factors controls the pair of nodes in the

quiver to which flavors coming from a given stack of flavor D7-branes are connected.

This approach can be straightforwardly implemented for general charges ND7, ND5,

and ND3. This class of models is characterized by an arbitrary number of color 7-branes,

correlated with the amount of massless matter from (anti)fundamental flavors. The color

branes come from D7s wrapped on the vanishing 4-cycle at the base of the cone, while the

flavors are noncompact branes extended along the radial direction. F-theory GUT models

typically exhibit such flavor branes.

3 Gauge theory from seven-branes on dP0

As discussed in the introduction, cancelling anomalies with orientifolds can give qualita-

tively different models, without massless fundamental matter. The dynamics of theories

with 7-branes is not yet well-understood, making a systematic analysis of gauge theories

with D7s and O7s both fruitful and timely. The rest of the paper is devoted to an investi-

gation of these theories and their basic properties.

In this section we will consider the complex cone over dP0, while other toric del Pezzos

are analyzed in section 4. This example illustrates the entire range of possibilities that will

arise in more complicated examples. In addition, identifying the geometric action of the

orientifold is particularly simple due to the relation with C
3/Z3.

3.1 Fixed point orientifolds

The orientifolds are obtained using the brane tiling methods introduced in [10] and reviewed

in the appendix. They can be divided into orientifolds that lead to fixed points in the brane

tiling, and those that produce fixed lines. Let us consider the first class.

The parity of the orientifold plane is determined by the number of terms in the super-

potential. From (2.8), the parity is

NW

2
= 1 mod (2) ,

namely we should have an odd number of fixed points with the same sign. The correspond-

ing brane tiling is shown in figure 3.
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Let us denote the face (gauge group) fixed by the orientifold by ‘a’, while ‘b’ and ‘c’

are interchanged by the orientifold action. For this to be a symmetry of the quiver, the

corresponding ranks should be equal, Nb = Nc. This restricts the allowed brane charges,

as we now discuss.

Considering the ranks (2.7), there are three inequivalent possibilities:2

1 ) Na = N1, Nb = N2, Nc = N3. This requires ND5 = −1
2ND7, while ND3 is free.

2 ) Na = N2, Nb = N3, Nc = N1. Then ND5 = −ND7 with ND3 arbitrary.

3 ) Na = N3, Nb = N1, Nc = N2, in which case ND5 = 0 with ND3 and ND7 not fixed

at this stage.

Under the orientifold identification, the Xi
bc fields are projected to symmetric/antisymme-

tric representations. We now discuss the 4 inequivalent orientifold parity signs.

Compact O7-planes

• (− − +−)

Here the notation means that the fixed point in the lower left corner of the unit cell in

figure 3 has negative parity and, going clockwise, the second fixed point has parity minus,

the third point has parity plus, and the last point has parity minus. In particular, the face

‘a’ has a fixed point with positive parity leading to an SO group.

In the absence of flavor branes, the resulting gauge theory is

SO(Na) SU(Nb)

Xi
ab

Xi
[bc] 1

Anomaly cancellation requires

Na = Nb − 4 . (3.1)

The three inequivalent choices above are realized if: 1 ) ND5 = −4, ND7 = 8; 2 ) ND5 =

4, ND7 = −4; and 3 ) ND5 = 0, ND7 = −4. Notice that these theories are chiral.

This suggests the presence of an O7-plane. In order to determine the geometry of

the fixed locus we need to find the orientifold action on the mesons of the parent theory,

which can be done using the prescription introduced in [10].3 The mesons are given by the

invariant combinations

Xi
12X

j
23X

k
31

modulo F-term relations. For C
3/Z3, we can use coordinates

(z1, z2, z3) ≡ (X1
12X

1
23X

1
31,X

2
12X

2
23X

2
31,X

3
12X

3
23X

3
31) . (3.2)

2In what follows, a negative rank denotes anti-branes.
3It is necessary to point out that the relation between the gauge invariant mesons and normal fluctuations

of the branes is in general quite involved. This analysis can be done explicitly here because the geometry

is simply C
3/Z3.
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The involution σ on these mesons is

σ(z1, z2, z3) = −(z1, z2, z3) . (3.3)

This corresponds to a compact orientifold, namely one which is compact in the internal

dimensions.

After blowing-up the vanishing four-cycle into a P
2 of finite size, eq. (3.3) implies that

the vanishing locus coincides with P
2. This unambiguously identifies the orientifold as

wrapping the same cycle wrapped by the seven-branes, and the RR tadpole is cancelled

locally.

Adding flavors. We can also include flavor D7-branes. The matter content becomes

SO(Na) SU(Nb)

Xi
ab

Xi
[bc] 1

QI 1

with I = 1, . . . , F , with the understanding that F < 0 corresponds to antifundamentals of

SU(Nb). The theory is anomaly-free if

F = 3(4 + Na − Nb) . (3.4)

In particular, we can set Na = Nb by taking F = 12. In this case there is no wrapped

D7-brane charge and the RR-tadpole of the compact O7-plane is entirely cancelled by the

flavor D7-branes.

Flavor branes can be added to all the examples that follow with similar results. Having

illustrated their effect, we focus on the case without flavors unless they are strictly necessary.

• (+ + −+)

A similar theory is obtained by an overall sign change. In this case we have4

Sp(Na) SU(Nb)

Xi
ab

Xi
{bc} 1

where now anomaly cancellation sets

Na = Nb + 4 . (3.5)

For instance, case 1 ) above now requires ND7 = −8 and ND5 = 4. Similarly, case 3 ) is

obtained for ND7 = 4 and ND5 = 0.

