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ABSTRACT
We use large-volume N-body simulations to predict the clustering of dark matter in redshift
space in f (R) modified gravity cosmologies. This is the first time that the non-linear matter and
velocity fields have been resolved to such a high level of accuracy over a broad range of scales
in this class of models. We find significant deviations from the clustering signal in standard
gravity, with an enhanced boost in power on large scales and stronger damping on small scales
in the f (R) models compared to general relativity (GR) at redshifts z < 1. We measure the
velocity divergence (Pθθ ) and matter (Pδδ) power spectra and find a large deviation in the ratios√

Pθθ/Pδδ and Pδθ /Pδδ between the f (R) models and GR for 0.03 < k/(h Mpc−1) < 0.5. In linear
theory, these ratios equal the growth rate of structure on large scales. Our results show that
the simulated ratios agree with the growth rate for each cosmology (which is scale-dependent
in the case of modified gravity) only for extremely large scales, k < 0.06 h Mpc−1 at z = 0.
The velocity power spectrum is substantially different in the f (R) models compared to GR,
suggesting that this observable is a sensitive probe of modified gravity. We demonstrate how
to extract the matter and velocity power spectra from the 2D redshift-space power spectrum,
P(k, μ), and can recover the non-linear matter power spectrum to within a few per cent for
k < 0.1 h Mpc−1. However, the model fails to describe the shape of the 2D power spectrum,
demonstrating that an improved model is necessary in order to reconstruct the velocity power
spectrum accurately. The same model can match the monopole moment to within 3 per cent
for GR and 10 per cent for the f (R) cosmology at k < 0.2 h Mpc−1 at z = 1. Our results suggest
that the extraction of the velocity power spectrum from future galaxy surveys is a promising
method to constrain deviations from GR.

Key words: cosmology: theory – dark energy – large-scale structure of Universe.

1 I N T RO D U C T I O N

The clustering of galaxies on different scales is a key observational
tool in the quest to explain the current accelerating expansion of the
Universe (Percival et al. 2007; Schlegel et al. 2007, 2009; Guzzo
et al. 2008; LSST Science Collaborations 2009; Blake et al. 2010,
2011; Sánchez et al. 2010; Beutler et al. 2011; Green et al. 2011;
Laureijs et al. 2011; Blake et al. 2012). The accelerating expansion
may be the result of a dark energy component which behaves as
a repulsive form of gravity or it may be that Einstein’s theory of
gravity breaks down on cosmological scales (see e.g. Bertschinger
& Zukin 2008; Weinberg et al. 2012). For a given cosmology with

�E-mail: ejennings@kicp.uchicago.edu

a smooth dark energy component, a measurement of the expansion
history gives a prediction for the growth rate of structure. Indepen-
dent measurements of the growth rate can be obtained by measuring
the clustering of galaxies in redshift space, where peculiar velocities
distort the clustering signal along the line of sight. By testing the
consistency between the measured growth rate and the prediction
from the expansion history, it is possible to constrain models of
modified gravity and to distinguish them from a smooth dark en-
ergy component (see e.g. Mortonson et al. 2009; Vanderveld et al.
2012). In this paper we measure the anisotropic power spectrum
in redshift space from large-volume N-body simulations of f (R)
modified gravity and general relativity (GR) cosmologies.

The f (R) class of models can mimic the effect of a cosmological
constant and is set up by modifying the Einstein–Hilbert action with
an arbitrary function of the Ricci scalar, R (see e.g. Carroll et al.
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2003; Nojri & Odintsov 2003). A key feature of these models is
the existence of a ‘fifth force’, due to an extra propagating scalar
field. Departures from GR on small scales are highly constrained by
Solar system tests (e.g. Will 2006). As a result, viable f (R) theories
must exhibit a screening mechanism, the so-called chameleon effect
(Khoury & Weltman 2004), whereby standard gravity is recovered
in high-density environments. The range of the fifth force depends
non-linearly on the local curvature and as a result will change with
redshift. The impact of the chameleon mechanism on the matter
and velocity fields can only be fully investigated using N-body
simulations. Any deviations from standard gravity will depend on
the choice of the function f (R) and the parameter values adopted.

In this paper we consider the f (R) model proposed by Hu & Saw-
icki (2007). This modified gravity model has been incorporated into
N-body simulations and studied by several authors (Oyaizu 2008;
Oyaizu, Lima & Hu 2008; Schmidt, Vikhlinin & Hu 2009a; Schmidt
et al. 2009b; Ferraro, Schmidt & Hu 2010; Lombriser et al. 2010;
Gil-Marı́n et al. 2011; Li & Hu 2011; Zhao, Li & Koyama 2011).
A variety of computational box sizes from 64 to 400 Mpc h−1 on
a side have been used. In this work we make use of large-volume,
Lbox = 1.5 and 1 Gpc h−1, modified gravity simulations using the
N-body code of Li et al. (2012). The large volume of these simu-
lations allow us to study the impact of unique features of modified
gravity, such as the scale-dependent enhanced gravitational force,
on the clustering signal in redshift space.

Galaxy redshift surveys allow us to study the 3D spatial dis-
tribution of galaxies and clusters. In addition to the Hubble flow,
galaxies have peculiar velocities, due to local inhomogeneities in the
density field, which distort the measured distances. Measuring the
anisotropic distortions in the galaxy clustering pattern in redshift-
space constrains β = f /b, where b is the galaxy bias factor and f
is the logarithmic derivative of the linear growth rate of structure,
which is scale-independent in the case of GR. This effect was first
described by Kaiser (1987) using linear perturbation theory where
the matter power spectrum in redshift space can be expressed as
a function of the power spectrum in real space and β. Several au-
thors have extended this linear model to quasi-linear scales by, for
example, including non-linear velocity terms (Scoccimarro 2004;
Matsubara 2008; Percival & White 2009; Taruya, Nishimichi &
Saito 2010) or by considering a phase-space distribution function
approach (Seljak & McDonald 2011) or into the non-linear regime
by including the contribution of peculiar velocities on small scales
(e.g. Peebles 1976; Peacock & Dodds 1994; Reid & White 2011).

Modelling the clustering of the dark matter and galaxies in red-
shift space is extremely challenging. Most models contain free pa-
rameters such as the linear bias, which quantifies the difference in
clustering between the dark matter and galaxies on large scales, and
the velocity dispersion due to incoherent motions on small scales
(see e.g. Okumura & Jing 2011). These parameters must be in-
cluded when fitting any model and can weaken the constraints on
the growth rate.

Many redshift-space distortion models which are currently used
are only accurate for a limited range of scales or for galaxies with a
particular linear bias (e.g. Scoccimarro 2004; Reid & White 2011).
Scoccimarro (2004) proposed a simple quasi-linear model which
includes the non-linear velocity power spectrum. By comparing
with measurements from N-body simulations, Jennings, Baugh &
Pascoli (2011a,b) showed that this model performed better than
commonly used models (which we discuss in Section 3) and is
accurate on scales k < 0.3 h Mpc−1 and can recover the linear growth
rate to within a few per cent. The non-linear velocity terms in this
model may be obtained either using a fitting formula calibrated

against N-body simulations or from perturbation theory (Matsubara
2008; Jennings et al. 2011a).

The WiggleZ Dark Energy Survey (Blake et al. 2011) recently
measured the growth rate at z = 0.78 to be f = 0.70 ± 0.08 using
redshift-space distortions in the galaxy power spectrum. Measure-
ments of the linear growth rate are degenerate with the bias or
clustering amplitude in the power spectra and so constraints on the
growth rate are often quoted as constraints on f σ 8, where σ 8 is the
rms variance in the linear matter power spectra smoothed in spheres
of radius 8 Mpc h−1 (Percival & White 2009). The 6dF Galaxy Sur-
vey modelled the 2D galaxy correlation function and obtained a
low-redshift measurement of the growth rate, f σ 8 = 0.423 ± 0.055,
at an effective redshift of z = 0.067 (Beutler et al. 2012). Recent
measurements from the Third Sloan Digital Sky Survey (SDSS-III)
BOSS survey found dσ 8/d lna = 0.43 ± 0.069 at an effective red-
shift of z = 0.57 (Reid et al. 2012). All of these results are consistent
with the � cold dark matter (�CDM) model and standard gravity.
Current surveys do not have sufficient precision to rule out viable
modified gravity models such as the f (R) models considered in this
paper. Future galaxy redshift surveys, such as the ESA’s Euclid
mission (Laureijs et al. 2011) and the ground-based stage IV dark
energy experiment, BigBOSS (Schlegel et al. 2009), aim to measure
the growth rate to within 2 per cent, which will place significant
constraints on currently allowed modified gravity models.

