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Synopsis

We study theoretically the formation of shear bands in time-dependent flows of polymeric and

wormlike micellar surfactant fluids, focussing on the protocols of step shear stress, step shear strain

(or in practice a rapid strain ramp), and shear startup, which are commonly studied experimentally.

For each protocol we perform a linear stability analysis to provide a fluid-universal criterion for the

onset of shear banding, following our recent letter [Moorcroft and Fielding, Phys. Rev. Lett. 110,

086001 (2013)]. In each case this criterion depends only on the shape of the experimentally measured

rheological response function for that protocol, independent of the constitutive properties of the

material in question (Therefore our criteria in fact concern all complex fluids and not just the

polymeric ones of interest here.). An important prediction is that pronounced banding can arise

transiently in each of these protocols, even in fluids for which the underlying constitutive curve of

stress as a function of strain-rate is monotonic and a steadily flowing state is accordingly unbanded.

For each protocol we provide numerical results in the rolie-poly and Giesekus models that support our

predictions. We comment on the ability of the rolie-poly model to capture the observed experimental

phenomenology and on the failure of the Giesekus model. VC 2014 The Society of Rheology.
[http://dx.doi.org/10.1122/1.4842155]

I. INTRODUCTION

Many complex fluids show shear banding, in which an initially homogeneous shear

flow undergoes an instability leading to the formation of macroscopic bands of differing

viscosity, which coexist at a common shear stress [Ovarlez et al. (2009); Manneville

(2008); Olmsted (2008); Fielding (2007)]. Examples include entangled polymer solutions

and melts [Ravindranath et al. (2008); Tapadia and Wang (2006); Boukany and Wang

(2009a, 2009c)], triblock copolymer solutions [Berret and S�er�ero (2001); Manneville

et al. (2007)], wormlike micellar surfactant solutions [Lerouge and Berret (2010);

Boukany and Wang (2008); Helgeson et al. (2009a, 2009b); Hu et al. (2008); Miller

and Rothstein (2007); Salmon et al. (2003a); Mair and Callaghan (1996, 1997);

Makhloufi et al. (1995)], lyotropic lamellar surfactant phases [Salmon et al. (2003b)],

concentrated suspensions and emulsions [Coussot et al. (2002); Paredes et al. (2011)],

carbopol microgels [Divoux et al. (2010)], star polymers [Rogers et al. (2008)], and

foams [Rodts et al. (2005)].

To date, most studies have focused on the long-time rheological response of these flu-

ids once a steady flowing state has been established. The criterion for shear banding in

this steady state limit is well known [Yerushalmi et al. (1970)]: that there exists a region

VC 2014 by The Society of Rheology, Inc.
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of negative slope in the constitutive curve of shear stress as a function of shear rate for an

underlying base state of stationary homogeneous flow (In fact more recently constitutive

models that couple strain and stress to auxiliary variables such as concentration [Fielding

and Olmsted (2003b); Cromer et al. (2013)] or wormlike micellar length [Fielding and

Olmsted (2004); Aradian and Cates (2005)] have been shown to display permanent band-

ing even in regions of positive constitutive slope.). The steady state flow curve relation

between stress and strain-rate then exhibits a characteristic plateau in the shear banding

regime, signifying a coexistence of bands of differing shear rates _cl; _ch at a common

value Rp of the shear stress (see Fig. 1).

However most practical flows involve a strong time-dependence, whether perpetually

or during the initial startup of deformation before a steadily flowing state has been

established. Accordingly, increasing experimental attention is now being devoted to

time-dependent flow protocols. Shear banding has recently been reported following the

imposition of a step stress [Gibaud et al. (2010); Divoux et al. (2011b); Boukany and

Wang (2009a); Hu et al. (2007); Tapadia and Wang (2003); Hu et al. (2008); Boukany

and Wang (2008); Hu and Lips (2005); Hu (2010)], following a step shear strain [Li and

Wang (2010); Boukany and Wang (2009b); Wang et al. (2006); Fang et al. (2011);

Ravindranath and Wang (2007); Archer et al. (1995); Boukany and Wang (2008)], and

during shear startup [Divoux et al. (2010, 2011a); Boukany and Wang (2009a); Hu et al.
(2007); Ravindranath et al. (2008); Martin and Hu (2012)].

In each case the onset of banding appears closely linked to the presence of a distinc-

tive signature in the shape of the material’s time-dependent rheological response func-

tion. Importantly, although this signature is specific to the particular flow protocol in

question, it appears largely universal for all complex fluids in a given protocol. For

example the onset of shear banding in the shear startup protocol appears closely

related to the presence of an overshoot in the stress startup signal, as we shall elaborate

below.

Motivated by these observations, in a recent letter [Moorcroft and Fielding (2013)]

we derived fluid-universal criteria for the onset of linear instability to the formation

shear bands, one for each protocol in turn: step stress, shear startup, and step strain.

Each criterion depends only on the shape of the experimentally measured rheological

response function for that protocol, independent of the mesostructure and constitutive

dynamics of the particular material in question. These predictions for banding in

FIG. 1. Thin line: constitutive curve for an underlying base state of homogeneous shear flow. Homogeneous flow

is linearly unstable in the dashed region. Thick lines joined by dotted plateau: corresponding steady state flow

curve. For imposed shear rates in the plateau region _c l <
�_c < _ch the steady state is shear banded (see Fig. 2).
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time-dependent flows thus have the same highly general, fluid-universal status as

the widely known criterion for banding in steady state (of a negatively sloping consti-

tutive curve).

Whether or not the time-dependent shear bands predicted here persist to steady state

of course depends on the shape of that underlying constitutive curve for stationary homo-

geneous flow. However an important contribution of this work is to highlight that pro-

nounced banding often arises during a fluid’s transient evolution to a steady flowing

state, given the time-dependent flow signatures that we shall discuss, even in fluids for

which the underlying constitutive curve is monotonic and the eventual steady state

unbanded (Fig. 2).

The present manuscript provides an in-depth discussion of the criteria outlined in

Moorcroft and Fielding (2013), and a thorough numerical exploration of them within two

of the most popular models for the rheology of entangled polymeric fluids: the rolie-poly

(RP) model and the Giesekus model. Accordingly, it addresses conventional polymeric

fluids such as concentrated polymer solutions or melts of high molecular weight; also,

entangled wormlike micelles whose long, chain-like substructures undergo the same

stress relaxation mechanisms as polymers, with the additional mechanisms of chain

breakage and reformation [Cates (1990)]. For convenience we refer to all these materials

simply as “polymeric fluids” in what follows. The reader is referred to a separate manu-

script for a discussion of the same phenomena in the context of a broad class of disor-

dered soft glassy materials such as foams, dense emulsions, onion surfactants and

microgel bead suspensions.

The paper is structured as follows. In Sec. II we survey the experimental and simula-

tion evidence for shear banding in time-dependent flow protocols. In Sec. III we outline a

general theoretical framework for the rheology of complex fluids and give details of the

rolie-poly and Giesekus constitutive models of polymeric flows. In Sec. IV we detail a

linear stability analysis for the onset of shear banding in time-dependent flows, performed

within this general framework. In Secs. V–VII we present our analytical criteria for the

onset of shear banding in step stress, strain ramp, and shear startup protocols, respec-

tively, and give supporting numerical evidence in each case. We also discuss the way our

predictions relate to experimental data. Conclusions and perspectives for further study

are given in Sec. VIII.

Throughout the manuscript we use the term “constitutive curve” to describe the rela-

tion between shear stress and strain-rate for an underlying base state of homogeneous

shear flow. We use the term “flow curve” to describe the relation between shear stress

and applied strain-rate �_c (averaged across the sample) for a steady flowing state. In any

regime of homogeneous steady state flow, these two curves coincide.

FIG. 2. Left: homogeneous flow profile. Right: shear banded flow profile.
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II. EXPERIMENTAL AND NUMERICAL MOTIVATION

A. Step stress

Steady state shear banding is associated with a region of negative slope in the underly-

ing constitutive curve of shear stress R as a function of shear rate _c for an underlying

base state of stationary (though not necessarily stable) homogeneous flow. The composite

flow curve Rð _cÞ for the steady state banded flow then typically displays a flat (or slightly

upwardly sloping) plateau spanning a window of shear rates _cl < _c < _ch at (or spanning

a small window about) a selected value of the stress Rp (see Fig. 1). Accordingly, steady

state banding is relatively easily accessed in an applied shear rate protocol for imposed

rates _cl < _c < _ch, but much more difficult to access under conditions of a constant

imposed stress, which must be tuned to lie in the small window of stress consistent with

this near-plateau in the flow curve.

Nonetheless, following the imposition to a previously unloaded sample of a step stress

in the vicinity of this plateau R � Rp, entangled polymeric materials commonly exhibit

time-dependent shear banding [Boukany and Wang (2009a); Hu et al. (2007); Tapadia

and Wang (2003); Hu et al. (2008); Boukany and Wang (2008); Hu and Lips (2005); Hu

(2010); Boukany and Wang (2009c)]. Its onset appears closely associated with a sudden

and dramatic increase in the shear rate response of the system by several orders of magni-

tude over a short time interval, as it rises from a small initial value to attain its final value

on the steady state flow curve [Ravindranath and Wang (2008); Tapadia and Wang

(2003); Hu et al. (2008); Boukany and Wang (2008); Hu and Lips (2005); Boukany and

Wang (2009c)]. In some cases a return to homogeneous shear is seen as steady state is

neared [Boukany and Wang (2009a)], though this is often complicated by the occurrence

of edge fracture, which can severely limit the determination of true steady state

[Ravindranath and Wang (2008); Inn et al. (2005)]. Whether polymeric fluids exhibit

steady state banding in the step stress protocol therefore remains an open question.

B. Strain ramp

In a strain ramp protocol, shear is applied at a constant rate _c0 for a time t� until some

desired strain amplitude c0 ¼ _c0t� is attained, after which the shearing is stopped. The

limit t� ! 0 and _c0 !1 at fixed c0 gives a theoretically idealized step strain. Indeed in

practice a rapid ramp is often termed a step strain.

The shear stress relaxation function Rðt0Þ as a function of the time t0 ¼ t� t� elapsed

since the end of the ramp is usually reported after scaling by the strain amplitude to give

Gðt0; c0Þ ¼ Rðt0; c0Þ=c0, with Gðt0Þ ¼ limc0!0 Gðt0; c0Þ in the small strain limit of linear

response.

This protocol has been extensively studied experimentally in entangled polymeric

fluids [Venerus (2005); Osaki and Schrag (1971); Osaki and Kurata (1980); Osaki et al.
(1982); Larson (1988); Doi and Edwards (1989); Osaki (1993); Einaga et al. (1971);

Rol�on-Garrido and Wagner (2009); Sanchez-Reyes and Archer (2002)]. The stress

relaxation function typically shows a double exponential form, with time-strain separa-

bility characterised by the so-called “damping function” h for times greater than

some t0 ¼ sk

hðc0Þ ¼
Gðt0; c0Þ

Gðt0Þ for t0 � sk: (1)

Experimental data for this damping function in entangled polymers have been com-

pared extensively with the form predicted theoretically by Doi and Edwards (DE)
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[Doi and Edwards (1978); Osaki et al. (1982); Rol�on-Garrido and Wagner (2009);

Sanchez-Reyes and Archer (2002); Osaki and Kurata (1980)]. Review articles [Venerus

(2005); Osaki (1993)] suggest that a significant proportion of the available experimen-

tal data [Osaki et al. (1982); Archer (1999); Islam et al. (2001); Vrentas and Graessley

(1982)] agrees well with the DE damping function, particularly for moderately

entangled melts or solutions. This has been termed type A behaviour. A small number

of studies, mostly in very weakly entangled fluids, show a weaker initial stress relaxa-

tion in the regime before the time-strain separable domain is reached, leading to a

damping function that lies above the Doi-Edwards prediction (type B behaviour).

Finally, studies [Osaki and Kurata (1980)] of fluids with high entanglement numbers

Z � 50 often report a faster stress relaxation before the time-strain separable domain is

reached so that the experimental damping function lies below that of Doi and Edwards

[Juliani and Archer (2001); Archer (1999); Islam et al. (2001); Vrentas and Graessley

(1982)] (type C behaviour).

Velocimetric studies in this protocol commonly reveal “macroscopic motions” follow-

ing a step strain of sufficiently large amplitude c0 � 1:5 in both entangled polymer melts

and solutions [Li and Wang (2010); Boukany and Wang (2009b); Wang et al. (2006);

Ravindranath and Wang (2007); Fang et al. (2011); Archer et al. (1995)] and wormlike

micelles [Boukany and Wang (2008)]. These macroscopic motions refer to non-zero

velocities vðy; t > t�Þ 6¼ 0 and associated heterogeneous shear zones, i.e., shear bands,

measured locally within the flow cell for some time even once the rheometer plates have

stopped moving after the end of the ramp. Wang and co-workers showed that the same

fluid can exhibit all three types of behaviour A to C above, depending on the extent of

any wall-slip associated with these “macroscopic motions” [Ravindranath and Wang

(2007)]: bulk shear in the sample’s interior is usually associated with type A or B behav-

iour, and wall-slip with type C behaviour.

Theoretically, an instability leading to strain localisation following the imposition of a

step strain was proposed in the context of the DE model by Marrucci and Grizzuti

(1983). The DE theory predicts a maximum in the shear stress Rðt0; c0Þ when it is plotted

as a function of applied strain amplitude c0 for a given time instant t0 � sk after the step.

This maximum occurs at a strain value of c0 � 2 and results in a negative slope for strain

amplitudes beyond this maximum: @c0
Rðt0 � sk; c0Þ < 0. Marrucci and Grizzuti used a

free energy calculation to show that step strains with amplitudes in this regime of nega-

tive slope are unstable to the onset of heterogeneity.

