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Abstract

Vertices arrive sequentially in space and are joined to existing vertices at

random according to a preferential rule combining degree and spatial proximity.

We investigate phase transitions in the resulting graph as the relative strengths

of these two components of the attachment rule are varied.

Previous work of one of the authors showed that when the geometric component

is weak, the limiting degree sequence mimics the standard Barabási–Albert

preferential attachment model. We show that at the other extreme, in the

case of a sufficiently strong geometric component, the limiting degree sequence

mimics a purely geometric model, the on-line nearest-neighbour graph, for

which we prove some extensions of known results. We also show the presence of

an intermediate regime, with behaviour distinct from both the on-line nearest-

neighbour graph and the Barabási–Albert model; in this regime, we obtain a

stretched exponential upper bound on the degree sequence.
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1. Introduction

Stochastic models in which a network evolves via the sequential addition of new

nodes, each connected by an edge to an existing node in the graph according to some
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probabilistic rule, have been the subject of an explosion of interest over the past decade

or so, motivated by real-world graphs such as those associated with social networks or

the internet. The subject of this paper is a model whose connectivity rule combines

degree-based preferential attachment with a spatial component; we describe our model

in detail below. This model, previously studied in [11], is a variant of the geometric

preferential attachment model of Flaxman et al. [7, 8], which itself can be viewed as a

generalization of an earlier model of Manna and Sen [12]. A continuous time model

with a similar flavour has recently been studied by Jacob and Mörters [9].

In a sense to be explained in this paper, the behaviour of the model studied here in-

terpolates between pure preferential attachment (essentially the well-known Barabási–

Albert model) and a purely geometric model (the on-line nearest-neighbour graph). It

was shown in [11] that for a sufficiently weak geometric component of the attachment

rule, the limiting degree distribution coincides with that of the Barabási–Albert model,

which famously has a ‘scale-free’ or ‘power-law’ degree distribution [2, 10].

The focus of the present paper is the complementary setting, in which the geometric

component has a significant impact. We show that in the extreme case of a dominant

geometric effect, the model behaves similarly to the on-line nearest-neighbour graph,

which by contrast has a degree distribution with exponential tails (cf [1]). We also

study an intermediate regime in which the model behaves differently from both of the

extreme cases, and in which the degree distribution satisfies a stretched exponential

tail bound. Thus we demonstrate the existence of non-trivial phase transitions.

In the next section we describe our models precisely and state our main results.

2. Random spatial graph models and main results

2.1. Notation

Write N := {1, 2, . . .}, Z+ := {0, 1, 2, . . .}, and R+ := [0,∞). The vertices of our

graphs are associated with sites in S ⊂ Rd, assumed to be compact, convex, and of

positive d-dimensional Lebesgue measure. The locations of the sites are X0, X1, . . .,

independent random variables with density f supported on S. For n ∈ N, set Xn :=
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{X0, . . . , Xn}. We assume throughout that f is bounded away from 0 and ∞:

0 < λ0 := inf
x∈S

f(x) ≤ sup
x∈S

f(x) =: λ1 < ∞. (2.1)

We write ∥ · ∥ for the Euclidean norm on Rd, and ρ(x, y) = ∥x− y∥ for the Euclidean

distance between x and y in Rd. Denote by B(x; r) the open Euclidean d-ball centred at

x ∈ Rd with radius r > 0. Throughout we understand log x to stand for max{0, log x}.

Let #A denote the number of elements of a finite set A.

2.2. On-line nearest-neighbour graph

The on-line nearest-neighbour graph (ONG) is constructed on points arriving se-

quentially in Rd by connecting each point after the first to its nearest predecessor. The

ONG is a natural and basic model of evolving spatial networks. It is a special case (or

limiting case) of several models that have appeared in the literature, including a version

of the ‘FKP’ network model [1, 5] and geometric preferential attachment models such

as [7,11,12] (specifically, it is the ‘α = −∞’ case of the model of Manna and Sen [12]);

one contribution of the present paper is to explore this latter connection. The name

‘on-line nearest-neighbour graph’ was apparently introduced by Penrose [16].

In the ONG on (X0, . . . , Xn), the nth edge (n ∈ N) is between Xn and its (a.s.

unique) nearest neighbour among Xn−1. In other words, writing

η1(n) := argmin
i∈{0,...,n−1}

ρ(Xn, Xi), (2.2)

the ONG on (X0, . . . , Xn) consists of the edges (i, η1(i)) for 1 ≤ i ≤ n; it is natural to

view these as directed edges when constructing the graph, but we largely treat them

as undirected. We call Xη1(n) the on-line nearest neighbour of Xn.

Let degn(i) denote the degree of vertex i in the ONG on (X0, . . . , Xn). Let N
ONG
n (k)

denote the number of vertices with degree at least k in the ONG on (X0, . . . , Xn):

NONG
n (k) =

n∑
i=0

1{degn(i) ≥ k}.

We study the asymptotic degree sequence, i.e., the asymptotic proportion of vertices

with degree at least k (for each k); for convenience we work with n−1NONG
n (k).

Part of the statement of our main result on the ONG, Theorem 2.1 below, is that

limn→∞ n−1E[NONG
n (k)] exists for each k; this was stated, apparently without proof,
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in [1, §2], but can be justified for the ONG using stabilization arguments of Penrose [16],

as we explain in Section 6 below. Stabilization also gives an explicit description of the

limit in terms of a version of the ONG defined on an infinite Poisson point process, as

we describe next; in particular, the limit depends only on d and not on S or f .

Let H be a unit-rate homogeneous Poisson point process on Rd × [0, 1]; the [0, 1]-

valued marks play the role of time in the finite ONG. For u ∈ [0, 1], let Hu := H ∩

(Rd × [0, u]), those Poisson points with marks in [0, u]. For x, y ∈ Rd let Bx(y) be the

open ball with centre y whose boundary includes x. Given x ∈ Rd and u ∈ [0, 1], let

ξ(x, u;H) := 1 +
∑

(y,v)∈H, v>u

1{Hv ∩ (Bx(y)× [0, 1]) = {(y, v)}}.

By stabilization for the ONG (see [16]), ξ(x, u;H) < ∞ a.s. for any x ∈ Rd and any

u ∈ (0, 1). We call ξ(x, u;H) the degree of (x, u) in the infinite Poisson on-line nearest-

neighbour graph, defined locally by joining each point to the nearest Poisson point with

mark equal to or less than the mark of the given point; note that (x, u) itself need not

be in H. Let U denote a uniform [0, 1] random variable, independent of H.

Theorem 2.1. Let d ∈ N. Then for any k ∈ N,

lim
n→∞

n−1NONG
n (k) = lim

n→∞
n−1E[NONG

n (k)] = P[ξ(0, U ;H) ≥ k] =: ρk, (2.3)

the first limit equality holding a.s. and in L1. Here ρk ∈ [0, 1] are nonincreasing

with ρ1 = 1, limk→∞ ρk = 0, and
∑

k∈N ρk = 2. Moreover, there exist finite positive

constants A,A′, C, C ′ such that, for all k ∈ N,

A′e−C′k ≤ ρk ≤ Ae−Ck, (2.4)

and, more precisely,

1

2
log
(
1 + (22d − 1)−1

)
≤ lim inf

k→∞

(
−k−1 log ρk

)
≤ lim sup

k→∞

(
−k−1 log ρk

)
≤ 1. (2.5)

Finally, there exists a constant D < ∞ for which, a.s., for all n sufficiently large,

max
0≤i≤n

degn(i) ≤ D log n. (2.6)

This result extends a result of Berger et al. [1]. Specifically, [1, Theorem 3] showed

A′e−C′k ≤ lim inf
n→∞

n−1E[NONG
n (k)] ≤ lim sup

n→∞
n−1E[NONG

n (k)] ≤ Ae−Ck,
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degree 1 2 3 4 5 6 7 8 9 10

d = 1 0.4728 0.2675 0.1394 0.0670 0.0304 0.0132 0.0056 0.0024 0.0001 0.0000

d = 2 0.4777 0.2636 0.1369 0.0668 0.0308 0.0137 0.0060 0.0026 0.0001 0.0000

d = 100 0.4999 0.2501 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0002 0.0001

Table 1: Estimated P[ξ(0, U ;H) = k] (4dp) for 1 ≤ k ≤ 10, for d ∈ {1, 2, 100}. For each d,

the estimates are based on 500 simulations with n = 105 for f uniform on the d-dimensional

torus, to avoid finite-sample boundary effects.

in the special case where d = 2 and f is the indicator of the unit square S = (0, 1)2.

Our proof of Theorem 2.1, which we give in Section 6 below, is based in part on the

proof of the analogous result in [1], with additional arguments required to obtain the

existence of the limit and the almost-sure convergence in (2.3). Some extra work is

also needed to obtain the quantitative bounds in (2.5): the d = 2 case of the lower

bound, 1
2 log

16
15 , is contained in the argument of [1]; the other bounds are new.