A key feature of redshift-space distortion models is that the linear
growth rate is assumed to be scale-independent. This assumption is
not true for the modified gravity cosmology considered in this paper
(see Fig. 1). In addition, several models of redshift-space distortions
suffer from systematic biases when fitting for a scale-independent
growth rate over a range of scales (see fig. 5 in Jennings et al.
2011b). In order to avoid assuming a specific scale dependence
for the growth rate, we instead focus on recovering the velocity
and matter power spectra as a function of scale using the full 2D
redshift-space power spectrum. This approach makes use of the
full 2D power spectrum measured from a survey, and the extracted
matter and velocity power spectra could be compared to predictions
from the standard cosmological model.

In this paper we measure the power spectrum in redshift space
from a suite of large-volume simulations of f (R) cosmologies
(Li et al. 2012). This is the first time that predictions for the

Figure 1. The ratio of the linear growth rate in the F4 (blue), F5 (red) and
F6 (black) cosmologies to that in �CDM. The ratios are shown at z = 0
(solid), z = 0.4 (dashed) and z = 1 (dot–dashed). (See Section 2.2 for the
description of the modified gravity models.)
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redshift-space clustering in f (R) modified gravity models have
been presented. The resolution of our simulations allows us to
accurately resolve the non-linear matter and velocity fields and
quantify the deviations from a model of GR. Here, we re-
strict our study to the clustering of the dark matter. We ex-
amine the difference between the velocity power spectra in
each cosmology and its importance in modelling the redshift-
space clustering signal in both the standard and modified
gravity model. We test how well quasi-linear models for the
redshift-space distortions describe the amplitude and shape of the
measured power spectrum. A follow-up paper will examine the
redshift-space distortions in the clustering of haloes as well as test-
ing non-linear models for redshift-space distortions (see also e.g.
Marulli et al. 2012, for a recent study of redshift-space distortions
in interacting dark energy models).

This paper is organized as follows. In Section 2.1 we discuss the
f (R) modified gravity cosmological model and describe the N-body
simulations used in this paper. In Section 3 we review the theory
of redshift-space distortions and present the models which will be
tested. The main results of the paper are presented in Section 4.
Measurements of the redshift-space power spectra for both GR and
f (R) models are presented in Section 4.1. In Section 4.2 we present
the velocity power spectrum measured from the simulations. Using
a quasi-linear model for the redshift-space power spectrum we at-
tempt to extract both the matter and velocity power spectra from
the 2D redshift-space power spectrum in Section 4.3. In Section 4.4
we examine how well the moments of the redshift-space power
spectrum can be recovered using this quasi-linear model. Our con-
clusions are presented in Section 5. Throughout the paper we shall
use the unit c = 1 and metric convention ( +, −, −, −). Greek
letters μ, ν, . . . run over 0, 1, 2, 3 and Latin letters i, j, k, . . . run
over 1, 2, 3.

2 f (R) C O S M O L O G I E S

This section gives the theoretical background for the modified grav-
ity model considered in this paper. We outline f (R) cosmologies in
Section 2.1, explain the chameleon mechanism in Section 2.2 and
describe the N-body code and simulations in Section 2.3.

2.1 The f (R) gravity model

The f (R) gravity model is a straightforward generalization of GR:
the Ricci scalar, R, in the Einstein–Hilbert action, S, is replaced with
an algebraic function, f (R) (see e.g. De Felice & Tsujikawa 2010;
Sotiriou & Faraoni 2010, for recent reviews):

S =
∫

d4x
√−g

{
M2

Pl

2
[R + f (R)] + Lm

}
, (1)

where MPl is the Planck mass, M−2
Pl = 8πG, with G being Newton’s

constant, g is the determinant of the metric gμν and Lm is the
Lagrangian density for matter fields (photons, neutrinos, baryons
and CDM). By specifying the functional form of f (R), one specifies
the f (R) gravity model.

Varying the action defined in equation (1) with respect to the
metric gμν yields the modified Einstein equation

Gμν + fRRμν −
(

1

2
f − �fR

)
gμν − ∇μ∇νfR = 8πGT m

μν, (2)

where Gμν ≡ Rμν − 1
2 gμνR is the Einstein tensor, f R ≡ df /dR, ∇μ is

the covariant derivative compatible with the metric gμν , � ≡ ∇α∇α

and T m
μν is the energy momentum tensor for matter. One can consider

equation (2) as a fourth-order differential equation, or alternatively
the standard second-order equation of GR with a new dynamical
degree of freedom, f R, the equation of motion of which can be
obtained by taking the trace of equation (2):

�fR = 1

3
(R − fRR + 2f + 8πGρm) , (3)

where ρm is the matter density. The new degree of freedom f R is
sometimes dubbed the scalaron in the literature.

Assuming that the background Universe is described by the flat
Friedmann–Robertson–Walker metric, the line element in the per-
turbed Universe is written as

ds2 = a2(η)
[
(1 + 2�) dη2 − (1 − 2) dxi dxi

]
, (4)

where η and xi are, respectively, the conformal time and comoving
coordinates, �(η, x) and (η, x) are the Newtonian potential and
perturbation to the spatial curvature, and are functions of both time
(η) and space (x); a denotes the scale factor of the Universe where
a = 1 today.

As we are mainly interested in the large-scale structures much
smaller than the Hubble scale, and since the time variation of f R is
very small in the models considered below, we shall work in the
quasi-static limit by neglecting the time derivatives of f R. In this
limit, the scalaron equation, equation (2), reduces to

∇2fR = −1

3
a2

[
R(fR) − R̄ + 8πG (ρm − ρ̄m)

]
, (5)

where ∇ is the 3D gradient operator (to be distinguished from the ∇
introduced above) and the overbar represents the background value
of a quantity. Note that R can be expressed as a function of f R.

Similarly, the Poisson equation which governs the Newtonian
potential, �, can be simplified to

∇2� = 16πG

3
a2 (ρm − ρ̄m) + 1

6
a2

[
R (fR) − R̄

]
(6)

by neglecting terms involving time derivatives and using equa-
tion (5) to eliminate ∇2f R.

According to the above equations, there are two potential effects
of the scalaron on cosmology: (i) the background expansion of the
Universe may be modified by the new terms in equation (2) and
(ii) the relationship between gravity and the matter density field
is modified, which can change the matter clustering and growth
of density perturbations. Clearly, when |f R| � 1, we have R ≈
−8πGρm from equation (5), and so equation (6) reduces to the
normal Poisson equation in GR; when |f R| is large, we instead
have |R − R̄| � 8πG|ρm − ρ̄m|, and so equation (6) reduces to
the normal Poisson equation with G rescaled by 4/3. Note that
this factor of 4/3 is the maximum enhancement of gravity in f (R)
models, independent of the specific functional form of f (R). The
choice of f (R), however, is important because it governs when and
on which scale the enhancement factor changes from unity to 4/3:
scales much larger than the range of the modification to Newtonian
gravity mediated by the scalaron are unaffected and gravity is not
enhanced there, while on much smaller scales the 4/3 enhancement
is fully realized – this results in a scale-dependent modification of
gravity and therefore a scale-dependent growth rate of structure (see
Fig. 1).

The relationship between � and  is also changed in f (R) mod-
els, with the remaining components of the modified Einstein equa-
tion giving

∇2( − �) = ∇2fR, (7)

where we have assumed that |f̄R| � 1. This implies that

∇2(� + ) = 8πG (ρm − ρ̄m) a2. (8)
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Therefore, the relationship between the lensing potential and the
matter density perturbations remains unchanged in f (R) gravity
models.

2.2 The chameleon mechanism

The f (R) gravity would be ruled out by local tests of gravity due to
the factor of 4/3 enhancement to the strength of Newtonian gravity.
Fortunately, it is well known that, if f (R) is chosen appropriately, the
chameleon mechanism (Khoury & Weltman 2004; Mota & Shaw
2007) can be exploited to suppress the enhancement allowing this
class of models to satisfy experimental constraints in high matter
density regions such as in our Solar system (Hu & Sawicki 2007; Li
& Barrow 2007; Navarro & Van Acoleyen 2007; Brax et al. 2008).

The essence of the chameleon mechanism is as follows. The mod-
ifications to the Newtonian gravity can be considered as an extra, or
the fifth force mediated by the scalaron. Because the scalaron itself
is massive, the force is of the Yukawa type and is suppressed by
the exponential factor ∼exp (−mr), in which m is the scalaron mass
and r the distance between two test masses. In high matter density
environments, m is very heavy and the suppression becomes very
strong. In practice, this is equivalent to the fact that |f R| � 1 in
high-density regions because of the exponential suppression, which
leads to the GR limit as discussed above.