Numerical studies of the rolie-poly model by Olmsted and co-workers have like-

wise reported shear rate heterogeneity during stress relaxation after a fast strain ramp

of sufficiently large strain amplitude [Adams and Olmsted (2009a, 2009b)] consistent

with the predictions of Marrucci and Grizzuti (1983). The form of this heterogeneity is

sensitive to the initial noise conditions, and its onset can show a delay after the end of

the ramp [Agimelen and Olmsted (2013)]. These results are in qualitative accordance

with experiments showing that the onset of macroscopic motions can be delayed after

the end of the ramp [Boukany et al. (2009); Boukany and Wang (2009b); Archer et al.
(1995)], with the delay time related to the time taken for polymer chain stretch to relax

[Boukany et al. (2009); Archer et al. (1995)]. Olmsted and co-workers also showed

that in extreme cases a very large shear rate can develop across a stationary “fracture”

plane so that the local velocity is very difficult to resolve. These results are qualita-

tively similar to experiments showing a “failure” plane over which the shear rate is

extremely high [Fang et al. (2011); Boukany et al. (2009)]. Shear rate heterogeneity

after a fast ramp has also been reported in a two-species elastic network model

[Zhou et al. (2008)].
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C. Shear startup

In shear startup, a constant shear rate is applied to a previously undeformed sample

for all times t > 0. Time-dependent shear banding has been widely reported in this proto-

col in entangled polymer solutions and melts [Ravindranath et al. (2008); Ravindranath

and Wang (2008); Boukany and Wang (2009a); Boukany et al. (2009); Boukany and

Wang (2009b); Tapadia and Wang (2003); Hu et al. (2007); Boukany and Wang

(2009c)], and in wormlike micelles [Hu et al. (2008); Boukany and Wang (2008)]. Its

onset appears closely associated with the presence of an overshoot in the shear stress as it

evolves from its initial value of zero to its final value on the ultimate steady state flow

curve.

In some materials this time-dependent banding is effectively a precursor to true steady

state banding. In such cases it can be viewed as the kinetic process by which these bands

develop out of an initially homogeneous startup flow. Nonetheless, the magnitude of the

time-dependent banding during startup is often strikingly greater than that which remains

in the final steady state [Boukany and Wang (2009a); Ravindranath and Wang (2008);

Ravindranath et al. (2008); Tapadia and Wang (2006); Boukany and Wang (2009c)].

Indeed, it is often sufficiently dramatic as to be accompanied by elastic-like recoil in

which velocities measured locally within the flow cell can even temporarily become neg-

ative [Boukany and Wang (2009a); Ravindranath et al. (2008); Boukany and Wang

(2009c)] such that the fluid is locally and temporarily moving in the direction opposite to

that of the rheometer plate that is driving the shear. Furthermore, pronounced but tran-

sient banding associated with a stress overshoot is also commonly seen even in less well

entangled polymer solutions, for which the final steady flow state is homogeneous

[Boukany and Wang (2009a); Hu et al. (2007); Ravindranath et al. (2008)]. Taken to-

gether, this evidence suggests that qualitatively different instability mechanisms might

underlie shear banding in startup compared with that in steady state. We return to explore

this concept in our discussion of “elastic” versus “viscous” banding instabilities in

Sec. VII below.

Numerical studies have likewise reported time-dependent shear banding associated

with stress overshoot in startup. Adams and co-workers [Adams and Olmsted (2009a,

2009b); Adams et al. (2011)] explored the rolie-poly model of polymeric fluids, which

can have either a monotonic or non-monotonic constitutive curve, depending the value of

the convective constraint release parameter b and the entanglement number Z. Their

work demonstrated that banding and negative-velocity recoil can arise shortly after a

stress overshoot, regardless of whether the underlying constitutive curve is monotonic or

non-monotonic. For a non-monotonic constitutive curve this banding persists to steady

state, though with a much weaker magnitude than during startup. For a monotonic consti-

tutive curve, homogeneous flow is recovered in steady state. Adams et al. (2011) also dis-

cussed carefully the effects of rheometer cell curvature on these phenomena. Banding in

startup has also been reported in simulations of a two-species elastic network model

[Zhou et al. (2008)]; and in molecular dynamics simulations of polymer melts [Cao and

Likhtman (2012)].

III. MODELS

A. Force balance

The stress response of a complex fluid to an applied deformation is dominated by the

behaviour of its internal mesoscopic substructures [Larson (1999)]. For example, a poly-

meric fluid comprises many chain-like molecules, the entanglements between which
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result in topological constraints on their molecular motion. We therefore decompose the

total stress R into a viscoelastic contribution from these mesoscopic substructures, as

well as a familiar Newtonian contribution of viscosity g, and an isotropic pressure

R ¼ GðW � IÞ þ 2gD� pI: (2)

The viscoelastic contribution r ¼ G ðW � IÞ is expressed in terms of a constant elastic

modulus G and a tensor Wðr; tÞ, which describes the local conformation of the meso-

scopic substructures. The dynamics of this conformation tensor in flow is prescribed by a

viscoelastic constitutive equation. In Sec. III B, we introduce the constitutive equations

that we shall use throughout this work. The Newtonian contribution 2gD may arise from

the presence of a true a solvent, or may represent viscous stresses arising from any fast

degrees of freedom of the polymer chains that are not ascribed to the viscoelastic contri-

bution. Here D ¼ 1
2
ðK þ KTÞ where Kab ¼ @bva and vðr; tÞ is the fluid velocity field. The

isotropic pressure field pðr; tÞ is determined by the condition of incompressible flow

$ � v ¼ 0: (3)

Throughout we consider the limit of zero Reynolds number, in which the force bal-

ance condition states that the stress tensor R must remain divergence free

$ � R ¼ 0: (4)

In taking this limit we are assuming that the timescale for inertially driven diffusion of

momentum across the sample is small compared to the fluid’s viscoelastic relaxation

timescale. In practice, any residual spatial heterogeneity associated with the finite time-

scale of momentum diffusion could provide an additional source of seeding for the initial

onset of shear bands, as noted in Sec. IV B below. The interplay of inertia with shear

banding was recently explored by Zhou et al. (2012).

B. Viscoelastic constitutive equation

The rheological response of an entangled polymeric fluid can be modelled from a mi-

croscopic starting point by considering a test polymer chain that has its dynamics later-

ally constrained by topological entanglements with other chains. These entanglements

are then represented in mean field spirit by an effective “tube” [Doi and Edwards

(1989)]. The GLAMM model [Graham et al. (2003)] provides a fully microscopic sto-

chastic equation of motion for such a test chain and its tube. However it is computation-

ally intensive to work with in practice. An approximation was therefore derived by

Likhtman and Graham (2003) who projected the full GLAMM model onto a single-mode

description, known as the RP model. This gives the viscoelastic constitutive equation for

the dynamics of the conformation tensor as

@tW þ v:rW ¼ K �W þW � KT � 1

sd
W � Ið Þ; (5)

� 2ð1� AÞ
sR

W þ bA�2d W � Ið Þ
� �

þ Dr2W: (6)

Here A ¼
ffiffiffiffiffiffiffiffiffi
3=T

p
, where T ¼ tr W denotes the magnitude of chain stretch. The reptation

time sd is the timescale on which a test chain escapes its tube of constraints by

109SHEAR BANDING IN TIME-DEPENDENT FLOWS

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

129.234.252.67 On: Tue, 03 Jun 2014 14:06:32



undergoing 1D curvilinear diffusion along its own length. The Rouse time sR is the much

shorter timescale on which chain stretch relaxes. The ratio of these two relaxation times

is prescribed by the number of entanglements per chain Z [Doi and Edwards (1989)],

with sd=sR ¼ 3Z. Throughout Secs. V–VII, we quote values for sR, with the understand-

ing that the corresponding value for Z is then immediately prescribed in each case as Z ¼
1=3sR in our units for which sd ¼ 1. The parameter b describes the efficacy of so-called

convective constraint release (CCR) events, in which relaxation of polymer chain stretch

also relaxes entanglement points, thereby also allowing relaxation of tube orientation. It

has range 0 � b � 1. The parameter d also describes CCR. Following Likhtman and

Graham (2003) we set d ¼ � 1
2

throughout. Depending on the values of the model param-

eters, the constitutive curve of the RP model can either be monotonic or non-monotonic.

The value of b is difficult to relate directly to experiment and there is no consensus on

its correct value, though a small value was used by Likhtman and Graham (2003) to best

fit experimental data in flow protocols that were assumed to be homogeneous. A more

recent study [Agimelen and Olmsted (2013)] aimed at describing “fracture-like” velocity

profiles after a step strain likewise found a good fit to experimental findings only for

small values of b.

For b ¼ 0 the rolie-poly model in its non-stretching limit sR ! 0 maps on to the

microscopically derived reptation–reaction model for the nonlinear rheology of reversi-

bly breakable wormlike micelles [Cates (1990)], once a decoupling approximation is

employed to express fourth order moments of the tube segment orientation distribution as

products of second order moments.

The diffusive term Dr2W was absent in the original formulation of the model.

Without it, however, the interface between the shear bands is unphysically sharp, with a

discontinuity in the shear rate profile _cðyÞ across it. Furthermore the total shear stress of a

steady shear banded state is not uniquely selected, but depends on the shear history to

which the material has been subject [Olmsted et al. (2000)]. This contradicts experimen-

tal findings, which find a unique plateau stress Rp. The diffusive term lifts this degener-

acy to give a uniquely selected stress as well as a characteristic width to the interface

between the bands that scales as
ffiffiffiffiffiffiffiffi
Dsd

p
[Lu et al. (2000); Olmsted et al. (2000)], though

with a prefactor that can become large near a critical point [Fielding and Olmsted

(2003b)].

A more phenomenologically motivated constitutive equation for concentrated poly-

meric solutions or melts considers an anisotropic drag on polymer chains that are oriented

due to flow. Representing these chains simply as dumbells, Giesekus (1982) began with

the upper convected Maxwell model for dilute solutions and incorporated into it an ani-

sotropy parameter a with 0 � a � 1. The resulting constitutive equation has the form

@tW þ v:rW ¼ K �W þW � KT � 1

k
W � Ið Þ � a

k
W � Ið Þ2 þ Dr2W; (7)

where k is the relaxation time. A diffusive term is again included to properly describe a

shear banding flow.

This Giesekus model admits either non-monotonic or monotonic constitutive curves,

depending on the value of a and the solvent viscosity g. It has been successful in model-

ling the steady state shear banding properties of entangled wormlike micelles [Helgeson

et al. (2009a, 2009b)], and a multi-mode equivalent has shown good agreement with the

experimentally measured steady shear viscosity [Byars et al. (1997); Quinzani et al.
(1990); Burdette (1989); Azaiez et al. (1996)] and damping function [Khan and Larson

(1987)] of polymeric materials.
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C. Flow geometry and boundary conditions

Throughout we consider a sample of fluid sandwiched between parallel plates at

y ¼ f0; Lg, sheared by moving the top plate in the x̂ direction. Translational invariance is

assumed in the x̂; ẑ directions. The fluid velocity is then of the form v ¼ vðy; tÞx̂, and the

local shear rate

_cðy; tÞ ¼ @yvðy; tÞ: (8)

The spatially averaged (or “global”) shear rate is

�_cðtÞ ¼ 1

L

ðL

0

_cðy; tÞdy: (9)

Note that in assuming planar Couette flow and in allowing spatial heterogeneity only

in the main banding direction y, we have eliminated upfront the possibility of a visco-

elastic Taylor Couette instability [Larson et al. (1990)], which might interact with

[Fielding (2010)] the basic banding phenomenon of interest here at very high applied

shear rates. The assumption of planar Couette flow also eliminates any gradients in the

total (polymeric plus solvent) shear stress, which, as discussed in Sec. IV B below,

might act as one possible source of seeding the banding instability of interest here

[Adams et al. (2011)].

We assume boundary conditions at the plates of no-slip for the velocity

v ¼ 0 at y ¼ 0 and v ¼ �_cL at y ¼ L; (10)

and zero gradient for every component of the polymeric conformation tensor

@yWij ¼ 0 at y ¼ 0; L 8 i; j: (11)

The condition of no permeation for the velocity is automatically guaranteed by our

assumption of unidirectional flow.

D. Componentwise equations

In the flow geometry just described, the condition of incompressible flow [Eq. (3)] is

automatically satisfied. The force balance condition of creeping flow [Eq. (4)] demands

that the total shear stress is uniform across the cell @yRxy ¼ 0. The viscoelastic and

Newtonian solvent contributions may however each vary in space, provided their sum

remains uniform

RxyðtÞ ¼ GWxyðy; tÞ þ g _cðy; tÞ: (12)

Componentwise the RP model reduces to a system of three dynamical variables

_Wxy ¼ _cWyy �
Wxy

sd
� 2ð1� AÞ

sR
ð1þ bAÞWxy þ D@2

y Wxy;

_Wyy ¼ �
Wyy � 1

sd
� 2ð1� AÞ

sR
Wyy þ bAðWyy � 1Þ
� �

þ D@2
y Wyy;

_T ¼ 2 _cWxy �
T � 3

sd
� 2ð1� AÞ

sR
T þ bAðT � 3Þ½ 	 þ D@2

y T:

(13)
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In the limit of fast chain stretch relaxation sR ! 0 this reduces to a simpler system of two

dynamical variables

_Wxy ¼ _c Wyy �
2

3
ð1þ bÞW2

xy

� �
� 1

sd
Wxy; þD@2

y Wxy;

_Wyy ¼
2

3
_c bWxy � ð1þ bÞWxyWyy

� �
� 1

sd
ðWyy � 1Þ þ D@2

y Wyy;

(14)

with a constant molecular trace T¼ 3. We shall refer to this “non-stretching” form

below as the non-stretch rolie-poly (nRP) model; and the full “stretching” version of

Eq. (13) as the sRP model.