The action on the mesons (z1, z2, z3) is as before, corresponding to a compact O7.

4Our convention is Sp(N) ⊂ SU(N) so that, in particular, Sp(2) ≈ SU(2).
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Non-compact O7-planes

The other two possible parity assignments give noncompact orientifold-planes, as we now

explain.

• (− − −+)

Consider this sign choice, as well as two equivalent permutations leaving the third parity

sign fixed. The projection gives

Sp(Na) SU(Nb)

Xi
ab

Xi
[bc] (i = 1, 2) 1

X3
{bc} 1

The anomaly cancellation condition

3Na = 3Nb − 4 (3.6)

cannot be satisfied, since ranks are integer numbers.

The theory is made anomaly-free by adding fundamental flavors for SU(Nb)

QI , I = 1, . . . , 4 + 3F

and setting

Na = Nb + F . (3.7)

For instance, choosing faces as in case 3 ) above gives ND7 = F color D7-branes, and

ND5 = 0.

The brane system has a noncompact O7-plane, as can be seen from the orientifold

action on the C
3/Z3 coordinates

σ(z1, z2, z3) = (z1, z2,−z3) . (3.8)

The fundamental flavors correspond to non-compact D7-branes required to cancel the RR

tadpole of the noncompact orientifold.

• (− + + +)

Changing the overall sign, the anomaly free gauge theory becomes

SO(Na) SU(Nb)

Xi
ab

Xi
{bc} (i = 1, 2) 1

X3
{bc} 1

Q̃I 1

where Q̃I , I = 1, . . . , 4 + 3F are antifundamental flavors from noncompact D7-branes.

They play the same role as in the previous example. The geometric action is

σ(z1, z2, z3) = (z1,−z2, z3) . (3.9)

– 9 –
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Figure 4. Fixed line orientifold for dP0.

3.2 Fixed line orientifolds

The brane tiling for dP0 also allows for orientifolds associated with fixed lines, as shown in

figure 4. As before, the face fixed by the involution is denoted by ‘a’, while ‘b’ and ‘c’ are

interchanged.

The fixed line can have either positive or negative sign. Consider the case of a positive

projection, giving rise to an SO group associated to Na. The fields Xbc are projected

to a symmetric representation, while Xca and Xab are interchanged and identified. The

resulting gauge theory is

SO(Na) SU(Nb)

Xi
ab

Xi
{bc} 1

This is anomaly-free for

Na = Nb + 4 . (3.10)

For instance, case 2 ) has arbitrary ND3 and the same number of anti D5-branes and D7s,

−ND5 = ND7 = 4; case 3 ) gives ND7 = 4 without D5-branes.

The O7-plane in this model illustrates an interesting feature. Using the rules in [10],

we can determine the orientifold geometric action

σ(z1, z2, z3) = (z3, z2, z1) (3.11)

and the fixed locus is the noncompact surface z1 + z3 = 0. Therefore the localized RR-

tadpoles from the (compact) color D7-branes cancel against a non-compact O7-plane. This

is the counterpart of what we have seen in examples in the previous section, for which the

RR-tadpoles from compact O7-planes can be cancelled by non-compact D7-branes. Of

course, the orientifold tadpole can also be cancelled just in terms of noncompact D7-

branes. For instance, we get an anomaly-free theory with Na = Nb (so that ND7 = 0) and

12 antifundamentals under the SU subgroup.

3.3 Identifying and characterizing O7-planes

Based on the previous analysis, let us discuss different approaches for identifying and

characterizing O7-planes. The RR-charge of an O7-plane is QO7 = ±4QD7. The number

of D7-branes (compact and non-compact) is constrained accordingly. The presence of ±4

– 10 –
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contributions in the gauge theory comes exclusively from the contribution to anomalies of

(anti)symmetric representations of unitary gauge groups. We are then lead to a simple

gauge theoretic rule:

• A necessary condition for having O7-planes is the presence of some (conjugate)

(anti)symmetric representation of a unitary gauge group in the spectrum.

From the dP0 example, we see that we can distinguish O7-planes depending on whether

their worldvolume is compact or not. A possible way to differentiate both situations is

to use the rules in [10] to identify the geometric action of the orientifold in terms of

mesonic operators, as done in the previous sections. While these rules apply to arbitrary

toric singularities, the implementation of this approach can be difficult for complicated

geometries.

Compact and non-compact O7-planes can also be distinguished using the fractional

brane charges for calculating the total D-brane charge of a given configuration. Once again,

dimer models provide a general prescription for determining fractional brane charges for

arbitrary toric singularities [26].

Partial resolution is another useful tool. From a gauge theory perspective, it corre-

sponds to turning on expectation values for some matter fields, with the resulting higgsing

of gauge groups and integration of massive fields. In some cases, we can use this approach

to establish a connection with simple theories, such as orientifolds of dP0, in which the

determination of the geometric action of the orientifold is straightforward. Non-compact

O7-planes remain non-compact under partial resolution, which thus serves as a way of

identifying them.

For dP0 and some of the examples in the next section we see that, in some cases,

anomalies cannot be cancelled without the addition of flavors. Then, it is natural to

propose that:

• If anomalies cannot be cancelled without the addition of fundamental flavors, then

the O7-planes are non-compact.

It is important to notice that, as we have seen in explicit examples for dP0, there are

cases in which the RR-tadpoles (and hence gauge anomalies) of compact O7-planes can be

entirely cancelled by (non-compact) flavor D7-branes. Conversely, there are theories where

the RR-tadpoles of non-compact O7-planes can be cancelled by (compact) color D7-branes.

