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Abstract. This paper discusses the feasibility of experimental control of the flow
direction of atomic Bose–Einstein condensates in a double-well potential using
phase imprinting. The flow is induced by the application of a time-dependent
potential gradient, providing a clear signature of macroscopic quantum tunnelling
in atomic condensates. By studying both initial-state preparation and subsequent
tunnelling dynamics, we find the parameters to optimize the phase-induced
Josephson current. We find that the effect is largest for condensates of up to a
few thousand atoms, and is only weakly dependent on trap geometry.
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1. Introduction

The creation of superconducting [1] and superfluid [2] weak links has led to the experimental
observation of Josephson effects [3], arising as a result of macroscopic quantum phase
coherence. Josephson weak links are typically created by connecting two initially independent
superconducting or superfluid systems via a barrier with dimensions of the order of the system
healing length. Such junctions lead to a variety of interesting phenomena [4], including dc- and
ac-Josephson effects. Observations in superconductors preceded those in superfluids, due to
the much larger healing lengths, thus enabling easier fabrication of weak links. Evidence for
Josephson-like effects has been observed in 4He weak links [5], and unequivocally demonstrated
for weakly coupled 3He systems [6]. The recent achievement of dilute trapped atomic Bose–
Einstein condensation (BEC) [7] gives rise to a new system for studying Josephson effects. In
particular, such systems enable the investigation of dynamical regimes not easily accessible with
other superconducting or superfluid systems. Remarkable experimental progress has led to the
creation of atomic BEC Josephson junction arrays, in which the harmonically trapped atoms are
additionally confined by an optical lattice potential, generated by far-detuned laser beams. Phase
coherence in different wells was observed by interference experiments of condensates released
from the lattice [8]. In addition, Josephson effects [9] and the control of tunnelling rate have been
demonstrated [10, 11]. Alternative insight into the diverse range of Josephson phenomena can be
obtained by looking at a single Josephson junction arising in a double-well system. This system
has already received considerable theoretical attention, with treatments based on a two-state
approximation [12]–[23], zero-temperature mean field theory [24]–[32], quantum phase models
[33, 34] and instanton methods [35]. Experimentally, a double-well potential may be produced
by adding a blue-detuned laser beam which induces a repulsive Gaussian barrier to a harmonic
trap [36]. Atomic interferometry based on such a set-up has been reported recently [37, 38].
Alternatively, a condensate can be created directly in a magnetic double-well structure [39, 40].

In this paper, we investigate the Josephson dynamics for a phase-imprinted atomic
condensate in a double-well potential under the influence of a time-dependent potential gradient.
We focus on the sensitivity of the Josephson flow direction to the initial-state preparation. In
particular, preparation in the odd-parity energy eigenstate combined with the application of
the potential gradient leads to a flow towards a region of higher potential energy providing a
clear signature of Josephson tunnelling. Flow reversal in context of the Josephson effect is well
known. For example, in a superconducting π junction [41], the addition of a macroscopic phase
difference φ = π across the superconducting weak link leads to reversal of the sign of the current
[42]–[44]. Also a related effect has been predicted for condensates in optical lattices as a result
of the renormalization of the mass in the lattice, based on Bloch wave analysis [45].

The superfluid analogue of a superconducting π junction is a metastable π-state, recently
observed in 3He weak links [46]. Atomic BEC junctions behave similarly to those of 3He-B.
Thus, although superconducting Josephson junctions can be mapped onto a rigid pendulum,
atomic condensate tunnel junctions map onto a non-rigid pendulum [14]–[16], thus exhibiting
richer oscillation modes. For example,π oscillations arise in such systems [14]–[17], [34]. For an
atomic condensate in a double-well potential,π-oscillation modes can be produced by imprinting
a phase shift of π between the two wells. We study how these modes behave under the action
of an external potential difference.

The paper is structured as follows. Section 2 introduces our main formalism, and briefly
reviews the low-lying states of a condensate in a double well, whereas section 3 discusses the
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dynamics associated with particular initial states, including the π-oscillation modes, under the
addition of a time-dependent potential gradient. The experimental observation of controlling the
Josephson flow direction by phase imprinting in current BEC set-ups is analysed in section 4,
with a short conclusion in section 5.