Remark 2.1. In view of (2.5), it is natural to conjecture that, for each d ∈ N,

lim
k→∞

(
−k−1 log ρk

)
= µ(d) exists in (0, 1];

the upper bound of 1 comes from (2.5). In [18, §7.6.5] it was conjectured that one

might have µ(d) = µ = 1. The simpler, non-spatial, uniform attachment model in

which vertex n is connected uniformly at random to a vertex from {0, 1, . . . , n − 1}

leads to an analogous result with µ = log 2, as follows from [2, §4]. We think it unlikely

that µ(d) ∈ {1, log 2} for any d ∈ N; we conjecture, however, that limd→∞ µ(d) = log 2.

Simulations suggest that µ(1) ≈ 0.79, µ(2) ≈ 0.77, and µ(100) ≈ 0.69: cf Table 1.

2.3. Geometric preferential attachment graph

The geometric preferential attachment (GPA) model that we study is as follows;

often our notation coincides with [11]. We define a (random) sequence of finite graphs

Gn = (Vn, En), n ∈ N. The vertex set of Gn is Vn = {0, 1, . . . , n}. For v ∈ Vn, we

denote by degn(v) the degree of v in the GPA graph Gn (viewed as an undirected

graph); this notation is the same as for degrees in the ONG, but the graph under

consideration will be clear in context.

The construction uses an attractiveness function F : (0,∞) → (0,∞). Recall that

X0, X1, . . . are random sites in S. For simplicity, we start with G1 = (V1, E1) consisting
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of vertices with labels 0 and 1 joined by a single edge, so V1 = {0, 1} and E1 = {(1, 0)}.

Vertices 0 and 1 are associated with sites X0 and X1 in S, respectively.

We proceed via iterated addition of vertices to construct Gn+1 = (Vn+1, En+1) from

Gn = (Vn, En), n ∈ N. Given Gn, n ∈ N, and the spatial locations Xn of its vertices,

we add a vertex with label n+1 at site Xn+1 ∈ S, and we add a new edge (n+1, vn+1)

where vn+1 is chosen randomly from Vn with distribution specified by

P[vn+1 = v | Gn,Xn+1] =
degn(v)F (ρ(Xv, Xn+1))

Dn(Xn+1)
, v ∈ Vn, (2.7)

where for n ∈ N and x ∈ S, Dn(x) :=
∑

v∈Vn
degn(v)F (ρ(Xv, x)).

We call Gn so constructed a GPA graph with attractiveness function F . In [11], it

was assumed that
∫
S
F (ρ(x, y))f(y)dy < ∞, so F cannot blow up too rapidly at 0. In

this paper, our primary interest is in F for which this condition is not satisfied.

2.4. Strong geometric regime

For γ > 1, define Fγ for r > 0 by Fγ(r) := exp{(log(1/r))γ}. Note that Fγ(r)

blows up at 0 faster than r−s for any power s. Recall that the convention log x ≡

max{0, log x} is in force, so Fγ(r) = 1 for r ≥ 1. Also, Fγ(r) is strictly decreasing for

r ∈ (0, 1), with Fγ(r) → ∞ as r ↓ 0.

Our main result in this setting (i) gives an almost-sure degree bound analogous to

(2.6) above for the ONG, and (ii) shows that the limiting degree sequence for the GPA

graph is the same as for the ONG, for a strong enough geometric component to the

interaction (under the condition γ > 3/2). Let NGPA
n (k) denote the number of vertices

with degree at least k in the GPA graph Gn.

Theorem 2.2. Suppose that F = Fγ for some γ > 1.

(i) For any ν ∈ (0, 1) with ν > 2− γ, a.s., for all n sufficiently large,

max
0≤i≤n

degn(i) ≤ exp{(log n)ν}. (2.8)

(ii) Suppose that γ > 3/2. Then limn→∞ P[vn = η1(n)] = 1 and

lim
n→∞

n−1E
n∑

i=1

1{vi ̸= η1(i)} = 0. (2.9)

Moreover, for any k ∈ N,

lim
n→∞

n−1NGPA
n (k) = lim

n→∞
n−1E[NGPA

n (k)] = ρk, (2.10)
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the first limit equality holding in L1, where ρk is as in Theorem 2.1.

We give the proof of Theorem 2.2 in Section 4.

Conjecture 2.1. We suspect the conclusion of Theorem 2.2(ii) to hold for any γ > 1.

2.5. Intermediate regime: power-law attractiveness

Take F (r) = r−s for s ∈ (0,∞). The next result contrasts with (2.9) in the strong

geometric attraction regime, and shows that in this case, in expectation, there is a

non-negligible proportion of vertices not connecting to their nearest neighbour.

Theorem 2.3. Suppose that F (r) = r−s for s ∈ (0,∞). Then lim supn→∞ P[vn =

η1(n)] < 1 and

lim inf
n→∞

n−1E
n∑

i=1

1{vi ̸= η1(i)} > 0. (2.11)

It was proved in Theorem 2.1 of [11] that in the case s ∈ (0, d), under certain

conditions on S and f , the degree distribution of the GPA graph converges to a power-

law distribution, as in the Barabási–Albert model: limn→∞ n−1E[NGPA
n (k)] = rk where

rk ∼ 2k−2 as k → ∞. In contrast, the next result gives a stretched exponential upper

bound for the tail of the degree distribution when s > d.

Theorem 2.4. Suppose that F (r) = r−s for s > d. For any γ ∈ (0, s−d
2s−d ), there exists

a constant C < ∞ such that, for all k,

lim sup
n→∞

n−1NGPA
n (k) ≤ Ce−kγ

, a.s., and lim sup
n→∞

n−1E[NGPA
n (k)] ≤ Ce−kγ

.

This result confirms the presence of a phase transition in the character of the degree

distribution at s = d, as intimated in [11, §5] and in line with d ∈ {1, 2} simulation

results of [12] (who actually conjectured that the phase transition point was s = d−1)

and [6] (who did suggest s = d for the transition). The stretched exponential for s > d

is also consistent with the observations of [6,12]. We remark that as s → ∞, Theorem

2.4 gives an upper bound of order almost e−
√
k.

The rest of the paper is organized as follows. In Section 3 we collect some prepar-

atory lemmas. Section 4 deals with the strong geometric regime, culminating in the

proof of Theorem 2.2. Section 5 deals with the case of power-law attractiveness, and

presents the proofs of Theorems 2.3 and 2.4. Finally, Section 6 deals with the ONG

and gives the proof of Theorem 2.1.
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3. Preliminaries to the proofs

First we state a basic property of the set S, under our standing assumptions. Let ωd

be the volume of the unit-radius Euclidean d-ball, and set diam(S) := supx,y∈S ρ(x, y).

Lemma 3.1. There exists δS > 0 such that, for all r ∈ [0,diam(S)],

inf
x∈S

|B(x; r) ∩ S| ≥ δSωdr
d.

Proof. Since S is convex, compact, and of positive measure, there exist x0 ∈ S and

r0 > 0 such that B(x0; r0) is contained in the interior of S. It suffices to suppose that

either (i) ρ(x, x0) ≥ 2r0, or (ii) ρ(x, x0) ≤ r0/2. To see this, suppose that r0/2 <

ρ(x, x0) < 2r0. Then we may carry out the argument for case (i) after having replaced

r0 by r0/4, introducing only a constant multiplicative factor into the argument.

So now suppose that (i) holds. For r ≤ r0, let C(x, r) denote the cone with apex x,

axis passing through x0, and half-angle θ(x, r) = sin−1(r/ρ(x, x0)). Since ρ(x, x0) ≤

diam(S), θ(x, r) ≥ θ(r) := sin−1(r/diam(S)). By construction and convexity of S,

C(x, r) ∩ S contains the cone segment {y ∈ C(x, r) : ρ(x, y) ≤ ρ(x, x0) cos θ(x, r)}. So,

if ρ(x, x0) ≥ 2r0, then B(x; r) ∩ S contains the cone segment {y ∈ C(x, r) : ρ(x, y) ≤

r∧r0}, which has volume bounded below by cdθ(r)
d−1r, provided r ≤ r0, where cd > 0

is an absolute constant. Hence |B(x; r) ∩ S| is bounded below by a constant times rd,

for all r ≤ r0. The same conclusion follows if r ∈ (r0, diam(S)), using the lower bound

cdθ(r0)
d−1r0 ≥ c′d(r0/diam(S))drd for c′d > 0 not depending on r.

Finally, in case (ii), we have that B(x; r)∩ S contains the ball B(x; r ∧ (r0/2)), and

a similar argument to that for part (i) completes the proof.

We next give some basic results on nearest-neighbour distances. For n ∈ N, let

Zn := ρ(Xn;Xn−1) := min
0≤i≤n−1

ρ(Xn, Xi) = ρ(Xn, Xη1(n)),

the distance from Xn to its on-line nearest neighbour. Write x+ := x1{x > 0}.

