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ABSTRACT

Black hole accretion flows show rapid X-ray variability. The power spectral density
(PSD) of this is typically fit by a phenomenological model of multiple Lorentzians for
both the broad-band noise and quasi-periodic oscillations (QPOs). Our previous paper de-
veloped the first physical model for the PSD and fit this to observational data. This was
based on the same truncated disc/hot inner flow geometry which can explain the correlated
properties of the energy spectra. This assumes that the broad-band noise is from propagating
fluctuations in mass accretion rate within the hot flow, while the QPO is produced by global
Lense—Thirring precession of the same hot flow. Here we develop this model, making some
significant improvements. First, we specify that the viscous frequency (equivalently, surface
density) in the hot flow has the same form as that measured from numerical simulations of
precessing, tilted accretion flows. Secondly, we refine the statistical techniques which we use
to fit the model to the data. We re-analyse the PSD from the 1998 rise to outburst of XTE
J1550—564 with our new model in order to assess the impact of these changes. We find that
the derived outer radii of the hot flow (set by the inner radius of the truncated disc) are rather
similar, changing from ~68 to 13R, throughout the outburst rise. However, the more physical
assumptions of our new model also allow us to constrain the scaleheight of the flow. This
decreases as the outer radius of the flow decreases, as expected from the spectral evolution.
The spectrum steepens in response to the increased cooling as the truncation radius sweeps in,
so gas pressure support for the flow decreases. The new model, PROPFLUC, is publicly available
within the xspec spectral fitting package.

Key words: accretion, accretion discs — X-rays: binaries — X-rays: individual: XTE
J1550—564.

further, the SED either becomes almost completely disc dominated

1 INTRODUCTION (high/soft or ultrasoft state) or displays both a strong disc compo-

Black hole binaries (BHBs) have X-ray emission which is vari-
able on a broad range of time-scales. On the longest time-scales
(~weeks), these sources are seen to transition between quiescence,
when they are hardly visible above the X-ray background, and out-
burst, when they are amongst the brightest X-ray objects in the
sky. During the rise from quiescence to outburst, the source dis-
plays an evolution in spectral state. At the lowest luminosities, the
source is in the low/hard state, with a spectral energy distribution
(SED) dominated by a hard (photon index I' < 2) power-law tail but
also including a weak disc component and reflection features. As
the average mass accretion rate, M,, increases, the disc increases
in luminosity, the power law softens (I" ~ 2) and the reflection
fraction increases (intermediate state). As the luminosity increases
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nent and a soft (I" > 2) power-law tail (very high state; see e.g.
Done, Gierlinski & Kubota 2007, hereafter DGKO07).

The SED of the low/hard state can be explained by a two-
component model whereby the standard cool, optically thick, ge-
ometrically thin accretion disc (Shakura & Sunyaev 1973) is trun-
cated at some radius r, which is greater than the last stable orbit,
T'so- Interior to this is a hot, optically thin, geometrically thick accre-
tion flow, perhaps similar to an advection-dominated accretion flow
(Narayan & Yi 1995). We observe a fraction of the disc emission di-
rectly but some of the photons emitted by the disc are incident upon
the flow where they are Compton up-scattered by the hot electrons,
thus creating the power-law tail. As the source evolves, the trunca-
tion radius decreases which increases both the amount of direct disc
emission and the number of seed photons incident on the flow, thus
cooling the Comptonizing electrons and softening the power-law
index of the flow emission. The spectral evolution throughout the
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rise to outburst can be described by assuming that r, decreases as the
average mass accretion rate increases until r, & ryy, in the high/soft
state (Esin, McClintock & Narayan 1997; DGKO07). While this trun-
cated disc model has been challenged by direct observation of the
disc inner edge at the last stable orbit in the low/hard state (Miller,
Homan & Miniutti 2006; Rykoff et al. 2007), this interpretation of
the data has itself been challenged (Gierliniski, Done & Page 2009;
Done & Diaz Trigo 2010). Thus, there is no unambiguous evidence
as yet which rules out these models, and all alternative geometries
(e.g. Markoft, Nowak & Wilms 2005; Miller et al. 2006) run into
other difficulties (DGKO07). Hence, we use the truncated disc model
as our overall framework, and explore how this can also be used
to interpret the rapid variability seen within a single observation of
~2000s.

A power spectral analysis of this rapid variability reveals quasi-
periodic oscillations (QPOs) superimposed on a broad-band noise
of variability. The broad-band noise can be described using broad
Lorentzians centred at characteristic frequencies f, and f;, of-
ten referred to as the low- and high-frequency breaks. The QPO
(fundamental and higher harmonics) can be described by narrow
Lorentzians centred at fopo, 2fqpo, etc. (e.g. Belloni, Psaltis &
van der Klis 2002). As the SED evolves on long time-scales, so
does the corresponding power spectral density (PSD). All the PSD
frequencies, f,, fopo and (to a lesser extent) f;,, increase with lu-
minosity and are correlated (Psaltis, Belloni & van der Klis 1999;
Wijnands & van der Klis 1999; van der Klis 2004; Klein-Wolt &
van der Klis 2008; Belloni 2010). However, the amount of power at
high frequencies (>10 Hz) remains constant despite the increase in
[ (Gierlifiski, Nikotajuk & Czerny 2008). Although the variability
properties have been studied for over 20 years, the underlying phys-
ical processes are still poorly understood. Most previous attempts
to physically model the variability properties focus on explaining
either the QPO or the broad-band noise. We review these briefly
below.