2. Time-independent properties of a BEC in a double-well potential

At low temperatures, the behaviour of a Bose–Einstein condensate is accurately described by
a non-linear Schrödinger equation known as the Gross–Pitaevskii (GP) equation. Throughout
this paper, we work in dimensionless (harmonic oscillator) units, by applying the following
scalings: space co-ordinates transform according to r′

i = a−1
⊥ ri, time t′ = ω⊥t, condensate

wavefunction ψ′(r′, t′) =
√
a3

⊥ψ(r, t) and energy E′ = (h̄ω⊥)−1E. Here a⊥ = √
h̄/mω⊥ is the

harmonic oscillator length in the transverse direction(s), where ω⊥ is the corresponding trapping
frequency. We thus obtain the following dimensionless GP equation (henceforth primes are
neglected for convenience) describing the evolution of the condensate wavefunction (normalized
to unity)

i∂tψ(r, t) = [− 1
2∇2 + V(r) + g̃|ψ(r, t)|2]ψ(r, t). (1)

The atom–atom interaction is parametrized by g̃ = g/(a3
⊥h̄ω⊥), where g = N (4πh̄2a/m) is the

usual three-dimensional scattering amplitude, defined in terms of the s-wave scattering length a,
and N is the total number of atoms (mass m). The total confining potential (see figure 1(a)) is
given by

V(r) = 1
2 [(x2 + y2) + λ2z2] + h exp[−(z/w)2] + δz. (2)

The first term describes a cylindrically symmetric harmonic trapping potential, with a trap aspect
ratio λ = ωz/ω⊥. The trap is spherical for λ = 1, ‘cigar-shaped’ for λ < 1 and ‘pancake-like’ for
λ > 1. The second term describes a Gaussian potential of height h generated by a blue detuned
light sheet of beam waist w in the z direction, located at z = 0. In equation (2), the contribution
δz corresponds to an additional linear potential of gradient δ pivoted at the centre of the trap. For
δ > 0, the right well obtains higher potential energy and the trap centre is additionally shifted
into the z > 0 region; however, this shift is negligible for the parameters studied throughout this
work, and will be henceforth ignored.

The eigenestates of the double-well condensate are calculated by substituting ψ(r, t) =
e−iµtφ(r) and solving the resulting time-independent equation as discussed in [32]. As is
well-known, sufficiently large interactions lead to the appearance of a loop structure (see e.g.
[20, 47]). The loop structure for the first excited state is shown in figure 1(b). The corresponding
wavefunctions for ground and first excited state are shown in figure 1(c) for δ = 0. The three
eigenstates are (i) a symmetric ground state �g with equal population in both wells, (ii) an anti-
symmetric state with equal population in both wells and a phase difference of π across the trap
centre, which we shall henceforth refer to as �e and (iii) two higher energy ‘self-trapped’ states
with most of the population in either the left (dotted) or the right (dashed) well [13]–[15], [32].
This paper is mainly concerned with states �g and �e and superpositions thereof. In particular,
we will show that the dynamics of excited states in the presence of a time-dependent potential
δz are remarkably different from that of the ground state, and offer a clear demonstration of
Josephson tunnelling.
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Figure 1. Double-well potential with corresponding eigenenergies and
eigenstates. (a) Schematic geometry of the total confining potential in the
axial direction for a Gaussian barrier (height h = 4h̄ω⊥, waist w = a⊥) located
at the centre of the trap: ——, symmetric (δ = 0); - - - -, asymmetric (δ =
0.5(h̄ω⊥/a⊥)). (b) Eigenenergies for the double well as a function of the potential
gradient δ indicating the self-interaction energy, EC, and the Josephson coupling
energy, EJ. The horizontal dotted grey line corresponds to the zero energy
of the two-state model. The parameters used here are g̃ = π and spherical
trap geometry (λ = 1) corresponding to EC = 0.220h̄ω⊥ and EJ = 0.102h̄ω⊥.
(c) Corresponding eigenstates of (b) at δ = 0: (i) ground state (shown by lower
—— in (b)), (ii) anti-symmetric first-excited state with equal population in both
wells (—— ), (iii) first excited state with unequal populations, having more
population in the left well (· · · · · ·) or in the right well (- - - -).

3. Tunnelling dynamics under a time-dependent magnetic field gradient

The main theme of the present study is to consider the tunnelling of states with initial phase
φ = 0 and π, whose symmetry is broken by the addition of a time-dependent potential gradient
which increases linearly. The potential gradient is applied at t = 0, i.e. δ = Rt for t > 0 (dashed
line in figure 1(a) showing the right well with higher potential energy than the left).

Before considering the effect of asymmetry, we review the behaviour of the symmetric
double well. The solution of the GP equation in a double-well potential can be mapped onto a
two-state model [12]–[32] by writing the wavefunction as a superposition of states localized in
the left and right wells, ψ	(r) and ψr(r), i.e.