The Giesekus model likewise reduces to a system of three dynamical variables

_Wxy ¼ _cWyy �
Wxy

k
� aWxy

k
ðWxx � 1Þ þ ðWyy � 1Þ
� �

þ D@2
y Wxy;

_Wxx ¼ 2Wxy _c �Wxx � 1

k
� a

k
W2

xy þ ðWxx � 1Þ2
h i

þ D@2
y Wxx;

_Wyy ¼ �
Wyy � 1

k
� a

k
W2

xy þ ðWyy � 1Þ2
h i

þ D@2
y Wyy:

(15)

We note an important distinction in the structure of these equations. In particular, in the

stretching rolie-poly model Eq. (13) and the Giesekus model Eq. (15), the terms prefactored

by _c are of simple linear form, whereas the terms prefactored by the inverse relaxation

timescales are nonlinear. Conversely in the nonstretch rolie-poly model the terms prefac-

tored by _c are nonlinear, whereas the terms prefactored by the inverse relaxation timescales

are linear. Because the terms prefactored by _c dominate the response of a material to a fast

shear startup and fast strain ramp, this distinction will be important in what follows, partic-

ularly with regards the onset of what we shall term “elastic instability.”

E. General framework

Motivated by the preceding discussion, we now outline a general theoretical frame-

work for the planar shear flow of complex fluids. This will encompass as special cases

the rolie-poly and Giesekus models just described, as well as many other models for the

rheology of complex fluids. It is within this general framework that we shall below per-

form a linear stability analysis to derive fluid-universal criteria for the onset of shear

banding in time-dependent flows [Moorcroft and Fielding (2013)]. Accordingly, the

results that we obtain should apply to all complex fluids that can be described by a rheo-

logical constitutive equation of the highly general form that we propose here.

We begin by combining all dynamical variables relevant to the fluid in question into a

state vector s. In a polymeric fluid this will include all components of the viscoelastic

conformation tensor W discussed above, s ¼ ðWxy;Wxx;Wyy;…ÞT . In soft glassy materi-

als it would also include fluidity variables capable of describing the slow evolution of a

material into a progressively more solid-like state.

Next we define a projection vector p ¼ ð1; 0; 0;…Þ to select out of this state vector the

shear component Wxy of the viscoelastic conformation variable. The total shear stress

Rxy ¼ R is then written

RðtÞ ¼ Gp � sðy; tÞ þ g _cðy; tÞ: (16)

Here and below we drop the xy subscript from the shear component R of the total stress

for clarity.
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In a planar shear flow, the viscoelastic constitutive equation has the generalised form

@t s ¼ Qðs; _cÞ þ D@2
y s: (17)

The choice of constitutive model then specifies the functional form of Q. Depending on

this choice we can obtain, for example, the rolie-poly [Likhtman and Graham (2003)],

Giesekus [Giesekus (1982)], Johnson-Segalman [Johnson and Segalman (1977)] or (for

an infinite dimensional s) soft glassy rheology model [Hebraud et al. (1997)], and many

more besides. The compact notation introduced in this subsection therefore includes the

behaviour in shear of any fluid described in Subsections III A–III D. Crucially, however,

we shall not need to specify Q in order to perform our linear stability analysis for the

onset of banding. Our stability results will therefore be generic to all models described by

a constitutive equation of this highly general form.

F. Units and parameters

Throughout we choose units in which the rheometer gap width L¼ 1; the elastic mod-

ulus G¼ 1; and the terminal viscoelastic relaxation time sd ¼ 1 (RP model) or k ¼ 1

(Giesekus model).

Our choice of time units means that shear rates reported below are actually Weissenberg

numbers ðWi ¼ _csÞ and that times are inverse Deborah numbers (De ¼ t=s). In this way,

the transient “elastic instabilities” that we shall discuss in Sec. VII arise for evolving values

of 1/De at fixed Wi, whereas steady state “viscous instabilities” arise in the regime of non-

linear viscoelastic effects (large Wi) in the limit De!1.

In our nonlinear simulations we shall set the value of the diffusion constant D such

that the interface between the bands has a typical thickness ‘ ¼ 10�2L, thereby placing

ourselves in a regime far enough from any critical point [Fielding and Olmsted (2003b)]

that the fluid’s intrinsic lengthscales are small compared with the system size and finite

size effects are unimportant. In our linear stability analysis we neglect the diffusive terms

since they do not affect the results for the long wavelength (system size) modes of inter-

est here, which dominate the initial onset of banding.

This leaves as parameters to be explored the solvent viscosity g, the CCR parameter b
(nRP and sRP models), the stretch relaxation time sR, which specifies Z ¼ 3=sR in our

units (sRP model), and the anisotropy parameter a (Giesekus model).

IV. LINEAR STABILITY ANALYSIS

In this section we outline a linear stability analysis to determine whether a state of ini-

tially homogeneous shear flow, which we shall call the underlying “base state,” becomes

unstable to the growth of heterogeneous perturbations that are the precursor of a shear

banded state. Distinct from more conventional linear stability analyses, we are concerned

here with a base state that is time-dependent, comprising the initially homogeneous dy-

namical response of the fluid following the imposition of a step stress, step strain, or

shear startup. Accordingly, our analysis follows previous time-dependent ones by Adams

et al. (2011), Fielding and Olmsted (2003a), and Manning et al. (2007).

A. Equations of motion for heterogeneous perturbations

Working within the general framework set out in Sec. III E, we start by expressing the

response of the system to the imposed flow protocol (step stress, strain ramp, shear

113SHEAR BANDING IN TIME-DEPENDENT FLOWS

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

129.234.252.67 On: Tue, 03 Jun 2014 14:06:32



startup) as the sum of a time-dependent homogeneous base state plus any (initially) small

heterogeneous perturbations

RðtÞ ¼ R0ðtÞ;

_cðy; tÞ ¼ _c0ðtÞ þ
X1
n¼1

d _cnðtÞcosðnpy=LÞ;

sðy; tÞ ¼ s0ðtÞ þ
X1
n¼1

dsnðtÞcosðnpy=LÞ:

(18)

We have added cosine perturbation terms only to be consistent with the boundary condi-

tions in Eqs. (10) and (11) above. The first of these equations lacks the heterogeneous per-

turbations seen in the other two because the total shear stress must remain uniform across

the sample, according to the force balance condition. The time-dependence of the base state

is clearly such that in a step stress protocol R0ðtÞ ¼ R0 ¼ const:; during a strain ramp

_c0ðtÞ ¼ _c0 ¼ const: with _c0 ¼ 0 post-ramp; and during a shear startup _c0ðtÞ ¼ _c0 ¼ const.

Substituting Eq. (18) into Eqs. (16) and (17), neglecting the diffusive terms as noted

above, and expanding in successive powers of the magnitude of the small perturbations

d _cn; dsn, we find at zeroth order that the homogeneous base state obeys

R0ðtÞ ¼ Gp � s0ðtÞ þ g _c0ðtÞ;
_s0 ¼ Qðs0; _c0Þ:

(19)

At first order, the heterogeneous perturbations obey

0 ¼ Gp � dsnðtÞ þ gd _cnðtÞ;
_dsn ¼ MðtÞ � dsn þ qd _cn;

(20)

in which M ¼ @s Qjs0; _c0
and q ¼ @ _cQjs0;_c0

. These two linearised equations can be com-

bined to give

_dsn ¼ PðtÞ � dsn; (21)

in which

PðtÞ ¼ MðtÞ � G

g
qðtÞ p: (22)

We neglect terms of second order and above.

In what follows our first objective will be to determine whether at any time t the heter-

ogeneous perturbations d _cn; dsnðtÞ have a negative or positive rate of growth, respectively

indicating linear stability or instability to the onset of shear banding. Our second objec-

tive is to relate the onset of growth in these heterogeneous perturbations, i.e., the onset of

shear banding, to any distinctive signature in the shape of the experimentally measured

rheological response function as specified by the evolution of the underlying homogene-

ous base state in any given protocol.

We shall tackle these objectives using three different methods that we cross-check

against each other. First, we denote by xðtÞ the real part the eigenvalue of PðtÞ that has

the largest real part at any time t. A positive xðtÞ strongly suggests that heterogeneous
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perturbations will be instantaneously growing at that time t. This concept of a time-

dependent eigenvalue must, however, be treated with caution [Schmid (2007)]. Therefore

second, and better, we directly integrate the linearised Eq. (21) using an Euler time-

stepping method, carefully converged with respect to reducing the timestep. We examine

the time-evolution of the heterogeneous perturbations thereby calculated, to see whether

at any instant they are growing or decaying. Finally, we integrate the full non-linear spa-

tio-temporal Eqs. (16) and (17) using a Crank Nicolson algorithm [Press et al. (1992)],

carefully checked for convergence with respect to the size of the time- and space-steps.

The heterogeneous part of the solution of this third method must coincide with the results

of the second method as long as the system remains in the linear regime of small

perturbations.

As written above, the stability matrix P appears to show no dependence on the spatial

lengthscale of the perturbation, as denoted by n. The same comment therefore applies to

the eigenvalues of P. This follows from our having neglected the diffusive term in the

viscoelastic constitutive equation before performing the linearisation. Reinstating the dif-

fusive term would simply transform any eigenvalue x! xn ¼ x� Dn2p2=L2 and act to

damp out any perturbations with a wavelength of order the microscopic lengthscale l or

below. Accordingly the results of our stability analysis apply only to perturbations of

macroscopic lengthscale, which are the ones of interest in the initial formation of shear

bands.

B. Seeding the heterogeneous perturbations

So far, we have discussed how to determine whether heterogeneous perturbations to

the homogeneous base state grow or decay over time. We now consider how such pertur-

bations are seeded into the system in the first place. We identify several different possible

physical mechanisms for this, including (a) residual heterogeneities that remain in the

fluid following initial sample preparation, (b) residual heterogeneities associated with the

finite timescale for the diffusion of momentum across the sample in a shear startup, (c)

true thermal noise, or (d) stress gradients arising from slight rheometer device curvature

in a curved Couette or cone-and-plate geometry, which adds a small systematic perturba-

tion [Adams et al. (2011)] to the componentwise equations that we wrote above within

the assumption of a theoretically idealised planar geometry.

Of these, we model (a) by adding a small heterogeneous perturbation once only,

before the onset of deformation, by initialising dsnðt ¼ 0Þ ¼ qXdn1 for the Fourier modes

of the linearised equations, or correspondingly dsðy; t ¼ 0Þ ¼ qXcosðnpy=LÞ with n¼ 1

in the full spatio-temporal equations (dnm is the Kronecker delta function, equal to 1 if

n¼m and equal to 0 otherwise.). This initial perturbation has magnitude q, which we

treat as a parameter of our study. X is a vector of the same dimension as the vector s.

Each of its components is a random number drawn from a uniform distribution of mean 0

and width 1. We choose to seed only the lowest mode n¼ 1 because it is always the most

unstable (or least stable) one: as discussed above, the diffusive terms render modes of

higher n less unstable (or more stable).

The results presented below follow the method of seeding (a) just described unless oth-

erwise stated. In some cases we also check these results against scenarios (b) and (c), mod-

elled by adding a small heterogeneous perturbation q
ffiffiffiffi
dt
p

Xdn1 at every timestep (of

duration dt) to the Fourier modes of the linearised equations, or correspondingly

q
ffiffiffiffi
dt
p

X cosðpy=LÞ at every timestep in the full spatio-temporal simulation. A new random

vector X is selected at each timestep. In this case we first evolve the system under condi-

tions of no applied flow or loading but subject to this continuous noise, until a statistically
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steady state is reached that correctly captures the fluctuation spectrum of the system in zero

shear. We then evolve the chosen flow protocol, also subject to this continuous noise.

For the linearised equations subject to continuous noise, it is furthermore possible to

perform an upfront analytical average (denoted hi) over infinitely many noise histories by

evolving the variance of the perturbations

@t S ¼ P � Sþ S � PT þ N; (23)

in which SðtÞ ¼ hdsnðtÞ � dsn
TðtÞi and NðtÞ is a diagonal matrix characterising the ampli-

tude of the added noise. Using the linearised force balance condition we then easily

obtain the evolution of the variance of the shear rate perturbations hd _c2
niðtÞ.

Besides assuming the noise to be small compared with the background state, we have

not attempted to estimate the size of the noise in a quantitative way because it would

depend on which source (a)–(d) dominated in practice. We note however that in principle

the amplitude in case (d) could be estimated from the size of the device curvature (often

about 10%), in (c) using the fluctuation–dissipation theorem and in (b) by considering the

finite timescale of momentum diffusion (set by qL2=g where q is the density and L the

gap size) compared to the viscoelastic relaxation time. The amplitude in case (a) would

depend on the loading protocol, and so be harder to estimate. We also remark that in any

numerical evolution of the linearised equations the overall amplitude is technically irrele-

vant, because the assumption of infinitesimal amplitude has already been made in making

the linearisation.

C. Reporting the heterogeneous perturbations

For the linearised system subject to seeding (a) above we report the size of the shear

rate heterogeneity as jd _cn¼1jðtÞ. For a linearised system subject to continuous noise (b),

(c) we report

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hd _c2

n¼1i
q

ðtÞ. In the full nonlinear spatiotemporal simulation we quantify

the degree of heterogeneity by the difference at any time between the maximum and min-

imum values of the shear rate across the cell

D _cðtÞ ¼ _cmax � _cmin: (24)

We often below refer to this quantity as the “degree of banding.”

We have checked that as long as the nonlinear simulation remains in the linear re-

gime of small heterogeneity, the D _c that it predicts evolves in the same way as the per-

turbations calculated in the corresponding linearised calculation, up to a constant

prefactor O(1).