As a result, the functional form of f (R) is crucial to determine
whether the fifth force is sufficiently suppressed in high-density
environments. In this work we study the f (R) model proposed by
Hu & Sawicki (2007), for which

f (R) = −M2 c1(−R/M2)n

c2(−R/M2)n + 1
, (9)

with M2 ≡ 8πGρ̄m0/3 = H 2
0 �m, where H is the Hubble expansion

rate and �m is the present-day fractional density of matter. Hereafter
a subscript 0 always means the current value of a quantity. Hu &
Sawicki (2007) demonstrated that |f R0| < 0.1 is required for this
model to evade Solar system constraints, although the exact value
also depends on the behaviour of f R in the Galaxy.

In the background cosmology, the scalaron f R always sits at the
minimum of the effective potential which governs its dynamics,
defined as

Veff (fR) ≡ 1

3
(R − fRR + 2R + 8πGρm) , (10)

around which it oscillates quickly (Brax et al. 2012). Therefore, we
have

−R̄ ≈ 8πGρ̄m − 2f̄ = 3M2

(
a−3 + 2c1

3c2

)
. (11)

To match the �CDM background evolution, we need to have

c1

c2
= 6

��

�m
, (12)

where �� is the current fractional energy density of the dark energy
(cosmological constant).

By taking �� ≈ 0.76 and �m ≈ 0.24, we find that |R̄| ≈
41M2 	 M2, and this simplifies the expression of the scalaron to

fR ≈ −n
c1

c2
2

(
M2

−R

)n+1

. (13)

Therefore, two free parameters, n and c1/c
2
2, completely specify the

f (R) model. Indeed, the latter is related to the value of the scalaron
today, f R0, as

c1

c2
2

= − 1

n

[
3

(
1 + 4

��

�m

)]n+1

fR0. (14)

In what follows we shall study three f (R) models with n = 1 and
|f R0| = 10−6, 10−5 and 10−4, which will hereafter be referred to as
F6, F5 and F4, respectively. These particular parameter choices
arise from cluster abundance constraints on the f (R) gravity model.
The current constraint found by Schmidt et al. (2009a) is |fR0| <

1.3+1.7
−0.6 × 10−4 taking into account mass calibration errors.

2.3 N-body simulations of f (R) gravity

From equations (5) and (6) we can see that, given the matter density
field, we can solve for the scalaron field, f R, from equation (5) and
plug this into the modified Poisson equation (6) to solve for �.
Once � is at hand, we can difference it to calculate the (modified)
gravitational force which determines how the particles move subse-
quently. This is exactly what we need to do in N-body simulations
to follow the evolution of the matter distribution.

The main challenge in the N-body simulation of models such as
f (R) gravity is to solve the scalaron equation, equation (5), which
is in general very non-linear. For this we need a mesh (or a set of
meshes) on which f R can be solved. This implies that mesh-based
N-body codes are the most suitable for this task. On the other hand,
particle-based codes are more difficult to apply in this case, as we
do not have an analytical formula for the modified force law (i.e.
the equivalent of r−2 in the Newtonian case).

N-body simulations for f (R) gravity and related theories have
been performed by Oyaizu (2008), Oyaizu et al. (2008), Schmidt
et al. (2009b), Zhao et al. (2011), Li & Zhao (2009, 2010), Schmidt
(2009), Li & Barrow (2011), Brax et al. (2011) and Davis et al.
(2012). However, these simulations were affected by the small box
size used and the limited resolution. For this work we have run sim-
ulations of f (R) cosmologies using the recently developed ECOSMOG

code (Li et al. 2012). ECOSMOG is a modification of the mesh-based
N-body code RAMSES (Teyssier 2002), which calculates the gravita-
tional force by first solving the Poisson equation on meshes using
a relaxation method to get the Newtonian potential and then dif-
ferencing the potential; it does not solve gravity by summing over
the forces from nearby particles as is done, for example, in the
simulation code GADGET (Springel 2005). Additional features of the
ECOSMOG code include the following.

(i) The adaptive mesh refinement (AMR), which refines a mesh
cell, i.e. splits it into eight son cells, if the number of particles
in a cell exceeds a pre-defined number (the refinement criterion).
As such it gives higher force resolution in high matter density
regions where the chameleon effect is strong and the f (R) equation
is more non-linear. The refinement criterion is normally chosen as a
particle number between 8 and 12, and in our simulations we adopt
a condition of nine particles. This adaptive mesh allows us to reach
comparable spatial resolution to codes like GADGET.

(ii) The multigrid relaxation algorithm that ensures quick con-
vergence. The relaxation method finds the solution to an elliptical
partial differential equation (PDE) on a mesh by iteratively updat-
ing the initial guess until it converges, i.e. becomes close enough
to the true solution. However, the rate of convergence slows down
quickly after the first few iterations. To improve on this, one can
‘coarsify’ the PDE, i.e. move it to a coarser mesh, solve it there
and use the coarse solution to improve the solution on the original
fine mesh. Unlike other codes, ECOSMOG does this on all the AMR
meshes, greatly improving the convergence properties of the whole
code.

(iii) The massive parallelization which makes the computation
very efficient. This is the key feature that enables us to run large
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Table 1. Some technical details of the simulations performed in this work. F6, F5 and F4 are, respectively, the abbreviations which
denote the f (R) models with |f R0| = 10−6, 10−5 and 10−4. For all models we have assumed �m = 0.24 and �� = 0.76, and to
generate the initial conditions we have used σ 8 = 0.769 (in agreement with e.g. Sánchez et al. 2009). We use the same initial
conditions for all models in each simulation, because at the initial time, zi = 49, the difference in the power spectra of different
models is negligible. ε is the residual for the Gauss–Seidel relaxation used in the code (see Li et al. 2012), and the two values of the
convergence criterion are for the coarsest level and finest levels, respectively. Other cosmological parameters are a Hubble constant
of H0 = 73 km s−1 Mpc−1 and a scalar spectral index of n = 0.961.

Models Lbox (h−1 Gpc) Particles Domain meshes Finest meshes Convergence criterion Realizations

�CDM, F6, F5, F4 1.0 10243 10243 655363 |ε| < 10−12/10−8 1
�CDM, F6, F5, F4 1.5 10243 10243 655363 |ε| < 10−12/10−8 6

simulations such as the ones to be described below, which are be-
yond the reach of any serial code, such as those developed by Li &
Zhao (2009, 2010) and Li & Barrow (2011).

A convergence criterion is used to determine when the relaxation
method has converged. In ECOSMOG, convergence is considered to be
achieved when the residual of the PDE, i.e. the difference between
the two sides of the PDE, is smaller than a pre-defined parameter
ε. We have checked that for ε < 10−8, the solution to the PDE no
longer changes significantly when ε is reduced further. Our choices
of ε are listed in Table 1. The computational time depends on both
the value of ε and the model. The f (R) gravity simulations can take
a few times longer to run than the GR simulation. More details can
be found in Li et al. (2012).

For the study of redshift-space distortions, large simulation boxes
are essential to accurately model behaviour on very large scales. For
this reason, we have run two sets of simulations, with Lbox = 1.0
and 1.5 h−1 Gpc, respectively. The initial conditions are generated
at z = 49 using the MPGRAFIC1 code, and each suite of F4/F5/F6/GR
simulations uses the same initial conditions because at z = 49 the
difference in the matter distribution in the different cosmologies is
negligible. The specifications of the simulations are summarized in
Table 1.

3 MODELS FOR REDSHIFT-SPACE
D I S TO RT I O N S

In this section we first review the linear perturbation theory of
redshift-space distortions (Section 3.1) before outlining some ex-
tended models which go beyond linear theory (Section 3.2).

3.1 Linear theory

Inhomogeneous structure in the universe induces peculiar motions
which distort the clustering pattern measured in redshift space on
all scales. This effect must be taken into account when analysing
3D data sets which use redshift to estimate the radial coordinate.
Redshift-space effects alter the appearance of the clustering of mat-
ter, and together with non-linear evolution and bias, lead the mea-
sured power spectrum to depart from the simple predictions of linear
perturbation theory. The comoving distance to a galaxy, s, differs
from its true distance, x, due to its peculiar velocity, v(x) (i.e. an
additional velocity to the Hubble flow). The mapping from redshift
space to real space is given by

s = x + uzẑ, (15)

1 http://www2.iap.fr/users/pichon/mpgrafic.html

where uz = v · ẑ/(aH ) and H(a) is the Hubble parameter. This as-
sumes that the distortions take place along the line of sight denoted
by ẑ (this is the plane-parallel approximation). This assumption will
break down for some pairs of galaxies in a survey which has a wide
field of view (Raccanelli, Samushia & Percival 2010). Neverthe-
less, the impact of this systematic on clustering statistics has been
shown to be small in comparison to the effects of non-linear growth
(Samushia, Percival & Raccanelli 2012).