1.1 QPO models

There are many proposed QPO mechanisms in the literature, some
of which are based on a misalignment between the angular momen-
tum of the black hole and that of the binary system (e.g. Stella &
Vietri 1998; Fragile, Mathews & Wilson 2001; Schnittman 2005;
Schnittman, Homan & Miller 2006; Ingram, Done & Fragile 2009,
hereafter IDF09) and others are associated with wave modes in the
accretion flow (Titarchuk & Osherovich 1999; Wagoner, Silbergleit
& Ortega-Rodriguez 2001; Cabanac et al. 2010). In IDF09, we
outlined a QPO model based on the original relativistic precession
model of Stella & Vietri (1998). Here, the QPO frequency is given
by the Lense-Thirring precession frequency of a test mass (say,
a hotspot; e.g. Schnittman 2005) at the truncation radius. Lense—
Thirring precession is a relativistic effect which occurs because of
the asymmetric gravitational potential present around a spinning
black hole. A test mass orbit will precess around the black hole if it
is misaligned with the black hole spin plane as space—time is being
dragged around the black hole. As the particle reaches the starting
point of its orbit (i.e. ¢ = 0, 27, etc.), that point in space—time has
rotated some way around the black hole.

Our extension of this model was to replace the test mass with the
entire hot accretion flow interior to the disc truncation radius. There
is a differential warp across the flow due to the radial dependence of
Lense—Thirring precession (fi oc ~ r~3). Warps are communicated
by bending waves which travel at (close to) the sound speed. For a
hot flow the sound speed is fast, so the warp can be communicated

across the whole hot inner flow on a time-scale which is shorter
than the precession period on the outer edge. The entire hot flow
can then precess as a solid body (though it is still differentially
rotating), with a precession frequency given by the surface-density-
weighted average of f1(r). This global precession is confirmed by
General Relativistic Magnetohydrodynamic (GRMHD) simulations
of a tilted flow (Fragile et al. 2007; Fragile & Meier 2009). A cool,
thin disc responds very differently as here the sound speed across
the disc is much longer than the precession period. Viscous diffusion
then results in a steady state warp of the disc into the plane of the
black hole spin at small radii (Bardeen & Petterson 1975; Kumar
& Pringle 1985; Fragile et al. 2001), rather than global precession
about the black hole spin axis.

In IDF09, we showed how global precession of the entire hot
inner flow interior to a stationary truncated disc can give the QPO.
The increasing frequency can be produced by the outer radius of
the hot flow (set by the inner radius of the truncated disc) moving
inwards in the range 50 > r, > 10, as also implied by the SED
evolution. This model is also attractive as it ties the QPO to the hot
flow, so trivially modulates the Comptonized spectrum rather than
the disc component, as required by the data (Rodriguez et al. 2004;
Sobolewska & Zycki 2006).

1.2 Broad-band noise models

The underlying viscosity mechanism in the flow is most likely the
magnetorotational instability (MRI; Hawley & Balbus 1991). It is
looking increasingly likely that this is also the underlying source of
broad-band variability in the flow as it generates large fluctuations
in all quantities (e.g. Krolik & Hawley 2002; Beckwith, Hawley
& Krolik 2008; Dexter & Fragile 2011). The temporal variability
generated by the MRI extends to very high frequencies but the emis-
sion is inherently linked to the reservoir of available gravitational
energy and therefore should depend on the mass accretion rate, M.
It is commonly assumed that the variability in M at a given ra-
dius is characterized by the local viscous frequency, fis.(r), where
Fuise(r) o< ¥73/% in the simplest case. This interpretation implies that
fo X frise(ro) and f), & fyisc (7)), where r; is the inner radius of the flow
(e.g. Ingram & Done 2010). Although this is a rather crude approx-
imation, it has the very attractive property that the low-frequency
noise is tied to the truncation radius but the high-frequency noise is
not. This can explain the observed correlation of the low-frequency
break in the PSD with the low-frequency QPO, as both are set by r,,
while the high-frequency break is more or less constant as r; does
not change (Gierliniski et al. 2008).

Another fundamental property of the data which must be re-
produced by any variability model is the o—flux relation (Uttley
& McHardy 2001). This can be measured by splitting the light
curve into multiple short segments and finding the average and
standard deviation of each segment. After binning, the standard
deviation is always seen to be linearly related to the average flux.
This shows that the variability is correlated across all time-scales
and therefore, in a picture where different temporal frequencies
come predominantly from different spatial regions, there must be
a causal connection between those regions. This rules out simple
shot noise models, where the variability is independent. Instead, the
o—flux relation can be reproduced if the fluctuations in M gener-
ated at a given radius propagate inwards towards the black hole as
might be intuitively expected in an accretion flow (Lyubarskii 1997,
Kotov, Churazov & Gilfanov 2001; Arévalo & Uttley 2006, here-
after AUOO)
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1.3 Combining the QPO and broad-band noise

In Ingram & Done (2011, hereafter ID11), we explored combining
these ideas of both QPO and noise by developing a model with
propagating mass accretion rate fluctuations in a precessing flow.
The mass accretion rate fluctuations produce the observed band
limited noise and the precession frequency modulates the fluctuating
light curve to create the QPO. Crucially, these two processes are
linked. We use the same geometry (inner and outer radius of the
hot flow, surface density of the hot flow) to make both the QPO
and broad-band noise properties. Precession of the fluctuating flow
modulates its observed emission, imprinting the QPO on the broad-
band noise, while fluctuations in the flow cause fluctuations in the
precession frequency, making a quasi-periodic rather than periodic
oscillation.

Here we develop a more advanced version of the model which
is in better agreement with the results of GRMHD simulations,
together with better statistical techniques to fit these models to the
PSD data. We have made this package publicly available within
xsPEC (Arnaud, Borkowski & Harrington 1996) as a local model,
PROPFLUC.