Lemma 3.2. Let δS > 0 be the constant in Lemma 3.1. Then for r > 0,

P[Zn ≥ r] ≤ (1− δSλ0ωdr
d)n1{r ≤ diam(S)}; (3.1)

P[Zn ≥ r] ≥ ((1− λ1ωdr
d)+)n1{r ≤ diam(S)}. (3.2)
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Proof. Conditional on Xn, we have, for any r > 0, a.s.,

P[Zn ≥ r | Xn] = P[S ∩B(Xn; r) ∩ Xn−1 = ∅ | Xn]

=

(
1−

∫
S∩B(Xn;r)

f(x)dx

)n

. (3.3)

Note that P[Zn > diam(S)] = 0, so it suffices to suppose that r ≤ diam(S). Then,

δSωdr
d ≤ |S ∩B(Xn; r)| ≤ ωdr

d, a.s., (3.4)

for all r ≤ diam(S), by Lemma 3.1. It follows from (3.3) and (2.1) that P[Zn ≥ r |

Xn] ≤ (1− λ0|S ∩B(Xn; r)|)n, which, with the first inequality in (3.4), gives (3.1).

Similarly, (3.2) follows from (3.3) and (2.1) with the second inequality in (3.4).

Next we state a simple but useful result on degrees, which is basically Markov’s

inequality. Write Nn(k) for N
GPA
n (k) or NONG

n (k). Either graph is a tree, so using the

degree sum formula and interchanging the order of summation we obtain

2n =

n∑
i=0

degn(i) =

n∑
i=0

∑
k≥1

1{degn(i) ≥ k} =
∑
k≥1

Nn(k).

So for any k0 ∈ N, 2n ≥
∑k0

k=1 Nn(k) ≥ k0Nn(k0), since Nn( · ) is nonincreasing. Thus

Nn(k) ≤ 2n/k, a.s., for any k and n. (3.5)

Finally, we introduce some notation for dealing with conditional probabilities. Let

Fn := σ(Xn, v2, v3, . . . , vn−1), the σ-algebra generated by the sites up to and including

Xn and by the edge choices made on previous steps. Then Fn contains all the

information about Gn−1 as well as X0, . . . , Xn, and (2.7) can be expressed as

P[vn = v | Fn] =
degn−1(v)F (ρ(Xv, Xn))

Dn−1(Xn)
, v ∈ {0, . . . , n− 1}. (3.6)

Also set F̃n := σ(Xn, v2, v3, . . . , vn−1, vn), which adds to Fn information about Gn.

4. Proofs for strong geometric regime

In this section we prove our results from Section 2.4. First we outline the central

idea of the proof of Theorem 2.2, to show that Xn joins to its on-line nearest neighbour

Xη1(n) with probability 1− o(1) (cf Lemma 4.3). By (3.6), this probability satisfies

P[vn = η1(n) | Fn] =
degn−1(η1(n))F (Zn)

Dn−1(Xn)
.
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For F = Fγ , the fact that Fγ is decreasing and the degree sum formula give

Dn−1(Xn) =
n−1∑
i=0

degn−1(i)Fγ(ρ(Xi, Xn)) ≤ 2nFγ(Wn) + degn−1(η1(n))Fγ(Zn),

where Wn is the distance from Xn to its second nearest neighbour among Xn−1, so

P[vn = η1(n) | Fn] ≥ 1− 2nFγ(Wn)

Fγ(Zn)
.

With probability 1 − o(1), Wn > Zn + θn where θn = o(n−1/d), so to show P[vn =

η1(n)] = 1− o(1) it suffices to show that, as n → ∞,

nFγ(Zn + θn)

Fγ(Zn)
→ 0, in probability.

Taylor’s formula shows that this holds provided γ > 2. Further progress requires

control of both the vertex degrees and the number of ‘plausible alternatives’ for vn.

Theorem 2.2(i) gives sufficient control of degrees to achieve the γ > 3/2 case of

Theorem 2.2(ii). To achieve γ > 1 (cf Conjecture 2.1) seems to need tighter control,

and a technique that enables one to replace almost-sure upper bounds growing with n

by ‘typical’ statistics, as might be available given some suitable stabilization property,

such as that enjoyed by ONG. This seems to be a challenging problem.

For ν ∈ (0, 1) and n ≥ 2 set β(n, ν) := n−1/d exp{(log n)ν}, and let

E(n, ν) := {ρ(Xvn , Xn) ≥ β(n, ν)},

the event that the edge from vertex n connects to any vertex outside B(Xn;β(n, ν)).

Lemma 4.1. Suppose that F = Fγ for some γ > 1 and that ν ∈ (0, 1) with ν > 2− γ.

Then for any p < ∞, as n → ∞,

P[E(n, ν)] = O(exp{−γd1−γ(1 + o(1))(log n)γ+ν−1}) = O(n−p).

Proof. Note that for any ν ∈ (0, 1),

Fγ(β(n, ν)) = exp
{
d−γ(log n)γ − γd1−γ(1 + o(1))(log n)γ+ν−1

}
. (4.1)

We obtain from (3.1) and (2.1) that

P[Zn > β(n, ν)] = O(exp{−δSλ0ωd exp{d(log n)ν}}) = O(exp{−(log n)K}), (4.2)
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for any K < ∞. Fix ν ∈ (0, 1) and choose ν′ ∈ (0, ν). Then

P[E(n, ν)] ≤ P[Zn > β(n, ν′)] + P[E(n, ν) | Zn ≤ β(n, ν′)]. (4.3)

Suppose that Zn ≤ β(n, ν′). Then, since Fγ(r) is nonincreasing in r > 0,

degn−1(η1(n))Fγ(ρ(Xη1(n), Xn)) ≥ Fγ(Zn) ≥ Fγ(β(n, ν
′)),

so that Dn−1(Xn) ≥ Fγ(β(n, ν
′)), given Zn ≤ β(n, ν′). On the other hand, any vertex

j < n with Xj /∈ B(Xn;β(n, ν)) has degn−1(j)Fγ(ρ(Xj , Xn)) ≤ nFγ(β(n, ν)), using

the crude bound degn−1(j) ≤ n. Hence, by (2.7) and (4.1),

P[E(n, ν) | Zn ≤ β(n, ν′)] =
n−1∑
j=0

P[{vn = j} ∩ E(n, ν) | Zn ≤ β(n, ν′)]

≤ n2Fγ(β(n, ν))

Fγ(β(n, ν′))

= O
(
exp

{
2 log n− γd1−γ(1 + o(1))

(
(log n)γ+ν−1 − (log n)γ+ν′−1

)})
= O

(
exp

{
−γd1−γ(1 + o(1))(log n)γ+ν−1

})
, (4.4)

provided that γ+ ν− 1 > 1, i.e., ν > 2− γ, which we can ensure by choosing ν ∈ (0, 1)

close enough to 1 since γ > 1. The result now follows from (4.2), (4.3) and (4.4).

The next result is a bound on degrees that amounts to Theorem 2.2(i), and which

will also be an ingredient in our proof of Theorem 2.2(ii).

Lemma 4.2. Suppose that F = Fγ for some γ > 1. Then for any ν ∈ (0, 1) with

ν > 2− γ, a.s., for all but finitely many n ∈ N, (2.8) holds.

Proof. Let γ > 1 and ν > 2 − γ. By Lemma 4.1, P[E(j, ν)] = O(j−2). Hence, by

the Borel–Cantelli lemma, for only finitely many j ∈ N does the vertex j connect to a

vertex i < j with ρ(Xi, Xj) ≥ β(j, ν). It follows that there exists some finite random

variable Dν = 1 +
∑∞

j=1 1(E(j, ν)) such that, for all n ∈ N and all i ∈ {0, 1, . . . , n},

degn(i) ≤ Dν +
n∑

j=i+1

ξi,j ,

where we set ξi,j := 1{ρ(Xj , Xi) ≤ β(j, ν)} for i ̸= j and ξi,i := 0. Hence

max
0≤i≤n

degn(i) ≤ Dν + max
0≤i≤n

n∑
j=1

ξi,j . (4.5)
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For fixed i, conditional on Xi, the n − 1 terms ξi,j with j ̸= i in the sum on the

right-hand side of (4.5) are independent and {0, 1}-valued, and a suitable version of

Talagrand’s inequality (see e.g. [14, p. 81]) will show that their sum is concentrated

around its mean (in fact, we only need an upper bound here). Specifically, for n ∈ N,

E
n∑

j=1

ξi,j =
n∑

j=1

P[Xi ∈ B(Xj ;β(j, ν))] = Θ

 n∑
j=1

β(j, ν)d

 , (4.6)

uniformly for i ∈ {1, . . . , n}, where the implicit constants depend on S, λ0 and λ1 (we

use Lemma 3.1 here). We claim that

n∑
j=1

β(j, ν)d = exp{d(log n)ν(1 + o(1))}. (4.7)

To verify (4.7), we combine the upper and lower bounds

n∑
j=1

β(j, ν)d ≤
n∑

j=1

1

j
exp{d(log n)ν} ≤ (1 + log n) exp{d(log n)ν}, and

n∑
j=1

β(j, ν)d ≥
n∑

j=⌈n/2⌉

1

n
exp{d(log(n/2))ν} ≥ 1

2
exp{d(log(n/2))ν}.

From (4.6) and (4.7), we have E
∑n

j=1 ξi,j = exp{d(log n)ν(1 + o(1))}. Talagrand’s

inequality implies that for all n,

max
0≤i≤n

P

 n∑
j=1

ξi,j > exp{2d(log n)ν}

 ≤ O(exp{−ed(logn)ν}),

which is O(n−3), say, so that Boole’s inequality yields

P

 max
0≤i≤n

n∑
j=1

ξi,j > exp{2d(log n)ν}

 = O(n−2).