On small scales, randomized velocities associated with the mo-
tion of galaxies inside virialized structures reduce the power. The
dense central regions of galaxy clusters appear elongated along the
line of sight in redshift space, which produces the ‘fingers of God’
effect in redshift survey cone plots (Jackson 1972). On large scales,
coherent bulk flows distort clustering statistics (see Hamilton 1998,
for a review of redshift-space distortions). For growing perturba-
tions on large scales, the overall effect of redshift-space distortions
is to enhance the clustering amplitude. Any difference in the velocity
field due to mass flowing from underdense regions to high-density
regions will alter the volume element, causing an enhancement of
the apparent density contrast in redshift space, δs(k), compared to
that in real space, δr (k). This effect was first analysed by Kaiser
(1987) in linear perturbation theory and can be approximated by

δs(k) = δr (k)(1 + μ2β), (16)

where μ is the cosine of the angle between the wave vector, k, and
the line of sight, β = f /b, where f is the linear growth rate and the
bias b = 1 for dark matter.

The ‘Kaiser formula’ (equation 16) relates the overdensity in
redshift space to the corresponding value in real space and is the
result of several approximations, e.g. that the velocity and density
perturbations satisfy the linear continuity equation,

δ = −f θ, (17)

where θ = ∇ ·u is the velocity divergence. All of these assumptions
are valid on scales that are well described by linear perturbation
theory and will break down on different scales as the density fluc-
tuations grow (see e.g. Jennings et al. 2011a, for more details). As
shown in Scoccimarro (2004) and Jennings et al. (2011a), the linear
regime corresponds to a different range of scales for the matter and
velocity fields. In particular, linear theory is only a good description
of the velocity power spectrum on surprisingly large scales. We will
discuss this further in Section 4.2.

Rather than use the full 2D power spectrum, P(k, μ), it is common
to decompose the matter power spectrum in redshift space into
multipole moments using Legendre polynomials, Ll(μ) (see e.g.
Hamilton 1998):

P (k, μ) =
∑

l

Pl(k)Ll(μ) , (18)
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where the summation is over the order, l, of the multipole. The
anisotropy in P (k) is symmetric in μ, as P(k, μ) = P(k, −μ), so
only even values of l are summed over. Each multipole moment is
given by

P s
l (k) = 2l + 1

2

∫ 1

−1
P (k, μ)Ll(μ) dμ , (19)

where the first two non-zero moments have Legendre polynomials,
L0(μ) = 1 and L2(μ) = (3μ2 − 1)/2. Using the linear model in
equation (16), the first three multipole moments are given by⎛
⎜⎜⎝

P0(k)

P2(k)

P4(k)

⎞
⎟⎟⎠ = Pδδ(k)

⎛
⎜⎝

1 + 2
3 β + 1

5 β2

4
3 β + 4

7 β2

8
35 β2

⎞
⎟⎠ , (20)

where Pδδ(k) = 〈|δ(k)|2〉 denotes the real-space matter power spec-
trum. Note that we have neglected the superscript s here for clarity.
In practice, Pδδ(k) cannot be obtained directly for a real survey
without making approximations (e.g. Baugh & Efstathiou 1994).

In this paper we consider the estimator for β suggested by
Cole, Fisher & Weinberg (1994), which is the ratio of the
quadrupole to monopole moments of the redshift-space power spec-
trum, P2(k)/P0(k), which is independent of the real-space power
spectrum.

3.2 Quasi-linear and non-linear models for the redshift-space
power spectrum

Assuming the line-of-sight component of the peculiar velocity is
along the z-axis, the full non-linear relation between the real-space
power spectrum and redshift-space power spectrum can be written
as (Scoccimarro, Couchman & Frieman 1999)

P s(k, μ) =
∫

d3r
(2π)3

e−ik·r〈eiλ�uz [δ(x) − θ (x)][δ(x′) − θ (x′)]〉 ,

(21)

where λ = kμ, uz is the comoving peculiar velocity along the line
of sight, �uz = uz(x) − uz(x ′), r = x − x′, θ = ∇z · uz and
the only approximation made is the plane-parallel approximation.
At small scales (as k increases), the exponential component damps
the power, representing the impact of randomized velocities inside
gravitationally bound structures.

Simplified models for redshift-space distortions are frequently
used. Examples include multiplying equation (20) by a factor
which attempts to take into account small-scale effects, invoking
either a Gaussian or exponential distribution of peculiar velocities
(Peacock & Dodds 1994). A popular phenomenological example
of this which incorporates the damping effect of velocity disper-
sion on small scales is the so-called ‘dispersion model’ (Peacock &
Dodds 1994):

P s(k, μ) = P r (k)(1 + βμ2)2 1

1 + k2μ2σ 2
p /2

, (22)

where σ p is the pairwise velocity dispersion along the line of sight,
which is treated as a parameter to be fitted to the data.

The linear model for the redshift-space power spectrum can be
extended by keeping the non-linear velocity power spectra terms in
equation (21). The velocity divergence autopower spectrum is the
ensemble average, Pθθ = 〈|θ |2〉, where θ = ∇ · u is the velocity
divergence. The cross-power spectrum of the velocity divergence
and matter density is Pδθ = 〈|δθ |〉. Scoccimarro (2004) proposed
the following model for the redshift-space power spectrum in terms

of Pδδ , the non-linear matter power spectrum, Pθθ and Pδθ :

P s(k, μ) = (
Pδδ(k) + 2μ2Pδθ (k) + μ4Pθθ (k)

) × e−(kμσv )2
, (23)

where σ v is the 1D linear velocity dispersion given by

σ 2
v = 1

3

∫
Pθθ (k)

k2
d3k. (24)

In linear theory, Pθθ and Pδθ take the same form as Pδδ and depart
from this at different scales. Using a simulation with 5123 particles
in a box of length 479 h−1 Mpc (Yoshida, Sheth & Diaferio 2001),
Scoccimarro (2004) showed that this simple ansatz for Ps(k, μ) was
an improvement over the Kaiser formula when comparing to the
results of N-body simulations in a �CDM cosmology.

In non-linear models for the power spectrum in redshift space,
there is a degeneracy between the non-linear bias, the difference
between the clustering of dark matter and haloes or galaxies, and
the scale-dependent damping due to velocity distortions on small
scales. This degeneracy will complicate any measurement of the
growth rate using redshift-space clustering information on small
scales. In addition these models assume that the growth rate is
scale-independent, as is the case in GR. As shown in Fig. 1, the
f (R) model has scale-dependent growth rates which would have to
be included when fitting any model to the measured redshift-space
power spectrum.

In this paper we analyse the redshift-space clustering of the dark
matter in f (R) and �CDM cosmologies. We restrict our analysis
to the linear and quasi-linear regime where the bias is typically
assumed to be scale-independent and so our results can be more
easily extended to linearly biased tracers of the dark matter field
(but see Angulo, Baugh & Lacey 2008, for counterexamples). We
will model the redshift-space distortions in the clustering of haloes
in both of these cosmologies in future work.

We shall use the following model for the 2D redshift-space power
spectrum,

P (k, μ) = Pδδ(k) + 2μ2Pδθ (k) + μ4Pθθ (k) , (25)

where the first two multipole moments are given by

(
P0(k)

P2(k)

)
=

(
1 2

3
1
5

0 4
3

4
7

) ⎛
⎜⎝

Pδδ(k)

Pδθ (k)

Pθθ (k)

⎞
⎟⎠ . (26)

This model has been shown to be a good fit to the power spectrum
in redshift space measured from simulations at z < 1 (Jennings et al.
2011a,b).

4 RESULTS

In Section 4.1 we present measurements of the redshift-space power
spectra for both GR and the f (R) models. In Section 4.2 we present
the velocity power spectrum measured from the simulations. We
attempt to extract both the matter and velocity power spectra from
the 2D redshift-space power spectrum using a quasi-linear model
for the redshift space P(k) in Section 4.3. In Section 4.4 we examine
how well the moments of the redshift-space power spectrum can be
recovered using this quasi-linear model.