2 THE MODEL

As in ID11, the model consists of fluctuations in mass accretion
rate which propagate towards the black hole [following Lyubarskii
(1997), Kotov et al. (2001) and AUO6] within a flow that is pre-
cessing. Here we develop the model to include a number of im-
provements which allow us to gain more physical insight from the
best-fitting parameters. Most significantly, we change our underly-
ing assumption about the viscous frequency fyi(r). In ID11, we
assumed that this was a power law between r; and r,, the inner
and outer radius of the precessing hot flow. Here we have it to be
a smoothly broken power law, with the radius of the break being
the bending wave radius, ry,y,, expected from a misaligned flow. The
viscous frequency is related to the surface density profile, X, via
the radial infall velocity v,(r) as fyis.(r) = —v,(r)/R and mass con-
servation sets M o X27trv,. Hence, we can use the surface density
profiles from the GRMHD simulations to derive f.(r), which is
especially important as the QPO frequency is dependent on X (7).

We also change the assumed emissivity from ID11, where €
r~7b(r) [where b(r) was an unknown boundary condition], to €
r~V %(r), i.e. we tie the emission to where the mass is in the flow. We
describe the details of the model below, mainly focusing on these
improvements made since ID11. Note that, throughout the paper,
we use the convention R = rR,, where R, = GM/c? is a gravitational
radius and we always assume a 10 M, black hole.

2.1 Steady state properties

The surface density of the flow sets the QPO frequency by global
precession as

f,.:“ fir i Zridr

fprec = friro fk2r3dr

ey
where fy is the Keplerian orbital frequency and fir is the point
particle Lense—Thirring precession frequency (given by equation 2
in ID11).

We use the GRMHD simulations of tilted flows to guide our
description of X(r) (Fragile et al. 2007; Fragile 2009; Fragile &
Meier 2009). These can be well fitted by a smoothly broken power-
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law function (IDF09)
EOMO )C)L
CRy (14 xx)Etm/e’

where x = r/ry,, is radius normalized to the bending wave radius
row = 3(h/r)~*%a2/3, £ is a dimensionless normalization constant
and M, is the average mass accretion rate which we will assume
stays constant over the course of a single observation. This gives
3 oc r* for small r and % oc r~¢ for large r, where x governs the
sharpness of the break. The bending wave radius occurs at radii
larger than the last stable orbit because there are additional torques
created by the misaligned black hole spin which result in additional
stresses, i.e. enhanced angular momentum transport. The material
infalls faster, so its surface density drops.
Mass conservation then sets the viscous frequency as
Mo 1 (1+ xk)(Hk)/K c

= —, 3
2RYE(r, 1) 27,20 x 2 R, )

such that fi. o ¥ =2 for large r and f ;. oc r~**2 for small r.

Xy, t) =

€]

fvisc(rn) =

2.2 Propagating mass accretion rate fluctuations

As in ID11 (and AU06), we start by splitting the flow up into N
annuli of width dr, such that r; = r, (the truncation radius) and
ry = r; + dr, =~ r; (the inner radius of the flow). We assume that
the power spectrum of variability generated in mass accretion rate
at the nth annulus is given by a zero-centred Lorentzian cutting off
at the local viscous frequency:

i, fI? o

1
S — 4
1+ [f/fvisc(rn)]2 ( )

where a tilde denotes a Fourier transform and f(r,) is derived
from equation (3).

We use the method of Timmer & Koenig (1995) to generate
mass accretion rate fluctuations, riz(r,,, t), which satisfy equation (4).
These are normalized to have a mean of unity and fractional vari-
ability 0 /1 = Fyu// Naee, Where, unlike ID11, F,, and N, are the
fractional variability and number of annuli per decade in viscous
frequency rather than radius. These two descriptions are exactly
equivalent where f; is a power-law function of radius as in ID11,
as df/f = dr/r. However, the more physical smoothly broken
power-law form for f\;. does not retain this property. We choose to
parametrize the noise power in terms of d '/ f (see below).

The mass accretion rate through the outer annulus is given by
M(ry,t) = Myia(ry, t). Variability is generated in every other an-
nulus according to equation (4), but this is also accompanied by the
noise from the outer regions of the flow which propagates inwards.
Thus, the mass accretion rate at the nth annulus is given by

M(rnat)zM(rn—lat_tlag)m(rnv[)s (5)
where t;,, = —R,dr, /v,(r,) = dr,/[r, fyisc(r»)] is the propagation
time across the nth annulus and v,(r,) = —Rg7f visc(r) is the infall
velocity.

To convert these mass accretion rate fluctuations into a light
curve, we assume that the luminosity emitted from the nth annulus
is given by
dL(ry. 1) = 1/2M (1, D €)radry, ©)
where the (dimensionless) emissivity is given by
€(ry) = €or, " b(ry), (N

and y is the emissivity index, n the accretion efficiency, b(r) the
boundary condition and €, is a normalization constant. In ID11,
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we considered two boundary conditions: the ‘stress-free’ boundary
condition b(r) = 3(1 — \/r,/r;) and the ‘stressed’ boundary con-
dition b(r) = 1. Here, however, we make the intuitive and physical
assumption that the boundary condition is set by the surface den-
sity such that b(r) o< X(r,, t), where X(r,, t) is the time-averaged
surface density. This allows the model to link the emission with the
amount of material in a particular annulus.