4 Orientifolds of del Pezzo theories

We now present various orientifolds of del Pezzo theories. Many explicit examples have

appeared before in the literature (see for example [10]). The list of models can be taken as

reference for future applications. We will use some of them to illustrate different ideas in

the coming sections.

– 11 –
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3
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4

1
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Figure 5. Brane tiling for dP1 with the orientifold fixed line.

4.1 Orientifolds of dP1

Let us first consider the cone over dP1. In this case h1,1 = 2 and color D5-branes can be

wrapped around the hyperplane class H or the exceptional divisor E. The gauge theory

has four gauge groups, and the fractional charges and superpotential can be found e.g.

in [18, 21].

dP1 does not admit fixed point orientifolds, but it admits a fixed line orientifold shown

in figure 5.

The matter content is given by

U1/2 U3/4

/

3 × / (4.1)

Even before considering tadpole cancelation, the orientifold identification applied to the

fractional branes requires that the brane charges satisfy

ND5,E = 0 , ND5,H + ND7 = 0 (4.2)

where ND5,E and ND5,H denote the number of D5-branes wrapped on the exceptional

divisor and hyperplane class, respectively. The ranks of the gauge groups are given by

N1/2 = ND3 +
ND7

2
, N3/4 = ND3 −

ND7

2
. (4.3)

The theory is always anomalous because the anomaly-free conditions from the two

nodes are

N1 − N3 = ±4

N1 − N3 = ∓4 . (4.4)

The anomaly can be cancelled by adding ±8 flavors transforming as (anti)fundamentals

of U1/2.

As we have already mentioned, partial resolution provides an interesting way of con-

necting orientifolds of different geometries. The orientifolds of dP1 and dP0 given by fig-

ures 5 and 4 are connected by the higgsing associated with removing the edge separating 1

– 12 –
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Figure 6. Brane tiling for Model II of dP2 with an orientifold fixed line.

and 2 in figure 5 and relabeling the gauge groups. This entails to give an expectation value

to the 2-index tensor of U1/2, breaking this to SO /Sp and giving a mass to the fundamental

flavors. Using this, the fixed line orientifold of dP1 is identified as noncompact.

Notice that the fixed point orientifolds of dP0 do not appear in the dP1 theory. The

wrapped orientifold planes associated to the fixed points provide an obstruction to blowing-

up the exceptional P
1 ⊂ P

2.

4.2 Orientifolds of dP2

There are two possible gauge theories for dP2, which are related by Seiberg duality [18]. We

refer to them as Models I and II. While Model I does not admit orientifolding, Model II has

a fixed line orientifold, which we analyze below. This is not surprising. In general, some

orientifolds might not be present in some of the dual phases. As explained in the appendix,

this is because the Seiberg duality transformations that connect the parent phases might

not be present due to the orientifold.

The brane tiling for this orientifold is shown in figure 6. The spectrum is

U1/2 U4/5 SO /Sp3

/

(4.5)

Anomaly cancellation reads
N3 = N4

N3 = N4 ± 4
(4.6)

Once again, it is not possible to satisfy these equations without adding flavors. This is an

indication that this is a non-compact O7-plane.

4.3 Orientifolds of dP3

There are four dual phases for dP3 [18]. It is straightforward to see that Models III and

IV of dP3 do not admit orientifolding (with either fixed points or fixed lines).
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Figure 7. Brane tiling for Model I of dP3 with an orientifold fixed line.

Model I: Orientifold 1

This model does not have orientifolds with fixed points. It has two possible fixed lines. We

discuss one of them below and the other one in the next subsection. Figure 7 shows a unit

cell in the brane tiling for Model I of dP3 along with one possible orientifold line.

The resulting spectrum is

SO /Sp1 SO /Sp4 U2/6 U3/5

/

/

(4.7)

Anomaly cancellation for the unitary gauge groups reads

−N1 − N2 + N3 + N4 = ±4

−N1 − N2 + N3 + N4 = ∓4
(4.8)

We conclude that, in the absence of fundamental flavors, there is no solution to the

anomaly cancellation equations. This suggests that this configuration contains a non-

compact O7-plane.

Model I: Orientifold 2

The second orientifold of Model I of dP3 corresponds to the fixed line in figure 8.
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Figure 8. Brane tiling for Model I of dP3 with an orientifold fixed line.

The matter spectrum is

U1/4 U2/3 U5/6

/

/

(4.9)

The anomaly cancellation conditions read

N2 = N5

N2 = N5 ∓ 4

N2 = N5 ± 4

(4.10)

and N1 is arbitrary. Without introducing fundamental flavors, there is no solution to the

anomaly cancellation equations.

Model II

We can also find O7-planes in a dual phase of the dP3 theory, the so called Model II. The

brane tiling is shown in figure 9. We have relabeled gauge groups with respect to [9], in

order to simplify later comparison (in section 5.2) with one of the orientifolds of Model I

we have just discussed.
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Figure 9. Brane tiling for Model II of dP3 with an orientifold fixed line.

The spectrum is

SO /Sp1 SO /Sp4 U2/6 U3/5

/

/

(4.11)

Again, the theory is anomalous without the addition of noncompact D7-branes:

N1 + N4 = 2N2 ± 8

N1 + N4 = 2N2 . (4.12)

Again, some of these constructions are related by partial resolution. For example, we

can go from figure 8 to figure 6 by higgsing the 5 and 6 gauge groups (which corresponds

to turning on a vev a 2-index tensor representation in the orientifold) and some obvious

relabeling. Hence, it is not surprising that the two orientifolds share some general features.