Now another application of the Borel–Cantelli lemma together with (4.5) completes

the proof of the lemma, noting that ν > 2− γ was arbitrary.

The main step remaining in the proof of Theorem 2.2 is the following.

Lemma 4.3. Suppose that F = Fγ for γ > 3/2. Then P[vn ̸= η1(n)] → 0 as n → ∞.

Proof. Take a sequence θn > 0 with θn = o(n−1/d), and, given Xn and Zn, define

the shells An := B(Xn;Zn + θn) \B(Xn;Zn). Let an := #(An ∩Xn−1 \ {Xη1(n)}), the

number of predecessors to Xn, other than its on-line nearest neighbour, inside An.
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Conditional on Xn and Zn, the points of Xn−1 \ {Xη1(n)} are independent and

identically distributed on S \B(Xn;Zn) with conditional distribution given for meas-

urable Γ ⊆ S \B(Xn;Zn) by P[ · ∈ Γ] =
∫
Γ
gn(x)dx, where

gn(x) =
f(x)

P[X0 ∈ S \B(Xn;Zn) | Xn, Zn]
.

Note that, a.s.,

P[X0 ∈ S \B(Xn;Zn) | Xn, Zn] = 1−
∫
S∩B(Xn;Zn)

f(x)dx ≥ 1− λ1ωdZ
d
n ≥ 1

2
,

provided Zn ≤ (2λ1ωd)
−1/d. Moreover, S ∩An has volume bounded above by

ωd(Zn + θn)
d − ωdZ

d
n ≤ Cdθn(θ

d−1
n + Zd−1

n ),

for some Cd < ∞ depending only on d. Hence, conditional on Xn and Zn, each of the

n− 1 points X0, . . . , Xn−1, excluding Xη1(n), lands in An with probability at most∫
S∩An

f(x)dx

P[X0 ∈ S \B(Xn;Zn) | Xn, Zn]
≤ 2λ1Cdθn(θ

d−1
n + Zd−1

n ) + 1{Zn > (2λ1ωd)
−1/d}.

It follows that

E[an | Zn] ≤ 2λ1Cdnθn(θ
d−1
n + Zd−1

n ) + n1{Zn > (2λ1ωd)
−1/d}.

Taking expectations and using (3.1) we have nP[Zn > (2λ1ωd)
−1/d] = o(1), while, for

any α > 0, by another application of (3.1), for some C < ∞,

E[Zα
n ] =

∫ ∞

0

P[Zn > r1/α]dr ≤
∫ ∞

0

exp{−Cnrd/α}dr,

which gives E[Zα
n ] = O(n−α/d). Hence E[an] = O(θdnn)+O(θnn

1/d)+o(1), which is o(1)

provided θn = o(n−1/d), so that, by Markov’s inequality, P[an > 0] ≤ E[an] = o(1).

Now we condition on the whole of Fn. Again take β(n, ν) = n−1/d exp{(log n)ν}.

Let E′
n denote the event that Xn is joined to a point outside B(Xn;Zn + θn):

E′
n := {ρ(Xvn , Xn) ≥ Zn + θn}.

Also, for a constant b > 1 (which later we will choose to be large), set

E′′
n := {Zn ≤ b−1n−1/d} ∪ {Zn ≥ bn−1/d}.
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Finally, define the event (for another constant C to be chosen later)

E′′′
n := {#(Xn−1 ∩B(Xn;β(n, ν))) ≥ C exp{d(log n)ν}} .

The ball B(Xn;β(n, ν)) has volume bounded above by ωdn
−1 exp{d(log n)ν}. The

events {Xj ∈ B(Xn;β(n, ν))}, 0 ≤ j ≤ n − 1 are independent each with probability

at most λ1ωdn
−1 exp{d(log n)ν}, so # (Xn−1 ∩B(Xn;β(n, ν))) is stochastically dom-

inated by a binomial (n, λ1ωdn
−1 exp{d(log n)ν}) random variable. Standard binomial

tail bounds show that, for an appropriate C < ∞, P[E′′′
n ] = o(1).

Since {an = 0} ∩ (E′
n)

c implies that Xn is joined to its on-line nearest neighbour,

P[vn ̸= η1(n) | Fn] ≤ P[E′
n | Fn]1({an = 0} ∩ (E′′

n)
c ∩ (E′′′

n )c)

+ 1{an > 0}+ 1(E′′
n) + 1(E′′′

n ). (4.8)

For any ε > 0, Lemma 3.2 shows that we can choose b and n0 sufficiently large so

that P[E′′
n] < ε for all n ≥ n0. We have already seen that P[an > 0] = o(1) and

P[E′′′
n ] = o(1). We also claim that

P[E′
n | Fn]1({an = 0} ∩ (E′′

n)
c ∩ (E′′′

n )c) = o(1), a.s. (4.9)

The bounded convergence theorem implies that the expectation of this last quantity is

also o(1), so taking expectations in (4.8) we see that for any ε > 0, we may choose b

such that lim supn→∞ P[vn ̸= η1(n)] ≤ ε. This gives the statement in the lemma.

It remains to prove the claim (4.9). First we note that

Dn−1(Xn) ≥ degn−1(η1(n))Fγ(ρ(Xη1(n), Xn)) ≥ Fγ(Zn).

On the other hand, on {an = 0}, any alternative Xj to Xη1(n) among Xn−1 is at

distance at least Zn + θn from Xn, so that for j ̸= η1(n),

degn−1(j)Fγ(ρ(Xj , Xn)) ≤ exp{(log n)ν}Fγ(Zn + θn), a.s.,

for all n large enough, by Lemma 4.2, provided ν ∈ (0, 1) with ν > 2− γ.

On (E′′′
n )c ∩ {an = 0}, the contribution of points inside B(Xn;β(n, ν)), other than

Xη1(n), to Dn−1(Xn) is bounded above by C exp{2d(log n)ν}Fγ(Zn + θn), since there

are at mostO(exp{d(log n)ν}) of these points, their degrees are at mostO(exp{(log n)ν}),

a.s., by Lemma 4.2, and they are all at distance at least Zn + θn from Xn. Moreover,
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similarly to as in the proof of Lemma 4.1, the contribution to Dn−1(Xn) from any

points outside B(Xn;β(n, ν)) is at most n2Fγ(β(n, ν)).

So from (3.6) we have, on {an = 0} ∩ (E′′′
n )c, for all n large enough,

P[E′
n | Fn] ≤

C exp{2d(log n)ν}Fγ(Zn + θn) + n2Fγ(β(n, ν))

Fγ(Zn)
.

Here, similarly to (4.4),

n2Fγ(β(n, ν))

Fγ(Zn)
= O(exp{−c(log n)γ+ν−1}),

for some c > 0, as long as ν > 2− γ. Also we have that, on (E′′
n)

c,

Fγ(Zn + θn)

Fγ(Zn)
= exp

{
(log(1/Zn))

γ

((
1 +

log(1 + (θn/Zn))

logZn

)γ

− 1

)}
= exp

{
−c′(log n)γ−1n1/dθn(1 + o(1))

}
,

for some c′ > 0, if θn = o(n−1/d). In particular, for γ − 1 > ν, we can choose

θn = n1/d(log n)1−γ+ν+ε for some ε > 0 and 1 − γ + ν + ε < 0. The constraints

γ − 1 > ν and ν > 2− γ entail γ > 3/2. With this choice of θn, we thus verify (4.9).

Now we can complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Part (i) is Lemma 4.2. It remains to prove part (ii). Let

Rn =
∑n

i=1 1{vi ̸= η1(i)}. Then, by Lemma 4.3, ERn = o(n), which gives (2.9).

Moreover, the obvious coupling is such that, given Xn and Gn, one can transform

the GPA graph Gn into the ONG on the same vertex sequence by the reassignment

of the endpoint with smaller index of Rn edges, so affecting the degrees of at most

2Rn vertices. Hence, with this coupling, for any k ∈ N, n−1
∣∣NGPA

n (k)−NONG
n (k)

∣∣ ≤
2n−1Rn, which tends to 0 in L1. Now the L1 limit statement in (2.3) yields (2.10).

5. Proofs for power-law attractiveness

5.1. Rejecting on-line nearest-neighbours

We introduce some notation on Voronoi cells that will also be used in Section 6. Let

Vn(i) denote the (bounded) Voronoi cell of Xi with respect to Xn in S, i.e.,

Vn(i) := {x ∈ S : ρ(x,Xi) < min{ρ(x,Xj) : 0 ≤ j ≤ n, j ̸= i}}. (5.1)

We need an elementary result showing that Voronoi cells are unlikely to be very small.
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Lemma 5.1. For any z > 0, with δS > 0 the constant in Lemma 3.1,

P[|Vn(i)| < z] ≤ 2dλ1δ
−1
S nz. (5.2)

Proof. We follow the idea from [1, p. 311]. If no Xj with 0 ≤ j ≤ n, j ̸= i lies

in B(Xi; r), then S ∩ B(Xi; r/2) ⊆ Vn(i) and hence |Vn(i)| ≥ δSωd(r/2)
d by Lemma

3.1. That is, P[|Vn(i)| ≥ δSωd(r/2)
d] ≥ P[Xn ∩ B(Xi; r) = {Xi}]. Complementation

then shows that |Vn(i)| < z (z > 0) implies that at least one of n points Xj falls in

B(Xi; 2z
1/d/(ωdδS)

1/d). Now (5.2) follows from an application of Boole’s inequality:

P[|Vn(i)| < z] ≤ nP[Xj ∈ B(Xi; 2z
1/d/(ωdδS)

1/d)] ≤ 2dδ−1
S λ1nz.