�(r, t) = c	(t)ψ	(r) + cr(t)ψr(r). (3)
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The Hamiltonian for this two-state system is

H = 1

2

[−
 + ECN −EJ

−EJ 
− ECN

]
, (4)

whereN = (N	 −Nr)/N is the fractional population difference between the left and right well,

 is the potential energy difference between the left and right wells (
 = αδ, where α is a
numerical factor determined numerically from the GP solution), EC = g̃〈ψ	,r||ψ	,r|2|ψ	,r〉 is
the self-interaction energy, EJ = −2〈ψ	|(− 1

2∇2 + Vδ=0)|ψr〉 is the Josephson coupling energy.
The energy splittings EC and EJ are indicated in figure 1(b). By writing ci =

√
Ni exp(iφi) and

defining a relative phase φ = φ	 − φr, the two-state Schrödinger equation can be rewritten in
terms of the coupled equations

Ṅ = EJ

√
1 −N2 sin φ and φ̇ = 
−NEC − EJN√

1 −N2
cosφ. (5)

To find the dynamics ofN and φ, one needs to know the values ofEC,EJ and
 for any particular
barrier height, asymmetry and non-linearity. Below (figure 3) we confirm that the two-state model
is an excellent approximation to the full solution of the Schrödinger equation as long as |δ| is
not too large.

If a system is initially prepared in one of its eigenstates, �g or �e, it will remain in that
same state and there is no tunnelling current. This is shown in figure 2(a), where we plot the
fractional relative population N as a function of time with δ = 0 for t < 0. However, if the
system is prepared in a superposition of �g or �e with a π phase difference, i.e.

�π± = 1√
2
(�g ±�e), (6)

the population tunnels back and forth (see figures 2(b) and (c)) and the relative phase between
the two wells oscillates around a mean value of π (π oscillations [14]–[17], [34]). The amplitude
of the π oscillations depends on the ratio � = EC/EJ [15]–[17], [26, 28, 29]. By solving the
two-state coupled equations (5) with initial conditions N(0) = 0.994 (determined from the GP
solution for ψπ−) and φ(0) = π, we find a critical ratio,�c ∼ 1.80. For� < �c, the population
oscillates between ±N(0), as in figure 2(b) (t < 0), whereas for � > �c the oscillations in N
are suppressed (figure 2(c) (t < 0)). Note that in figure 2(b), we have shifted the time origin by
a quarter of an oscillation period such that N = 0 at t = 0.

The effect of introducing an asymmetry depends sensitively on the initial state. For �g,
the potential gradient induces a Josephson current to the left (lower potential energy region),
whereas for �e flow occurs to the right (higher potential energy) (figure 2(a)). The situation
is more complex for superposition states, such as �π±. For � < �c, if the potential gradient
is turned on rapidly (compared with the period of the π oscillations), the oscillations in N are
suppressed tending towards a mean N close to its initial value (figure 2(b)). For � > �c, the
induced flow is very different for �π+ and �π−. For �π+ most of the population remains self-
trapped in the higher energy well, whereas for�π− a large fraction of the population flows from
the lower to the upper well.

The parameters used throughout the rest of the paper, g̃ = π and a spherical trap geometry
(λ = 1), giveEC = 0.220h̄ω⊥ andEJ = 0.102h̄ω⊥, corresponding to the regime,� > �c. In this
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Figure 2. Evolution of fractional population difference N as a function of time
(calculated using the GP equation) without (t < 0) and with (t > 0) a potential
gradient δ = Rt (shown at the top of each figure) for different initial states: (a) a
pure ground �g or first excited �e state with equal populations in both wells. In
this case, tunnelling only arises due to the additional external potential; (b) the
superposition states�π± for g̃ = π/2, corresponding to the regime� < �c (EC =
0.123h̄ω⊥ and EJ = 0.095h̄ω⊥), showing maximum amplitude π oscillations for
t < 0: and (c) the superposition states �π± for g̃ = π, corresponding to � > �c

(EC = 0.220h̄ω⊥ andEJ = 0.102h̄ω⊥). The other parameters used here areλ = 1,
h = 4h̄ω⊥ and R = 2 × 10−3(h̄ω2

⊥/a⊥). Time is measured in units of ω−1
⊥ .

regime, the experimental preparation of�π± from the ground state is more difficult as it requires
a transfer of population in addition to imprinting a phase difference of π. However, as we will
see in section 4, straightforward phase imprinting can generate a superposition that contains a
large fraction of �π±.

