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Abstract: We formally define a concept of functional cointegration linking the dynamics of two time series 
via a functional coefficient. This is achieved through the use of a concept of summability as an alternative to 
I(1)’ness which is no longer suitable under nonlinear dynamics. We subsequently introduce a nonparametric 
approach for estimating the unknown functional coefficients. Our method is based on a piecewise local least 
squares principle and is computationally simple to implement. We establish its consistency properties and 
evaluate its performance in finite samples. We subsequently illustrate its usefulness through an application 
that explores linkages between stock prices and dividends via a sentiment indicator.
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1  Introduction
A vast body of research in the recent time series econometrics literature has concentrated on developing 
methods of capturing nonlinear regime specific behaviour in the joint dynamics linking economic and 
financial variables. An important complication that arises when moving from simple linear structures with 
constant coefficients to such models with nonlinear dynamics has to do with the open ended nature of the 
functional forms one may want to adopt for describing the changing nature of the model parameters and 
underlying moments. Popular parametric specifications include the well known threshold models, Markov 
switching models, models with structural breaks among numerous others. Although such models can allow 
researchers to capture rich and economically meaningful nonlinearities the ad-hoc nature of the functional 
forms may also be seen as problematic. An alternative to having to take a stand on a particular functional 
form is to instead allow the changing coefficients to be described by some unknown function to be estimated 
from the data as for instance in y = f(q)x+e. Such semiparametric specifications are commonly referred to as 
varying or functional coefficient models and were introduced in the early work of Cleveland, Grosse and 
Shyu (1991), Hastie and Tibshirani (1993), Chen and Tsay (1993), Fan and Zhang (1999) amongst numerous 
others [see also Fan and Yao (2003) and references therein]. An important motivation underlying this class of 
models is their ability to capture rich dynamics in a flexible way while at the same time avoiding the curse of 
dimensionality characterising fully nonparametric specifications.

Our initial objective in this paper is to formally define a novel concept of functional cointegration linking 
two highly persistent variables via functional coefficients. Our framework is analogous to the well known linear 
cointegration property linking I(1) variables except that in the present nonlinear framework I(1)’ness is no 
longer suitable for describing the stochastic properties of our variables. Our work also falls within the bounds 
of the very recent literature on nonlinear cointegration tackled from a purely nonparametric point of view 
[Karlsten, Myklebust and Tjostheim (2007), Wang and Phillips (2009), Kasparis and Phillips (2009) amongst 
others]. Note that the idea of a nonlinear long run equilibrium relationship (attractor) was also put forward in 
the early work of Granger and Hallman (1989), Breitung (2001), Saikkonen and Choi (2004) amongst others.
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The most common way of estimating the unknown functions of such varying coefficient models is through 
kernel smoothing and local polynomial techniques. These typically reduce to a weighted least squares type of 
objective function with the weights dictated by some chosen kernel function. Our subsequent objective in this 
paper is to propose an alternative estimation approach based on a piecewise linear least-squares principle 
and to obtain its properties within our nonstandard context that allows for the presence of a unit root variable 
as in the recent work of Juhl (2005), Xiao (2009) and Cai, Li and Park (2009). Our method is very different from 
kernel smoothing based methods, relies on a straightforward disjoint binning principle and does not gener-
ally require the differentiability of the density of q and is shown to have good finite sample properties. An 
additional convenient aspect of our approach is its reliance on standard model selection based procedures 
(e.g. AIC, BIC) for the determination of the number of bins. This is akin to choosing a suitable bandwidth in 
kernel based methods.

The plan of the paper is as follows. Section 2 introduces and motivates our model and formally defines 
the concept of functional cointegration. Section 3 describes our estimation methodology and derives its 
asymptotic properties. Section 4 explores its performance in finite samples. Section 5 illustrates our estima-
tion methodolody with an example linking stock prices and dividends via a sentiment proxy and Section 6 
concludes. All proofs are relegated to the appendix.