In fact, (4.6) is equal to (4.10) after dropping the anomaly equation for the 5/6 node,

which becomes SO /Sp (there is a simple sign mismatch that has to do with the node we

are preserving in the projection).

5 Nonperturbative dynamics

The gauge theories constructed in sections 3 and 4 have a very rich moduli space of vacua

and infrared dynamics. Properties of the Higgs branch of these quivers are investigated

in section 6, while here we focus on nonperturbative dynamics. We begin the study of

geometric transitions and duality in some of the orientifold theories introduced earlier.

Before proceeding, we note that a common feature of the theories we have found is

that perturbatively some of the gauge groups are not asymptotically free. This is related
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Figure 10. Examples of geometric transitions using (p, q) webs: a) one compact 4-cycle disappears,

b) two compact 4-cycles disappear.

to the differences in ranks of the subgroups from nonzero D7-brane charge. These theories

should be UV completed in string theory, for instance by embedding them in a compact

F-theory construction. It is then important to understand the extent to which infrared

effects in the gauge theories are independent of the UV completion. We leave a detailed

analysis of this point for the future.

5.1 Geometric transitions with noncompact orientifolds

Generalizing what happens for the conifold [14], geometric transitions map to strong dy-

namics in the gauge theory [25]. In a geometric transition one or various compact 2-

or 4-cycles disappear. Figure 10 shows some examples of such transitions using (p, q)

webs [28, 29].5 We now investigate how geometric transitions generalize in the presence of

orientifolds. For non-compact O7-planes, we will see that the transition can be regarded as

an orientifold projection of the un-orientifolded one. Geometric transitions with compact

O7-planes are more subtle, since the compact 4-cycle that supports D7-branes and is the

fixed point locus of the orientifold action disappears. This intriguing possibility will be

investigated in a future work. Such geometric transitions are potentially interesting for

understanding gaugino condensation from a supergravity point of view.

The complex cone over dP3 has a geometric transition to the conifold that has been

studied in detail from a gauge theory perspective in [25]. We now investigate how this

transition is modified in the presence of non-compact O7-planes. Let us consider orientifold

5See [21, 30] for a discussion of the connection between (p, q) webs toric geometry and [25] for applications

in this context.
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2 from section 4.3. The spectrum reads

U1/4 U2/3 U5/6

X12

X12

X51

X51

X25

S2 /

S5 /

qi
2 /

qi
5 /

(5.1)

where we have added the (anti)fundamental flavors qi
2 and qi

5 (i = 1, . . . , 4) that are neces-

sary for anomaly cancellation. The notation for bifundamentals should be understood as

follows: any underlined subindex in Xij corresponds to conjugation of the corresponding

representation with respect to ( i, j). The superpotential reads

W = X12S2X12X51S5X51 + X12X25X51 − S2X25S5X25 − X12X12X51X51 + Wflav (5.2)

where Wflav denotes couplings between pairs of qi
2,5 to other fields in the quiver. There

are various possible options for these couplings, depending on the embedding of the fla-

vor D7-branes. Since they do not affect the subsequent discussion, we keep referring to

them as Wflav.

We choose the ranks

N1 = 2M , N2 = N5 = M (5.3)

such that Nc,1 = Nf,1 and we have a quantum modified moduli space. Physically, this

corresponds to M wrapped D5-branes and M D3-branes. Gauge group 1 confines, and the

theory is described in terms of mesons

M =

(

X51X12 X51X12

X51X12 X51X12

)

≡
(

M52 M52

M52 M52

)

(5.4)

and baryons, which we do not write explicitly. Under the remaining gauge symmetry, the

mesons transform according to

U2/3 U5/6

M52

M52

M52

M52

(5.5)

The quantum modified moduli space corresponds to

detM−BB̃ = Λ4M (5.6)
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This modified constraint is implemented using a Lagrange multiplier chiral superfield X,

W = S2M52S5M52+X25M52−S2X25S5X25−M52M52+X(detM−BB̃−Λ4M )+Wflav (5.7)

We now focus on the mesonic branch, which corresponds to setting B = B̃ = 0 and for

simplicity we consider the symmetric situation

〈M〉 = M0 12M×2M . (5.8)

This corresponds to non-zero vevs for M52 and M52, which transform as ( , ) and

( , , ) of U2/3 ×U5/6, respectively. The Lagrange multiplier is then X = Λ4−4M .

The gauge group is consequently higgsed to the diagonal subgroup UD ⊂ U2/3 ×U5/6,

under which both mesons are neutral. Expanding around the mesonic expectation val-

ues, we see that M52, M52, M52 and a linear combination of X25 and M52 are massive.

Furthermore, the F-term for M52 sets M52 ∝ X25.

The low energy spectrum is

U(M)

S2 / S1/A1

S5 / S2/A2

M52 + S̄ + Ā

qi
2, q

i
5 / qj, j = 1, . . . , 8

(5.9)

where the last column gives a useful nomenclature for the surviving fields. Depending on

the charge of the orientifold plane, the superpotential reads

W+ = ĀS1S̄S2 + Wflav

W− = ĀA2S̄A2 + Wflav
(5.10)

The resulting theory is precisely an orientifold of the conifold, as expected. These orien-

tifolds have been studied in [27] from a IIA Hanany-Witten perspective and in [10] from a

dimer viewpoint. It is interesting to note that, from a dimer model perspective, this orien-

tifold can be realized both with fixed points and fixed lines. This should not be surprising,

since the dimer model orientifolds are basically a practical graphic way of encoding the

transformation of the spectrum and interactions under the Z2 orientifold action.