V. RESULTS: STEP STRESS

In this section we present our results for time-dependent shear banding during a sys-

tem’s creep response following the imposition of a step shear stress to a previously

unloaded sample, RðtÞ ¼ R0HðtÞ. We start in Sec. V A by developing an analytical crite-

rion for the onset of banding. In Secs. V B and V C we give numerical results to support

this prediction, in the rolie-poly and Giesekus models, respectively.

A. Criterion for shear banding following a step stress

Here we develop a criterion for the onset of shear banding in the step stress protocol.

We do so by considering an underlying base state of initially homogeneous flow response
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to the applied loading, and the dynamics of small heterogeneous perturbations about this

base state.

Following the imposition of a step shear stress to a previously unloaded sample, it is

easy to show by time-differentiating Eq. (19) subject to the constraint R0ðtÞ ¼ R0 that

any underlying base state of initially homogeneous flow response must obey

d

dt
_s0 ¼ M � Gqp=gð Þ � _s0: (25)

Equations (21) and (22) together show that any heterogeneous perturbations to this

base state must obey

d

dt
dsn ¼ M � Gqp=gð Þ � dsn: (26)

Comparing these two equations, we see that the heterogeneous perturbations dsn obey

the same dynamical equation as the time-derivative of the homogeneous base state _s0.

Combined with the force balance condition [Eq. (4)] and its linearised counterpart, this

means that heterogeneous shear rate perturbations must grow, and shear bands develop

dd _cn

dt

.
d _cn > 0; (27)

in any regime where

d2 _c0

dt2

. d _c0

dt
> 0: (28)

This important result tells us that a state of initially homogeneous creep response to an

imposed step stress becomes linearly unstable to the onset of shear banding whenever its

shear rate signal _c0ðtÞ is simultaneously upwardly curving and upwardly sloping in time

(Alternatively _c0ðtÞ may be simultaneously downwardly curving and downwardly slop-

ing, though in practice we have never seen this numerically.).

How does this time-differentiated creep curve _c0ðtÞ of the underlying homogeneous

base state relate to the time-differentiated creep curve �_cðtÞ measured experimentally by re-

cording the motion of the rheometer plates? Clearly, in any regime before banding sets in

these two quantities coincide by definition. Once shear banding fluctuations have grown

appreciably into the nonlinear regime, however, the two need not coincide. Nevertheless,

in our numerical studies of step stress in the rolie-poly and Giesekus models (and also of

the soft glassy rheology model that we will report in a future publication we have never

observed the globally measured bulk shear rate signal to be strongly affected, in overall

shape at least, by the presence of shear banding within the fluid. Accordingly we can take

Eq. (28) to apply also to the experimentally measured signal �_cðtÞ. Experimentalists should

therefore be alert to the onset of shear banding in any creep experiment where the time-

differential of the measured creep curve simultaneously shows upward slope and upward

curvature: bulk rheological data can be used as a predictor of the presence of shear banding,

even in the absence of accompanying velocimetric data.

B. Numerical results: Rolie-poly model

Having developed an analytical criterion for the onset of shear banding following the

imposition of a step stress, we now present numerical results that support it. Figure 3
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shows the underlying constitutive curve of stress as a function of strain-rate in the rolie-

poly model for a value of the CCR parameter b¼ 0.8. Because this curve is monotonic,

the eventual steadily flowing state is homogeneous.

Nonetheless for imposed stress values in the relatively flat region of this curve, we

might expect shear bands to form transiently as the system evolves towards its steady

state on this ultimate constitutive curve. Motivated by this expectation, we now study

numerically the step stress protocol for the stress values denoted by circles in Fig. 3.

We report first results for the underlying time-dependent base state of homogeneous

creep response to this imposed load, obtained in a numerical calculation in which the

flow is artificially constrained to remain homogeneous. The shear rate evolution _c0ðtÞ in

this case is shown in Fig. 4. Immediately after loading the solvent bears all the applied

stress and _c0ðt ¼ 0þÞ ¼ R0=g. The shear rate then shows a rapid early decay on a

FIG. 3. Steady state constitutive curve in the rolie-poly model. Symbols correspond to steady states from

Fig. 4. Parameters: b ¼ 0:8; g ¼ 10�4; sR ¼ 0:0.

FIG. 4. Shear rate as a function of time for imposed shear stresses R0 ¼ 0:5; 0:55; :::; 0:85 (curves bottom to top

at fixed t) in the (homogeneously constrained) RP model. Dashed lines show regions of linear instability,

@2
t _c0=@t _c0 > 0. Steady states correspond to the circles in Fig. 3. Parameters: b ¼ 0:8; g ¼ 10�4; sR ¼ 0:0.
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timescale that appears numerically to scale as Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g sd=G

p
Þ, but that may not be accessi-

ble experimentally due to inertial effects such as creep ringing that we have neglected

here (Our numerics set any inertial timescales to zero.). Following this fast initial drop,

the shear rate subsequently displays a regime of simultaneous upwards curvature and

upwards slope, shown by dashed lines in the figure. In this regime, this underlying base

state of homogeneous flow is predicted by our criterion (28) above to become linearly

unstable to the onset of shear rate heterogeneity.

Accordingly, in Figs. 5(a)–5(c) we show the results of a fully nonlinear simulation

that now permits heterogeneity in the flow-gradient direction. Inset (a) shows the evolu-

tion of the global shear rate �_cðtÞ for a single stress value R ¼ 0:7, near the point of weak-

est slope of the constitutive curve in Fig. 4. As can be seen, this bulk rheological signal

differs little from that given by our earlier homogeneous calculation: �_cðtÞ � _c0ðtÞ, even

in the regime where bands form and the two signals might be expected to differ. This sup-

ports our claim made above that the theoretical criterion of Eq. (28), which strictly

applies only to the underlying base state _c0ðtÞ, can also be applied to the experimentally

measured bulk signal �_cðtÞ.
Inset (b) shows snapshots of the velocity profiles that accompany the bulk signal of

(a). These clearly exhibit macroscopic shear banding. Plotting the associated degree of

banding D _cðtÞ ¼ _cmax � _cmin as a function of time in (c), we find good agreement with

our prediction (28). Banding sets in once �_c shows upward curvature. The flow then

returns to be homogeneous once �_c exhibits downward curvature during the final stage of

its evolution to steady state.

FIG. 5. Step stress of amplitude R0 ¼ 0:7 in the RP model. (a) Thick line: global shear rate in a homogeneously

constrained system, with the dashed region denoting @2
t _c0=@t _c0 > 0. Dotted line shows corresponding signal

with heterogeneity allowed, �_c. (b) Snapshots of the velocity profile at times corresponding to symbols in (a).

(c) Corresponding degree of banding D_c ¼ _cmax � _cmin. (d) Banding dynamics in the full plane of stress versus

time. A horizontal slice across this plane corresponds to a single run at a constant imposed stress R0, in which

we integrate the linearised equations for the dynamics of the heterogeneous perturbations. Dotted lines are con-

tours of equal jd _cjn¼1ðtÞ ¼ jd _cjn¼1ð0Þ2M for integer M (We show only contours M > �50, thereby cutting off

the final stage of the decay at the right hand side of the graph). The thick dashed line shows where the base state

@ 2
t _c0=@t _c0 ¼ 0, with linear instability to the left of it. The arrow denotes the stress value explored in detail in

the insets (a)–(c). Parameters: b ¼ 0:8; g ¼ 10�4; sR ¼ 0:0; q ¼ 0:1.
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Figure 5(d) summarises the shear banding dynamics of the system across a range of

stress values, in the plane of stress versus time. Any horizontal slice across this plane repre-

sents a single creep run at a constant value of the imposed stress R, as discussed in insets

(a)–(c). The thick dashed line encloses to its left the regime of linear instability to the onset

of banding, in which heterogeneous shear rate perturbations are predicted to grow. This

line is obtained by applying our criterion (28) to the base state signal calculated numeri-

cally in a series of runs at closely spaced values of the imposed stress. To make an explora-

tion of the dynamics of shear banding perturbations feasible in this full plane of stress

versus time, we integrated the linearised equations of motion (26) (Performing the full non-

linear and spatially aware simulation across a wide range of closely spaced stress values

would be much more time consuming computationally.). The dotted lines show contours of

equal jd _cjn¼1ðtÞ ¼ jd _cjn¼1ð0Þ2M for integer M. The region of growth in these perturbations

agrees well with our analytical criterion enclosed by the dashed line. It corresponds to

stress values 0:61 � R � 0:75 around the region of weakest slope of the constitutive curve.

Time-dependent shear banding during a sharp increase in the shear rate response �_cðtÞ fol-

lowing the imposition of a step stress has been reported experimentally in polymeric systems in

[Boukany and Wang (2009a); Hu et al. (2007); Tapadia and Wang (2003); Hu et al. (2008);

Boukany and Wang (2008); Hu and Lips (2005); Hu (2010); Boukany and Wang (2009c)].

The results in Fig. 5 apply to a system in which a heterogeneous perturbation is seeded

once only, at the initial time t¼ 0. In practice, such a situation might correspond to the sam-

ple being left in a slightly heterogeneous state as a result of the experimental protocol by

which it is initially loaded into the rheometer. Alternatively, perturbations may be seeded

continuously during the experiment due to (for example) true thermal noise. To model this

we also performed calculations in which small heterogeneous perturbations are added at ev-

ery timestep. Pleasingly, we find qualitatively similar results: compare Figs. 5 and 6.

FIG. 6. Step stress in the RP model with noise added at each timestep. (a) Thick line: global shear rate _c0 in a

homogeneously constrained system, with the dashed region denoting @2
t _c0=@t _c0 > 0. Dotted line shows corre-

sponding signal with heterogeneity allowed �_c. (b) Degree of shear banding D_c ¼ _cmax � _cmin from a fully non-

linear simulation with q¼ 0.1 (Here a running average over data captured at frequent points in time is used,

checked for qualitative convergence with respect to the capture frequency and running average range). (c) Shear

rate perturbation

ffiffiffiffiffiffiffiffiffiffiffi
hd _c2

ni
q

of the linearised system found by integrating Eq. (23). Magnitude of noise q¼ 10�5.

Values of model parameters are as in Fig. 5.
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C. Numerical results: Giesekus model

We now discuss our numerical results for an imposed step stress in the Giesekus

model. To ensure a fair comparison with our study of the rolie-poly model just described,

we use a value of the anisotropy parameter a such that the underlying constitutive curve

is monotonic and as closely resembling that of Fig. 3 as possible. Also as before, we set

our value for the imposed stress to be in the region of weakest slope in this curve.

The shape of the shear rate response to this imposed step stress is qualitatively similar to

that seen in the RP model, in particular in showing a regime of upward curvature [compare

Figs. 6(a) and 7(a)]. In principle this upward curvature renders a state of initially homoge-

neous flow unstable to the development of shear bands. Indeed, shear rate heterogeneities

do start to grow as a result of this linear instability. However we have never found them to

grow sufficiently large as to give “significant” shear banding in our numerical simulations

of the Giesekus model. The degree of banding D _cðtÞ ¼ _cmax � _cmin never exceeds 5% of

the global shear rate �_cðtÞ averaged across the sample, and thus would be hard to detect

experimentally.1 Contrast the results for D _cðtÞ and v(y) in Fig. 7 with their counterpart for

the RP model in Fig. 5(c). By repeating this numerical calculation across a wide range of

values of a; g, and R0, we checked that this conclusion of negligible banding is general for

this protocol in the Giesekus model.

The reason for this striking difference in shear banding behaviour between the two mod-

els, despite their differentiated creep response curves _c0ðtÞ having the same upwardly curv-

ing shape, is that the maximal value of the curvature in _cðtÞ is always much smaller in the

FIG. 7. Step stress in the Giesekus model. (a) Thick line: shear rate response in a homogeneously constrained

system, with the dashed region denoting @2
t _c0=@t _c0 > 0. Dotted line shows corresponding signal with heteroge-

neity allowed, which is now indistinguishable from the homogeneous signal. (b) Degree of banding

D_c ¼ _cmax � _cmin. (c) Snapshots of the velocity profile at times corresponding to symbols in (a) and (b).

Parameters: a ¼ 0:6; g ¼ 10�3; R ¼ 1:0; q ¼ 0:1.

1We note that, within the linear regime, the degree of banding D _c scales linearly with the magnitude of the

initial noise q. Therefore, in order to make comparisons with the RP model the results presented in Secs. V B

and V C have q¼ 0.1. We note that q values much larger than this are unrealistic for comparison to experiment.
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Giesekus model than the RP model [compare Figs. 5(a) and 7(a)]. Correspondingly, the

resulting maximum degree of shear banding is much smaller.

In Fig. 7, heterogeneous perturbations are seeded once only, at the initial time t¼ 0.

By comparison in Fig. 8 the system is first evolved to steady state at R ¼ 0 with small

perturbations added at every timestep, before being evolved at the chosen R ¼ R0 with

perturbations again added continuously at every timestep. Although we never found

“significant banding” ð>5%Þ in the Giesekus model with this noise history either, there

is nonetheless an interesting feature not seen in the RP model. In particular, the amplitude

of heterogeneity in steady flow is much greater than in the unsheared system at rest (In

contrast, in the RP model the magnitude of heterogeneity in steady shear is comparable

to that in zero shear, recall Fig. 6.) Whether or not these fluctuations would be large

enough to be detected by sensitive velocimetry, this remains an interesting feature of the

Giesekus model.

VI. RESULTS: STRAIN RAMP

In this section we consider a strain ramp protocol in which a previously undeformed

sample is subject to an applied shear at rate _c0 by moving the top plate at speed _c0L for

times 0 < t < t�. After this the plate is held fixed, giving a total applied strain amplitude

c� ¼ _c0t�. The limit _c0 !1; t� ! 0 at fixed c� gives a theoretically idealised step strain.