2  The model and motivations
We consider the following functional coefficient regression model

 yt = f0(qt–d)+f1(qt–d)xt+ut (1)

 xt = xt–1+vt (2)

where ut and vt are stationary disturbance terms and f0(qt–d) and f1(qt–d) are unknown functions of the sta-
tionary scalar random variable qt–d while xt is taken as an I(1) process throughout. The particular choice of 
d is not essential for our analysis and will be set at d = 1 throughout. The generality of (1)–(2) can be seen 
by noting that it can easily be specialised to well-known parametric specifications such as threshold 
effects as in fi(qt–1) = βi1I(qt–1  ≤  γ)+βi2I(qt–1 > γ) [see Gonzalo and Pitarakis (2006)] or smoother variants such as 

1( ) 1
1( ) [1 ]i t iq c

i tf q e γ −− − −
− = +  amongst others.
Before proceeding with the estimation of the unknown functions f0(q) and f1(q) it is important to motivate 

our model in (1)–(2) as a long run equilibrium relationship. As it stands (1) cannot be interpreted as a station-
ary nonlinear combination of I(1) variables in a traditional sense. Indeed, it is easy to see that although xt is a 
standard I(1) process, yt can no longer be viewed as I(1) as it would have been the case for instance if f0(q) and 
f1(q) were constants. Differently put, the concept of integratedness of order 0 or 1 is mainly relevant within a 
linear framework while not being very helpful when dealing with nonlinear transformations of variables. In 
the context of our model in (1) for instance it is straightforward to see that first differencing yt will not result 
in a stationary process because of the time varying nature of the functional coefficients.

To gain further insight into this phenomenon consider a simplified version of (1) which we compactly 
write as yt = ftxt+ut and with ft denoting some stationary process. It is now clear that Δyt = ftΔxt+xt–1Δft+Δut 
making it difficult to view Δyt as a stationary process due to the presence of the term xt–1Δft which has a vari-
ance that grows with t. Instead, cointegration in the context of (1) is understood in the sense that although yt 
and xt have variances that grow with t, the functional combination given by ut is stationary.

Because of these conceptual difficulties and for the purpose of motivating (1)–(2) we propose to use the 
concept of Summability as an alternative to the concept of I(1)’ness and which was proposed in Gonzalo and 
Pitarakis (2006) and more recently refined and formalised in Berenguer-Rico (2010) and Berenguer-Rico and 
Gonzalo (2011). A time series yt is said to be summable of order δ, symbolically represented as Sy(δ), if the sum 
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1
( )T

y t tt
S y d

=
= −∑  is such that 

1
2/ (1)y pS T O

δ+
=  as T→∞ and where dt denotes a deterministic sequence. Note 

that in the context of this definition, a process that is I(d) can be referred to as Sy(d) and the functional process 
introduced in (1) is clearly Sy(1) as discussed further below. Using this concept of summability of order δ we 
can now provide a formal definition of the concept of functional cointegration as follows

Definition (Functional Cointegration): Let yt and xt be Sy(δ1) and Sy(δ2), respectively. They are functionally coin-
tegrated if there exists a functional combination (1,–f1(qt–1)) such that zt = yt–f1(qt–1)xt is Sy(δ0) with δ0 < min(δ1, δ2).

Given the formal definition of functional cointegration presented above it is now clear that within our speci-
fication in (1), yt and xt are functionally cointegrated with δ0 = 0 and δ1 = δ2 = 1. This follows from the fact that 

taking ut and qt to be stationary processes ensures that ∑yt/T3/2 = Op(1) while ut is such that / (1)t pu T O=∑  
as clarified further below. It is also worth highlighting the fact that within our specification in (1) we have 
zt = f0(qt–1)+ut which is of the same order of magnitude as ut since under our assumptions we will have 

0 1 0 1( ) / [ ( )]
p

t tf q T E f q− −→∑  and ∑ f0(qt–1)/T3/2 = Op(1).
Having provided a rationale for our specification in (1)–(2) we next concentrate on obtaining reliable 

estimates of the unknown functional coefficients f0(q) and f1(q) and exploring their consistency properties. 
For this purpose we introduce a piecewise linear estimation approach initially developed in Banerjee (1994, 
2007) in the context of average derivative estimation and adapt it to the nonstationary functional coefficient 
setting given by (1)–(2). This will also allow us to compare our approach with the more commonly used kernel 
smoothing approaches.