The fluctuating mass accretion rate will also have an effect
on precession because mass conservation needs to hold on short
time-scales as well as long time-scales, which gives M(r,, 1)
2 (ry, 1)270r2 fiise. This means that the surface density at time ¢ is
given by

oM (1, 1) x*
(1) = R, (14 x<)E+h/e’ ®)

which trivially averages to equation (2) on long time-scales. Because
the surface density sets the precession frequency (equation 1), we
see that the fluctuations in mass accretion rate cause the precession
frequency to vary, thus allowing the model to predict a QPO rather
than a purely periodic oscillation.

2.3 Surface density profile

In ID11, we parametrized the viscous frequency with a power law.
The fiducial model parameters therein gave fi,. = 0.03r~%3f, cor-
responding to a surface density profile X(r) oc * between the in-
ner and outer radii which were set to r; = 2.5 and r, = 50, re-
spectively. By comparison, the GRMHD titled flow simulations of
Fragile & Meier (2009) also give X(r) oc 7° at large radii, but then
smoothly break at the bending wave radius to a much steeper de-
pendence. The most relevant simulation to this paper is the case
with a, = 0.5 as this is likely closest to the spin of XTE J1550—564
(e.g. Davis, Done & Blaes 2006; Steiner et al. 2011). This has
surface density parameters (equation 2; see fig. 4 in IDF09) of
rw = 8.1 (corresponding to h/r = 0.21), k = 5, » = 7.6 and
¢ =0.

In Figs 1(a) and (b), we plot these two different surface density
prescriptions and their resulting viscous frequencies, with the power
law shown by the black solid line and the broken power law shown
by the red dashed line. In the case of the broken power law, we
choose the normalization X = 33.3 to ensure that both assumptions
become consistent with one another at large radii. Fig. 1(c) shows
the PSD resulting from the two different prescriptions. The new
(and more physically realistic) surface density prescription predicts
much less noise at high frequencies than the previous model, where
the surface density remained constant down to the innermost radii.
This distinction is even more striking as our assumption that the
MRI noise power is constant per decade in frequency (as opposed
to radius) means that the regions with r < r,, have more MRI
power generated per decade (in radial extent) than those with r >
vy Yet even this additional power at small radii is not sufficient
to give enough high-frequency power to match that seen in the
data.

To retrieve sufficient high-frequency power requires A = 1 rather
than 7.6 [green dot—dashed lines in Figs 1(a) and (b)]. This gives
a more gradual drop-off in surface density, leading to a less severe
transition in viscous frequency at the bending wave radius and hence
more high-frequency power [green points in Fig 1(c)]. We discuss
the physical implications of this in more detail in Section 5. For
now, however, we use A = 1 for our fiducial model.
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Figure 1. Top (a): surface density as a function of radius for the fiducial
model parameters in ID11 (solid black line), simulations of a misaligned
accretion flow around a 10 M) black hole with a, = 0.5 (red dashed line)
and the fiducial model parameters we choose for this paper (green dot—
dashed line). The red dashed line is calculated using equation (2) with A =
7.6,k =5,¢ =0and ryy = 8.08 (the parameters which best fit the simulation
data). For the dot—dashed green line, A = 1 with all other parameters the
same. Middle (b): the viscous frequency as a function of radius resulting
from assuming the surface density to be given by the corresponding line in
the top panel. Bottom (c): the PSD predicted using the surface density given
by corresponding lines in the top panel.

2.4 The fiducial model

Following the discussion in Section 2.1, we use model parameters
Yo =333, rpy =81,k =5, 1 =1and ¢ = 0. We also set r; =
2 and y = 4 but note that the new assumptions for surface density
coupled with the new boundary condition mean the model is now
much less sensitive to the parameter r; than its predecessor in ID11.
Fig. 2(a) shows a 10-s segment of the light curve created using these
assumptions and with r, = 50. We use Ny, = 15 (i.e. 15 annuli per
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Figure 2. Top (a): a 10-s segment of the light curve calculated using the
fiducial model parameters and r, = 50. Bottom (b): the o—flux relation for
the above light curve. We see this is linear as is seen in the data.

decade in viscous frequency) with 2?2 time-steps, giving a duration
of 4096 s (similar to a typical RXTE observation) for a time bin of
dr = 9.7 x 10~*. Fig. 2(b) confirms that this light curve has the
linear o—flux relation implied by its skewed nature. The PSD of this
light curve is represented by the red points in Fig. 1(c).

We calculate the QPO as in ID11, but we briefly summarize
this here for completeness. The QPO fundamental frequency is
set to the average (over the 4096 s duration) precession frequency
calculated from equation (1). In principle, we can calculate the
width of the QPO from the fluctuations in frequency which result
from fluctuations in surface density. However, these only set a lower
limit to the width of the QPO since it can also be broadened by other
processes (ID11), so we leave this as a free parameter. We can in
principle predict the harmonic structure in the QPO light curve by
a full Comptonization calculation of the angle-dependent emission
from a precessing hot flow (Ingram, Done & Zycki, in preparation).
Until then, we simply allow the normalizations of the harmonics to
be a free parameter but fix their width so that they have the same
quality factor as the fundamental (apart from the subharmonic which
is free; Rao et al. 2010). We use the method of Timmer & Koenig
(1995) to generate a light curve from these narrow QPO Lorentzians
and add this to the light curve already created for the broad-band
noise.

Fig. 3 shows the full PSD given by the fiducial model parameters
with r, = 50 (black), 20 (red) and 10 (green). For clarity, we set
the normalizations of the QPO harmonics to zero, and increase the
normalization and quality factor of the fundamental as r, decreases
to match with the data. This captures the essence of the observed
evolution of the PSD in terms of a decreasing truncation radius.

© 2011 The Authors, MNRAS 419, 2369-2378
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Figure 3. The predicted PSD for the fiducial model parameters with r, =
50 (black), 20 (red) and 10 (green). For clarity, the normalization of the fun-
damental is set to increase as r, reduces and all the other QPO components
are normalized to zero.