4.1 The power spectrum in redshift space

In Figs 2 and 3 we plot the 2D power spectrum measured at z =
0 from the GR and F4 simulations and the F5 and F6 simula-
tions, respectively, as a function of wavenumber perpendicular,
kperp, and parallel, kpara, to the line of sight. The colour contours
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Figure 2. Top panels: the 2D power spectrum measured from the GR simu-
lation as a function of wavenumber perpendicular, kperp, and parallel, kpara,
to the line of sight. The coloured shading and lines represent the amplitude
of the power spectrum, log10P, as indicated by the labels and the scale bar at
the top. The real-space power spectrum has been plotted at kperp → −kperp

to allow comparison with the redshift space P(k). Bottom panels: the 2D
power spectrum measured from the F4 simulation as a function of modes
perpendicular, kperp, and parallel, kpara, to the line of sight.

and lines represent the amplitude of the power spectrum, log10P.
In each figure the real-space power spectrum has been plotted as
kperp → −kperp in order to allow a side-by-side comparison with the
redshift space P(k). These figures clearly show that the spherical
symmetry seen in the real-space power spectrum (left-hand panel)
is distorted in redshift space (right-hand panel): on large scales
(k → 0), the amplitude of the redshift-space power spectrum is
increased compared to that in real space, whereas on small scales,
the power spectrum is damped and elongated along the line of sight
in redshift space compared to real space. These effects were first
convincingly observed in the clustering of galaxies measured by
the 2dFGRS (Peacock et al. 2001) and again recently by the SDSS-
III BOSS survey and the WiggleZ Dark Energy Survey [c.f. fig.
3 in Reid et al. (2012) and fig. 2 in Blake et al. (2011)]. These
two effects are more pronounced in the F4 simulation where the
large-scale boost and small-scale damping appear larger than in
GR. Overall, the redshift space P(k) for the f (R) model appears far
more distorted and asymmetrical than the corresponding redshift
space P(k) in GR.

Figure 3. Top panels: the 2D power spectrum measured from the F5 simu-
lation. Bottom panels: the 2D power spectrum measured from the F6 sim-
ulation. The coloured shading correspond to log10P as shown in the colour
bar in Fig. 2. As in Fig. 2, the left-hand panels show the power spectrum in
real space and the right-hand panels show redshift space.

In the left-hand panel of Fig. 4 we plot the ratio of the monopole of
the redshift-space power spectrum to the real-space power spectrum
at z = 0 measured from the GR (black) and F4 (blue) simulations.
The right-hand panel of this figure shows the ratio of the quadrupole
to monopole moment of the redshift-space power spectrum for both
models at z = 0. The redshift-space power spectra are obtained from
the simulations after averaging over the P(k) obtained by treating
the x, y and z directions in turn as the lines of sight. The errors on the
ratios are plotted as a blue hatched region for the f (R) cosmology
and as a solid grey region for GR and represent the scatter amongst
six realizations. Note that we have compared the errors obtained
from six simulations to those from 10 simulations from Jennings
et al. (2011b), which have the same box size and particle number,
and find a 20 per cent decrease in the z = 0 error on the largest
scale, k ∼ 0.01 h Mpc−1, when we use six simulations instead of 10.
The linear theory predictions, given by equation (20), are shown as
a green dot–dashed line for the f (R) model and as a red dashed line
for GR. These predictions use the linear growth rate for each model
which for GR is f (z = 0) = 0.42 and is a scale-dependent factor,
f (k), for the f (R) cosmology (see Fig. 1).

It is clear from Fig. 4 that the redshift-space power spectrum in
the f (R) model has a different shape compared to that in GR. First,
there is an increased boost in the clustering signal on large scales,
k < 0.07 h Mpc−1, due to increased bulk flows into overdense re-
gions seen in the modified gravity simulation. Nevertheless, the
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Figure 4. Left-hand panel: the ratio of the monopole of the redshift-space power spectrum to the real-space power spectrum at z = 0 in the F4 (blue) and GR
(black) cosmologies. We plot the ratio measured from two simulation boxes: Lbox = 1000 Mpc h−1 (circles) and Lbox = 1500 Mpc h−1 (dashed lines). The
linear theory prediction for each model is shown as a green dot–dashed line for the f (R) model and as a red dashed line for GR. The shaded regions represent the
errors on the ratios measured from six realizations of the f (R) (blue hatched) and GR (grey solid) cosmologies. Right-hand panel: the ratio of the quadrupole
to monopole moment of the redshift space P(k) at z = 0 in the F4 (blue) and GR (black) cosmologies.

measurement from the simulation is significantly below the lin-
ear theory prediction for this cosmology. The small-scale damp-
ing due to incoherent motions within virialized structures is also
more pronounced in the f (R) cosmology compared to GR on scales
k > 0.1 h Mpc−1. It is clear from this plot that the linear pertur-
bation theory limit is only attained on extremely large scales (k <

0.02 h Mpc−1) for each model. On these scales the two models can-
not be distinguished within the error bars. The large-scale boost in
the redshift-space power spectrum in the f (R) cosmology compared
to GR is less pronounced in the quadrupole-to-monopole moment
ratio plotted in the right-hand panel of Fig. 4. The increased damping
of the redshift-space power spectrum found in the modified gravity
model can again be seen on small scales (k > 0.1 h Mpc−1). The
increased damping of the redshift-space power spectrum on small
scales is a generic feature of f (R) gravity. This is because the fifth
force causes the particles to move faster, i.e. with a larger velocity
dispersion than they do in GR for the same mass structure.

In Fig. 4 we also compare the measured ratios from two differ-
ent simulation boxes of Lbox = 1000 Mpc h−1 (circles) and Lbox =
1500 Mpc h−1 (dashed lines) on a side. Each simulation has the same
number of particles, 10243, but with different resolutions. In the
Lbox = 1500 Mpc h−1 simulation, the domain grid2 has 10243 cells
with a refinement criterion equal to nine particles (which means that
a cell is refined into eight ‘son’ cells if the number of particles inside
it exceeds nine). The Lbox = 1000 Mpc h−1 simulation was run with
the same domain grid and refinement criterion. As a result, both the
mass and force resolutions are higher in the Lbox = 1000 Mpc h−1

simulation. The force resolution is 15.3 and 22.9 kpc h−1 in the 1
and 1.5 Gpc h−1 box simulations, respectively. This can be com-
pared to the force resolution of 781 kpc h−1 for the 400 Mpc h−1

box and 125 kpc h−1 for the 64 Mpc h−1 box used by Schmidt et al.
(2009a). In Fig. 4 the higher resolution simulation shows more

2 Here the domain grid is the finest grid that is uniform across the computa-
tional box.

damping on small scales, and this is clearly seen in the quadrupole-
to-monopole moment ratio plotted in the right-hand panel. This
difference in the results from different computational boxes shows
that large-volume high-resolution simulations are essential in order
to accurately resolve the velocity field on scales k > 0.3 h Mpc−1

and provide accurate predictions for the power spectrum in redshift
space. In this paper we restrict our study to scales k < 0.3 h Mpc−1

where the velocity field is accurately resolved in both simulations.
We will only show results from the Lbox = 1500 Mpc h−1 simulation
in the rest of the paper unless otherwise stated.

In Fig. 5 we plot the ratio of the quadrupole to monopole moment
of the redshift-space power spectrum at z = 0 measured in the
F5 (left-hand panel) and F6 simulations (right-hand panel) along
with the measured ratios in GR. The fifth force is more strongly
suppressed in both of these models compared to the F4 model.
As a result we find no detectable boost in the power spectrum on
large scales compared to GR and less damping on small scales
compared to F4. The F5 model in the left-hand panel of Fig. 5
still shows significantly more damping on small scales compared to
GR, whereas the difference between the F6 model and GR at z =
0 is very small even down to small scales (k ∼ 0.3 h Mpc−1). This
implies that the particles inside haloes are not significantly affected
by the fifth force in the F6 model, while in F5 they have started to
feel an effect.

Fig. 6 shows how the quadrupole-to-monopole moment ratios of
the redshift-space power spectrum for GR and the F4 model change
with redshift. The lower (upper) panel shows the measured ratios
at z = 0.4 (z = 1.0), together with the linear theory predictions
for each model (red dotted line for GR and green dot–dashed line
for F4) at the same redshift. We can clearly see that the linear
theory predictions agree with the measured ratios on slightly smaller
scales (down to k ∼ 0.05 h Mpc−1) at z = 1 than at z = 0 for both
models, as expected. The ratio P2/P0 in the F4 models is slightly
larger than GR on large scales, but it suffers stronger damping on
small scales compared to GR, such that the ratio becomes smaller
than GR on non-linear scales. This large-scale boost of the power
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Figure 5. Left-hand panel: the ratio of the quadrupole to monopole moment of the redshift-space power spectrum at z = 0 in the F5 (blue) and GR (black)
cosmologies. Right-hand panel: the same ratio of the quadrupole to monopole moment of the redshift-space power spectrum at z = 0 in the F6 (blue) and GR
(black) cosmologies. The linear theory prediction for each model is shown as a green dot–dashed line for the f (R) model and as a red dashed line for GR. The
shaded regions represent the errors on the ratios measured from six simulations of the f (R) (blue hatched) and GR (grey solid) cosmologies. The simulation
box size used was Lbox = 1500 Mpc h−1 on a side.