3  Piecewise local linear estimation
We now concentrate on the estimation of the unknown functional coefficients linking yt and xt. We propose 
to do that through a piecewise local linear procedure recently used in Banerjee (1994, 2007) in the context of 
average derivative estimation. We partition the support of qt–1 into k disjoint bins of equal length |Hr| = h, r = 1, 
…, k (note that qt–1 is not sorted in any particular order). For every qt–1 falling in the rth bin we then fit the least 
squares line yt = β0r+β1rxt+ut connecting the {yt, xt} data within the bin. More specifically, letting ( 1, )t tx x= ′�  and 
Ir(qt–1)≡I(qt–1∈Hr) = 1 if qt–1 falls within the rth bin and zero otherwise and βr = (β0r, β1r)′ we write

 
( ) 1 ( )ˆ r r

r xx xyS Sβ −=
 

(3)

where ( )
11

Tr
xx t t rtt

S x x I −=
= ′∑ � �  and ( )

11

Tr
xy t t rtt

S x y I −=
=∑ �  with Irt–1≡Ir(qt–1). Note that ˆ

rβ  provides the least-squares esti-
mators of the intercept and slope parameters characterising the linear regression line within each bin. Once 
the ˆ

rβ ’s have been estimated within each bin, our estimator of the functional coefficients is then given by

 
0 1 0 1

1 1

ˆ ˆˆ ˆ( ( ), ( )) ( ), ( )
= =

 
=  ∑ ∑

k k

r r r r
r r

f q f q I q I qβ β
 

(4)

with Ir(q) = I(q∈Hr).
At this stage it is important to emphasise that our method is fundamentally different from kernel smooth-

ing based approaches (e.g., local linear regression with a uniform or any other type of kernel) since it relies on 
the use of disjoint bins. Local linear regression with a uniform kernel for instance is a weighted least squares 
estimator with the equal weights centered around the q observations [see Fan and Zhang (1999)]. Estimating 
the function at two different locations, say q1 and q2, via this approach will involve the use of some common 
data points (overlapping data) whereas under PLLE the estimates obtained at two different bins will not use 
any common data points since the bins are disjoint. Interestingly, in a series of recent papers, Senturk and 
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Mueller (2005, 2006) also used an estimation technique similar to what we consider below in an unobserved 
variable setting under iid’ness and in which observed and unobserved variables are linked through func-
tional coefficients.

Having introduced the mechanics behind our estimator our main goal is to establish its consistency. Since 
in this nonstationary setting consistency typically holds under minimally restrictive assumptions that can 
accomodate serial correlation and/or endogeneity we proceed and operate under a broad set of assumptions. 
The following baseline assumptions will be maintained throughout the entire paper where we let qt = μ+uqt.

Assumptions A. (i) wt = {ut, vt, uqt} is such that E[wt] = 0, E||w0||ρ+e < ∞ for some ρ > 2 and the sequence {wt} is strictly 
stationary, strong mixing with mixing coefficients αm such that 1 2/ .m

ρα − <∞∑  (ii) The density of q denoted gq(q) 
is strictly positive and satisfies ( )sup qq g q c< <∞  and ( ) 0.infq qg q c> >  (iii) gq(q) has compact support. (iv) The 
functional coefficients are twice continuously differentiable in q.

Assumptions A above impose a very standard set of restrictions on the dynamics driving (1)–(2) leaving 
all random disturbances to be flexible enough to display rich dynamics such as ARMA process. Their joint 
interactions is also allowed to be very flexible since ut and vt can be correlated at all leads and lags and 
similarly for the interactions between qt and the remaining variables included in the model. It is natu-
rally understood that the associated long run variances of those processes are positive. In this sense the 
above setting is at least as flexible as the well known linear cointegration model formulated in triangular 
form allowing for both serial correlation and endogeneity. Note also that the strictly stationary and strong 
mixing nature of uqt also implies that the indicator function series Irt are strictly stationary and strong 
mixing with the same mixing coefficients.