Take F (r) = r−s for s ∈ (0,∞). To prove Theorem 2.3, we consider the event

{vn ̸= η1(n)} that Xn is joined to a point other than its nearest neighbour.

Proof of Theorem 2.3. Extending the notation of (2.2), for ℓ ∈ N we let ηℓ(n) be the

index of the ℓth nearest neighbour of Xn among Xn−1. Again set Zn = ρ(Xn, Xη1(n))

and Wn = ρ(Xn, Xη2(n)). Then by (3.6),

P[vn ̸= η1(n) | Fn]

P[vn = η1(n) | Fn]
≥ P[vn = η2(n) | Fn]

P[vn = η1(n) | Fn]
≥ F (Wn)

degn−1(η1(n))F (Zn)
.

Re-arranging and using the fact that F (r) = r−s, we obtain

P[vn ̸= η1(n) | Fn] ≥
1

1 + degn−1(η1(n))(Wn/Zn)s
≥ (Zn/Wn)

s

2 degn−1(η1(n))
. (5.3)

Then (2.11) will follow from (5.3) together with the following two claims: first, there

exist constants k0 ∈ N and θ0 ∈ (0, 1) such that

lim inf
n→∞

P[degn(η1(n+ 1)) ≤ k0] ≥ 2θ0, (5.4)

and second, that for any θ > 0 there exist constants c, C ∈ (0,∞) such that,

P[Zn ≥ cn−1/d] ≥ 1− (θ/3), and P[Wn ≤ Cn−1/d] ≥ 1− (θ/3), (5.5)

for all n sufficiently large. Indeed, it follows from (5.5) that P[Zn/Wn ≥ c/C] ≥

1 − (2θ0/3) for suitable choice of c and C, so that, by (5.3) and (5.4), P[vn ̸= η1(n) |

Fn] ≥ 1
2k0

(c/C)s with probability at least θ0/3 for all n sufficiently large. Then, taking

expectations, we obtain (2.11). Thus it remains to prove the claims (5.4) and (5.5).
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The idea behind (5.4) is that a large proportion of vertices have degrees bounded

above by some k0, and the union of the corresponding Voronoi cells will have volume

bounded uniformly below in expectation, so that Xn+1 will have such a vertex as its

nearest neighbour with strictly positive probability. We formalize this idea.

With In(k) := {i ∈ {0, . . . , n} : degn(i) ≤ k}, we have #In(k) = n+1−NGPA
n (k+1).

Taking k0 = 9, we obtain from (3.5) that #In(k0) ≥ 4n/5 for all n. Each vertex

i ∈ In(k0) is associated with a Voronoi cell Vn(i).

Let Λn(r) = #{i ∈ {0, . . . , n} : |Vn(i)| ≥ r/n}. Then

E[Λn(r)] =

n∑
i=0

P[|Vn(i)| ≥ r/n] = (n+ 1)P[|Vn(i)| ≥ r/n],

by exchangeability. Here, by (5.2), P[|Vn(i)| ≥ r/n] ≥ 1 − 2dλ1δ
−1
S r. Hence we can

(and do) choose r = r0 sufficiently small so that E[Λn(r0)] ≥ 9n/10, say. Then, by

Markov’s inequality and the fact that Λn(r0) ≤ 1 + n,

P[Λn(r0) ≤ n/2] ≤ P[n+ 1− Λn(r0) ≥ n/2] ≤ 1 + (n/10)

n/2
≤ 1/4, for all n ≥ 40.

So P[Λn(r0) ≥ n/2] ≥ 3/4 for all n ≥ 40. On {Λn(r0) ≥ n/2}, since #In(k0) ≥ 4n/5,

at least 3n/10 vertices in In(k0) have Voronoi cells of volume at least r0/n, so

P

[∣∣∣∣∣ ∪
i∈In(k0)

Vn(i)

∣∣∣∣∣ ≥ 3r0/10

]
≥ 3/4, (5.6)

for all n sufficiently large. Hence

P [degn(η1(n+ 1)) ≤ k0] ≥ P

[
Xn+1 ∈

∪
i∈In(k0)

Vn(i)

]
≥ λ0E

[∣∣∣∣∣ ∪
i∈In(k0)

Vn(i)

∣∣∣∣∣
]
,

which with (5.6) gives (5.4), for 2θ0 = 9r0λ0/40 > 0.

Finally, (5.5) can be verified by a similar argument to Lemma 3.2.

5.2. Stretched exponential degree estimates

Throughout this section we take F (r) = r−s for s > d. By (3.6), for 0 ≤ i ≤ n− 1,

P[vn = i | Fn] =
degn−1(i)ρ(Xi, Xn)

−s∑n−1
j=0 degn−1(j)ρ(Xj , Xn)−s

.

Define, for any x ∈ S,

ζn−1(x) := n−s/d
n−1∑
j=0

ρ(Xj , x)
−s. (5.7)
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Then we can write

P[vn = i | Fn] ≤
degn−1(i)ρ(Xi, Xn)

−s

ns/dζn−1(Xn)
. (5.8)

The next result gives an estimate for the probability that ζn−1(Xn) is small.

Lemma 5.2. There exist constants C0 < ∞ and u0 > 0 such that, for all t > 0,

lim sup
n→∞

P[ζn−1(Xn) ≤ t] ≤ C0 exp{−u0t
−d/(s−d)}. (5.9)

Proof. First, for fixed x ∈ S, we have the tail estimate, for r > 0,

P[ρ(Xj , x)
−s > r] = P[Xj ∈ B(x; r−1/s)] ≥ λ0δSωdr

−d/s,

using (2.1) and the lower bound in (3.4). Hence ζn−1(x) stochastically dominates

ζn−1 := n−s/d
∑n−1

j=0 ξj , where ξj ∈ R+ are i.i.d. with P[ξj > r] = λ0δSωdr
−d/s. Here

ζn−1 converges in distribution as n → ∞ to a random variable ζ with a positive stable

law of index d/s ∈ (0, 1). Hence, for all x ∈ S and any t > 0,

lim sup
n→∞

P[ζn−1(x) ≤ t] ≤ lim
n→∞

P[ζn−1 ≤ t] = P[ζ ≤ t].

Given that ζ is a random variable with a positive stable law with index α ∈ (0, 1), for

p > 0 the random variable ζ−p satisfies E[exp(uζ−p)] < ∞ for u ≥ 0 in a neighbourhood

of zero, provided p ≤ α
1−α : see e.g. the proof of Lemma 1 in [3]. Hence there exist

u0 > 0 and C0 < ∞ such that, for p = d
s−d > 0, E[exp(u0ζ

−p)] ≤ C0. Thus P[ζ ≤ t] =

P[exp(u0ζ
−p) ≥ exp(u0t

−p)], and the result now follows from Markov’s inequality.

The next result is a conditional version of (5.9), given Xn−1. The proof uses a

concentration argument based on independently ‘resampling’ sites. Let X ′
0, X

′
1, . . .

be an independent copy of the sequence X0, X1, . . .. For 0 ≤ i ≤ n, let X i
n =

(X0, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), the sites Xn but with Xi replaced by X ′

i.

Lemma 5.3. There exist constants C1 < ∞ and u1 > 0 such that, for any t > 0, a.s.,

lim sup
n→∞

P[ζn−1(Xn) ≤ t | Xn−1] ≤ C1 exp{−u1t
−d/(s−d)}.

Proof. We approximate the indicator function 1[0,t] by χn
t : R+ → [0, 1] defined by

χn
t (x) :=


1 if x ≤ t

1− (x− t)nδ if t ≤ x ≤ t+ n−δ

0 if x ≥ t+ n−δ,
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where δ > 0 is a constant to be specified later. Then

P[ζn−1(Xn) ≤ t | Xn−1] = E[1[0,t](ζn−1(Xn)) | Xn−1]

≤ E[χn
t (ζn−1(Xn)) | Xn−1],

and χn
t has the one-sided Lipschitz property χn

t (r)− χn
t (s) ≤ nδ(s− r)+. Now

E[χn
t (ζn−1(Xn)) | Xn−1] =

∫
S

f(x)χn
t (ζn−1(x))dx = ϕ(Xn−1)

for some measurable ϕ : Sn → [0, 1]. To obtain a concentration result for ϕ(Xn−1), we

estimate ϕ(X i
n−1)− ϕ(Xn−1). We introduce the notation

ζin−1(x) = ζn−1(x) + n−s/d
(
ρ(X ′

i, x)
−s − ρ(Xi, x)

−s
)
, (5.10)

the change in the quantity given by (5.7) on resampling Xi. Then, for rn > 0,

ϕ(X i
n−1)− ϕ(Xn−1) ≤

∫
B(Xi;rn)

f(x)dx+

∫
S\B(Xi;rn)

f(x)
(
χn
t (ζ

i
n−1(x))− χn

t (ζn−1(x))
)
dx

≤ λ1ωdr
d
n +

∫
S\B(Xi;rn)

nδf(x)
(
ζn−1(x)− ζin−1(x)

)+
dx,

using the one-sided Lipschitz property of χn
t . Now, by (5.10),(

ζn−1(x)− ζin−1(x)
)+ ≤ n−s/dρ(x,Xi)

−s ≤ n−s/dr−s
n ,

provided x /∈ B(Xi; rn). So we obtain ϕ(X i
n−1) − ϕ(Xn−1) ≤ λ1ωdr

d
n + nδn−s/dr−s

n .