Figure 6. The ratio of the quadrupole to monopole moment of the redshift-
space power spectrum for �CDM and the F4 model at z = 0.4 (bottom
panel) and z = 1 (top panel). The linear theory prediction at each redshift
is shown as a green dot–dashed line for the f (R) model and as a red dashed
line for GR.

spectrum and extra small-scale damping compared to GR are more
pronounced at higher redshifts, which seems to contradict the naive
expectation given that the fifth force is weaker then. This is because
the fifth force effect has already been felt well before z = 1 as
the screening is weaker at these epochs, after which the GR result
slightly catches up and so the difference from F4 is reduced. Indeed,
the same trend can also be seen in the linear perturbation results
plotted in this figure.

Fig. 7 shows the ratio of P2/P0 in the F4 models to that in GR
at z = 0, 0.4 and 1 measured from the simulations, together with
the linear theory predictions. Linear theory predicts that the relative
difference of P2/P0 between F4 and GR is larger at lower redshifts as
expected. However, the relative difference measured in simulations
on large scales is smaller at lower redshifts. This is due to the extra
damping in the F4 models. This damping becomes stronger at lower
redshifts and overcomes the linear enhancement of P2/P0 in the F4
models.

The strong enhancement in the small-scale damping in the F4
and F5 models compared to that in GR, which we have seen above,
could be a clear signal of modified gravity that persists at higher
redshifts. Of course, here we are only talking about the dark matter
power spectrum and, as discussed in Section 3.2, models for the
redshift-space power spectrum on small scales need to account for
non-linear bias effects. As this is most relevant when studying the
clustering of haloes in redshift space, we leave this analysis to future
work.

4.2 The velocity power spectrum

The non-linear evolution of velocity fields on large scales can
have a significant impact on the redshift-space power spectrum.
Scoccimarro (2004) showed that the velocity field is more sensitive
to tidal gravitational fields compared to the density field on large
scales. Taking these non-linear velocity effects into account results
in an improved model for the power spectrum in redshift space in
the quasi-linear regime (Jennings et al. 2011a).

Measuring the velocity power spectrum from simulations can be
difficult. The method suggested by Scoccimarro (2004) allows a
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Figure 7. The ratio of P2/P0 in the F4 model to that in GR at z = 0 (bottom
panel), z = 0.4 (middle panel) and z = 1 (top panel) measured from the
simulations. The linear theory prediction for this ratio at each redshift is
shown as a solid green line.

mass-weighted velocity field to be constructed but is limited by
the fact that it is the momentum field which is calculated on a
grid and so the velocity field in empty cells is artificially set to
zero (Pueblas & Scoccimarro 2009). Another limitation of this
method is that most calculations require the volume-weighted ve-
locity field instead of the mass-weighted field. Using a Delaunay
tessellation of a discrete set of points allows the desired volume-
weighted velocity field to be constructed accurately on small
scales. We use the publicly available DTFE code (Schaap & van de
Weygaert 2000; van de Weygaert & Schaap 2009; Cantun & van de
Weygaert 2011) to construct the velocity divergence field directly.
This code constructs the Delaunay tessellation from a discrete set

of points and interpolates the field values on to a user-defined grid.
For the Lbox = 1500 Mpc h−1 simulation we are able to gener-
ate the velocity auto, Pθθ , and cross-power spectrum, Pδθ , on a
10243 grid. The density field is interpolated on to the grid using
the cloud-in-cell scheme. The resolution of the mesh means that
mass assignment effects are negligible on the scales of interest
here.

Fig. 8 shows the z = 0 non-linear velocity and matter power
spectra measured from the F4 (left-hand panels) and GR (right-
hand panels) simulations. The errors calculated from the scatter
amongst six simulations are shown as a hatched region for the cross-
power spectrum, Pδθ , and as a solid shaded region for the autopower
spectrum, Pθθ . We show the velocity power spectrum from both
the Lbox = 1500 Mpc h−1 (dashed lines) and Lbox = 1000 Mpc h−1

(circles) simulations. The lower panel in each case shows the ratio
of Pθθ /Pδδf 2 and Pδθ /Pδδf for each model. The scales where the
linear continuity equation breaks down are shown by the departure
of the measured ratios from unity. This occurs on slightly larger
scales for GR than for the f (R) model. The fact that the velocity
power spectrum departs from linear theory on larger scales than
the density field agrees with what has been noted previously by
Scoccimarro (2004) and Jennings et al. (2011a). We find that Pδδ

and Pθθ differ to 20 per cent at k < 0.1 h Mpc−1.
When the velocity power spectrum is normalized using the linear

growth rate as in Fig. 8, the ratios of the non-linear velocity and
matter power spectra look very similar in both the standard and the
modified gravity cosmologies. If instead we choose not to normalize
θ using the growth rate, we get the curves shown in the top row of
Fig. 9 for the ratio

√
Pθθ/Pδδ (left-hand panel) and Pδθ /Pδδ (right-

hand panel) for the F4 and �CDM cosmologies. Note that in linear
perturbation theory these two ratios equal the linear growth rate,
f , which is plotted as a solid green line for the f (R) model and
as a dotted black line for �CDM in Fig. 9. There is clearly a
large difference in the amplitude and shape of these ratios in the
two models on scales k > 0.03 h Mpc−1. It is interesting that the
ratios agree with the predictions for the linear growth rate on scales
where the two models can be distinguished within the errors, shown
by the hatched shaded region for f (R) and solid shaded region for
�CDM. This is in contrast to the multipole moments of the redshift-
space power spectrum, Fig. 4, where the Kaiser model predictions
using the linear growth rate only agree with the measured P(k) on
extremely large scales where the two cosmologies could not be
distinguished within the errors. The linear growth rate for the F4
model differs from that in �CDM by up to 20 per cent for k <

0.1 h Mpc−1 (see Fig. 1).
In the middle and bottom rows of Fig. 9 we plot similar ra-

tios for the F5 and F6 models, respectively. For these two models
the difference in the ratios compared to �CDM is less dramatic
than for the F4 model. This is to be expected as the linear growth
rate for these models only differs from that in �CDM by at most
6 per cent for F5 and ∼1 per cent for F6 on scales k < 0.1 h Mpc−1.
Furthermore, the simulation results start to deviate from the linear
perturbation prediction earlier than it does for the F4 model. This
is because the suppression of the fifth force itself is a non-linear
effect and the non-linearity gets weaker as |f R0| increases, making
the linear perturbation a better approximation for F4.

Fig. 10 shows the redshift evolution of the ratio
√

Pθθ/Pδδ = f

for the GR (black dotted line for linear perturbation prediction and
blue dashed line measured from N-body simulation) and F4 model
(green solid and purple dashed lines, respectively) at z = 0.4 (lower
panel) and z = 1 (upper panel). The absolute difference in this ratio
for these the two models is even more pronounced at higher redshift,
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Figure 8. Left-hand panel: the velocity divergence autopower spectrum Pθθ /f 2 (purple) and cross-power spectrum Pδθ /f (red) at z = 0 measured from the F4
model simulation. The lower ratio plot shows Pθθ /Pδδ f 2 (purple) and Pδθ /Pδδ f (red). Right-hand panel: the velocity divergence autopower spectrum Pθθ /f 2

(blue) and cross-power spectrum Pδθ /f (grey) at z = 0 measured from the �CDM simulation. The lower ratio plot shows Pθθ /Pδδ f 2 (blue) and Pδθ /Pδδ f (grey).
The non-linear matter power spectrum is plotted as a solid black line for each model. The measured P(k) from the Lbox = 1500 and 1000 Mpc h−1 simulations
are plotted as dashed lines and circles, respectively.

for the same reason as discussed in the redshift evolution of P2/P0

(Fig. 6).
The measured ratio agrees with the linear theory predictions for

the growth rate on scales k < 0.07 h Mpc−1 for the f (R) model and
k < 0.04 h Mpc−1 for �CDM at z = 1, which is again as expected
because linear perturbation is a better approximation at earlier times.