Assumption A(ii) is concerned with the density of qt and is required so as to ensure that there are obser-
vations in each bin. Since our estimation methodology requires fitting a least squares line within each bin of 
length |Hr| = h it is understood throughout this paper that for estimability purposes there are enough obser-
vations falling within each bin. Note, however, that we do not impose any smoothness conditions on the 
density of q. This is in contrast with other methods that have been used in the literature (e.g., kernel smooth-
ing via local linear regression). Assumption A(iii) requires the support of q to be compact. More specifically 
we require q to be bounded from below and above. In practice and throughout our simulations we form the 
support of qt by taking the range of a top (say 0.9) and bottom (say 0.1) quantile. Finally, the differentiability 
of the fi(q)′s will allow us to use their local Taylor expansions at a point q within each bin.

We are now in a position to state our main result which establishes the consistency of our piecewise local 
linear estimator. It is summarised in the following Proposition.

Proposition 1. Under Assumptions A, as T→∞ and if Th→∞ and Th3/2→0 as h→0 we have 
0 0

ˆ( ( ) ( )) (1/ )pf q f q O Th− =  and 1 1
ˆ( ( ) ( )) (1/ ).pf q f q O T h− =

The above proposition has focused on the consistency of our proposed estimators under a setting that 
allows a great degree of generality in the dynamics linking (1) and (2). We note that the slope function 
converges at a faster rate than the intercept function (i.e., T h  versus Th ). This is directly analogous 
to the standard linear cointegration setting in which the least squares based slope estimator converges at 
rate T while the intercept parameter estimator converges at the slower T  rate. Our convergence rates 
conform with related studies that explored the use of functional coefficients in unit root settings using 
kernel smoothing techniques (Juhl 2005; Xiao 2009).

4  Finite sample analysis
Our goal here is to illustrate the behaviour of our piecewise local linear estimators via a series of simula-
tion experiments and also compare their performance with alternative kernel based estimation approaches. 
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We consider five functional forms including one that violates our differentiability assumption in A(iv). The 
stochastic structure of our DGPs is sufficiently general to allow for the presence of endogeneity and a rich 
dynamic structure for the errors driving xt. Specifically, our DGP is given by

 

0 1 1 1

1

1

1

1

( ) ( )

=
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t t t t t

t t t

t u t t
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(5)

Letting zt = (eut, evt, eqt)′ and [ ] ,z t tE z zΣ = ′  we use

1
1

1

uv uq

z uv vq

uq qv

σ σ

Σ σ σ

σ σ

 
 = 
  

for the covariance structure of the random disturbances. Our chosen covariance matrix parameterisation 
allows qt to be contemporaneously correlated with the shocks to yt and throughout all our experiments we set 
{σuv, σuq, σvq} = {–0.5, 0.5, 0.5}.

The range of possible functional coefficients we consider for either the intercept or the slope functions 
is given by
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(6)

thus covering a very wide variety of shapes including for illustration purposes a threshold type function 
which violates our differentiability assumption. Following standard practice in the functional coefficient lit-
erature, the quality of our estimators will be assessed via the computation of the root MSE defined as follows

 

2

1

1 ˆ( ( ) ( )) 0,1
k

i i r i r
r

RMSE f q f q i
k =

= − =∑
 

(7)

for some qr falling within each bin, say the midpoint (note that since we operate under piecewise linearity 
the location at which we evaluate the function within the bin does not affect its value). All our experiments 
use NID(0, 1) variables for the random disturbances zt while setting {ρu, ρv, ρq} = {0.25, 0.25, 0.25} thus allowing 
both serial correlation and endogeneity.