In summary, we have confirmed in an example the expectation that, in the case of non-

compact O7-planes, the geometric transition is simply a projection of the unorientifolded

one. Figure 11 provides a pictorial representation of this intuition.

5.2 Dual orientifold theories

In some cases, we have constructed orientifold theories starting from brane tilings of parent

theories that are Seiberg dual. Some of the resulting models are also Seiberg dual to

each other. This is an extension of toric duality [11, 12] to theories with orientifolds. In

particular, when the duality connecting the parent theories respects the Z2 symmetry of the

orientifold (i.e. when it corresponds to dualizing an arbitrary number of SO /Sp factors
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Figure 11. (p, q) web representation of the geometric transition from dP3 with an O7-plane to the

conifold with an O7-plane.

and unitary gauge groups with their orientifold images), we obtain orientifolds that are

dual to each other. As a result, these theories correspond to exactly the same geometry.

A simple example is given by the orientifold of models I and II of dP3 in (4.7) and (4.11).

It is straightforward to see that starting from (4.7) and dualizing the SO /Sp1 gauge

group, we obtain (4.11). Below, we indicate the fields that appear as dual quarks and

Seiberg mesons

SO /Sp1 SO /Sp4 U2/6 U3/5

/

/

}

dual quarks

}

mesons

(5.11)

When dualizing, we also generate a meson transforming in the / representation of

U2/4. This field pairs up with one in the conjugate representation that is present in (4.7)

and both of them become massive.

6 Fuzzy geometry on the Higgs branch

In the previous sections we have constructed anomaly-free gauge theories with nonzero

D7-brane charge including orientifolds and/or flavors. Next we analyze their moduli space

of vacua. As usual, there is a Coulomb branch corresponding to meson expectation values

that parametrize the orientifolded cone over the del Pezzo surface. Here we will focus

instead on the Higgs branch of the theory. While the geometric realization of the Coulomb

branch is manifest, the meaning of the Higgs branch in the dual closed string side is much

less understood.
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It was argued in [31] that going into the baryonic branch of the Klebanov-Strassler

theory [14] describes a fuzzy S2. When the number of branes becomes large this noncom-

mutative theory gives a good description of the base of the resolved conifold. Our aim

here is to explore the analog problem for D7-branes wrapping del Pezzo surfaces, and in

particular understand why the Higgs branch is expected to describe a fuzzy version of the

internal cycle wrapped by the 7-branes. The essential physics appears already for a flat C
2

internal manifold, so we will consider this case first in section 6.1.

In the next step, the local analysis is extended to the cone over the compact 4-cycle.

At low energies we obtain the quiver gauge theories discussed before. The baryonic branch

and its relation with the fuzzy geometry will be studied in the 7+1-dimensional theory

in section 6.2, and then from the 4d quiver in section 6.3. A very nice general analysis

of how to find baryonic branch solutions has recently appeared in [13], so here we will

limit ourselves to the simple case of dP0. Our main conclusion will be that the baryonic

branch of the quiver associated to 7-branes wrapping a del Pezzo surface is equivalent

to noncommutative instantons on this surface. These instantons provide a microscopic

interpretation for the appearance of a fuzzy geometry.

6.1 D3-D7 gauge theory in flat space

Consider k D3-branes along the directions (0123) and M D7-branes along (01234567), in

flat space. The light matter content is

U(k) U(M)

Z1, Z2 Adj 1

Φ1 Adj 1

Φ2 1 Adj

Q

Q̃

3-3 strings give rise to U(k) gauge fields, two chiral superfields Z1 and Z2 that describe the

fluctuations along (4567), and one chiral superfield Φ1 from motion in the (89) directions.

Similarly, 7-7 strings give adjoint U(M) gauge fields and a superfield Φ2 describing the

displacement in (89). Finally, the bifundamentals (Q, Q̃) come from 3-7 strings. The full

theory is a 7+1-dimensional gauge theory coupled to 3+1 dimensional defects.

The Higgs branch corresponds to Φ1 = Φ2 = 0. This branch describes how D3s are

dissolved into D7s, and it will first be analyzed from the point of view of the effective

theory on the D3-branes. The potential is

V ∝ Tr

[

(

[Z1, Z
†
1] + [Z2, Z

†
2 ] + Q†Q − Q̃Q̃†

)2
+
∣

∣

∣
[Z1, Z2] + QQ̃

∣

∣

∣

2
]

. (6.1)

The Higgs branch is described as the moduli space of solutions to

µr ≡ [Z1, Z
†
1 ] + [Z2, Z

†
2] + Q†Q − Q̃Q̃† = 0

µc ≡ [Z1, Z2] + QQ̃ = 0 (6.2)
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modulo U(k) gauge transformations.

The moduli space Mk,M includes 4 moduli for the positions of the 3-branes inside the

7-brane, plus ‘size’ and ‘shape’ moduli. This is related to the geometry of the internal

7-brane directions — in this case C
2. However, the field theory is singular at the origin

Zi = Q = Q̃ = 0, corresponding to the intersection with the Coulomb branch. In order

to obtain a well-defined geometric interpretation of the Higgs branch, we need to resolve

these singularities.

A simple way of smoothing out the singularity at the origin is to turn on an FI term

ζ for the U(1) part of U(k),

V ∝ Tr

[

(

[Z1, Z
†
1 ] + [Z2, Z

†
2 ] + Q†Q − Q̃Q̃† − ζ 1k

)2
+
∣

∣

∣
[Z1, Z2] + QQ̃

∣

∣

∣

2
]

. (6.3)

The moduli space is now

Mζ =
(

µ−1
r (ζ 1k) ∩ µ−1

c (0)
)

/U(k) (6.4)

and the origin is no longer part of the moduli space. The Higgs branch becomes a smooth

manifold. Intuitively, each 3-brane is smeared over a region of size ζ so the Higgs branch

should now realize a “discretized” version of the internal manifold. More precisely, we now

argue that a fuzzy C
2 is indeed a subspace of Mζ .