We focus here on ramp rates that are finite but nonetheless always fast compared to the ter-

minal relaxation time. Therefore we impose _c0sd � 1 in the RP model and _c0k� 1 in the

Giesekus model (For the RP model, we then separately distinguish between ramps for

which _c0sR 
 1 and _c0sR � 1.). Following such fast ramps, we develop a criterion for the

transient appearance of shear bands as the system relaxes back to equilibrium post-ramp.

FIG. 8. Step stress in the Giesekus model with parameters as in Fig. 7. Top: thick line shows the shear rate _c0

in a homogeneously constrained system, with the dashed region denoting @2
t _c0=@t _c0 > 0. Dotted line shows cor-

responding signal with heterogeneity allowed �_c, now indistinguishable from the homogeneous signal. Middle:

degree of shear banding D_c ¼ _cmax � _cmin from the nonlinear simulation with q¼ 0.1 (Here a running average

over data captured at frequent points is used, checked for qualitative convergence with respect to the capture fre-

quency and running average range). Bottom: shear rate perturbation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hd _c2

n¼1i
q

in linearised system found by

integrating Eq. (23), q¼ 10�5.
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A. Criterion for instability after a fast strain ramp

We start by writing our general governing Eqs. (16) and (17) in a form that empha-

sizes the additive loading and relaxation dynamics that obtain in all constitutive equations

of which we are aware

RðtÞ ¼ Gp � sðy; tÞ þ g _cðy; tÞ; (29)

@t s ¼ _cSðsÞ � 1

s
RðsÞ: (30)

Here s is the terminal relaxation time (Two relaxation times, as in the sRP model, are

included in this notation by writing R ¼ R1 þ s
sR

R2.). For the purposes of the linear sta-

bility calculation that follows we have neglected small diffusive terms in Eq. (30), as dis-

cussed above.

To develop our criterion for the onset of shear banding we follow our usual linear sta-

bility procedure of considering an underlying base state of initially homogeneous flow

response to the imposed deformation, and the dynamics of heterogeneous perturbations

to this base state that might grow into observable shear banding. Accordingly we substi-

tute perturbed fields as in Eq. (18) into the governing Eqs. (29) and (30), and expand in

successive powers of the amplitude of the perturbations.

The zeroth order equations in this expansion govern the evolution of the base state.

During the ramp this evolves according to

ds0

dc0

¼ Sðs0Þ �
1

s _c0

Rðs0Þ;

� Sðs0Þ; (31)

in which we have divided the equation for the time-evolution of s0 across by the constant

shear rate _c0 to give an equation instead for the evolution of s0 with strain. In the second

line we have specialised to the fast ramps of interest here, for which the loading dynamics

dominates. Denoting the base state immediately as the ramp ends s0ðt ¼ t��Þ ¼ s�0, the

dynamics of the base state immediately prior to the end of the ramp obeys

ds0

dc0

����
t��
¼ Sðs*

0Þ: (32)

Post-ramp ð_c0 ¼ 0Þ the base state relaxes back to equilibrium according to

ds0

dt
¼ � 1

s
Rðs0Þ: (33)

Having discussed the evolution of the underlying homogeneous base state we now

turn to the linearised dynamics of the heterogeneous perturbations. These are specified by

the first order equations in the amplitude expansion just discussed [recall Eqs. (21) and

(22)]. Post-ramp, these perturbations obey

ddsn

dt
¼ �G

g
Sðs0Þ p�

1

s
@s Rjs0

� �
� dsn:

’ �G

g
Sðs0Þ p � dsn: (34)
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The approximation on the second line is valid for small values of the Newtonian viscosity

compared with the zero shear polymer viscosity, g
 Gs, which is a good approximation

in most complex fluids. Because the base state s0 is continuous across the end of the

ramp, it follows that immediately post-ramp the perturbations obey

ddsn

dt

����
t�þ
¼ �G

g
Sðs0

�Þp � dsn: (35)

Combining Eq. (32) for the dynamics of the base state immediately before the ramp

ends with Eq. (35) for the dynamics of the heterogeneous perturbations immediately

post-ramp, we get

dsn

dt

����
t�þ
¼ �G

g
ds0

dc0

����
t��

p � dsn: (36)

Projecting out the first component of this equation using the operator p, and appealing to

the linearity of the force balance condition (29), it is easy to show finally that shear rate

perturbations obey, immediately post-ramp

d _cn

dt

����
t�þ
¼ � 1

g
@R0

@c0

����
t��

d _cn: (37)

This important result tells us that, immediately after a strain ramp has ended, an

initially homogeneous flow state will be linearly unstable to the onset of shear

banding if the shear stress had been decreasing in strain immediately before the

ramp ended

@R0

@c0

����
t��
< 0: (38)

This is consistent with the original insight of Marrucci and Grizzuti (1983) in the context

of the DE model.

As usual, this criterion is expressed as a condition on the shape of the stress sig-

nal of an underlying base state of homogeneous flow response to the applied defor-

mation. By definition, this base state stress signal equals the globally measured one

at least until any significant banding takes place. Accordingly Eq. (38) can also be

applied directly to the experimentally measured stress signal (This assumes that no

appreciable banding developed during the ramp itself, which is a good assumption

for the fast finite-amplitude ramps of interest here: even if the flow technically

becomes linearly unstable to banding during the ramp, there is insufficient time for

heterogeneity to develop.).

B. Numerical results: RP model

In Sec. VI A, we developed a criterion for linear instability, immediately following a

rapid strain ramp, to the onset of shear banding post-ramp. This criterion is expressed as

a condition on the shape of the stress signal of an underlying base state of homogeneous

flow response to the applied deformation, immediately as the ramp ends.

In Subsection VI B 1, we shall present numerical results for this base state signal

throughout the full duration of its evolution, both during and after ramp. We also present
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numerical results for any regions of linear stability (negative eigenvalues) or instability

(positive eigenvalue) during this entire evolution. Recall that our analytically derived cri-

terion (38) above strictly only applies immediately post-ramp. In Subsection VI B 2, we

present the results of our spatially aware nonlinear simulations of the shear bands that

arise as the result of any regimes of instability.

1. Base state and linear instability

Numerical results for the evolution of the base state stress signal, both during and after

the ramp, are shown for the RP model in Fig. 9 (Here we have subtracted from R0 the

trivial contribution g _c0 from the Newtonian solvent to leave the viscoelastic contribution

r0 only.). For clarity it is plotted as a function of strain during the ramp, and of time after-

wards. Regimes of linear instability to shear banding, determined by numerically calcu-

lating the time-dependent eigenvalue of the linearised equations discussed above, are

shown as dotted and dashed lines. Consistent with our criterion (38) above, ramps that

end with declining stress leave the system unstable immediately post-ramp.

With this figure in mind, we discuss now in more detail separately ramps that are

slower and faster than the rate of stretch relaxation s�1
R (As noted above, in each case the

ramp is faster than the inverse terminal relaxation time, _c0sd � 1.).

Consider first a “slow” ramp at a rate _c0;n for which _c0;nsR 
 1. For such a ramp, no

appreciable chain stretch develops: subscript “n” denotes nonstretching. The ramp is still

nonetheless in the fast flow regime _csd � 1 of the non-stretching version of the model

specified by Eq. (14) above. The corresponding mechanical response during the ramp can

then by computed by integrating only the terms prefactored by _c in Eq. (14): it is effec-

tively that of a nonlinear elastic solid with a stress signal that depends only on strain

FIG. 9. Viscoelastic contribution to the shear stress in the RP model during (vs c0) and after (vs t0) a strain

ramp of amplitude c� ¼ 3, with homogeneity enforced. (a) b¼ 0 (no CCR), (b) b¼ 1 (CCR active).

Dotted/dashed lines denote linearly unstable regions ðx > 0Þ. Upper curve at the end of each ramp is for a ramp

rate _c0;s in the regime of chain stretch. Lower curve at the end of each ramp is for a ramp rate _c0;n ¼ 500 in the

non-stretch regime. Parameters: sR ¼ 10�4; g ¼ 10�5; sk ¼ 10sR.
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R0 ¼ R0ðc0Þ, independent of strain-rate. Numerical results for this are shown by the

lower of the two curves (during the ramp) in each panel of Fig. 9. It displays an overshoot

at an amplitude c0 � 1:7. The system is therefore left unstable immediately post-ramp, as

indicated by the red dashed lines, consistent with our criterion (38).

Post-ramp the base state stress signal shows mono-exponential decay on the single

reptation timescale sd of tube reorientation, as the system relaxes back to equilibrium.

Allied to this, the eigenvalue of the stability analysis shows monotonic decay from its ini-

tial value towards a final value �ð 1
sd
þ 1

gÞ which, being negative, indicates stability of the

final homogeneous equilibrium state, as expected. Any system left linearly stable imme-

diately post-ramp, by a ramp of amplitude c0 < 1:7, will therefore remain stable for all

subsequent times and exhibit no banding (This case is not shown in the figure.). In con-

trast, a system that is left linearly unstable immediately post-ramp by a ramp of amplitude

c0 > 1:7, returns finally to a stable homogeneous state (See again the lower curve at the

end of the ramp in each panel of Fig. 9.). However shear bands do transiently form during

the relaxation process, as we shall discuss in more detail in Subsection VI B 2.

Having discussed “slow” ramps with _c0;nsR 
 1, we now address “fast” ramps of typi-

cal rate _c0;s such that _c0;ssR � 1. Here appreciable chain stretch develops during the

ramp (Subscript “s” denotes stretching.). The associated mechanical response during the

ramp then follows by integrating the terms in _c in the sRP model Eq. (13). It again corre-

sponds to that of an elastic solid, independent of strain-rate in this limit. Indeed because

of the simple linear structure of the _c terms in the sRP model, we now have a monotoni-

cally increasing relation r0 ¼ Gc0. The system is therefore left linearly stable against

banding immediately post-ramp, as seen in the upper curve at the end of the ramp in each

panel of Fig. 9, and consistent with our analytical criterion (38).

However it is important to recall that our analytically derived criterion (38) applies

only immediately post-ramp and does not prescribe the system’s stability properties

throughout the full duration of its relaxation back to equilibrium post-ramp. As seen in

the upper curve (at the end of each ramp) in each panel of Fig. 9, this relaxation after a

ramp of rate _c0;s � 1 shows a double exponential form: first as chain stretch relaxes on

the fast timescale sR, and subsequently as tube reorientation takes place on the much

slower reptation timescale sd .

Insets (a) and (b), respectively, address a system without (b¼ 0) and with (b¼ 1) the

CCR mechanism active. Immediately striking is the fact that, without CCR [inset (a)] the

first part of the stress relaxation on the fast timescale of stretch relaxation sR, returns the

stress to a value equal to that which would have been generated by a ramp of equivalent

amplitude in the slower non-stretching limit: the upper curve in inset (a) rejoins the lower

one on an intermediate plateau around the time sk ¼ 10sR, before both finally follow the

same decay on the terminal timescale sd . Denoting by rðt0 ¼ sk; _c0; c0Þ the stress on this

intermediate plateau, then, for a ramp of amplitude c0 we have

rðsk; _c0;s; c0Þ ¼ rðsk; _c0;n; c0Þ for b ¼ 0: (39)

Once this intermediate plateau has been attained, the stability properties of the two

curves in Fig. 9(a) coincide. Following a fast ramp of rate _c0;s and amplitude c0 > 1:7,

therefore, we predict a delayed banding instability that sets in a time OðsRÞ post-ramp,

even though no stress overshoot occurred during the ramp itself. This will be confirmed

by our spatially aware simulation showing shear banding in Subsection VI B 2. It is con-

sistent with experimental results that show delayed shear banding setting in on a time-

scale OðsRÞ post-ramp [Boukany et al. (2009); Archer et al. (1995)].

In contrast, with CCR active ðb 6¼ 0Þ the stress remaining after the initial part of the

stress decay on the fast timescale sR is significantly lower than that which would have
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been generated by a ramp of corresponding amplitude in the slower, non-stretching regime:

the intermediate plateau values do not coincide in Fig. 9(b). Indeed, for large enough b this

initial fast relaxation is sufficient to ensure that the system remains stable against the for-

mation of bands throughout the full duration of its return to equilibrium, as seen in

Fig. 9(b). We therefore conclude that in order to observe shear banding after a ramp in the

chain stretching regime, the value of the CCR parameter b should be small b � 0.

These differences in the system’s relaxation properties with and without CCR can be

explained as follows. Without CCR (b¼ 0), the mechanisms of chain stretch relaxation

and tube orientation relaxation are decoupled and occur independently of each other. The

residual stress remaining after chain stretch has relaxed following a “fast” ramp of rate

_c0;s is therefore equal to the stress that would have resulted from a ramp of the same am-

plitude but rate _c0;n during which no chain stretch arose in the first place. In contrast,

with CCR ðb 6¼ 0Þ the relaxation of chain stretch also brings significant relaxation in the

orientation of tube segments, because a proportion of the entanglements forming the tube

of constraints on a test chain are lost upon stretch relaxation. The stress relaxation is

thereby accelerated for times t0 < sR compared with the non-CCR case (We note that the

constitutive curves are non-monotonic or monotonic for b¼ 0 or 1 [respectively, with

g ¼ 10�5]. However, the non-monotonicity of the steady state constitutive curve is not

directly related to the phenomenon discussed here, which concerns relaxation after ramps

that do not last long enough to probe the steady state of shear flow.).

2. Nonlinear, spatially aware simulations

So far, we have discussed the evolution of the base state stress during and after a strain

ramp, and its associated time-dependent linear stability properties. We now perform non-

linear simulations to investigate the shear bands that form as a result of any regime of lin-

ear instability.