Before proceeding with our simulations Figure 1 gives a snapshot of the performance of our estimators 
by displaying the plots of single realisation based ˆ( )if q s′  for i = 0, 1 together with their true counterparts. 
The number of bins associated with each example has been chosen via a formal model selection procedure 
discussed in greater detail below.

The plots suggest that 1̂( )f q  displays a good ability to trace its true counterpart f1(q) along the chosen 
domain. Interestingly, our estimator also appears to match its true counterpart closely under scenario D when 
the chosen functional form has a kink. At this stage it is also worth recalling that these figures have been 
obtained allowing for both serial correlation and endogeneity in the underlying dynamics. Unlike 1̂( )f q  
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(Figure 1 Continued)

however, the estimator of f0(q) appears to perform poorly overall especially when the sample size is small. 
This is not unexpected and stems from the slow convergence of the estimator relative to that of 1̂( )f q  as it 
occurs in the linear cointegration framework. It is also clear from the above plots that the variance of 0̂ ( )f q  
is substantially larger than that of 1̂( ).f q

We next aim to highlight more formally the consistency properties of our estimators by documenting the 
progression of the corresponding RMSEs as the sample size and associated bin number is allowed to increase. 
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Figure 1 Piecewise local linear estimation.

Before proceeding further however it is important to recall that the implementation of our piecewise local 
linear approach requires the user to input the number of disjoint bins for partitioning the support of qt–1. This 
user input is in a way similar to the bandwidth choice requirement that arises under kernel based estimation 
methods.

Since our estimation problem in (4) can be rewritten as a least squares regression problem with dummy 
variables associated with each bin and shifting both intercept and slope parameters, we propose to select 
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an optimal k via a standard model selection based approach. We view this as an additional advantage of 
our approach. Note that the estimator in (4) can be viewed as equivalent to estimating the parametric model 

0 11 1
( ) ( )k k

t k r t r r t t tr r
y I q I q x uβ β

= =
= + +∑ ∑  with 2k parameters. Starting with a lower bound kmin for the number 

of bins and an upperbound kmax we select the optimal number of bins via the minimisation of an AIC type of 
criterion. More specifically, we implement our Piecewise Local Linear estimation method for each possible 
value of k = kmin, …, kmax and select the optimal number of bins as the one that leads to the smallest AIC value. 
As discussed in our simulations below we have also experimented with alternative criteria such as the BIC 
and 2R  with almost identical outcomes to the ones obtained under the AIC and virtually no changes in the 
resulting RMSEs.

For comparison purposes we also contrast the performance of our method with Xiao’s kernel based local 
linear approach as discussed in Xiao (2009). The latter is implemented using the particular fourth order 
kernel given by k(u) = 15(7u4–10u2+1)I(|u|  ≤  1)/32 and bandwidth h = sq/T1/3 with sq denoting the standard devia-
tion of q as advocated in the finite sample performance study of Xiao (2009). In order to highlight and empha-
sise the fundamental differences between our piecewise local linear model that uses disjoint bins from a 
kernel based approach with a uniform kernel, our simulations also consider Xiao’s estimation approach with 
the use of a uniform kernel k(u) = 0.5I(|u|  ≤  1).

Results across a selective set of scenarios are summarised in Table 1 below which displays simulated 
averages of (7) across N = 2000 Monte-Carlo replications. The rows labelled PLLE correspond to our piecewise 
local linear estimator while the rows labelled KER1 and KER2 are based on a Kernel estimation as described 
within the finite sample performance analysis section of Xiao (2009) using the quadratic and uniform kernels 
respectively. In order to maintain comparability, the kernel based RMSEs in (7) have been evaluated at the 
same qr′s as the ones dictated by our optimal number of bins.

Table 1 RMSE of Estimators under Serial Correlation and Endogeneity.