3 FITTING TO DATA

The main problem with power spectral fitting is that we can only
calculate the power spectrum of an infinitely long light curve which,
of course, can neither be observed nor simulated! The discreet ver-
sion of the power spectrum is the periodogram which provides an
estimate of the power spectrum, but a very poor one with large,
non-Gaussian errors. There are two main techniques for smooth-
ing the periodogram in order to improve the statistics (i.e. smaller
and more Gaussian errors). First, the light curve can be split up
into shorter segments with the PSD estimate given by averaging the
periodogram over all segments. Secondly (or additionally), the lin-
early sampled PSD can be averaged into logarithmic/geometrically
spaced frequency intervals (e.g. van der Klis 1989).

In ID11, we averaged the logarithm of the periodogram in order
to get a PSD estimate which, for active galactic nuclei or any red
noise power spectra, gives an unbiased estimate with errors close to
Gaussian for a small amount of smoothing compared with averaging
the periodogram linearly (Papadakis & Lawrence 1993). However,
the BHB power spectra are better described by band limited noise,
with high d’> P(f)/d f2. In this case, averaging the logarithmic peri-
odogram gives a biased estimator [because the bias is proportional
to d’>P(f)/df?; Papadakis & Lawrence 1993]. Because of this,
we experienced some statistical difficulties, the most obvious be-
ing apparent overfitting with reduced y? falling well below unity
(indicating a good fit) for parameters which have a high rejection
probability. Here, instead we average the periodograms linearly and
test to see how reliable x? is as a measure of goodness of fit in
this case. This also has the added advantage that we can compare
to the white-noise-subtracted PSD from the data, whereas, because
logarithmic power must be positive definite, we previously had to
add white noise to the model.

We split each simulated model light curve of 40965 into 32
segments each of duration 128, so the lowest frequency we can
resolve is 1/128 Hz. We average these at each linearly spaced fre-
quency bin, j, to get Ppoq(f;) and the dispersion around this mean
APro(fj). We then re-bin the result in the same way as the data
in geometrically separated frequency bins, f;, so that the model
POWer i Poa(f1) = [ Proa(f;)/ A P2og(f)] AP2u(f) and its
propagated error is A Pyoa(fy) = [Z(I/A wad(ff))} 71/2, where
the sums are taken over all the f; which fall inside the bin width of
. The lowest geometric frequency bin typically only contains one

¥T0C ‘12 anﬁnv uo /(,Ie,lqﬂ AJ!SJSA!Un weying e /BJO'SBUJI’IO[pJO}XO'SEJULU//ZduLI wioJ} pepeojumod


http://mnras.oxfordjournals.org/

2374  A. Ingram and C. Done

linear frequency bin, so is an average over only 32 points. While
this would not be Gaussianly distributed for red noise (Papadakis &
Lawrence 1993), our noise power spectra at these low frequencies
are typically white, so this is approximately Gaussian. At higher
frequencies, the PSD is made from averaging many more estimates,
so is again approximately Gaussian. Thus, we should get a good
estimate for the best fit by minimizing x> between the model and
data using

2 Z [Puod(f1) = Pons(f1)]?
7 APr?\od(fJ) + APozbs(fJ)’

where Pops(f;) is the PSD of the data, and APgu(f;) is the prop-
agated error from the (linear) averaging of the multiple segments
and geometric re-binning. For the data, the number of segments
depends on the observation length rather than being fixed as in the
model. For our light curves, this gives 41, 26, 13, 14 and 14 seg-
ments for observations 1-5, respectively. The rather small numbers
of segments in observations 3-5 mean that the errors on the data
at the lowest frequencies may only be approximately Gaussian, but
the total error is given by the sum of those from both the model and
the data, so the fit statistic should remain close to a x 2 distribution,
so minimizing x? should indeed return the best fit.

We have coded the entire model into xspec for public release as
PROPFLUC, described in detail in Appendix A.

(C)]

4 EXAMPLE FITS TO XTE J1550-564

We use the same data as in ID11 so that we can directly com-
pare results, i.e. RXTE data from the 1998 rise to outburst of XTE
J1550—564 (Sobczak et al. 2000; Wilson & Done 2001; Remillard
et al. 2002; Altamirano 2008; Rao et al. 2010) from Obs IDs: 30188-
06-03-00, 30188-06-01-00, 30188-06-01-03, 30188-06-05-00 and
30188-06-11-00 (hereafter observations 1-5, respectively). We con-
sider energy channels 36-71 (i.e. 10-20keV) in order to avoid any
direct contamination from the disc emission.

We fit each observed PSD to derive the parameters of the
smoothly broken power-law surface density. We assume that the
shape of the surface density stays constant across all data sets, but
its normalization X, can change. We also allow the bending wave
radius to be a free parameter, ry,, = 3(h/r)~*3a?° (where h/r is the
scaleheight of the flow). As we have fixed the spin, the best-fitting
value of ry,, gives us an estimate of the scaleheight of the flow
which may change through the transition due to the increase in seed
photons from the disc cooling the flow. The inner radius of the flow
is tied across all the data sets, and we fit for r,. The remaining free
parameters which determine the broad-band noise are the level of
MRI fluctuations generated over each decade in frequency, F,, and
the emissivity index, y (held constant across all five observations).

While xspec can fit the model to the five PSD simultaneously,
this is very slow. Instead, we used trial and error to set values of the
parameters which are tied across all the data sets and then fix these
to fit the remaining parameters for each PSD individually.