The tunnelling behaviour of different initial states such as �g and �e under a potential
gradient can be explained in terms of the time-independent solutions [32]. These can be plotted
as a function of time via their dependence on the time-dependent potential gradient δ = Rt.
The time evolution and the corresponding time-independent population difference for state �e

is shown in figure 3(a), from which it is found that, for slow velocities, the system follows the
eigenstate almost adiabatically. The initial dynamics discussed above is also well described by
the two-state model [12]–[23] (grey line in figure 3(a)). However, for larger gradients, the full
potential GP calculation predicts that the atoms return to the lower (or left) potential well, as
illustrated by the density snapshots in figure 3(b), whereas the two-state model suggests they
remain in the upper (right) well. This breakdown of the two-state model occurs because it does
not take higher-lying modes into consideration [32]. This is an important consideration for any
experimental demonstration of macroscopic flow to the higher well.

The flow towards the right (higher) potential well, shown in figure 3(b), provides a clear
macroscopic demonstration of quantum tunnelling. To consider whether this effect is observable
in current experimental set-ups, we have studied the effect of varying the non-linearity, trap
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Figure 3. (a) Evolution of fractional population differenceN as a function of time,
for a system initially prepared in state�e based on the Gross–Pitaevskii equation
(black line) and the two-state model, equation (5) (grey line) with initial condition
N(0) = 0 and φ(0) = π. The fractional population differences for the eigenstates
are also plotted for the ground (——), first excited (- - - -) and second excited
states (· · · · · ·). Here h = 4h̄ω⊥, λ = 1, g̃ = π and the potential gradient δ = Rt

increases at constant rate R = 10−3(h̄ω2
⊥/a⊥). (b) Snapshots of the evolution of

the density distribution for case (a) when (i) t = 0, (ii) 100, (iii) 300 and (iv) 800
in units of (ω−1

⊥ ). The population of both wells is initially equal (t = 0). As the
gradient is increased in (ii) and (iii), population starts being transferred towards
the right (z > 0) (upper well). Increasing the asymmetry beyond a threshold
value leads the population to be once again transferred to the left (z < 0) (lower
well)—not shown explicitly here. Eventually, (iv), a transition to the second
excited state occurs (d) (see movie).

geometry and the time dependence of the ramp. Note that, the effect of interactions has also
been considered in [27], with the effective interaction also modified by atom losses [22]. Our
studies reveal that increasing the non-linearity causes a reduction in the amount of initial flow
to the upper well, and thus tends to inhibit the experimental observation (see the next section
for experimental estimates). For example, using the parameters of figure 3 with a non-linearity
10 times larger (i.e. g̃ = 10π) leads to a reduction of the average population imbalance induced
by the applied potential gradient of slightly more than a factor of 2. It is thus natural to ask if other
factors (e.g. modifying initial trap aspect ratio or changing barrier height h) will have the opposite
effect. Enhanced tunnelling has been predicted for ‘pancake’ traps (λ > 1) [28]. Furthermore,
such geometries feature a larger energy splitting between the ground and first excited state,
making them more robust to external perturbations (e.g. thermal [18, 21, 23, 48]). However, the
suppression of tunnelling induced by increased non-linearities cannot be compensated by
changing the geometry. We should further comment on the extent to which the above findings
depend on the rateRwith which the linear potential gradient δ = Rt is applied. Figure 3(a) shows
the dependence for R = 10−3(h̄ω2

⊥/a⊥). If R is increased by a factor of 10, then the maximum
flow to the right well is reduced by roughly a factor of 2. Also flow to higher potential region
can only be observed for approximately one-tenth of the time, unless the gradient is ramped up

New Journal of Physics 6 (2004) 42 (http://www.njp.org/)

http://www.iop.org/EJ/mmedia/1367-2630/6/1/042/f3movie.mpg
http://www.njp.org/


8 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0 125 250 375
t

–1

–0.5

0

0.5

1

N

0 125 250 375
t

(a) (b)

Figure 4. Evolution of fractional population difference N as a function of time
for initial states prepared by phase imprinting (|α| = h̄ω⊥, τ0 = 3ω−1

⊥ ). The grey
and black curves correspond respectively to the absence of a potential gradient (i.e.
symmetric double well), and the addition of a potential gradient δ = R(t − τ1)

increased linearly at rate R = 2 × 10−3(h̄ω2
⊥/a⊥) from time τ1, with this time

indicated by the open circles: (a) α = h̄ω⊥, τ1 = 10ω−1
⊥ and (b) α = −h̄ω⊥,

τ1 = 85ω−1
⊥ . Other parameters as in figure 2(c).

to a particular value and subsequently kept constant. If the gradient is kept constant at the point
of maximum population difference, the population remains trapped in the right upper well, i.e.
macroscopic quantum self-trapping [13]–[15], [49] occurs to a state with higher potential energy.
In this regime, where the gradient does not exceed the value at which the flow is reversed, the
two-state model correctly predicts the behaviour.