 
 
 

T = 250   T = 500   T = 1000  
 
 

T = 250   T = 500   T = 1000

kmax = 40   kmax = 80   kmax = 120 kmax = 40   kmax = 80   kmax = 120

0̂ ( )f q 1̂ ( )f q

A
PLLE   8.950   6.292   4.935   0.573   0.286   0.174
KER1   45.858   12.230   8.843   6.162   0.704   0.382
KER2   11.710   10.289   6.686   1.119   0.720   0.338

B
PLLE   0.981   0.904   0.760   0.085   0.056   0.025
KER1   1.535   0.584   2.245   0.308   0.174   0.040
KER2   0.395   0.319   0.267   0.036   0.020   0.011

C
PLLE   0.875   0.885   0.812   0.081   0.056   0.036
KER1   5.817   0.526   0.396   0.189   0.033   0.020
KER2   0.373   0.298   0.248   0.034   0.019   0.011

D
PLLE   1.405   1.170   0.942   0.111   0.071   0.042
KER1   14.728   4.542   4.346   0.353   0.191   0.272
KER2   1.272   1.355   1.238   0.232   0.207   0.181

E
PLLE   0.944   0.886   0.830   0.083   0.058   0.037
KER1   7.979   0.936   1.202   0.424   0.082   0.042
KER2   0.440   0.359   0.313   0.041   0.023   0.014

F
PLLE   1.021   0.957   0.859   0.088   0.058   0.038
KER1   1.631   0.811   0.553   0.141   0.054   0.026
KER2   0.635   0.585   0.506   0.095   0.068   0.045
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Across all functional forms we note a clear decline in the PLLE based RMSEs corresponding to both  
0̂ ( )f q  and 1̂( )f q  as T is allowed to increase. As expected from Proposition 1 however, the slope functions 

see their RMSEs decline substantially faster than their intercept counterparts. Within the same context it is 
also worth noting that the magnitude of the RMSEs is substantially larger for 0̂ ( )f q  than for 1̂( ).f q  Another 
useful feature of the PLLE method is its robustness to alternative choices for kmax and different methods of 
obtaining an optimal k. We have experimented across a wide configuration of upperbounds and criteria (e.g., 
BIC, 2R ) and systematically obtained results that were both qualitatively and quantitatively similar to our 
estimates presented in Table 1.

It is now also interesting to compare our PLLE method with kernel based methods as proposed in Xiao 
(2009). A feature of the kernel based RMSEs presented in Table 1 is their sensitivity to the choice of a kernel 
function under small to moderate sample sizes. We note for instance that our approach often dominates 
the kernel based approach under the use of the quadratic kernel (denoted KER1) while the use of a uniform 
kernel (denoted KER2) leads to RMSEs that are sometimes smaller than the ones obtained under our PLLE 
approach. Under functions A, D and F our proposed PLLE approach compares favourably with both KER1 
and KER2 for all sample size scenarios. Given also its trivial implementation via linear regression with 
dummy variables, our findings suggest that our proposed piecewise local linear approach is a useful and 
powerful addition to the toolkit on functional coefficient estimation, further supporting the conclusions in 
Banerjee (2007).

5  An application to stock prices and dividends
In this section we apply our Piecewise Local Linear estimation methodology to the study of linkages between 
stock prices and dividends. Since the early work of Campbell and Shiller (1987, 1988) it is well known that 
when prices and dividends are linked through a present value relationship it must be the case that they 
are cointegrated. This observation has generated a voluminous but often inconclusive empirical literature 
that aimed to document the presence or absence of linear cointegration between prices and dividends, 
often resulting in calls to extend the analysis to take into account potential nonlinearities as advocated by 
numerous theoretical models involving noise traders, bubble phenomena amongst numerous others [see 
Obstfeld and Rogoff (1986), Shleifer and Summers (1990) amongst many others]. It is indeed not uncom-
mon to observe in the data episodes where the dynamics of prices appear disconnected from the under-
lying fundamentals making it difficult to view them as forming a linear equilibrium relationships when 
using detection methods designed for linear cointegration settings. One explanation that has often been 
put forward for explaining such occurences relies on the notion of a broadly defined sentiment concept [see 
Baker and Wurgler (2007)] with prices possibly disconnecting from fundamentals during episodes of par-
ticularly high sentiment. Our functional cointegration framework is particularly suitable for modelling such 
situations where the long run equilibrium relationship between two variables of interest may be affected by 
the dynamics of a third one.