4.1 Fit results

The data and best-fitting model PSD are shown in Fig. 4. These give
a reasonable reduced x? value of 1.09 (764.6 for 704 degrees of
freedom), unlike ID11. We check the goodness of fit a posteriori by
calculating the rejection probability (Uttley, McHardy & Papadakis
2002; Markowitz et al. 2003). We do this by taking the minimized
x2 value which tells us about the agreement between the PSD
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Figure 4. Best-fitting PSDs along with data points for observations 1-5
(top to bottom, respectively). The rejection probability, Prej, and truncation
radius, r,, are included in each plot. The rest of the best-fitting physical
parameters are included in Table 1.
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Figure 5. Distribution of x,f values calculated using the best-fitting model
parameters for observation 4. The green line illustrates that this is a nearly
Gaussian distribution. The red dashed line picks out the x> value for this
observation and we see that although it is larger than the mean sz value,
it still lies believably within the distribution, meaning we can be confident
that the model fits.

estimate for the observed data, Puus(f), and that for one particular
realization of the model, Pypo(f). We then simulate many more
(1000) realizations with the same model parameters in order to
calculate many values of

2 Z [Pmod(f) - Pk(f)]2

= , (10)
AP, +AP?

;=

f
where Pi(f) is the PSD estimate for the kth realization. The rejec-
tion probability, Py, is given by the percentile of x? values which
are smaller than 2. This does not assume that the errors are Gaus-
sian, so is more strictly accurate as it assesses the likelihood that
Poys(f) does not belong to the distribution which Pp,4(f) and each
P(f) belong to. We derive Pj = 4, 62, 22, 77 and 7 per cent for
observations 1-5, respectively. The lowest values of Py obviously
imply a very good fit but even the higher values are still acceptable.
Fig. 5 shows the distribution of x7 values from the P, calculation
(black stepped line) using the best-fitting parameters for observa-
tion 4. The red dashed line shows the x? value for this observation
and we see that although it is larger than most x values, it still lies
believably within the distribution. We also plot (green solid line) a
Gaussian with the same mean, standard deviation and normaliza-
tion as the distribution and we see very good agreement between
the two. This confirms that the PSD estimate we use does indeed
give (approximately) Gaussian errors and therefore x? is a reliable
measure of goodness of fit.

Table 1 shows all of the best-fitting physical parameters. Some of
these parameters are very similar to those derived from the previous
model fits in ID11, e.g. the truncation radius moves from r, = 68 to
13, while F,,, increases throughout the transition. However, our new
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Figure 6. The red dashed line is the PSD predicted using the fiducial model
parameters with r, = 50 (i.e. A = 1) whereas the black dashed line is for
A = 7.6 with all other parameters the same. For the green solid line, we
use the same parameters as used for the black line but we have changed the
model by assuming the annulus containing ryy, to be more variable than the
other annuli. We see we can recover the amount of high-frequency power
required to match the observations using this assumption.

parametrization means that we can directly explore the change in
bending wave radius, ry,,, and normalized surface density ¥,. The
bending wave radius increases, implying that the flow scaleheight,
hlr, is collapsing. This makes sense physically as the decreasing
truncation radius means that the flow is cooled by an increasing
number of seed photons, so the electron temperature decreases. The
spectra also show that the optical depth increases (as is also implied
by the increasing normalized surface density). This increases the
coupling between electrons and ions, so the ion temperature also
decreases (Malzac & Belmont 2009). The flow is held up (at least
partly) by ion pressure, so the scaleheight of the flow collapses.

5 DISCUSSION

‘We have improved upon the model of ID11 by including a surface
density profile which has the same shape as predicted by GRMHD
simulations. We obtain an excellent fit to data for five observations,
and the evolution of the best-fitting parameters is self-consistent.
However, we require the surface density interior to the bending
wave radius to drop-off as 7* with A ~ 1, where as the simulations
predict A =& 7 (see Fig. 1). The most likely reason for this apparent
discrepancy is that the torque created by the misalignment between
flow and black hole angular momenta not only creates a drop-off
in surface density, but also generates extra turbulence which we do
not account for in our model. Because the surface density sets the
emissivity, we can still reproduce the observations by overpredicting
the surface density at small r to compensate for underpredicting
the intrinsic variability. In Fig. 6, we replot the predicted PSD for
X = 7.6 (dashed black line) and A = 1 (dashed red line) without

Table 1. Best-fitting physical parameters for observations 1-5. A = symbol indicates that

the parameter has been fixed.

Obs %o ¢ i To hir (row) Far Y

1 5.43 68.0 0.41(4.6) 0.32

2 10.48 45.7  0.27(6.5) 0.31

3 2173 =0 0.9 30 =33 250 0.218.0) 036  5.28
4 30.03 16.3  0.13(12.03) 0.43

5 30.36 12.8  0.12(12.1) 0.48

© 2011 The Authors, MNRAS 419, 2369-2378
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errors for clarity. For the green solid line, also plotted without errors,
we have changed the model slightly. We again set A = 7.6 but now
the fractional variability in the annulus containing ry, is higher (by
a factor of 10) than that at all other annuli so as to approximate the
additional turbulence created by the bending waves. We see that it
is possible to qualitatively reproduce the shape of the broad-band
noise using a surface density profile consistent with simulations if
we include this extra assumption.

It is interesting that the green line in Fig. 6 does not have a flat
top between low- and high-frequency breaks as the model generally
predicts, but rather has a ‘bump’ at ~7 Hz and another at ~0.15 Hz.
There are actually many observations of bumpy power spectra such
as this which cannot be well described by the model in its current
state (e.g. Axelsson, Borgonovo & Larsson 2006; Wilkinson &
Uttley 2009). It therefore looks likely that the variability generated
by the MRI is not as uniform as we naively assume, and actually
some regions produce more variability than others, thus giving rise
to a bumpy power spectrum such as the green line in Fig. 6.