For this, let us discuss the dynamics from the point of view of the 7+1-dimensional

theory, where the D3-branes are k instantons of the U(M) gauge group [32, 33]. The equiv-

alence between both approaches was established in [34]; eqs. (6.2) are in fact the ADHM

equations. The singularity at the origin corresponds to the small instanton singularity

where the D3-branes move off of the D7 worldvolume. The instanton number is given by

k = − 1

8π2

∫

Tr(F ∧ F ) . (6.5)

The nonabelian CS action on the D7-brane includes a term

SCS ⊃ µ7

∫

C4 ∧ Tr(F ∧ F ) (6.6)

which, as expected, gives k units of D3-charge.

The eight-dimensional analog of the FI parameter ζ corresponds to having instantons

on non-commutative R
4 [35]. A B-field is turned on along (4567), and the relation between

the FI term and noncommutativity parameter θ is

ζ ∼ |θ| . (6.7)

The space (6.4) coincides with the solutions to the ADHM equations of noncommutative

instantons on R
4 (see also [36]). In the ADHM equation µr = ζ 1k, the FI term is compen-

sated by taking the Zi to be noncommutative,

[Z1, Z
†
1̄
] = θ11̄ , [Z2, Z

†
2̄
] = θ22̄ , θ11̄ + θ22̄ = ζ (6.8)

where θ has been chosen of type (1, 1) in the Kähler metric of C
2 ≈ R

4.
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Summarizing, the Higgs branch of the D3-D7 system in flat space, in the presence

of a nonzero FI term, reproduces a noncommutative version of the C
2 “wrapped” by the

7-branes. The FI term comes from a B-field in the full 8d theory, and the commutative

4-cycle is recovered in the limit of large B. This equivalence between noncommutative

instantons in the internal directions and Higgs branch solutions with nonzero FI term in

the 4d theory will allow us to understand what happens once the 7-branes wrap a compact

four-cycle.

6.2 The baryonic branch: eight-dimensional perspective

We are now ready to investigate the case of D7-branes wrapping a del Pezzo surface by

extending the local the results of section 6.1. Notice that at low energies the U(1) gauge

subgroups of the quiver decouple, becoming global baryonic symmetries. The FI terms

in (6.3) then correspond to nonzero expectation values for certain baryon operators.

From our previous analysis we thus learn that a baryonic expectation value in the

quiver theory maps to a nonzero B-field along the internal directions of the 7+1-dimensional

theory, and that baryonic branch solutions correspond to noncommutative instantons on

the 4-cycle. It will be argued that these instantons are the microscopic degrees of freedom

responsible for the appearance of the fuzzy del Pezzo.

The procedure for constructing fuzzy toric geometries starting from (6.8) is well-

understood — see for instance [38] for a review and references. Therefore in this section

we study the baryonic branch from the perspective of the 7+1-dimensional theory, ex-

plaining the emergence of the fuzzy surface. This will be used in section 6.3 to find the

corresponding quiver theory with its baryonic branch solutions.

Although the arguments apply to general toric varieties, for concreteness we focus on

the dP0 theory, with anomalies cancelled using noncompact 7-branes. This can be extended

to other toric del Pezzos as done recently in [13]; while the formulas here already appear

in their work, we believe that our approach provides additional insights into the physics of

these very rich theories.

We first briefly review the construction of fuzzy P
2 starting from fuzzy C

3. Classically,

P
2 corresponds to zi → λzi, i = 1, 2, 3 and λ ∈ C

∗. Equivalently, the coordinates can be

restricted to S5

|z1|2 + |z2|2 + |z3|2 = R2 (6.9)

and then quotient by zi → eiθzi. In the quantum version the coordinates are replaced by

creation and annihilation operators obeying

[

ai, a
†
j̄

]

= δij̄ , [ai, aj ] =
[

a†
ī
, a†

j̄

]

= 0 . (6.10)

We further restrict to finite oscillator number,

∑

i

a†iai = n , (6.11)

which can be thought of as the quantum version of (6.9).
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The Fock-space Hn is generated by

|n1, n2, n3〉 =

3
∏

i=1

(a†i )
ni

√
ni!

|0〉 ,
∑

ni = n . (6.12)

This has dimension

dimHn =
(n + 2)!

2!n!
=

1

2
(n + 1)(n + 2) . (6.13)

The SU(3) algebra of P
2 is realized as usual through the Schwinger construction in terms

of the Gell-Mann matrices λm:

Lm = a†
ī

λm
īj

2
aj ⇒ [Lm, Ln] = ifmnrLr . (6.14)

The “fuzzy coordinates” are identified with the restriction of the angular momentum op-

erators to Hn, with a Casimir operator playing the role of the finite radius (6.9),

Xm ≡ Lm
∣

∣

Hn
,

∑

(Xm)2 =

(

n +
n2

3

)

1
∣

∣

Hn
. (6.15)

The eight-dimensional theory consists of ND7 = M D7-branes wrapped on P
2, with

nonzero B-field proportional to the normalized Kähler form J ,

B = (n + 2)J . (6.16)

This leads to the periods
∫

P1

B = n + 2 ,

∫

P2

B ∧ B = (n + 2)2 . (6.17)

This notation anticipates a relation between the oscillator number n above and the units

of magnetic flux, which will be seen shortly. These periods correspond to dissolved D5 and

D3 charge respectively.