Our empirical analysis uses monthly US data on real stock prices and dividends as provided on Robert 
Shiller’s website (www.econ.yale.edu/shiller). Our functional cointegration setting aims to model a nonlin-
ear cointegrating relationship between prices and dividends using as our functional variable the monthly 
consumer sentiment index compiled by the University of Michigan survey of consumers (data item UMCSENT 
downloaded from the St Louis Fed database). Since UMCSENT is available on a monthly basis from January 
1978 onwards we restrict our analysis to the period 1978:1–2012:12. Due to the size of the available sample we 
implement our Piecewise Local Linear Estimation method allowing between kmin = 20 and kmax = 40 bins and 
selecting the optimal number via the AIC criterion. For comparison purposes we also implemented a Kernel 
based estimation approach using the uniform Kernel. Figure 2 below presents our estimated slope functional 
coefficient using the piecewise local linear and Kernel based methods. The latter has been implemented 
using a uniform kernel.
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It is very interesting to note that for sentiment values below the low 80s (i.e., low or normal times as 
opposed to times of possible exuberance) the relationship between log stock prices and dividends appears 
to be linear and clustered along 1 as predicted by theory whereas for larger values of the sentiment index we 
observe a functional coefficient that is positively sloped and increasing in q. Note that our estimation method 
has been implemented using qt≡UMCSENTt but results were virtually identical using its lagged value.

This interpretation, albeit informal is very much supportive of the idea that long run linkages between 
prices and fundamentals may be affected by sentiment. It is in fact possible to formalise our arguments by 
comparing the residuals of a linear versus functional fit. Implementing a standard Engle-Granger test on 
our monthly series of log stock prices and dividends we were unable to reject the null hypothesis of no coin-
tegration. In a first instance the linear and potentially cointegrating regression linking pt and dt was given 
by ˆ 3.960 1.067 .t tp d= +  An ADF test on the associated residuals from this regression, say ,ˆL tu  subsequently 
led to a t-ratio of –1.888 with a corresponding p-value of 0.586 on the coefficient associated with , 1ˆ .L tu −  This 
clearly suggests that over the period 1978:1–2012:12 the data do not support the existence of a linear cointe-
grating relationship between real stock prices and dividends (in logs).

We next repeated the same exercise by considering the residuals from the functional regression, say 
,ˆ .FC tu  The auxiliary ADF regression led to , , 1ˆ ˆ0.138FC t FC tu u lags∆ −=− +  with a t-ratio of –3.997 associated with 

the coefficient on , 1ˆ .FC tu −  Using the cointegration based critical values of the ADF statistic now leads to a 
rejection of the null at all conventional significance levels [see MacKinnon (2010)]. This is an interesting and 
powerful result. It suggests that log stock prices and dividends are linked via a linear or close to linear coin-
tegrating relationship during normal times but the shape of the same relationship changes during certain 
episodes proxied by the level of a sentiment indicator.

At this stage it is also important to reiterate that our goal here was a simple illustration of our estima-
tion methodolody using real data rather than conducting any formal follow up inferences such as testing for 
constancy of the coefficients or building confidence intervals for our functional coefficients. Doing so raises 
numerous technical challenges that would push us beyond the scope of this paper.

6  Conclusions
This paper introduced the concept of functional cointegration and proposed a novel method of estimating 
the unknown functional coefficients linking the variables of interest under a nonstationary unit root setting. 
Our method is based on a simple binning idea and is shown to perform well asymptotically as well as in finite 
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Figure 2 Sentiment based Functional Slope Coefficient Linking Prices and Dividends.
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samples. Operating within a highly general probabilistic setting that allows for both serial correlation and 
endogeneity we established the consistency of our function estimators. We subsequently used our methodol-
ogy to illustrate the presence of an interesting relationship between stock prices and dividends driven by a 
sentiment indicator. Since developing formal inferences was beyond the scope of this paper, in future work 
it will be interesting to use our results to obtain the properties of test statistics that could be used to tests 
hypotheses such as the null of a linearly cointegrated model versus our functional specification.