6 CONCLUSIONS

We have made some improvements to a model designed to predict
the power spectral behaviour of BHBs in the context of a truncated
disc/hot inner flow geometry which can also explain the energy
spectral evolution. The model uses simple, theoretically motivated
assumptions in order to reproduce the shape and evolution of the
broad-band noise with the extra requirement that the QPO is gen-
erated by Lense-Thirring precession of the entire hot inner flow.
Because the model now assumes a surface density profile consis-
tent with that predicted by GRMHD simulations, we can now gain
more physical insight from the evolution of best-fitting parameters
which reproduce the observed evolution of the PSD. A coherent
picture is now emerging: as the truncation radius, r,, moves in-
wards, the increased number of seed photons incident on the flow
cools it, thus reducing both the electron and ion temperatures, 7.
and T, respectively. The Comptonized emission from the flow is
therefore softer and, in addition to this, the lower ion temperature
gives rise to a lower pressure, meaning that the scaleheight of the
flow, h/r, should collapse. The bending wave radius, which sets the
shape of the surface density, is given by ri, = 3(h/r)*3a? and
therefore increases as h/r collapses. Also, because the volume of
the flow is reducing, the surface density must increase and, by mass
conservation, the infall velocity decreases. When we fit the model
to five observations of XTE J1550—564, we see all of these trends:
r, reduces and ry,, increases as does X, the normalization of the
surface density (and also the inverse of the normalization of the
infall velocity).

It is also worth re-iterating some other successes of the model
first addressed in ID11. The truncated disc geometry fundamentally
predicts an inhomogeneous electron temperature across the radial
extent of the flow and therefore the Comptonized emission from the
flow should actually be inhomogeneous also. Specifically, emission
from large radii should be softer than that from small radii because
the outer regions of the flow can see more seed photons than the
inner regions. This is quite a subtle effect and, due to the degenerate
nature of spectral fitting, it is only now becoming possible to con-
strain inhomogeneous emission from the SED alone (Makishima
et al. 2008; Takahashi et al. 2008; Kawabata & Mineshige 2010).
However, it has long been possible to observe this effect using the
technique of frequency-resolved spectroscopy, which involves con-
straining the SED for a given temporal frequency range. Revnivtsev,
Gilfanov & Churazov (1999) show that the SED of the fast vari-

ability is clearly harder than that of the slow variability. This makes
sense in the truncated disc geometry because the fast variability
predominantly comes from the inner regions which have a harder
spectrum and the slow variability predominantly comes from the
outer regions which have a softer spectrum. Also, a greater number
of photons emitted from the outer regions of the flow will reflect off
the disc than that from the inner regions, meaning that we should ex-
pect a greater reflection fraction for the slow variability than for the
fast variability. This effect is also observed: Revnivtsev et al. (1999)
show that the SED of the slow variability displays much stronger
reflection features than that of the fast variability. The frequency-
dependent time lags between hard and soft energy bands (with hard
lagging soft; Miyamoto & Kitamoto 1989; Nowak et al. 1999) also
follow directly from the idea of an inhomogeneous spectrum be-
cause slow variability generated in the outer regions modulates the
soft spectrum immediately but takes time to propagate down to the
inner regions where it modulates the hard spectrum.

Taking all of this into consideration, it seems apparent that the
model has the capability to explain most of the spectral variability
properties of BHBs. In a future paper (Ingram, Done & Zycki, in
preparation), we will include an energy dependence in order to ex-
plicitly compare the model predictions for different properties such
as the PSD, the SED, the lag spectrum and the frequency-resolved
SED simultaneously. It is important to note that no other geometry
can currently explain anything like the range of different observa-
tional properties that it is possible to explain with the truncated disc
model.

However, although we believe the trends in best-fitting parameter
values to be reliable, their absolute values should not be taken too
seriously. This is because there are a few complexities not currently
included in the model. For example, we currently effectively assume
that the disc is stable, which is not true, at least in the low/hard state
(Wilkinson & Uttley 2009). Although we only consider energies
at which the Comptonized emission dominates, the disc is feeding
the flow and therefore disc variability should propagate to the flow
and modulate the hard emission. This means that the lowest fre-
quencies in the PSD are actually being generated in the disc and
not in the flow, meaning we overpredict the truncation radius, r,.
The main uncertainty associated with the model is that it is unclear
exactly how the disc and flow couple together. Although the most
likely truncation mechanism is evaporation via thermal conduction
(e.g. Liu, Meyer & Meyer-Hofmeister 1997; Rézariska & Czerny
2000; Mayer & Pringle 2007), the details of this process are still far
from well understood and, in particular, numerical simulations of a
truncated disc/hot inner flow configuration are far beyond current
computing capabilities. Whatever the specific nature of the cou-
pling, it seems very likely that the disc will exert a torque on the
flow, especially in a region where the flow overlaps the disc, which
would slow down precession. This means that r, would need to be
smaller in order for the model to reproduce both the QPO and the
broad-band noise. For this reason, we see our best-fitting values of
7, as upper limits rather than definitive measurements.

Still, it is extremely encouraging that this model can produce
an excellent fit to PSD data whilst also having the potential to
qualitatively reproduce many other properties seen in the data.
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APPENDIX A: USING PROPFLUC

We intend to release the model publicly as the xspec local model,
PrROPFLUC. Here we include some tips for anyone wanting to use the
model.