Since s > d, we may choose δ > 0 such that (s/d) − δ > 1. Take rn = n−ν where

ν = (s/d)−δ
s+d > 0. Then we have that, for some constant C < ∞,

ϕ(X i
n−1)− ϕ(Xn−1) ≤ Cn− d((s/d)−δ)

s+d ≤ Cn− d
s+d .

A version of Talagrand’s inequality [13, Theorem 4.5] yields, for some c1 > 0,

P[|ϕ(Xn−1)−mn−1| ≥ r] ≤ 4 exp
{
−c1n

2d
s+d r2

}
, for all r > 0, (5.11)

where mn−1 is a median of ϕ(Xn−1). In turn, (5.11) implies, by Lemma 4.6 of [13], that

|mn−1−Eϕ(Xn−1)| ≤ c2n
− d

s+d for some c2 < ∞. Here Eϕ(Xn−1) = E[χn
t (ζn−1(Xn))] ≥

P[ζn−1(Xn) ≤ t], which for a fixed t > 0 is bounded below uniformly in n, as can be

proved using an analogous argument to the proof of Lemma 5.2, this time using the

upper bound in (3.4). It follows that, for some c3 > 0,

P[ϕ(Xn−1) ≥ 2Eϕ(Xn−1)] ≤ 4 exp
{
−c3n

2d
s+d

}
. (5.12)



20 JONATHAN JORDAN AND ANDREW R. WADE

The right-hand side of (5.12) is summable in n, so the Borel–Cantelli lemma shows

P[ζn−1(Xn) ≤ t | Xn−1] ≤ ϕ(Xn−1) ≤ 2Eϕ(Xn−1), a.s.,

for all but finitely many n. Here, for t > 0,

Eϕ(Xn−1) ≤ P[ζn−1(Xn) ≤ t+ n−δ] ≤ P[ζn−1(Xn) ≤ 2t]

for all n large enough. Now the statement follows from (5.9).

Choosing t = k−γ(s−d)/d with γ ∈ (0, 1) in Lemma 5.3, we obtain the key estimate

lim sup
n→∞

P[ζn−1(Xn) ≤ k−γ(s−d)/d | Xn−1] ≤ C1 exp{−u1k
γ}, a.s. (5.13)

In what follows, C2, C3, . . . represent constants not depending on n or k. We have,

P[vn = i, ζn−1(Xn) > t | F̃n−1] ≤ P[ρ(Xi, Xn) ≤ Bn−1/d | F̃n−1]

+ P[vn = i, ρ(Xi, Xn) > Bn−1/d, ζn−1(Xn) > t | F̃n−1], (5.14)

for any B > 0 and any t > 0. The first term on the right-hand side of (5.14) is at most

C2B
dn−1, and the second term, by (5.8), is bounded above by

degn−1(i)

tns/d

∫
S

f(x)ρ(Xi, x)
−s1{ρ(Xi, x) > Bn−1/d}dx.

For s > d, the latter integral is bounded above by

C3

∫ ∞

Bn−1/d

ρ−sρd−1dρ = C4B
d−sn(s/d)−1.

Hence we obtain from (5.14) that

P[vn = i, ζn−1(Xn) > t | F̃n−1] ≤ n−1

(
C2B

d +
C4

t
Bd−s degn−1(i)

)
. (5.15)

For ease of notation, let q
(n)
k be the proportion of vertices of Gn with degree at

least k, so that q
(n)
k := (n+1)−1NGPA

n (k). Then the proportion of vertices of Gn with

degree k is equal to q
(n)
k − q

(n)
k+1, so that (5.15) yields

P[degn−1(vn) = k, ζn−1(Xn) > t | F̃n−1] =
∑

i:degn−1(i)=k

P[vn = i, ζn−1(Xn) > t | F̃n−1]

≤
(
q
(n−1)
k − q

(n−1)
k+1

)(
C2B

d +
C4

t
Bd−sk

)
.
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We take t = k−γ(s−d)/d for γ ∈ (0, 1), and choose B = k(γ/d)+(1/s)(1−γ) to get

P[degn−1(vn) = k, ζn−1(Xn) > k−γ(s−d)/d | F̃n−1] ≤ C5

(
q
(n−1)
k − q

(n−1)
k+1

)
kγ+(d/s)(1−γ).

Now incorporating the case where ζn−1(Xn) is small, using (5.13), gives, a.s.,

P[degn−1(vn) = k | F̃n−1] ≤ C6e
−u1k

γ

+ C5

(
q
(n−1)
k − q

(n−1)
k+1

)
kβ , (5.16)

for all n sufficiently large, where we have set β = γ+(d/s)(1− γ). For any k, between

times n− 1 and n, the number of vertices of degree at least k either stays the same, or

increases by exactly one if and only if degn−1(vn) = k− 1, so that degn(vn) = k. Thus

E[q(n)k+1 | F̃n−1]− q
(n−1)
k+1 =

1

n+ 1

(
nq

(n−1)
k+1 + P[degn−1(vn) = k | F̃n−1]

)
− q

(n−1)
k+1 ,

and we may express (5.16) as

E[q(n)k+1 | F̃n−1]− q
(n−1)
k+1 ≤ 1

n+ 1

(
C6e

−u1k
γ

+ C5

(
q
(n−1)
k − q

(n−1)
k+1

)
kβ − q

(n−1)
k+1

)
=

1

n+ 1

(
C6e

−u1k
γ

+ q
(n−1)
k C5k

β − q
(n−1)
k+1 (1 + C5k

β)
)
. (5.17)

If we suppose that q
(n)
k ≤ τk for some τk and all n sufficiently large (which we can,

of course, always do for τk = 1) then (5.17) gives, for n large enough,

E[q(n)k+1 | F̃n−1]− q
(n−1)
k+1 ≤ 1

n+ 1

(
C6e

−u1k
γ

+ τkC5k
β − q

(n−1)
k+1 (1 + C5k

β)
)
. (5.18)

The final step in the proof of Theorem 2.4 is an analysis of (5.18) that will enable us

iteratively to improve the bound τk; this uses the following stochastic approximation

result, which is related to Lemma 2.6 of [15] and of some independent interest.

Lemma 5.4. Let (Gn;n ∈ Z+) be a filtration. Let g be a bounded function on R+. For

n ∈ Z+, let Yn, rn, ξn be Gn-measurable random variables, with Yn ∈ R+, and

Yn+1 − Yn ≤ γn (g(Yn) + ξn+1 + rn) , (5.19)

for constants γn > 0. Suppose also that

(i) E[ξn+1 | Gn] = 0 and E[ξ2n+1 | Gn] ≤ C for some constant C < ∞;

(ii)
∑

n γn = ∞,
∑

n γ
2
n < ∞, and

∑
n γn|rn| < ∞ a.s.;

(iii) g(y) < −δ for y > y0 for constants δ > 0 and y0 ∈ R+.
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Then lim supn→∞ Yn ≤ y0, a.s.

Proof. Summing (5.19) we obtain Yn − Y0 ≤ Mn +An for any n ∈ Z+, where

Mn =
n−1∑
k=0

γkξk+1, and An =
n−1∑
k=0

γk (g(Yk) + rk) ;

the Gn-martingale Mn and Gn−1-measurable An constitute the Doob decomposition of

the process whose increments are the right-hand side of (5.19). By (i),

E[M2
n+1 −M2

n | Gn] = E[(Mn+1 −Mn)
2 | Gn] ≤ Cγ2

n, a.s.,

which is summable, by (ii), so the increasing process associated withMn is a.s. bounded.

Hence Mn → M∞ a.s., for some finite limit M∞. Also, writing Rn =
∑n−1

k=0 γkrk, we

have Rn → R∞ a.s. for some finite limit R∞, by (ii). In particular, for any ε > 0,

there exists an a.s. finite N such that,

sup
n≥N

sup
m≥0

|Mn+m −Mn| ≤ ε/4, and sup
n≥N

sup
m≥0

|Rn+m −Rn| ≤ ε/4.

Consider some n ≥ N for which Yn > y0. Let κn be the first time after n for which

Y· ≤ y0. Then, by summing (5.19) again, for m ≥ 0,

Y(n+m)∧κn
− Yn ≤ M(n+m)∧κn

−Mn +R(n+m)∧κn
−Rn +

(n+m)∧κn−1∑
k=n

γkg(Yk)

≤ ε

2
− δ

(n+m)∧κn−1∑
k=n

γk.