Fig. 11 shows the ratio of f in F4 to that in GR at three different
redshifts. We also plot the linear theory prediction for the ratio
f f (R)/f GR as a green solid line in this figure. Linear perturbation
theory predicts that the ratio becomes larger at lower redshifts,
which is shown by a small increase in the green line in Fig. 11 at k
∼ 1 h Mpc−1. On the other hand, the ratio f f (R)/f GR obtained from
the simulations remains roughly the same at k < 0.2 h Mpc−1 at
all three redshifts and decreases at increasing redshift on smaller
scales due to increased damping in the F4 model compared to GR.
The fractional difference is ∼12 per cent where the growth rate in
F4 models peaks and the onset of the increase occurs on scales of
k ∼ 0.2, 0.15 and 0.09 h Mpc−1 for z = 1, 0.4 and 0, respectively.
This is because the damping of the velocity power spectrum due
to non-linearity becomes larger at lower redshifts on small scales,
compensating the enhancement on large scales. The shift of the
onset of the peak towards larger scales at later times merely reflects
the fact that small scales are affected earlier.

4.3 Extracting the matter and velocity power spectra

In this section we investigate if a model for the 2D redshift-space
power spectrum can be used to extract the density and velocity
power spectra, as a function of scale, at k < 0.1 h Mpc−1. If we
were able to measure both of these power spectra accurately, this
would provide us with a measure of the growth rate of structure,
as seen in Fig. 9, which may be scale-dependent as is the case for

the f (R) gravity model. The motivation for restricting ourselves to
these large scales, k < 0.1 h Mpc−1, is that the impact of bias and
non-linear damping due to velocity dispersions is expected to be
small over this range (see e.g. Angulo et al. 2008).

The left- and right-hand panels in Fig. 12 show the 2D power spec-
trum for GR and the F4 model, respectively, plotted as a function of
wavenumber k and μ at z = 0. The coloured shading represents the
values of log10P(k, μ) measured from the simulations. The over-
plotted red lines represent the model of equation (25) which uses the
velocity and density power spectra measured from each simulation.
From both of these plots, it appears that the amplitude predicted
by the model in equation (25) agrees with the measured 2D spectra
although it fails to capture the detailed shape of the 2D spectrum
over the full range of k and μ. This result agrees with what was
found by Kwan, Lewis & Linder (2012).

In order to test the precision with which the model in equation (25)
can reproduce the 2D power spectrum, we shall fit for both the
velocity, Pθθ , and matter power spectra, Pδδ , under the assumption
that in the quasi-linear regime Pδθ = √

PθθPδδ (Percival & White
2009). We have verified that this is true for our simulations to within
a few per cent accuracy for k < 0.1 h Mpc−1. We perform this fit
over separate k bins of width �k = 0.01 h Mpc−1 up to a maximum
of k = 0.1 h Mpc−1, using the entire range of 0 < μ < 1.

The results of fitting to the F4 simulation at z = 0 and 1 are shown
in the left- and right-hand panels, respectively, in Fig. 13. The av-
erage power spectra, Pθθ (lower curves) and Pδδ (upper curves),
measured from the six simulations are plotted as a black dashed
line for �CDM and a solid purple line for the f (R) model at each
redshift. The red filled circles show the results of the fit for each
power spectrum measured from the F4 simulation. At z = 0 we
show the result of the fit for each power spectrum measured from
the GR simulation as green squares. At both redshifts it is clear
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Figure 9. Top left-hand panel: the ratio
√

Pθθ /Pδδ at z = 0 for the F4 (dashed purple) and �CDM (dashed blue) models. The same ratio is shown for F5 and
F6 models in the middle and bottom left-hand panels, respectively. Top right-hand panel: the ratio Pδθ /Pδδ at z = 0 for the F4 (dashed red) and �CDM (dashed
black) models. The same ratio is shown for F5 and F6 in the middle and bottom right-hand panels, respectively. In all panels the variable θ = ∇ · u. The errors
for the f (R) model are shown as hatched shaded regions and as solid shaded regions for �CDM. The linear growth rate is plotted as a solid green line and as a
dashed black line for each f (R) model and �CDM, respectively.

that the model in equation (25) is able to accurately describe the
amplitude of the 2D P(k, μ). The matter power spectrum, Pδδ , is
recovered accurately and is distinguishable from �CDM. Unfortu-
nately, this model is not able to reproduce the velocity power spectra
from the modified gravity model and at both redshifts is biased to
lower values. We have verified that fitting equation (25) over a re-
duced range in μ allows us to recover the correct Pθθ , but at the
cost of an increase in the errors by more than the difference in the
two cosmologies. These results demonstrate that the redshift-space
distortion model, P (k, μ) = Pδδ(k) + 2μ2

√
PθθPδδ + μ4Pθθ (k),

accurately describes the amplitude of the 2D power spectrum and
can recover Pδδ , but the angular dependence on μ is incorrect and
so we cannot extract Pθθ . These results are in agreement with work
by Tang, Kayo & Takada (2011). These authors fit for the density
velocity cross-power spectrum Pδθ and find a similar bias in recov-
ering the velocity power spectrum using this model. We have also

fitted the model in equation (23), allowing the velocity dispersion
damping term to be a free parameter. This method recovers the cor-
rect Pθθ within the error bars, but the constraints on the velocity
power spectra are too weak to distinguish between GR and the F4
model. This measurement of Pθθ would not be accurate enough to
allow us to discriminate between the F4 model and �CDM at either
redshift.

4.4 Modelling the moments of the redshift space P(k)

In this section we return to studying the moments of the redshift-
space power spectrum, P0 and P2. As shown in Section 4.3, the
model given in equation (25) fails to capture the shape of the full
2D P(k, μ), so naively we do not expect that we can precisely
measure these moments on all scales. In this section we investigate
how well this model works at recovering the measured moments on
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Figure 10. The ratio
√

Pθθ /Pδδ at z = 0.4 (lower panel) and z = 1 (upper
panel) for the F4 (dashed purple) and �CDM (dashed blue) models. The
linear growth rate at each redshift is plotted as a solid green line and a dashed
black line for the f (R) model and �CDM, respectively.

large scales after averaging over μ. Previous work has shown that the
model given in equation (26) provides a good fit to measurements
from simulations on quasi-linear scales k < 0.3 h Mpc−1 and at
high redshifts z ≈ 1, without the need to include a damping term
(Jennings et al. 2011a).

The z = 1 multipole moments, P0 (upper curves) and P2 (lower
curves), measured from the �CDM (empty black squares) and F4
(filled purple circles) simulations are shown in Fig. 14. These two
power spectra have been separated in this plot for clarity. The model
given in equation (26) using the velocity and matter power spectra
from the simulations are overplotted as a green dot–dashed line
and a red dotted line for the f (R) and the �CDM cosmologies,
respectively. The inset panel shows the ratio of the measured P0

to the model for each cosmology, F4 (green dot–dashed lines) and
�CDM (red dotted lines). The model for the monopole moment
reproduces the measurement for the f (R) model to within 10 per
cent accuracy at k < 0.2 h Mpc−1. The P0 model for �CDM is
accurate to within 5 per cent at k < 0.2 h Mpc−1. The solid black
line in the inset panel shows the ratio of the monopole moment in the
F4 model to �CDM. The model precision for �CDM is sufficient to
detect the 15 per cent difference in the monopole moment which we
find between the two cosmologies on these large scales. The model
in equation (26) requires accurate knowledge of the velocity and
matter power spectra as input parameters. In this section we have

Figure 11. The ratio f F4/f GR where f = √
Pθθ /Pδδ at z = 0 (bottom panel),

z = 0.4 (middle panel) and z = 1.0 (top panel) in the F4 model compared to
GR (purple dashed lines). The linear theory prediction for this ratio at each
redshift is shown as a solid green line.

used Pθθ and Pδδ measured from the simulations. An alternative to
this would be to use fitting formula for each of these power spectra
which have sufficient accuracy on these large scales (see e.g. Smith
et al. 2003; Jennings et al. 2011a).

5 SU M M A RY A N D C O N C L U S I O N S

Modified gravity theories generally predict different clustering
properties of matter, and as a result both the density and the ve-
locity power spectra could be very different from the predictions
of GR. The f (R) gravity model has been a leading example of this
in recent years. Here, the enhancement to the standard gravity de-
pends sensitively on the local matter density through the so-called
chameleon mechanism. In high matter density and high-curvature
regions (f R � |�|, where � is the Newtonian potential), the
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Redshift-space distortions in f (R) gravity 2141

Figure 12. The 2D redshift-space power spectrum, P(k, μ), measured from the �CDM simulation (left-hand panel) and the F4 simulation (right-hand panel)
at z = 0. The coloured contours and black solid lines represent log10P(k, μ). The overplotted red solid lines show the predictions of the model of equation (25),
where the matter and velocity power spectra used for each cosmology have been measured from the simulation.