4. Experimental considerations

We now discuss the feasibility of observing flow to the upper well using phase imprinting [50, 51].
Starting from the condensate ground state in a symmetric double-well trap, population can be
transferred to the excited states by applying a light-induced potential of the form

Vr(z, t) = α sin(πt/τ0) tanh(z) for t < τ0, (7)

where α and τ0 are constants which we vary. At t = τ0, the potential Vr is suddenly switched off
such that there is a π phase shift between the two wells. This simple phase-imprinting method
does not distinguish between states with similar density and phase profiles such as �e or �π±.
Other more sophisticated methods of preparing the initial state such as two-photon adiabatic
passage [52] could also be explored.

We choose the phase-imprinting parameters such that the amplitudes of the subsequent
number oscillations between the wells in a symmetric double-well potential (i.e. in the absence
of a potential gradient) are minimized. The time dynamics for this case are shown by the grey
lines in figure 4, and essentially correspond to π oscillations with 〈N(t)〉 �= 0, as discussed in
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[14]–[17], [34] and shown in figure 2(c). For an imprinted phase of π, the population oscillates
with most of the condensate in the left well (grey line in figure 4(a)), whereas for an imprinted
phase of −π, the population oscillations are contained within the right well (grey line in
figure 4(b)). In both cases, the addition of the potential gradient at a time τ1 indicated by
the open circles in figure 4, induces a flow to the right or upper potential well (solid lines in
figure 4). Even at the time in the π-oscillation cycle when most of the population is already on
the right well and would subsequently flow back to the left, the addition of the gradient induces
more flow to the right, as shown in figure 4(b). Note that, in this case, the population remains
trapped in the right well until the influence of the second excited state becomes important. If the
correct initial-state parameters are obtained from the full GP calculation, then the results shown
in figure 4 can be reproduced using the two-state model, except for the transition to the second
excited state. However, a full potential calculation is required to correctly predict the initial state
and the dynamics for larger potential gradients, when the two-state model breaks down.

Finally, we discuss typical experimental parameters required for the demonstration of
Josephson flow to the upper potential well. The number of atoms is given by

N = g̃

4π

a⊥
a

= g̃

4πa

√
h̄

mω⊥
. (8)

The total atom number is independent of the trap aspect ratio; therefore, for given dimensionless
non-linearity g̃, large atom numbers can be obtained for light, weakly interacting, transversally
weakly confined systems. For a large number of atoms, one should preferably choose species
with a small value of a

√
m. For example, taking g̃ = 4π and ω⊥ = 2π × 5 Hz, we find N =

3300 (23Na) and 1000 (87Rb). An enhancement of the atom number by a factor of 10 may be
possible by tuning around a Feshbach resonance (e.g. 23Na, 85Rb and 133Cs) [53]. For 7Li and
85Rb, the number of atoms needed to observe such Josephson flow will not probably exceed the
critical value [54] for collapse.

Note that for fixed, reasonably small, non-linearity (g̃ < 10π), such that the effect can be
clearly observed, one needs weak transverse confinement ω⊥ to obtain a reasonable number of
atoms which can be imaged easily. However, smallω⊥ imply long timescales, such that the obser-
vation of this effect becomes limited by other factors (e.g. thermal damping [18, 21, 23, 48],
atom losses [22] etc). If we choose ω⊥ = 2π(5–100)Hz, then the preparation of the �e state re-
quires a time τ0 ∼ 300–150 ms and an applied field gradient R = (10−3–10−2)(h̄ω⊥/a⊥) (which
translates into a Zeeman shift of 1–100 MHz cm−1 ramped up over a total experimental time
texp ∼ 1.5 s–75 ms).

5. Conclusions

We have studied the Josephson dynamics of phase-imprinted condensates in a double-well
potential in the presence of a time-dependent potential gradient. We show that phase imprinting
can lead to a significant change in the flow direction producing a clear signature of macroscopic
quantum tunnelling. We have discussed the range of parameters for optimum experimental
demonstration of this effect, and find that it is only weakly dependent on the aspect ratio of the
trap. However, suppression of the flow for large non-linearities restricts the condensate size to a
few thousand atoms.An attractive candidate for the observation of the flow reversal is the recently
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realized atom chips [55] with a blue detuned laser beam to create the weak link. The observation
of the flow of phase-imprinted states would provide a clear experimental demonstration of the
Josephson effect.
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