The dynamics along the internal cycle is given by noncommutative SU(M) SYM with

instanton number

− 1

8π2

∫

P2

tr F̂ ∧ F̂ =
1

2
(n + 2)2 . (6.18)

Here the noncommutative field-strength is given by

F̂ij̄ ≡ ∂iÂj̄ − ∂̄jÂi − [Âi, Âj̄ ] .

The gauge theory is defined on a noncommutative P
2, given by (6.12)–(6.15).

6.3 Constructing the quiver and baryonic branch solutions

These results can be used to determine the 4d quiver theory on P
2 and the baryonic branch

solutions that describe the fuzzy surface. This theory was discussed in section 2. The first

step is to calculate the ranks of the gauge groups in terms of the eight-dimensional induced

charges from (6.17). This gives

ND7 = M , ND5 = (n + 2)M , ND3 =
1

2
(n + 2)2M . (6.19)
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Using eq. (2.7) we find

N1 =
1

2
(n + 3)(n + 4)M

N2 =
1

2
(n + 2)(n + 3)M

N3 =
1

2
(n + 1)(n + 2)M . (6.20)

The theory is made anomaly-free by the addition of flavor D7-branes. In particular, we

add 3(n + 2)M antifundamentals under U(N1), 3(2n + 5)M fundamentals of U(N2), and

3(n + 3)M antifundamentals of the third group U(N3).

To avoid too many indices in the expressions below, it is convenient to rename the

bifundamentals as

Xi
12 → Ai , Xi

23 → Bi , Xi
31 → Ci , i = 1, 2, 3 (6.21)

These bifundamentals encode, in particular, the fields Zi of the flat space analysis. As we

have already shown, these become annihilation operators in the 8d theory with noncom-

mutative instantons. So identifying combinations of (A,B,C) with annihilation operators

(appropriately restricted to subspaces of finite oscillator number) should give nontrivial

solutions in the baryonic branch.

This is done by noticing that [13]

N1 = (dimHn+2)M , N2 = (dimHn+1)M , N3 = (dimHn)M (6.22)

so that the bifundamental fields can be seen as maps

Ai : Hn+2 ⊗ C
M → Hn+1 ⊗ C

M

Bi : Hn+1 ⊗ C
M → Hn ⊗ C

M

Ci : Hn ⊗ C
M → Hn+2 ⊗ C

M . (6.23)

Ai and Bi then indeed correspond to annihilation operators of finite oscillator number:

Ai = CA ai

∣

∣

Hn+2
⊗ 1M , Bi = CB ai

∣

∣

Hn+1
⊗ 1M . (6.24)

The F-terms are then satisfied by setting Ci = 0; this corresponds to the Higgs branch

condition Φ = 0 of section 6.1.

More explicitly the matrix elements are of the form

〈m′
1,m

′
2,m

′
3|A1|m1,m2,m3〉 = CA

√
m1 δm′

1
,m1−1δm′

2
,m2

δm′

3
,m3

⊗ 1M ,

and similarly for the other fields. Using the operator algebra, these solutions satisfy the D-

flat conditions where, as explained above, the FI terms are mapped to expectation values

that spontaneously break baryon number. For instance, the D-term condition on node

one becomes
3
∑

i=1

A†
iAi = |CA|2(n + 2)1N1

. (6.25)
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The expectation value for the operator U1 ∼ tr(A†A) that is the partner of the baryonic

current on node one is U1 ∼ |CA|2.
Therefore, the baryonic branch of the quiver describes a fuzzy version of the four-cycle

where the D7-branes are wrapped. Another test comes from relating the spectrum of the

quiver to the KK modes of the noncommutative theory. The relation between the 4d and

8d descriptions allows us to understand the reason for this. The baryonic VEVs translate

to a B-field along the internal directions (through their role as FI terms), which makes the

open string theory noncommutative [39]. The B-field allows the open strings to ‘see’ the

internal geometry, even in the limit of a shrinking cycle.

It would be interesting to explore further consequences of the relation between non-

commutative instantons on a del Pezzo surface and the baryonic branch of these quivers.

Also, while here we have discussed the moduli space for a theory with noncompact flavors,

it would be nice to analyze the anomaly-free quivers with orientifolds and no fundamental

matter found in section 3.

6.4 Relation to F(uzz) theory

In this last section we explain how the recent F(uzz) theory limit of [6] is related to the

quiver gauge theories discussed here.

In models with 7-branes wrapped on compact four-cycles, we may consider three limits:

• A near brane limit α′ → 0 keeping the 4-volume fixed, followed by compactification

on the 4-cycle. This gives an effective four-dimensional gauge theory obtained by

twisting the seven-brane theory. See e.g. [1–4].

• The F(uzz) limit [6]. Here the closed-string volume of the cycle vanishes, but there

is a large amount of dissolved D3 charge. The directions along the 4-cycle are non-

commutative and an effective four-dimensional description follows by expanding in

fuzzy KK modes.

• The quiver theory obtained by placing D-branes in the complex cone over the shrink-

ing cycle. This is a gauge theory with product gauge groups of different ranks and

matter in fundamental and bifundamental representations.