As can be seen in Fig. 10 the results are consistent with our linear instability predic-

tions of Fig. 9. Insets (c) and (d) show that shear rate perturbations grow as soon as a

ramp of rate _c0;n and amplitude c0 > 1:7 ends. For example, appreciable heterogeneity

has already developed by the time indicated by the circle in (a). In contrast, insets (e) and

(f) show that after a “fast” ramp of rate _c0;s and amplitude c0 > 1:7, the system shows

onset of shear rate heterogeneity only after a delay time t0 � sk, and only for systems in

which CCR is sufficiently small b � 0 [inset (e)]. With CCR active [inset (f)] any resid-

ual heterogeneity at the end of the ramp decays monotonically.

Figure 10(a) also demonstrates that shear rate heterogeneity of the large magnitude seen

in this protocol can dramatically alter the stress relaxation function. As the local shear rate

becomes extremely large, nonlinearities become important and result in a sudden and dra-

matic acceleration of stress relaxation compared with the base state signal of Fig. 9. This

causes the second drop-off in stress in that inset (recall that the first drop-off after the fast

ramp in contrast arose from chain stretch relaxation in the underlying base state).

C. Comparison with experiment

We now discuss our results in relation to experimental observations of shear banding fol-

lowing the imposition of a fast strain ramp in polymeric fluids. In doing so, we recall that

shear banding is often described as “macroscopic motions” in the context of this protocol.

For strain ramps that terminate in a regime of declining stress versus strain, macro-

scopic motions accompanied by a dramatic drop in the stress signal were reported to de-

velop quickly post-ramp by Boukany and Wang (2008, 2009b). This is consistent with

our analytical criterion (38), and also with our numerics in Figs. 10(c) and 10(d).
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For strain ramps of amplitudes c0 � 1:5 that show no stress overshoot during the

ramp, delayed macroscopic motions have been reported post-ramp in polymer melts

[Boukany et al. (2009); Boukany and Wang (2009b)] and solutions [Archer et al.
(1995)]. These onset after a time t0 ¼ OðsRÞ and are concurrent with a sudden drop in the

stress signal. These observations are consistent with the stress response and associated

FIG. 10. Strain ramp in the RP model. (a) Shear stress during (vs c0) and after (vs t0) a ramp of amplitude

c� ¼ 3, with CCR inactive, b ¼ 0. The dashed line is for a ramp of fast rate _c0;s ¼ 105 in the chain stretching re-

gime; the solid line is for a ramp of rate _c0;n ¼ 500 in the non-stretching regime. (b) Corresponding curves with

CCR active, b ¼ 1. (c), (d) Velocity profiles during stress relaxation at times corresponding to symbols in (a)

and (b), respectively, in both cases following a ramp of rate in the non-stretching regime _c0;n ¼ 500.

Corresponding (e) and (f) are for a ramp of fast rate _c0;s ¼ 105 in the stretching regime. Profiles are shown at

times corresponding to symbols in the inset for (e) and at times corresponding to symbols in (b) for (f). The nor-

malised velocity heterogeneity v0ðyÞ ¼ vðyÞ � _c0y immediately before the end of the ramp at t ¼ t�� is shown

as a thick dotted line. Model parameters sR ¼ 10�4; g ¼ 10�5. Initial noise magnitude q¼ 5� 10�4.

128 R. L. MOORCROFTAND S. M. FIELDING

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

129.234.252.67 On: Tue, 03 Jun 2014 14:06:32



transient shear banding in the RP model for b � 0 following a strain ramp of rate _c0;s and

amplitude c0 � 1:7 [recall Fig. 10(e)].

Experimental reports of similar macroscopic motions but without the accompanying

dramatic drop in the stress signal post-ramp are also widespread [Wang et al. (2006); Fang

et al. (2011); Boukany et al. (2009); Li and Wang (2010); Ravindranath et al. (2011);

Ravindranath and Wang (2007)]. Qualitatively similar behaviour can be uncovered in the

RP model by decreasing the entanglement number Z to give less well separated relaxation

timescales sd; sR. This decreases the maximal degree of banding observed post-ramp to a

sufficient extent that the global stress signal no longer differs significantly from that of the

homogeneous constrained system. An example of such behaviour in shown in Figs. 11 and

12. The stress signal now shows a single drop-off associated with chain stretch relaxation,

but lacks a second drop-off associated with the nonlinear effects of banding.

Indeed, our numerical runs in Figs. 9 and 10 assumed an entanglement number

Z¼ 3300 larger than is the case experimentally. We set this number deliberately to ensure

a clean separation of timescales sd ¼ 104sR, thereby allowing a clear pedagogical discus-

sion of the relative effects of the relaxation of chain stretch and the relaxation of tube ori-

entation post-ramp.

FIG. 11. Viscoelastic stress during and after a strain ramp of amplitude c0 ¼ 3 and rate _c0 ¼ 200; time of shear

cessation t� ¼ 0:015. Here sR ¼ 10�2; g ¼ 10�5; b ¼ 0, and initial noise magnitude q¼ 10�2.

FIG. 12. Snapshots of the velocity profile during stress relaxation after a ramp shown in Fig. 11, at times corre-

sponding to symbols in that figure. Dotted line: snapshot of the normalised velocity profile v0ðyÞ ¼ vðyÞ � _c0y
at time t ¼ t��.
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In practice, however, polymer melts with Z � 100, and DNA or wormlike micelles with

Z � 150, usually suffer edge fracture so that reliable results are difficult to obtain. The separa-

tion of time scales in experiment is therefore more typically sd=sR � 150� 500. Upon

repeating our simulations for these more realistic values of sd=sR, and for less severe ramp

rates _c0;s, we find, reassuringly, that the qualitative features described above still obtain (pro-

vided sd=sR � 10 and _c0;s > s�1
R ) (see Figs. 11 and 12). We do not attempt to reproduce spe-

cific experimental results by matching the relaxation times or ramp rates in detail in this work,

because studies elsewhere have done so [Agimelen and Olmsted (2013); Agimelen (2012)].

Finally, we comment on our numerical findings in relation to the A, B, C classification

system discussed in Sec. II. As seen towards the right hand side of Fig. 10, the develop-

ment of very large local shear rates post-ramp is closely associated with a stress relaxa-

tion that is accelerated compared with that which would be predicted by a calculation in

which homogeneity is imposed by assumption. This can result in a significant decrease in

the damping function compared with that predicted by any homogeneous calculation and

so to type C behaviour. Conversely, for systems in which the macroscopic motions that

develop are more modest (even if still observable experimentally), the stress relaxation

function agrees well with that of a calculation in which homogeneity is assumed, leading

to a damping function of type A.

Furthermore, a decreasing separation of relaxation times sd=sR (decreasing entangle-

ment number Z) causes the maximal degree of banding to decrease and so could lead cor-

respondingly to a progression from type C to type A behaviour. This is consistent with

reports that type C behaviour is most common in very well entangled polymers, while

type A behaviour occurs most often for moderately entangled polymers [Venerus (2005);

Osaki (1993)]. We conclude that the RP model is capable of exhibiting both types A and

C behaviour, with a progression between the two consistent with that seen experimen-

tally. To the best of our knowledge, the RP model is unable to show the less commonly

reported type B behaviour of very weakly entangled materials [Venerus (2005); Osaki

(1993)]. Indeed, the RP model is in any case not aimed at describing these systems.

We note finally that the Giesekus model has a linear stress-strain relation in a fast

strain ramp protocol: R � Gc. It therefore predicts linear stability against shear banding

immediately after a fast strain ramp, according to Eq. (38). Furthermore this model con-

tains only one relaxation time. Accordingly it is unlikely to capture the rich experimental

phenomenology just discussed for this protocol, and we do not discuss it further here.

VII. RESULTS: SHEAR STARTUP

We consider finally the shear startup protocol, in which a previously well rested sam-

ple is subject to shearing at a constant rate _c0 for all times t > 0, giving a strain c0 ¼ _c0t.
We first derive an analytical criterion for the onset of banding in this protocol, before pre-

senting numerical results that support it.

A. Criterion for instability in shear startup

In a shear startup experiment, the most commonly reported rheological response func-

tion is that of the startup stress as a function of time t, or equivalently as a function of

strain c0 ¼ _c0t, for the given applied strain-rate _c0. When plotted as a function of accu-

mulated strain c0 for a collection of startup runs, each performed at a constant value of

the strain-rate _c0, this gives us a two-dimensional function R0ðc0; _c0Þ.
In the context of shear banding, a familiar thought-experiment is to consider an (artifi-

cial) situation in which a startup flow is constrained to remain homogeneous until the
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system attains a stationary state in the limit c0 !1. In this limit, the total accumulated

strain becomes irrelevant and the stress depends only on strain-rate: R0 ¼ R0ð _c0Þ. The

criterion for shear banding (with the constraint now removed) is well known in this limit:

that the underlying constitutive curve of stress as a function of strain-rate has negative

slope, dR0=d _c0 < 0.

Our aim here is to generalise this result, which is valid only for a stationary homoge-

neous base state in the limit c0 !1, to finite strains c0 and times t, in order to predict at

what stage during startup banding first sets in. As we shall show, the onset of banding is

closely associated with the time (or equivalent strain) of any overshoot in the stress

startup signal R0ðc0Þ, for a given applied strain-rate _c0. Clearly this implies an onset cri-

terion dR0=dc0 < 0, which is indeed a very useful rule of thumb to apply to experimental

data. However we show below that it is in fact modified slightly, leading to onset a little

before overshoot.

Besides predicting the time at which bands first start to form in any experiment for

which the eventual steady state is banded, dR0=d _c0 < 0, an important further outcome of

what follows will be to predict the transient appearance of shear bands, again associated

with a startup overshoot and subsequently declining stress dR0=dc0 < 0, even in systems

for which the underlying constitutive curve is monotonic dR0=d _c0 > 0 and the steady

state unbanded.

As ever, our strategy will be to consider an underlying base state of initially homoge-

neous flow response, and the dynamics of small heterogeneous perturbations about it.

Our criterion for the growth of these perturbations, i.e., for the onset of banding, will be

expressed in terms of the partial derivatives of the base state stress signal R0ðc0; _c0Þ with

respect to c0 and _c0.

In many places below we shall graphically present results in the plane of c0 and _c0. To

interpret data presented in this way, it is useful to keep in mind that a vertical cut up this

plane at its far right hand side c0 !1 corresponds to the system’s steady state properties

as a function of strain-rate _c0. A horizontal cut corresponds to the system’s startup behav-

iour as a function of accumulated strain c0, in a single startup run performed at a fixed

value of the strain-rate _c0.

As noted in the context of the other protocols above, because the base state signal cor-

responds to the experimentally measured one at least until appreciable banding develops,

the criterion that we develop can be applied directly to experimentally measured stress

startup data.

To start, then, we consider the properties of an underlying base state of initially homo-

geneous flow response to an imposed shear startup deformation. Were the flow to remain

homogeneous through to the stationary limit c0 !1, the condition for banding instabil-

ity would then be that the stationary constitutive curve of stress as a function of strain-

rate has a region of negative slope dR0=d _c0 < 0, as noted above. In practice, however,

the flow generally becomes unstable to banding before this stationary limit is attained. As

a first step to generalising our onset criterion to finite strains during startup, we define a

fixed-strain constitutive curve

R0ð _c0Þjc0¼const: ¼ GWxy0ð _c0Þjc0¼const: þ g _c0: (40)

Experimentally, such a curve would be constructed by performing a series of startup runs

at different shear rates and plotting the shear stress, grabbed at the same fixed-strain c0 in

each run, as a function of the applied shear rate.

We then consider the derivative of this fixed-strain constitutive curve with respect to

shear rate
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@ _c0
R0jc0

¼ G@ _c0
Wxy0
jc0
þ g: (41)

This clearly reduces to the slope of the underlying steady state constitutive curve

dR0=d _c0 in the limit c0 !1, and more generally is the finite-strain analogue of it.

To proceed further, we need an expression for @ _c0
Wxy0
jc0

. To obtain this we return to

Eq. (17) divided across by strain-rate

@c0
s0j _c0

¼ 1

_c0

Qðs0; _c0Þ: (42)

We again neglect diffusive terms, which are small for the most unstable mode in the lin-

ear regime. Differentiating this with respect to strain-rate gives

@ _c0
@c0

s0 ¼ �
1

_c0

@c0
s0j _c0
þ 1

_c0

M � @ _c0
s0jc0
þ 1

_c0

q; (43)

in which M ¼ @s Qjs0; _c0
and q ¼ @ _cQ js0;_c0

, as previously. Multiplying by _c0M�1 and rear-

ranging we have

@ _c0
s0jc0
¼ M�1 � ð@c0

s0j _c0
� qþ _c0@ _c0

@c0
s0Þ: (44)

Using p to project out the first component gives

@ _c0
Wxy0
jc0
¼ p �M�1 � ð@c0

s0j _c0
� qþ _c0@ _c0

@c0
s0Þ; (45)

which, substituted into Eq. (41), gives finally an expression

@ _c0
R0jc0

¼ G p �M�1ð@c0
s0j _c0
� qþ _c0@ _c0

@c0
s0Þ þ g; (46)

for the derivative with respect to shear rate of the fixed-strain constitutive curve of the

underlying homogeneous base state. We shall return to this expression in a few lines

below.