Figure 13. Left-hand panel: the non-linear matter (upper curves) and velocity (lower curves) power spectra measured from the z = 0 F4 (solid purple) and
�CDM (dashed black) simulations. The filled red circles (green squares) show the results from fitting equation (25) to the 2D power spectrum, P(k, μ), from
the F4 (GR) simulation. The error bars represent the 1σ errors on the fit; solid grey and hatched blue shaded regions represent the errors on the power spectrum
measured from the �CDM and f (R) simulations, respectively. Right-hand panel: same as the left-hand panel, but for z = 1.

enhancement is strongly suppressed and standard gravity is recov-
ered; on the other hand, in low matter density and low-curvature
regions the enhancement factor can be as large as 4/3. Depending
on the value of f R0 and the local environment, the transition scale, or
Compton length, of the scalaron ranges from less than one to more
than a few megaparsecs, which can potentially leave detectable fea-
tures in the distribution of matter and clustering patterns of the
large-scale structure.

Galaxy surveys measure the distribution of matter in redshift
space where the true position of a galaxy appears distorted along
the line of sight due to peculiar velocities. The goal of many cur-
rent and future galaxy redshift surveys is to constrain deviations
from GR, and so it is important to understand how observables
are affected by redshift-space distortions. Theoretical studies of
this require both high-resolution and large-volume numerical sim-
ulations, which previously have not been performed for modified

gravity models. In this paper we use simulations in large-volume
boxes to carry out the first study of the clustering of the dark matter
in redshift space in an f (R) modified gravity. The simulation code
developed by Li et al. (2012) allows us to model large volumes with
good resolution.

The simulations we use in this analysis have two different reso-
lutions, with 10243 dark matter particles in computational boxes of
Lbox = 1.5 and 1.0 h−1 Gpc on a side. We have checked that the sim-
ulations agree with one another down to k ∼ 0.3 h Mpc−1. We have
compared the matter P(k) measured in real space against previous
simulations and found good agreement.

We have measured the redshift-space power spectrum in the GR
and the f (R) cosmologies at redshifts z = 0, 0.4 and 1. We find
an enhanced boost in the power on large scales and a substantial
increase in the damping on small scales in the f (R) cosmology
compared to GR at all redshifts. The deviations are largest for the
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Figure 14. Upper curves: the monopole moment of the redshift-space power
spectrum measured from the F4 (filled purple circles) and �CDM (empty
black squares) simulations at z = 1. Lower curves: the quadrupole moment
of the redshift-space power spectrum measured from the F4 (filled pur-
ple circles) and �CDM (empty black squares) simulations at z = 1. The
two moments have been offset for clarity in this plot. The model in equa-
tion (25) for each power spectrum moment is shown as a dot–dashed green
line for the f (R) model and as a red dotted line for �CDM. The hatched
(solid) shaded regions represent the errors on the measured power spectra
for the f (R) (�CDM) simulations. The inset panel shows the ratio of the
monopole moment to the model in each cosmology, F4 (dot–dashed green
lines) and �CDM (red dotted lines). The solid black line shows the ratio of
the monopole moment in the F4 model to that in the �CDM model.

f (R) model with parameter value |f R0| = 10−4 (F4) and are reduced
as |f R0| is decreased. The large-scale enhancement of the power
is a result of the fifth force in the modified gravity theory, which
strengthens the matter clustering on large scales. On small scales
where the local curvature is not too high, the fifth force makes the
particles move faster, increasing the velocity dispersion and caus-
ing a stronger damping of the power compared to GR. These effects
can be seen at various redshifts, and are even slightly stronger at
earlier times. However, for some model parameters such as |f R0| =
10−6, the fifth force is strongly suppressed by the chameleon mech-
anism, and its effect is too weak to be distinguished from stan-
dard gravity. We find that the relative difference in the moments
of the power spectrum, P2/P0, between the F4 f (R) model and
GR ranges from 20 per cent at z = 1 to 40 per cent at z = 0 at
k = 0.2 h Mpc−1 due to the enhanced non-linear damping on small
scales.

We measure the velocity divergence power spectrum using the
DTFE method in both f (R) and GR cosmologies and find a large
difference between Pθθ in the f (R) model compared to GR. This
difference is much larger than the difference between the non-linear
matter P(k) in the two models, suggesting that the velocity power
spectrum is a far more sensitive probe of modified gravity. We find
a large deviation in the ratios

√
Pθθ/Pδδ and Pδθ /Pδδ between the

two models at 0.03 < k( h Mpc−1) < 0.5 at z = 0. In linear theory
these ratios equal the growth rate of structure, f , on large scales
when the velocity divergence is normalized as θ = ∇ · v/aH . Our

results show that the measured ratios agree with the linear growth
rate for each cosmology, which is scale-dependent in the case of
modified gravity, for k < 0.06 h Mpc−1 at z = 0. We find that the
relative deviation of the measured non-linear ratio,

√
Pθθ/Pδδ , from

the linear prediction between the f (R) model and GR decreases with
increasing redshift.

Using a simple quasi-linear model for the 2D redshift-space
power spectrum, equation (25), which includes non-linear velocity
terms but no small-scale damping parameter, we attempt to extract
the matter and velocity power spectra. On scales k < 0.1 h Mpc−1

we can recover the non-linear matter power spectrum to within a
few per cent for both the f (R) and the GR cosmologies. The model
fails to describe the shape of the 2D power spectrum, and we are
unable to reconstruct the velocity P(k) accurately. The fact that this
model recovers the non-linear matter power spectrum so precisely
indicates that this method can be used to constrain modified gravity
models. Our simulation results show that improved theoretical mod-
els are required in order to measure the velocity power spectrum
where there is a large difference in the predicted signal between
these two cosmologies.

We show that the same model works very well at fitting the first
two multipole moments of the redshift-space power spectrum on
large scales, especially at high redshifts. We are able to match the
monopole moment to within 3 per cent for GR cosmology and
10 per cent for the f (R) cosmology on scales k < 0.2 h Mpc−1 at
z = 1. This difference is smaller than the 15 per cent difference in
the F4 and GR models on the same scales.

In this study we have addressed two separate questions. The first
considers how well a simple model for redshift-space distortions,
equation (25), works at recovering the non-linear matter and veloc-
ity P(k) and how well it describes the multipole moments of the
redshift-space power spectrum. The matter P(k) and the monopole
moment, P0, are recovered accurately, and as a result we do not
think that the failure of the model to describe the full 2D shape
of P(k, μ) is a serious pitfall for future redshift-space analyses.
Our results point to necessary adjustments needed in the model,
such as including non-linear damping terms for example. Whether
the velocity power spectrum can be extracted using more compli-
cated modelling of the 2D power spectrum, and how well it can be
measured, is left for future analysis. The second, two-part, ques-
tion is: which observable, P(k, μ), P0, P2, etc., shows the largest
difference between an f (R) cosmology and a GR cosmology and
is the simple redshift-space distortion model accurate enough to
allow us to measure these differences? We observe the largest dif-
ference between these two cosmologies in the measured non-linear
velocity power spectrum on scales k > 0.03 h Mpc−1 and in the
ratio of the multipole moments P2/P0 on scales k > 0.2 h Mpc−1.
Our results show that an improved model for redshift-space dis-
tortions is needed in order to extract the velocity power spectrum
to a sufficient accuracy to distinguish an f (R) cosmology from a
GR cosmology. The differences between the ratios of the multi-
pole moments, P2/P0, in GR and f (R) are mainly on small scales.
We shall address whether or not this difference is present in the
redshift-space clustering of haloes and the effects of bias in future
work.

To conclude, we find that redshift-space distortions in modified
gravity models have an impact on the clustering of dark matter
on large and small scales to a level which may be distinguished
from GR. Current redshift-space distortion models, which are valid
on quasi-linear scales, are accurate enough to extract the non-linear
matter P(k) in real space from the measured 2D redshift-space power
spectrum on large scales, allowing us to constrain f (R) modified
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gravity. The large difference between the predicted velocity P(k) in
the f (R) and GR cosmology makes this a very promising observable
with which to test GR provided that this can be accurately extracted
from the redshift-space power spectrum. For certain f (R) parameter
values, e.g. |f R0| = 10−6, the impact of modified gravity on both
the matter and velocity fields is not significant, and any deviations
from GR are restricted to small scales. In a follow-up paper, we will
examine the redshift-space distortions in the clustering of haloes
in these modified gravity models on non-linear scales. We will test
several non-linear models for redshift-space distortions to predict
how well this observable can constrain f (R) modified gravity in
future surveys.
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