In particular, on {κn = ∞}, letting m → ∞ the left-hand side of the last display

remains bounded below by −Yn while the right-hand side tends to −∞, by (ii); hence

κn < ∞ a.s., and the process returns to the interval [0, y0] without exceeding Yn + ε.

Moreover, Yn+1−Yn ≤ ε
2 +γng(Yn) < ε, for all n ≥ N large enough, since g is bounded

and γn → 0. Hence Yn ≤ y0 infinitely often, and, for all but finitely many such n, any

exit from [0, y0] cannot exceed y0 + ε; but starting from [y0, y0 + ε] the process returns

to [0, y0] before reaching y0+2ε. Hence lim supn→∞ Yn ≤ y0+2ε, a.s. Since ε > 0 was

arbitrary, the result follows.

Proof of Theorem 2.4. Setting Gn = F̃n, Yn = q
(n)
k+1, γn = 1

n+2 , rn = 0,

g(y) = C6e
−u1k

γ

+τkC5k
β−y(1+C5k

β), and ξn+1 = (n+2)
(
q
(n+1)
k+1 − E[q(n+1)

k+1 | F̃n]
)
,



Random geometric preferential attachment graphs 23

we apply Lemma 5.4 to (5.18). Note that, since NGPA
n (k) is F̃n-measurable,

ξn+1 = NGPA
n+1 (k + 1)− E[NGPA

n+1 (k + 1) | F̃n]

= NGPA
n+1 (k + 1)−NGPA

n (k + 1)− E[NGPA
n+1 (k + 1)−NGPA

n (k + 1) | F̃n],

which is uniformly bounded, since 0 ≤ NGPA
n+1 (k) − NGPA

n (k) ≤ 1, a.s. Hence the

conditions of Lemma 5.4 are satisfied for any

y0 >
C6e

−u1k
γ

+ τkC5k
β

1 + C5kβ
,

and we deduce that

lim sup
n→∞

q
(n)
k+1 ≤ C6e

−u1k
γ

+ τkC5k
β

1 + C5kβ
. (5.20)

In particular, if q
(n)
k ≤ τk for all but finitely many n, a.s., then (5.20) implies that

q
(n)
k+1 ≤ τk+1 for all but finitely many n, a.s., where

τk+1 =
2C6e

−u1k
γ

+ τkC5k
β

1 + C5kβ
. (5.21)

Defining σk > 0 via τk = 2C6σke
−u1k

γ

, we obtain from (5.21) , after some algebra,

σk+1 − σk =

(
1− ak+1 +

ak+1

1 + C5kβ

)
(1− σk)− (1− ak+1),

where ak+1 := exp {u1 ((k + 1)γ − kγ)} = 1 + γu1k
γ−1 +O(kγ−2), as k → ∞.

Then, assuming that β < 1− γ, it is straightforward to check that,

1− ak+1 +
ak+1

1 + C5kβ
∼ 1

C5kβ
, as k → ∞.

Hence we may apply Lemma 1 of [10] to see that limk→∞ σk = 1, provided β < 1− γ,

i.e., γ < s−d
2s−d . For any such γ, we thus obtain lim supn→∞ q

(n)
k ≤ τk ≤ 3C6e

−u1k
γ

,

a.s., for all k sufficiently large, giving the almost sure statement in the theorem. Then

the reverse Fatou lemma yields the statement on expectations.

6. Proofs for the on-line nearest-neighbour graph

In this section we prove Theorem 2.1. Our argument extends the 2-dimensional

argument of [1, §3.1], who considered the uniform distribution on the square.
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Recall the definition of the Voronoi cell Vn(i) from (5.1). Then

Vn+1(i) = Vn(i) ∩ {x ∈ S : ρ(x,Xi) < ρ(x,Xn+1)} ⊆ Vn(i). (6.1)

A key fact is provided by the following lemma, which will be used to show that the

volume of a Voronoi cell associated with a vertex in the ONG shrinks, on average, by

a positive fraction whenever a new vertex lands in the cell.

Lemma 6.1. Let R ⊆ S be convex, and let X be a random point in S distributed

according to the probability density f satisfying (2.1). For x0 ∈ R, let R′ = {x ∈ R :

ρ(x, x0) < ρ(x,X)}. Then there exists δ > 0 not depending on R or x0 such that

E[|R′| | X ∈ R] ≤ (1− δ)E[|R|].

Proof. Without loss of generality, take x0 = 0 ∈ R. Partition R according to the

Cartesian orthants as R1, . . . , R2d . For each j, any two points x, y ∈ Rj have the same

signs in corresponding coordinates, so ∥x−y∥ ≤ ∥x+y∥, and hence (x+y)/2 is closer to

x (and to y) than to 0. Thus, given X ∈ Rj , any point x of R′′
j := {(X+y)/2 : y ∈ Rj}

has ∥x−X∥ ≤ ∥x−0∥, and, by convexity, R′′
j ⊆ Rj . Hence, given X ∈ Rj , R

′ ⊆ R\R′′
j .

By construction, R′′
j is a translate of Rj scaled by a factor of 1/2, so

E[|R′| | X ∈ R] ≤ |R| −
2d∑
j=1

2−d|Rj |P[X ∈ Rj | X ∈ R]

≤ |R| − 2−d(λ0/λ1)|R|−1
2d∑
j=1

|Rj |2,

using (2.1). Now, by Jensen’s inequality,
∑2d

j=1 |Rj |2 ≥ 2−d(
∑2d

j=1 |Rj |)2 = 2−d|R|2,

and the claimed result follows with δ = 2−2dλ0/λ1.

Next we give bounds on expectations for NONG
n (k).

Lemma 6.2. Let d ∈ N. Suppose that (2.1) holds. Then there exist finite positive

constants A,A′, C, C ′ such that, for all k ∈ N,

A′e−C′k ≤ lim inf
n→∞

n−1E[NONG
n (k)] ≤ lim sup

n→∞
n−1E[NONG

n (k)] ≤ Ae−Ck. (6.2)

Moreover, more precisely,

− lim inf
k→∞

(
k−1 log

(
lim inf
n→∞

n−1E[NONG
n (k)]

))
≤ 1, (6.3)
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and, in the case where f is the uniform density on S,

− lim sup
k→∞

(
k−1 log

(
lim sup
n→∞

n−1E[NONG
n (k)]

))
≥ 1

2
log
(
1 + (22d − 1)−1

)
. (6.4)

Proof. First we prove the upper bound in (6.2), using an argument based in part

on [1, §3.1]. Fix i ∈ Z+. Let t0 = i and for j ∈ N define recursively tj = min{t >

tj−1 : Xt ∈ Vt−1(i)}, so that t1, t2, . . . are the times at which edges to Xi are created.

Following [1, p. 311], let Wj = Vtj (i).

Observe that if i has degree greater than k in the ONG on (X0, . . . , Xn), n ≥ i,

then necessarily tk ≤ n, and so also |Vn(i)| ≤ |Vtk(i)| = |Wk|, by (6.1). Hence,

P[degn(i) > k] ≤ P[|Wk| ≥ z] + P[|Vn(i)| ≤ z], for any z > 0. (6.5)

We bound each of the probabilities on the right-hand side of (6.5) in turn, and then

optimize the choice of z.

By definition, Xtj is distributed according to the density f , conditioned to fall in

the convex set Vtj−1(i) ⊆ Vtj−1(i) ⊆ S. Hence Lemma 6.1 shows that E[|Wj |] ≤

(1− δ)E[|Wj−1|], where δ ∈ (0, 1) depends only on d and λ0/λ1, and

E[|Wj |] ≤ (1− δ)jE[|Vi(i)|] =
1

i+ 1
(1− δ)j ,

since the vector (|Vi(0)|, . . . , |Vi(i)|) is exchangeable and its components sum to 1, so

E[|Vi(j)|] = 1
i+1 . Markov’s inequality implies that, for any z > 0,

P[|Wj | ≥ z] ≤ 1

z

1

i+ 1
(1− δ)j . (6.6)

The final term in (6.5) is bounded above by (5.2). Combining (6.5) with (6.6)

and (5.2), we obtain, for any z > 0, P[degn(i) > k] ≤ 1
z

1
i+1 (1 − δ)k + Cnz, where

C < ∞ depends only on d, S, and λ1. The optimal bound is obtained on taking

z = (1− δ)k/2/
√
Cn(i+ 1), and we conclude

P[degn(i) > k] ≤ 2(1− δ)k/2
√

Cn

i+ 1
. (6.7)

The upper bound in (6.2) follows from (6.7), since

E[NONG
n (k)] =

n∑
i=0

P[degn(i) ≥ k] ≤ C ′n(1− δ)k/2,
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for some C ′ < ∞ not depending on k or n. The statement (6.4) also follows, since

when λ0 = λ1, we have from the proof of Lemma 6.1 that we may take δ = 2−2d.

To prove the lower bound in (6.2) as well as (6.3), we use a similar idea to that briefly

outlined for the analogous argument in [1, p. 311], but filling in the details takes some

work, and we must be more careful with our estimates to obtain the quantitative bound

(6.3). First note that, for j > i, the (unconditional) probability that Xj is joined to Xi

is P[η1(j) = i] = P[Xj ∈ Vj−1(i)] = 1/j. Write dn(i) := E[degn(i)]. Then, for i ∈ N,

dn(i) = 1 +
n∑

j=i+1

P[η1(j) = i] ≥
n∑

j=i

1

j
≥
∫ n

i

1

y
dy = log(n/i).