We now turn to consider the dynamics of any heterogeneous perturbations to the ho-

mogeneous base state just discussed. Recalling Eqs. (21) and (22), we have

@t dsn ¼ M � G

g
q p

� 	
� dsn: (47)

The criterion for this system of linear equations to have a positive eigenvalue, which sig-

nifies onset of instability to the growth of shear banding perturbations at any time, is

ð�1ÞD
����M � G

g
q p

���� > 0; (48)

where D is the dimensionality of M (We neglect the possibility of the emergence of

two complex conjugate eigenvalues of positive real part—a Hopf bifurcation—

because we have never seen this in practice in our numerics.). This corresponds

exactly to

ð�1ÞDjMj
�

1� G

g
p �M�1 � q

	
> 0: (49)
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Using the fact that ð�1ÞDjMj < 0 (which follows from noting that the base state must be

stable with respect to homogeneous perturbations at fixed _c0), this further corresponds

exactly to

g� Gp �M�1 � q < 0: (50)

Combining this with Eq. (46) above for the base state, we find finally an exact criterion

for the onset of a linear instability to shear banding during startup

@ _c0
R0jc0

� G p �M�1 � ð@c0
s0j _c0
þ _c0@ _c0

@c0
s0Þ < 0: (51)

In raw form, this criterion appears cumbersome and somewhat removed from conven-

iently measurable experimental quantities. However its overall structure is physically

transparent. The first term is a derivative of the base state stress with respect to strain-

rate. The second term is a derivative of the base state with respect to strain. The third is a

cross term, containing derivatives with respect to both. To illuminate its physical content,

therefore, we start by discussing two distinct and physically important limits in which the

first and second terms separately dominate.

Consider first an (artificial) situation in which a homogeneous startup flow proceeds

through to a stationary state in the limit of large strain c0 !1, without banding en route.

In this limit, derivatives with respect to strain @c vanish from Eq. (51) and we recover the

familiar, and much simpler, criterion for banding in steady state already discussed above

@ _cR0jc0!1 < 0: (52)

This criterion also applies (less artificially) to the onset of a linear instability to shear

banding during an experiment in which the strain-rate _c0 is slowly swept upwards from

zero. Because the material is flowing in a liquid-like way in this limit, we term this a

“viscous instability” for convenient nomenclature in what follows.

Consider conversely a single startup run performed in the limit of a very fast flow

_c0 !1. In this regime many viscoelastic materials behave essentially as elastic solids,

with the stress startup function converging to a limiting curve R0ðc0Þ from which any de-

pendence on shear rate is lost, @ _c ! 0. The full criterion (51) then reduces to

�G p �M�1 � @c0
s j _c0

< 0: (53)

Because in this limit the material responds essentially as an elastic solid, we term this an

“elastic instability” for convenient nomenclature in what follows. We underline that we

adopt this terminology in this manuscript to mean the onset of a shear banding instability

in a regime in which the material is behaving as an elastic solid (entirely distinct from

elastic or viscoelastic Taylor-Couette instabilities or elastic turbulence discussed else-

where in the literature [Larson et al. (1990)]).

Although simpler than Eq. (51), Eq. (53) is still not expressed in terms of quantities

that are easily measured experimentally. However further simplification is possible in the

case of only two dynamical variables D¼ 2, for example in flow regimes in which the dy-

namics is dominated by the shear stress and only one component of normal stress differ-

ence. In this case (53) further reduces to

� 1

_c2
0

tr M @c0
R0j _c0

þ 1

_c0

@2
c0

R0j _c0
< 0 with tr M < 0: (54)
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Taken alone, the first term of this expression predicts onset of banding immediately af-

ter any overshoot in the stress as a function of strain during startup. The second term

modulates this result slightly, allowing onset slightly before overshoot, once the stress

starts to curve downwards. This prediction is consistent with numerous experimental

observations of time-dependent shear banding associated with stress overshoot during

startup: in soft glassy materials [Divoux et al. (2010, 2011a); Martin and Hu (2012)] and

entangled polymer melts and solutions [Ravindranath et al. (2008); Ravindranath and

Wang (2008); Boukany and Wang (2009a); Tapadia and Wang (2006); Hu et al. (2007)],

and also in simulation studies [Zhou et al. (2008); Adams and Olmsted (2009a, 2009b);

Adams et al. (2011); Moorcroft et al. (2011); Cao and Likhtman (2012); Manning et al.
(2007)].

B. Numerical results: Rolie-poly model

In this section, we present our numerical results for shear startup in the RP model. We

consider first the limit in which polymer chain stretch is negligible, _c0sR 
 1, before

commenting on the effects of stretch.

The behaviour of the rolie-poly model in startup has been studied previously numeri-

cally by Adams et al. (2011, 2008). One of our aims in what follows is to understand the

phenomena reported in that work, some of which we must necessarily reproduce in our

numerics here, in the context of the general analytical criterion developed above.

1. Nonstretching rolie-poly model

Depending on the values of the model parameters b; g, the underlying constitutive

curve of the nRP model can either be monotonic or non-monotonic. A representative

example of each case is shown in Fig. 13.

We consider first the non-monotonic case, for a shear rate indicated by the cross in the

negatively sloping regime dR0=d _c0 < 0. The model’s shear startup behaviour at this

imposed shear rate is explored in the bottom row of Fig. 14. The velocity profile shown

by the thick dashed line in the bottom right inset shows that the steady flowing state is

shear banded, consistent with a “viscous instability” implied by the negative slope

dR0=d _c0 < 0 in the constitutive curve.

FIG. 13. Constitutive curves of the nRP model for b ¼ 0:4; 1 (bottom to top on the right) and g ¼ 10�4.

Dashed: linearly unstable at steady state. Dotted: transiently linearly unstable before the steady state is reached.

Crosses denote shear rate _c ¼ 30 for which time-dependent shear startup behaviour is explored in Fig. 14.
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Also immediately obvious in Fig. 14 is the fact that bands first form rather early during

the startup process, apparently triggered by an “elastic instability” associated with the

startup stress overshoot and subsequently declining stress dR0=dc0 < 0. When first

formed these are much more pronounced than in steady state, as shown by the pro-

nounced spike in the degree of banding D _c. Indeed this “elastic banding” can be so pro-

nounced as to a precipitate a negative local shear rate in the low shear band. This is

consistent with the material in that band behaving effectively as an elastic solid because

an elastic solid subject to a declining stress, as the stress falls from its peak overshoot

value, must shear backwards. Depending on the duration and strength of that negative

shear, this can even give rise to negative local velocities. In this way, the existence of a

stress overshoot can be seen as a necessary but not sufficient condition for recoil. Clearly,

then, in shear startup an “elastic instability” associated with stress overshoot can precede

and be much more violent than any “viscous instability” associated with steady state

banding.

For shear rates shown by the dotted lines either side of the negatively sloping regime

dR0=d _c0 < 0 in Fig. 13, steady state “viscous instability” is absent, but a pronounced

“elastic instability” can nonetheless still arise during startup. This leads to the formation

of pronounced banding that persists only transiently, before decaying to leave homogene-

ous flow in steady state.

The model’s startup behaviour across a wide range of imposed shear rates _c0 is sum-

marised in Fig. 16. In the left panel of this figure we show our linear stability criteria for

the onset of banding in the full plane of _c0; c0. As noted above, horizontal cut across this

plane corresponds to the fluid’s startup behaviour as a function of accumulated strain, at

a single fixed value of the strain-rate. A vertical cut at the far right hand side corresponds

to the system’s steady state properties as a function of strain-rate. We again use parame-

ter values for b; g corresponding to the non-monotonic constitutive curve in Fig. 13.

FIG. 14. Responses of the nRP model to an imposed shear rate �_c ¼ 30 for the case of a monotonic constitutive

curve b¼ 1 (top row) and for the case of non-monotonic constitutive curve b¼ 0.4 (bottom row). (a), (e) Shear

stress response with homogeneity enforced (solid line) and with heterogeneity allowed (dotted line). (b), (f)

Linear stability analysis results for the real part of the eigenvalue that has the largest real part. (c), (g) Degree of

banding D _c ¼ _cmax � _cmin in full nonlinear simulations. (d), (h) Snapshots of the velocity profile at strains corre-

sponding to symbols in (a)/(c), (e)/(g). Steady state velocity profile is shown as a thick dashed line.

g ¼ 10�4; q ¼ 0:1.
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Accordingly, the startup run explored in the bottom row of Fig. 14 corresponds to hori-

zontal slice through Fig. 15 at a fixed value of _c0 ¼ 30.

In the left panel of Fig. 15, then, the black dotted line indicates the locus of strain val-

ues c0 for which the base state stress startup curves show a stress overshoot, with these

curves measured across a range of closely spaced values of _c0. In other words, in any sin-

gle startup run corresponding to a horizontal cut across this plane at a fixed _c0, the stress

overshoot occurs at the strain indicated by this black dotted line. This line being vertical

indicates that, in this version of the rolie poly model without chain stretch, the stress

overshoot occurs at a fixed strain c � 1:7 for all values of imposed shear rates (Once

chain stretch becomes important this is no longer true, see Sec. VII B 2.).

The green solid line indicates the strain at which our criterion (54) for “elastic insta-

bility” is first met in each horizontal startup slice. As can be seen this occurs just before

overshoot in each run, due to the presence of the stress curvature terms in Eq. (54).

The dashed line encloses the region of viscous instability in which @ _cR0jc0
< 0,

according to our criterion (52). At the far right hand side of the plane c0 !1 this coin-

cides with the region of negative slope in the underlying constitutive curve.

The large open circles enclose the region in which the full criterion (51) for linear

instability to banding is met. We have cross-checked numerically that this indeed coin-

cides with the region in which there exists a positive eigenvalue of the linearised equa-

tions, thereby verifying our analytical derivation of Eq. (51).

As can be seen, the full criterion (51) is very well represented by the much simpler

elastic one (54) across a wide range of shear rates during the early stage of shear startup

towards the left hand side of the _c0; c0 plane, and by the even simpler viscous one (52) at

the far right hand side. This ability of the “elastic” and “viscous” criteria separately to

capture the full criterion in these regimes leads us further to indicate by the small full

circles the region in which a criterion formed simply by summing the elastic terms (54)

and the viscous terms (52) is met

FIG. 15. Shear startup in the nRP model with a non-monotonic constitutive curve b ¼ 0:4; g ¼ 10�4. Left

panel, black dotted line: location of stress overshoot. Solid line: location of onset of “elastic instability”

[Eq. (54)]. Dashed line encloses region of “viscous instability” [Eq. (52)]. Large open circles enclose region of

linear instability according to full criterion [Eq. (51)]. Small closed circles enclose region of linear instability

according to the criterion with cross terms omitted [Eq. (55)]. Diamonds enclose region in which significant

shear banding is seen in our spatially aware nonlinear simulations. Right panel, solid lines: contour lines of

equal jd _cn¼1j=�_c ¼ 10M for integer M found by directly integrating the linearised Eq. (47) (first contour: M¼�2

and we show only contours M � �2). Circles and diamonds as in left panel.
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@ _c0
R0jc0

� 1

_c2
0

trM @c0
R0j _c0

þ 1

_c0

@2
c0

R0j _c0
< 0: (55)

This simple criterion performs well in capturing the region of instability across the full

plane of ðc0; _c0Þ, apart a small region at the bottom left.

As just described, the left panel of Fig. 15 concerns our criteria for the onset of a posi-

tive eigenvalue of the linearised system of Eq. (47), which we propose indicates the onset

of a linear instability to shear banding as the underlying homogeneous base state evolves

in time. However, as noted above, the concept of a time-dependent eigenvalue should be

treated with some caution. Therefore in the right hand panel of Fig. 15 we show results

obtained by integrating the linearised Eq. (47) directly. The solid lines are contours of

equal jd _cn¼1j, obtained by this process of integration. As can be seen the region of growth

and decay in this heterogeneous perturbation agrees well with the eigenvalue-based crite-

ria in the left subpanel, confirming that our concept of a time-dependent eigenvalue is

indeed useful.

We also summarise in Fig. 15 the results of a series of fully nonlinear spatially aware

simulations of shear startup, performed for a wide range of values of �_c at closely spaced

intervals. Again, any horizontal slice across this plane corresponds to one of these runs at

a given _c0. The diamonds show the region of this plane of strain-rate and strain for which

significant shear banding is observed (We choose D _c > 0:05�_c as a criterion for significant

banding.). As can be seen, the region of significant banding agrees well with expectations

based on the linear calculation alone in most regions of the plane. However a window of

shear rates either side of the regime of viscous linear instability deserves further com-

ment. Here the nonlinear simulations remain significantly banded in steady state, even

though the linear system has returned to stability by then. For such shear rates, a state of

homogeneous shear on the underlying constitutive curve is indeed linearly stable, but in

fact only metastable: the true steady state is banded. At very high shear rates, e.g.,
�_c ¼ 600, we observe shear bands that form transiently in startup, triggered by the

“elastic” instability, but that return to homogeneous flow in steady state (Eventually at

extremely high shear rates, once g _c > G, we see a return to stability conferred by the triv-

ial Newtonian solvent, but we do not expect the model to be valid for such extremely fast

flows.).

In summary, the overall stability portrait of the nRP model with a non-monotonic con-

stitutive curve comprises, in this plane of strain-rate and strain, a vertical patch of “elastic

instability” at the left side of the plane, and a horizontal patch of “viscous instability” at

the right hand side. In between these limits there is a continuous cross-over between the

two instabilities.

In contrast, for model parameters for which the constitutive curve is monotonic, the

patch of “viscous instability” is absent and the eventual steady flowing state is homoge-

neous at all strain-rates. Importantly, however, a patch of “elastic instability” remains

with onset at a strain c � 1, again closely associated with the startup stress overshoot at

strain c � 1:7 (see Fig. 16). This triggers pronounced shear banding during startup, which

however persists only transiently, decaying at larger strains to leave homogeneous flow

in steady state. A single startup run corresponding to a horizontal slice across this plane

at _c0 ¼ 30:0 is explored in 14 (top row). In steady state, the flow is homogeneous with a

stress value indicated by the upper cross in Fig. 13.