Acknowledgement: We wish to thank seminar participants at the 2012 SNDE conference in Istanbul for very 
useful comments and suggestions. The second author also wishes to thank the ESRC for partial financial 
support.

APPENDIX
LEMMA 1: As h→0 (i) E[Irt–1]/h→gq(q), (ii) E[Irt–1(qt–1–q)m] = o(hm+1).
PROOF: We focus on (ii) and evaluate the expression at some q = qr. We have

 

1 1

1

| [( ) ] | | ( ) ( ) |

| | ( )
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m m
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≤ −
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∫
∫

∫
 

(8)

and the result follows.

PROOF OF PROPOSITION 1: Given xt, yt, qt and the known bin cutoff locations the least squares estimators of 
the intercept β0r and slope parameter β1r of the regression line within each bin can be formulated as
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1
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∑  

(9)

with 1 1/r t rt rtx x I I− −=∑ ∑  and 1 1/ .r t rt rty y I I− −=∑ ∑  Next, using yt = f0(qt–1)+f1(qt–1)xt+ut, taking a first order Taylor 
expansion of the unknown coefficients around some q∈Hr

2
1 1( ) ( ) ( )( ) ( )i t i j tf q f q f q q q o h− −≈ + − +′

for i = 0, 1 and ignoring terms that are o(h2) we can rewrite 1
ˆ

rβ  as
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It is now also convenient to reformulate the above as
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and the result follows by showing that rT h A  and rT h B  are asymptotically negligible when Th3/2→0 while 
Cr is Op(1). Note that the denominators of the above are always bounded in distribution as Th→∞, since
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(12)

Using the Markov inequality Pr(supt|Irt–1/h| > M)  ≤  suptE(Irt–1)/Mh  ≤  sup gq(q)/M→0 as M→∞ therefore 
Irt–1/h is uniformly bounded. Our assumptions also ensure that 

12 2 2

0
/t vx T B⇒∑ ∫  [see Phillips (1987)] and 

finally the asymptotic negligibility of the last term in (12) as Th→∞ follows from a suitable law of large 
numbers for strong mixing processes [e.g., Hansen (1991), corollary 4]. See also [Hansen (2008, theorem 1)]. 
Similarly for .rx

We have for q∈Hr,|qt–1–q| < h and 1( )f q′  bounded,
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since Th3/2→0. The asymptotic negligibility of rT h A  follows along identical lines using the fact that
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since as before (sups∈0, 1)Bv(S)+1)ΣIrt–1/Th is bounded 0.rT h A →
Finally, for Cr, using xt = xt–1+vt we write
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Notice that 2 2
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ε− −> ≤ →∑  Same goes for the term 1 /t rtu I Th−∑  and rx  is 

bounded by (sups∈0, 1)Bv(S)+1) hence the third term is Op(1). So we can concentrate on 1 1 / .t t rtx u I T h− −∑  We 
write as before
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and hence leading to the required result.
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Proceeding along the same lines for 0
ˆ

rβ  and using 1 1
ˆ ( ) (1/ )r pf q O T hβ = +  we write
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Applying suitable normalisations we reformulate (17) as

 

1 1 1 1
0 0 0 1

1 1

1

1

( ) ( )ˆ( ( ))= ( ) ( )

/
(1).

/

t rt t t rt
r

rt rt

t rt
p

rt

q q I q q x I
Th f q f q Th f q Th

I I

u I Th
O

I Th

β − − − −

− −

−

−

   − −
− + +′ ′   

   

+

∑ ∑
∑ ∑

∑
∑  

(18)

Proceeding as above it is again straightforward to observe that the first two terms in the right hand side of (18) 
are asymptotically negligible while the third term is Op(1) by our Assumptions A.
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