In order to understand the relation between these theories, let us briefly review the

F(uzz) proposal. The starting point is the DBI action for the D7-branes wrapped over a

4-cycle Σ,

SDBI = −T7

∫

d8ξ
√

−det(g + B) , (6.26)

with B = dA+B2. The gauge coupling of the effective 4d theory obtained by compactifying

the D7-branes on Σ is proportional to the volume of the “open” string metric g + B,

1

g2
4

=
Volopen(Σ)

(2π)3gs
, Volopen(Σ) ≡ Volclosed(Σ) +

1

2

∫

Σ
B ∧ B . (6.27)
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The exact decoupling limit Volclosed(Σ) = 0 can be taken if a nonzero B-field is turned on

along the internal cycle, giving

8π

g2
4

=
1

(2π)2gs

∫

Σ
B ∧ B =

N

gs
. (6.28)

Here N ∈ Z measures the quantized units of B-field.

The proposal of [6] is that this decoupling limit gives rise to a noncommutative theory

along the four-cycle, due to the presence of the B-field [36, 39]. This was not derived from

a microscopic theory, although it was suggested that it could arise from the Higgs branch

of an SU(N × M) gauge theory, where M is the number of wrapped D7-branes, and N is

the dissolved D3-charge (6.28) per D7-brane.

Our results in section 6.3 provide an explicit check for this proposal, showing how the

baryonic branch of the del Pezzo quiver reproduces the F(uzz) theory as a low energy limit.

In this case, the number of flux units N corresponds to n2 in (6.17) and (6.19), in the large

N limit. There is also nonzero D5-brane charge
√

NM .

The bifundamental fields (A,B) acquire expectation values (6.24) that describe how

the D3s and D5s are dissolved into the D7-branes. They reproduce the fuzzy P
2. The

unbroken gauge group SU(M) on the M D7-branes is embedded in the quiver product

group with multiplicity N ,

SU(M)D ⊂ SU(M)N1 × SU(M)N2 × SU(M)N3 ⊂ SU(N1) × SU(N2) × SU(N3) . (6.29)

Recall that in the large N limit, Ni ≈ N × M for i = 1, 2, 3. The gauge couplings in the

original quiver are 1/g2 ∼ 1/gs, so the gauge coupling in the diagonal SU(M) becomes

1/g2
D ∼ N/gs. This reproduces (6.28).

Since the noncommutativity parameter is set by B−1 ∼ N−1/2, at large N we recover

the commutative geometry of the internal four-cycle. In particular, the fuzzy KK modes

are expected to reproduce the KK modes of the twisted seven-brane theory compactified

on a commutative four-cycle of fixed closed string volume. In this sense, the large N limit

of the quiver can be interpreted as a deconstruction of the eight-dimensional theory.6
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(a) (c)(b)

Figure 12. Possible orientifolds of brane tilings. a) Orientifold with fixed points. b,c) Orientifold

with two or one fixed lines. The Z2 symmetry of the cases with fixed lines exists only for specific

complex structures of T2.

A Orientifolding brane tilings

Here we briefly review the results of [10]. Brane tilings provide a practical tool for studying

gauge theories on D-branes on orientifolds of toric singularities. They efficiently encode the

identification of gauge groups and matter fields (whose corresponding arrows in the quiver

have an orientation flip associated with the worldsheet orientation reversal Ω) that follows

from the orientifold projection.

The orientifold action maps to a Z2 involution of the T
2 in which the tiling is embedded.

The involution can correspond to the inversion of two or one of the directions of the T
2. In

the first case, the orientifold action has four fixed points. In the second case, we can have

one or two fixed lines. All these possibilities are illustrated in figure 12.

Each fixed point or line carry an independent sign or charge. In the case of orientifolds

with fixed points, the product of the four signs is constrained by supersymmetry to be

(−1)NW /2, with NW the number of superpotential terms in the parent theory. The charges

of fixed lines are unconstrained.

Throughout the paper, we refer to the unorientifolded theory as the parent theory.

The orientifold theory is obtained by projecting gauge groups and matter fields according

to the following rules:

• Gauge groups: the gauge group factor associated to faces that are mapped to

themselves is projected down to SO or Sp for positive or negative charge of the

fixed point/line, respectively. Faces that are paired up by the orientifold action are

identified, giving rise to a single unitary gauge factor.

• Matter: edges mapped to themselves correspond to chiral multiplets in the two-

index symmetric or antisymmetric tensor representations for positive or negative

charge of the fixed point/line, respectively. Edges paired up by the orientifold action

are identified, giving rise to a single bifundamental field.

The superpotential is given by that of the parent theory, written in terms of the

projected fields. A more detailed statement of these rules is given in [10]. Brane tilings are

very useful for determining the geometric action of the orientifold, which is encoded in the

transformation properties of gauge invariant mesonic operators [10].
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The graphic nature of tilings result in rules that simplify the classification of orien-

tifolds. For example, consider orientifolds with fixed points: since the orientifold action

must identify nodes of different colors, a necessary condition for an n-sided face to contain

a fixed point is that n = 2mod(4).

Orientifolding Seiberg dual parents

In general, more than one gauge theory (correspondingly more than one brane tiling) can

be associated to a given unorientifolded geometry. These theories, to which we refer as

dual phases, are connected by Seiberg duality transformations. Any of these dual theories

can be taken as the parent to be orientifolded. The rules explained in the previous section

might lead to orientifolds that are present in some phases but absent from others. The

reason is simple, the Seiberg dualities that take from one phase to the other might not be

symmetric under the orientifold action.

The simplest example corresponds to two dual phases I and II of the parent theory that

are connected by a Seiberg duality on a single gauge group, which we denote i. Imagine

there is an orientifold of phase I in which gauge group i is not invariant but is mapped

to another one j. Under these circumstances, we conclude that this orientifold cannot be

seen by starting from phase II, since it would require further dualizations. This issue is

also discussed in section 5.2.

Open Access. This article is distributed under the terms of the Creative Commons
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