As can be seen from Fig. 16, the transient bands are predicted to persist for

O(10–100) strain units, depending on the value of the applied shear rate. This is broadly

consistent with experimental phenomenology [see, for example, Fig. 4 of Hu et al.
(2007)].
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So far, we have explored in detail one set of model parameters ðb; gÞ ¼ ð0:4; 10�4Þ for

which the underlying constitutive curve is non-monotonic and a viscous instability per-

sists to steady state; and one set of parameters ðb; gÞ ¼ ð1:0; 10�4Þ for which the constitu-

tive curve is monotonic and shear bands form only transiently. Denoting these two

distinct cases by “unstable” and “transiently unstable,” respectively, we summarise the

model’s behaviour in the full plane of ðb; gÞ in Fig. 17.

FIG. 16. As in Fig. 15 but now for nRP model with a monotonic constitutive curve, b¼ 1.0. The “viscous insta-

bility” is absent in this case, but the “elastic instability” remains.

FIG. 17. Summary of the linear stability properties of the nRP model as a function of the model parameters

b; g, during shear startup at a shear rate in the region of minimum slope of the constitutive curve. Unstable: line-

arly unstable to shear heterogeneity at steady state. Transiently unstable: system shows linear instability at some

time during shear startup but returns to linearly stable at steady state. Always stable: the system is always

linearly stable to shear heterogeneity. Crosses “�” at b ¼ 1; 0:4 at g ¼ 10�4 indicate the two sets of parameter

values explored in detail in the text.
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2. Stretching RP model

In Subsection VII B 1, we discussed the predictions of the nRP model, in which any

possibility of chain stretch is switched off by setting sR ¼ 0. Recall Eq. (14). We now

turn to the sRP model in which chain stretch is accounted for. Recall Eq. (13).

For applied strain-rates _c 
 s�1
R , no appreciable stretch arises even in the sRP model,

and the nRP results discussed above apply directly. This can be seen in Fig. 18: the dy-

namics in the regime _c 
 s�1
R is the same as discussed above for the nRP model.

The focus in this section is therefore on shear startup runs performed at shear rates
_c > s�1

R , for which appreciable chain stretch does develop. Here the system exhibits an

early-time ðt < sRÞ stress-strain behaviour corresponding to that of a linear elastic solid,

with R ¼ Gc. At longer times t > sR the relaxation of chain stretch leads to deviation

from this linear relation and a stress signal that decreases with strain, after an overshoot.

In contrast to the nRP model, in which stress overshoot occurs at a fixed value of the

strain, in the stretching regime this overshoot now occurs at a fixed time t � sR.

Accordingly, the stress startup curve no longer converges to a limiting function of strain

R ¼ RðcÞ at high shear rates, and the concept of a purely “elastic instability” no longer

applies. As can be seen in Fig. 18 the onset of an elastic instability just before overshoot

is apparent only in the non-stretch regime _c 
 s�1
R explored previously in the nRP model

and breaks down for _c > s�1
R .

Surprisingly, however, we find a new linear instability, specific to the stretching re-

gime _c0 > s�1
R , that sets in at a time before overshoot given by

ts ¼
3

2sd _c2
0

þ g=G for _c0 � s�1
R : (56)

FIG. 18. Stability portrait of the sRP model in the plane of strain-rate and strain for model parameter values

b ¼ 0:4; g ¼ 10�4; sR ¼ 10�2; q ¼ 5� 10�3. Solid lines show contours of equal jd _cnj ¼ _c10M for integer M
found by directly integrating the linearised Eq. (47) (The contour nearest @t R ¼ 0 has M¼�2, and we show

only contours M � �2). Diamonds show the region of significant banding in a full nonlinear spatially aware

simulation. For shear rates in the non-stretching regime s�1
d 
 _c 
 s�1

R we recover the behaviour discussed pre-

viously in the nRP model. In contrast a “sRP-specific” instability is seen in upper-left region of the plane with

onset given by the formula in Eq. (56), which is shown by a dashed line. However it does not precipitate signifi-

cant banding.
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However this instability disappears again even before the overshoot occurs and never

leads to observable banding, so we pursue it no further here.

3. Rolie-poly model: Relation to shear startup experiments

We have shown that the RP model shows rich time-dependent banding dynamics dur-

ing shear startup in the nonstretching regime s�1
d 
 _c 
 s�1

R . These results, together

with those of Adams et al. [Adams et al. (2011); Adams and Olmsted (2009a, 2009b)],

demonstrate that the RP model captures the experimental phenomenology of entangled

polymeric fluids in this shear startup protocol. We summarise this now, divided into three

classes (i)–(iii) for convenience.

(i) For imposed shear rates in the negatively sloping regime of a non-monotonic

underlying constitutive curve, we find shear banding that sets in around the time of an

overshoot in the stress startup curve and is initially sufficiently violent as to lead to elastic

recoil and negative local shear rates or velocities. It persists to steady state but with much

smaller magnitude than around the time of overshoot. This is consistent with experimen-

tal observations of Ravindranath et al. (2008), Ravindranath and Wang (2008), Boukany

and Wang (2009a), Tapadia and Wang (2006), and Boukany and Wang (2009c). (ii) For

imposed shear rates some distance above the negatively sloping regime of a non-

monotonic constitutive curve, we again find violent shear banding setting in around the

time of stress overshoot during startup. However these bands persist only transiently, and

decay to leave a homogeneous steady state. This is consistent with experimental observa-

tions of Boukany and Wang (2009a) and Ravindranath et al. (2008). (iii) For a monotonic

constitutive curve we again see pronounced transient banding triggered by stress over-

shoot, which decays to leave a homogeneous steady state, as in experimental observa-

tions of Hu et al. (2007), Ravindranath et al. (2008), and Boukany and Wang (2009a).

The main new contribution of the present manuscript has been to place these observa-

tions in the context of our general analytical criterion for the onset of banding.

C. Numerical results: Giesekus model

We now discuss our numerical results for shear startup in the Giesekus model. Our

aim is to address whether this model is capable of capturing the time-dependent shear

banding behaviour observed experimentally in entangled polymers, summarised in

(i)–(iii) above. To provide a fair comparison with the RP model, we choose values of the

parameter a giving constitutive curves that are as closely comparable between the models

as possible. Compare Fig. 19 with Fig. 14.

To explore class (i) behaviour, we consider the non-monotonic constitutive curve of

Fig. 19 and perform a shear startup at a value of the shear rate represented by the cross in

the negatively sloping regime (see Fig. 20). The stress startup curve closely resembles

that of the RP model, with a pronounced overshoot. However the Giesekus model appa-

rently lacks the region of pronounced elastic instability associated with this overshoot.

Instead, the degree of banding D _c rises monotonically and only becomes significant at

long times, when the criterion @ _cRjc!1 < 0 for viscous instability and steady state band-

ing is met. For shear rates outside the negatively sloping regime of this constitutive curve

(not shown), we find no banding during startup or in steady state. The Giesekus model

therefore fails to address classes (i) and (ii) of polymeric startup behaviour described

above.

To explore class (iii) behaviour, we consider the monotonic constitutive curve of

Fig. 19 and perform a shear startup at a value of the shear rate represented by the cross in

the region of weakest slope (see Fig. 21). The stress startup curve again closely resembles
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that of the RP model. However the magnitude of transient shear banding is significantly

diminished in comparison, never exceeding 10% of the overall imposed shear rate �_c.

Indeed, no eigenvalue shows a positive real part during startup for a monotonic constitu-

tive curve in this model. Accordingly, the Giesekus model lacks the pronounced “elastic

instability” of the RP model and fails to address class (iii) behaviour also.

FIG. 19. Constitutive curves for the Giesekus model with a ¼ 0:6; 0:8 (top to bottom) and g ¼ 10�3. Regime of

linear instability is shown as a dashed line. Crosses indicate shear rates _c ¼ 10; 40 for which time-dependent

behaviour is shown in Figs. 20 and 21, respectively.

FIG. 20. Shear startup in Giesekus model at an applied shear rate �_c ¼ 10 in the negative sloping regime of the non-

monotonic constitutive curve of Fig. 19 with a ¼ 0:8; g ¼ 10�3. (a) Shear stress startup curve (results with heteroge-

neity allowed are indistinguishable from the homogeneously constrained system). (b) Largest real part of any eigen-

value from linear stability analysis x. (c) Degree of banding in the nonlinear simulation, D _c ¼ _cmax � _cmin.

(d) Snapshots of the velocity profile in the nonlinear simulation at strains corresponding to symbols in (a), (c). The

steady state velocity profile is shown as a thick, dashed line. Magnitude of initial noise q¼ 10�2.
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A thorough exploration of this parameter space a; g; �_c (not shown) confirms that the

above comments of negligible banding during startup apply generically in the Giesekus

model. This obviously contrasts sharply with our results for the RP model above. The

reason for this appears to be the different structure of the loading terms between the

Giesekus and RP models [compare Eq. (15) with Eq. (14)]. Because of this difference,

the Giesekus model does not attain a limiting nonlinear shear startup curve RðcÞ at high

shear rates, and accordingly lacks the possibility of an elastic instability.

VIII. CONCLUSIONS AND OUTLOOK

We have explored theoretically the onset of shear banding in polymeric and wormlike

micellar fluids for three of the most common time-dependent rheological protocols: step

stress, strain ramp, and shear startup. For each protocol we have developed a fluid-

universal criterion for the onset of linear instability to shear banding. We have supported

these predictions with numerical simulations of the rolie-poly and Giesekus models.

Between these models, we have found the rolie-poly model to be effective in capturing

the observed experimental phenomenology. In contrast, the Giesekus model apparently

fails to do so.

Following the imposition of a step stress, a base state of initially homogeneous creep

response becomes unstable to the formation of shear bands during any regime in which

the shear rate _cðtÞ is simultaneously upwardly curving and upwardly sloping in time

@2
t _c=@t _c > 0. We believe this criterion to be universal in all models for the rheology of

complex fluids of which we are aware. We showed that such a regime does indeed arise

in both the Giesekus and RP models for imposed stresses nearest those on the weakest

slope of the underlying constitutive curve of shear stress as a function of shear rate.

FIG. 21. As in Fig. 20, but now for an applied shear rate �_c ¼ 40 at the weakest slope of the constitutive curve

of Fig. 19 with a ¼ 0:6; g ¼ 10�3 Z, a ¼ 0:6; g ¼ 10�3.
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However the magnitude of the resulting shear banding only attains a magnitude consist-

ent with experimental findings [Ravindranath and Wang (2008); Tapadia and Wang

(2003); Hu et al. (2008); Boukany and Wang (2008); Hu and Lips (2005); Boukany and

Wang (2009c)] in the RP model.

For the strain ramp protocol, a base state of initially homogeneous shear response is left

unstable immediately post-ramp if the stress had been decreasing with strain towards the

end of the ramp. We believe this criterion to be general for all ramps applied at a rate

exceeding the inverse of the material’s intrinsic relaxation time, for any viscoelastic consti-

tutive equation that can be expressed as the sum of separate loading and relaxation terms.

In the RP model, we demonstrated numerically that this criterion for instability imme-

diately post-ramp is met for ramp rates in the nonstretching regime s�1
d 
 _c0 
 s�1

R , and

ramp amplitudes c0 � 1:7. However we further explored the RP model’s full relaxation

as a function of the time elapsed since the ramp ended, following ramps that are either

slow or fast relative to the rate of chain stretch relaxation s�1
R . In the absence of CCR, the

stress relaxation function of a “fast” ramp drops onto that of a “slow” ramp once chain

stretch has relaxed. This leads to a delayed shear banding instability following a “fast”

ramp, even though in that case the stress increased monotonically with strain during the

ramp. In contrast CCR tends to stabilise the system against this “delayed” banding insta-

bility. In capturing such rich phenomenology, we again find the RP model capable of

addressing the experimental data for polymeric fluids, while the Giesekus model would

be expected to perform poorly in comparison.

Finally we explored the onset of shear banding in the shear startup protocol. For mate-

rials that attain a limiting nonlinear startup curve of stress as a function of strain at high

strain-rates, we identified separate “elastic” and “viscous” instabilities that respectively

act at early and late times during startup. We confirmed the presence of these two distinct

regimes in a numerical study of the RP model, which shows a violent elastic instability at

early times during startup at rates s�1
d 
 _c 
 s�1

R , closely associated with an overshoot

in the stress startup signal. This banding persists to steady state in any regime of negative

slope in the underlying constitutive curve (i.e., of viscous instability), but with a “degree

of banding” that is much weaker than that seen during the initial elastic instability. In

contrast the Giesekus model does not attain a limiting startup curve of stress as a function

of strain at high strain-rates and lacks a violent elastic instability during startup, in con-

trast to experimental observations. It does, however, correctly capture steady state band-

ing. Accordingly we conclude that the RP model provides a good description of shear

banding during time-dependent flows in entangled polymeric fluids, while the Giesekus

model performs poorly in comparison.

Throughout the manuscript we have assumed the condition of no-slip at the wall of the

flow cell. However slip is observed almost ubiquitously in experiments on shear banding

fluids. It remains an important open challenge for theorists to develop models for the rheol-

ogy of the layer of fluid adjacent to the wall of the flow cell, of the same microscopically

sound status as (for example) the rolie-poly model used here for the bulk fluid, and to use

these to examine the interplay of wall effects with bulk banding phenomena.

Our results in the RP and Giesekus models have, for the purpose of distilling the origin

of shear banding behaviour, been limited to a single-mode description of entangled poly-

meric materials. In practice it is common to use a multi-mode approach; further work is

needed to ascertain whether the shear banding properties outlined here persist in such a

multi-mode description.

The fluid-universal criteria that we have derived here (and discussed in the context of

polymer fluids) will be explored in the context of a broad class of disordered soft glassy

materials including foams, dense emulsions and colloids in a future publication.
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ADDENDUM

Since this article was submitted a manuscript has been published [Li et al. (2013)]

describing new experiments that did not find shear banding in shear startup or step strain

in polymer solutions. Further work is clearly needed to reconcile the experimental obser-

vations and theoretical predictions discussed in this manuscript with that new experimen-

tal contribution.
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