Let θ > 1. For k ∈ Z+, let Hθ
n,k := N ∩ [1, e−θkn]. Then for any i ∈ Hθ

n,k, dn(i) ≥

log(n/i) ≥ θk. It follows that

E[NONG
n (k)] ≥

∑
i∈Hθ

n,k

P[degn(i) ≥ k] ≥
∑

i∈Hθ
n,k

P[degn(i) ≥ θ−1dn(i)]. (6.8)

Let w ∈ (1,∞), to be specified later. Then w > 1 > 1/θ, and

wdn(i)P[degn(i) ≥ θ−1dn(i)] ≥ E[degn(i)1{degn(i) ≥ θ−1dn(i)}]

− E[degn(i)1{degn(i) > wdn(i)}]

≥
(
1− θ−1

)
dn(i)− E[degn(i)1{degn(i) > wdn(i)}],

(6.9)

using the fact that E[X1{X ≥ x}] ≥ E[X] − x for any x ≥ 0 and any nonnegative

random variable X. By the Cauchy–Schwarz inequality, the final term in (6.9) satisfies

E[degn(i)1{degn(i) > wdn(i)}] ≤
(
E[degn(i)2]P[degn(i) > wdn(i)]

)1/2
. (6.10)

We claim that, given θ > 1, there exists w = w(θ) ∈ (1,∞) such that

sup
i∈Hθ

n,k

(
E[degn(i)2]P[degn(i) > wdn(i)]

)1/2 ≤ e−θk, for all n, k ∈ N. (6.11)

Given (6.11), which we verify at the end of this proof, we obtain from (6.9), (6.10),

and (6.11) that, for any n ∈ N and any k ∈ N,

w inf
i∈Hθ

n,k

P[degn(i) ≥ θ−1dn(i)] ≥
(
1− θ−1

)
− e−θk sup

i∈Hθ
n,k

1

dn(i)

≥
(
1− θ−1

)
− e−θk

θk
, (6.12)
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using the fact that dn(i) ≥ θk for i ∈ Hθ
n,k. To prove the lower bound in (6.2), it is

enough to fix θ = 2. Then (6.12) becomes, for any n ∈ N and any k ∈ N,

w inf
i∈H2

n,k

P[degn(i) ≥ 1
2dn(i)] ≥

1

2

(
1− e−2

)
≥ 3

8
,

say, where w = w(2) is constant. Hence from (6.8) we obtain, for all n, k ∈ N,

E[NONG
n (k)] ≥ w−1

∑
i∈H2

n,k

3

8
≥ 3

8w

(
e−2kn− 1

)
,

which gives lim infn→∞ n−1E[NONG
n (k)] ≥ 3

8w e−2k.

To prove (6.3), we adapt the preceding argument. For any θ > 1, there exists k0 ∈ N

such that, for all k ≥ k0, the final expression on the right-hand side of (6.12) exceeds

1−θ−1

2 > 0, say. Then, similarly to before, we obtain, for all k ≥ k0 and n ∈ N,

E[NONG
n (k)] ≥ w−1

∑
i∈Hθ

n,k

(
1− θ−1

2

)
≥ w−1

(
1− θ−1

2

)(
e−θkn− 1

)
.

First letting n → ∞ and then k → ∞, it follows that

lim sup
k→∞

(
−k−1 log

(
lim inf
n→∞

n−1E[NONG
n (k)]

))
≤ θ.

Since θ > 1 was arbitrary, (6.3) follows.

It remains to establish the claim (6.11). To this end, an application of (6.7) shows

that, for constants C1, C2 < ∞ and c > 0, for all n ∈ N and 1 ≤ i ≤ n,

E[degn(i)2] =
∞∑
k=0

P[degn(i) >
√
k] ≤ C1

√
n

i

∞∑
k=0

e−c
√
k ≤ C2

√
n

i
.

Another application of (6.7) shows that, for some constant C3 < ∞, for any w > 0,

P[degn(i) > wdn(i)] ≤ C3

√
n

i
e−cw log(n/i) = C3

(n
i

)(1/2)−cw

.

Hence we obtain, for all 1 ≤ i ≤ n,

(
E[degn(i)2]P[degn(i) > wdn(i)]

)1/2 ≤ C4

(
i

n

)(cw−1)/2

,

where C4 < ∞ is constant. Taking w > 3/c, we have, for any i ∈ Hθ
n,k,

C4

(
i

n

)(cw−1)/2

≤ C4e
−θke−(cw−3)θk/2,

since i/n ≤ e−θk for i ∈ Hθ
n,k. In particular, for all k ∈ N, we can choose w (depending

on c, C4 and θ) such that C4e
−(cw−3)θk/2 ≤ C4e

−(cw−3)θ/2 ≤ 1. This verifies (6.11).
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Next we have a concentration result for NONG
n (k).

Lemma 6.3. Let d ∈ N. Suppose that (2.1) holds. Then

lim sup
n→∞

n−1 sup
k∈N

|NONG
n (k)− E[NONG

n (k)]| = 0, a.s. (6.13)

Proof. We use the resampling idea described before Lemma 5.3 and a modification

of the Azuma–Hoeffding inequality. Set Dn,i = E[NONG
n (k) | Gi]− E[NONG

n (k) | Gi−1]

where Gi = σ(X0, X1, . . . , Xi). In words, −Dn,i is equal to the expected (conditional

on Gi) change in NONG
n (k) on independently resampling Xi, and Dn,i, 1 ≤ i ≤ n is a

martingale difference sequence with
∑n

i=1 Dn,i = NONG
n (k)− E[NONG

n (k)].

We bound |Dn,i| in terms of degn(i) and degin(i), the degree of vertex i in the ONG

on Xn and X i
n respectively. On replacement of Xi by X ′

i, the degree of vertex i may

change, leading to a change of ±1 in NONG
n,i (k) compared to NONG

n (k). The degrees of

at most degn(i) − 1 other vertices increase (namely those vertices that gain incoming

edges that were previously connected to Xi), while the degrees of at most degin(i)− 1

vertices decrease (namely those vertices that lose incoming edges re-assigned to X ′
i).

Hence |Dn,i| ≤ degn(i) + degin(i). Now, for any r > 0,

P[|Dn,i| > r] ≤ P[degn(i) > r/2] + P[degin(i) > r/2] = 2P[degn(i) > r/2],

since degin(i) and degn(i) are identically distributed. Hence, by (6.7), P[|Dn,i| >

D log n] = O(n−5), uniformly in i, choosing D ∈ (0,∞) sufficiently large; note that

this bound is also uniform in k. By a modification of the Azuma–Hoeffding inequality

due to Chalker et al. [4, Lemma 1], it follows that

P[|NONG
n (k)− E[NONG

n (k)]| > r] ≤
(
1 +

4n

r

)
n−4 + 2 exp

{
− r2

32D2n(log n)2

}
,

for any r > 0. Taking r = n3/4, say, shows that P[|NONG
n (k)−E[NONG

n (k)]| > n3/4] =

O(n−3), uniformly in k ∈ {1, . . . , n}, while for k > n, NONG
n (k) = 0 a.s. Hence

∞∑
n=1

∑
k∈N

P[|NONG
n (k)− E[NONG

n (k)]| > n3/4] ≤ C
∞∑

n=1

n−2 < ∞.

The Borel–Cantelli lemma now yields (6.13).

Proof of Theorem 2.1. Penrose [16, §3.4] showed that functionals such as counts of

vertices of a given degree in the ONG satisfy stabilization (a form of local dependence).
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This guarantees a law of large numbers of the form n−1NONG
n (k) → P[ξ(0, U ;H) ≥ k] in

probability: concretely, one may apply results of [19] or [17]. The bounded convergence

theorem gives n−1E[NONG
n (k)] → P[ξ(0, U ;H) ≥ k], and Lemma 6.3 then shows

that convergence in probability can be replaced by almost sure convergence. The L1

convergence follows from the bounded convergence theorem again. Thus (2.3) holds.

Then, applying Lemma 6.2 with (2.3), (2.4) follows from (6.2). Given (2.3), the

upper bound in (2.5) follows from (6.3). Similarly, the lower bound in (2.5) follows

from (6.4), noting that the limit ρk is independent of the choice of f .

It is easy to see that ρk is nonincreasing with ρ1 = 1. Since
∑

k∈N NONG
n (k) = 2n,

twice the number of edges in the ONG, dividing both sides of this last equality by n

and letting n → ∞ we must have
∑

k∈N ρk = 2; hence also limk→∞ ρk = 0. For the

final statement of the theorem, we have from (6.7) that for any k > 0,

P
[
max
0≤i≤n

degn(i) > k
]
≤ (n+ 1) max

0≤i≤n
P[degn(i) > k] ≤ Cn3/2e−ck,

for some absolute constants c, C ∈ (0,∞). Taking k = D log n, we can choose D ∈

(0,∞) for which this last bound is O(n−2); the Borel–Cantelli lemma then gives (2.6).
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