Al Data

We use powspec from xrRoNos in order to create a power spec-
trum from the observed light curve. We set norm = —2, which
means white noise will be subtracted, and choose the minimum
light curve time-step, which is dty,s = 0.390625 x 1072 s for RXTE
data. We set the number of time-steps per interval to 2'° = 32768,
meaning that the duration of an interval is 2"dt,,, = 128s. This
means that a periodogram will be calculated for each interval with
minimum frequency 1/128 Hz and maximum (Nyquist) frequency
1/(2dt,ps) = 128 Hz. The number of intervals per frame should be
set to maximum so that powspec averages over as many intervals
as the length of the observation allows, and we use a geometric re-
binning with a constant factor of 1.045, resulting in 150 new bins.
The resulting binned power spectrum can then be written to a data
file in the form

f.df, P,dP. (A1)
XSPEC, however, is expecting to receive data in the form
Emim Emaxa F(Emax - Emin)v dF(Emax - Emin), (AZ)

where E\;, and E ,,« are the lower and upper bounds of each energy
bin and F is the flux. It is therefore necessary to create a data file
with inputs

fmin’ fmaxa P(fmax - fmin)v dP(fmax - fmin)s (A3)

where fnin and fnax are the lower and upper bounds of each fre-
quency bin. As f marks the centre of a bin and d f is defined such
that fi = f +df and fiun = f — df, this equation can be
rewritten as

f—=df, f+df,2Pdf,2dPdf. (A4)

We then use flx2xsp in order to convert this into a .pha file and
also generate a diagonal response function. The data can now be
loaded into xspEc and, even though the axis on the plots is by default
labelled as flux and energy, it is in fact reading in a power spectrum
as a function of temporal frequency (i.e. the command ip euf will
show frequency multiplied by power plotted against frequency for
both data and model).

A2 Model

The model consists of a FORTRAN program, propfluc.f, and a data
file Imodel_pf.dat. These two files are all that is needed to load
the model using the local model functionality. The model has 18
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Table A1. Summary of model parameters.

Parameter ~ Comments Value for obs 1

1 Sigma0 Normalization of surface density. 5.43
2 rbw Bending wave radius — dictates where X(r) breaks. 4.60
3 kappa Dictates sharpness of the break. =3.0
4 lambda Dictates X(r) for r < rpy. =09
5 zeta Dictates X(r) for r > rpy. =0.0
6 Fvar Intrinsic amount of variability generated per decade in fyisc. 0.32
7 fbmin This is fyisc(ro). It is much easier to set this instead of ry. 0.129
8 ri Inner radius =33
9 sig_qpo QPO width (fundamental). Width of higher harmonics is tied to this. 0.0226
10 sig_subh Width of the subharmonic. This can have a different Q value to the

other harmonics. 0.0283
11 n_gpo Normalization of fundamental (first harmonic). 0.244806
12 n_h Normalization of second harmonic. 0.1706
13 n_3h Normalization of third harmonic. 0.1018
14 n_subh Normalization of subharmonic. 0.0967
15 em_in Emissivity index (i.e. y in the text). 5.281
16 dL The model gives the option to generate a Gaussian error on each point of

the simulated light curve, thus creating white noise. To match a typical RXTE =0.0

observation, this needs to be dL ~ 0.8; however, we recommend setting

this to zero and using white-noise-subtracted data.
17 nn Sets the number of time-steps in the simulated light curve (i.e. the light curve has

a total duration of 2""dr). This must be an integer because the model =220

uses a fast Fourier transform algorithm (Press et al. 1992). The PSD estimate of

the model must be calculated on the same interval as the data (128 s) and

therefore the value of nn used dictates how many intervals are averaged over.
18 Ndec Sets the radial resolution. If this is particularly high, the code is very

slow! Ngec = 15 should be sufficient. The total number of annuli used is =15.0

calculated from this.

parameters, summarized in Table A1, plus xspec always includes a
19th normalization parameter which must be set to (and fixed at)
unity. The simulated light curve is generated using a time-step of
dt = dtoys/4 = 9.76562x 10~ 5. Itis important that this time-step is
short because the Nyquist frequency must be higher than the highest
frequency at which significant variability is generated. The final
power spectrum is calculated using 2'7 steps per interval, meaning
that each interval is 2'7dr = 2"7dtys/4 = 2Pdty,, = 128s. The
simulated power spectrum is then binned into the same frequency
bins used for the observed power spectrum. For this reason, it is
vital that the periodograms are calculated on the same interval (i.e.
128 s) for both model and data; the use of two different intervals
could result in empty bins in the simulated power spectrum which
does not help x?! In Table Al, we see that it is possible for the
user to decide on the length of simulated light curve (parameter 17).
Since the interval length is fixed, this dictates how many intervals
the power spectrum is averaged over. We recommend nn = 22
(32 intervals) for fitting but this does make the code very slow.
Preliminary fitting is best done with nn = 20 (eight intervals) as

this is faster but provides a good enough PSD estimate to work
with. It should be noted that this setting slightly underpredicts the
power but it is a constant offset and so the best fit found using nn =
20 has a higher value for F,, than that found using nn = 22 but
the other parameters are largely unaffected. The main advantage of
using nn = 22 is that x2 gives a much more reliable estimate of
goodness of fit.

The model is difficult to fit, partly because of the stochastic
nature of the power spectrum and partly because of the complicated
relationship between parameters. We recommend finding a good
fit by eye first and fixing a few key parameters before fitting. We
set XSPEC to calculate the gradient in x? numerically rather than
analytically and set the critical Ax? value to 0.1 rather than the
default 0.01. Finally, the third column of Table A1 shows all of our
best-fitting model parameters for observation 1, with a = symbol
indicating that the parameter is fixed.
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