1	Interspecific crossing and genetic mapping reveal intrinsic genomic
2	incompatibility between two Senecio species that form a hybrid zone on
3	Mount Etna, Sicily
4	
5	Adrian C. Brennan ^{1,2,3*} , Simon J. Hiscock ⁴ and Richard J. Abbott ¹
6	
7	¹ School of Biology, Harold Mitchell Building, University of St Andrews, St
8	Andrews, Fife, KY16 9TH, UK
9	² Estación Biológica de Doñana (EBD-CSIC), Avenida Américo Vespucio
10	s/n, 41092 Sevilla, Spain
11	³ School of Biological and Biomedical Sciences, University of Durham,
12	South Road, Durham, DH1 3LE, UK
13	⁴ School of Biological Sciences, University of Bristol, Woodland Road,
14	Bristol, BS8 1UG, UK
15	
16	*Corresponding author: Adrian C. Brennan, School of Biological and
17	Biomedical Sciences, University of Durham, South Road, Durham, DH1
18	3LE, UK, Tel: 0044 191 3341251, Fax: 0044 191 3341201, email:
19	a.c.brennan@durham.ac.uk
20	
21	Running title: Interspecific incompatibility in Senecio
22	
23	Main text word count: 6892
24	
25	

26 ABSTRACT

27	Studies of hybridizing species can reveal much about the genetic basis and
28	maintenance of species divergence in the face of gene flow. Here we report
29	a genetic segregation and linkage analysis conducted on F_2 progeny of a
30	reciprocal cross between Senecio aethnensis and S. chrysanthemifolius that
31	form a hybrid zone on Mount Etna, Sicily, aimed at determining the genetic
32	basis of intrinsic hybrid barriers between them. Significant transmission
33	ratio distortion (TRD) was detected at 34 (~27%) of 127 marker loci located
34	in nine distinct clusters across seven of the ten linkage groups detected,
35	indicating genomic incompatibility between the species. TRD at these loci
36	could not be attributed entirely to post-zygotic selective loss of F_2
37	individuals that failed to germinate or flower (16.7 %). At four loci tests
38	indicated that pre-zygotic events, such as meiotic drive in F ₁ parents or
39	gametophytic selection, contributed to TRD. Additional tests revealed that
40	cytonuclear incompatibility contributed to TRD at five loci, Bateson-
41	Dobzhansky-Muller (BDM) incompatibilities involving epistatic
42	interactions between loci contributed to TRD at four loci, and
43	underdominance (heterozygote disadvantage) was a possible cause of TRD
44	at one locus. Major chromosomal rearrangements were probably not a cause
45	of interspecific incompatibility at the scale that could be examined with
46	current map marker density. Intrinsic genomic incompatibility between S.
47	aethnensis and S. chrysanthemifolius revealed by TRD across multiple
48	genomic regions in early generation hybrids is likely to impact the genetic
49	structure of the natural hybrid zone on Mount Etna by limiting introgression
50	and promoting divergence across the genome.

51

52 **Keywords:** genetic divergence; genetic maps; genomic incompatibility;

- 53 hybrid zone; intrinsic hybrid barrier; transmission ratio distortion
- 54

55 INTRODUCTION

56

57 Although strong, divergent natural selection can maintain population 58 divergence in the face of gene flow (Nosil, 2012), intrinsic genetic barriers 59 can also evolve under such conditions (Rundle and Nosil, 2005; Agrawal et 60 al., 2011) or may already be in place to varying degrees between hybridizing populations that diverged in allopatry (Coyne and Orr, 2004; 61 62 Bierne et al., 2011; Feder et al., 2012; Abbott et al., 2013). Intrinsic 63 incompatibility between species is generally detected by crossing studies, 64 which can also reveal the nature of such incompatibility at both genetic and 65 genomic levels. For example, transmission ratio distortion (TRD), which is 66 often observed at segregating loci among progeny of interspecific crosses or 67 crosses between divergent lineages within species, can result from selection 68 against particular hybrid genotype combinations at these loci (TRDLs; 69 Fishman et al., 2001; Moyle and Graham, 2006). TRD may result from 70 Bateson-Dobzhansky-Muller (BDM) incompatibilities at haploid and/or 71 diploid stages of the life cycle caused by negative epistatic interactions 72 between nuclear loci showing polymorphisms within and between 73 populations of the same or different species (Fishman et al., 2008; Cutter, 74 2012; Bomblies, 2013; Corbett-Detig et al., 2013; Ouyang and Zhang, 75 2013). It may also arise from cytonuclear incompatibility (Levin, 2003;

76	Fishman and Willis, 2006; Turelli and Moyle, 2007) or from "selfish"
77	meiotic drive of alleles in a new genomic background (Fishman and Willis,
78	2005). Incompatibility caused by cytonuclear or haploid-diploid
79	incompatibilities may depend on cross direction leading to asymmetric
80	incompatibility, which can influence patterns of introgression following
81	hybridization (Fishman et al., 2001; Turelli and Moyle, 2007; Tang et al.,
82	2010). Genetic incompatibilities of all kinds accumulate with increasing
83	phylogenetic distance until complete reproductive isolation is evident
84	(Matute et al., 2010; Moyle and Nakazato, 2010; Levin, 2012; Corbett-
85	Detig et al., 2013).
86	Interspecific crossing, when used in linkage analysis and mapping,
87	may also reveal chromosomal rearrangements between species that can
88	reduce the fitness of hybrids and suppress recombination that, in turn, will
89	affect rates of interspecific gene flow (Rieseberg, 2001; Ortiz-Barrientos et
90	al., 2002; Kirkpatrick and Barton, 2006). Studies of hybridizing annual
91	sunflowers have revealed that differences in genetic architecture due to
92	chromosomal inversions and translocations are an important cause of hybrid
93	sterility (Lai et al., 2005; Yatabe et al., 2007), whereas in other groups of
94	hybridizing species such as irises (Taylor et al., 2012) and sculpin fish
95	(Stemshorn et al., 2011) such rearrangements appear to be absent or minor.
96	In contrast, the presence of TRDLs in genetic maps of interspecific crosses
97	appears to be common, if not the rule (Fishman et al., 2001; Lu et al., 2002;
98	Tang et al., 2010). Either way, the cumulative action of multiple intrinsic
99	incompatibilities with diverse modes of action distributed across the
100	genome will act as a potent barrier to gene flow between species and seems

101 to be a common, if not universal, intermediate stage in the process of

speciation (Bierne *et al.*, 2011; Feder *et al.*, 2012; Abbott *et al.*, 2013;
Bomblies, 2013).

104	In the present study, we utilise interspecific crossing and linkage
105	analysis to investigate the genetic nature of intrinsic incompatibility
106	between two diploid, ragwort species, <i>Senecio aethnensis</i> $(2n = 20)$ and <i>S</i> .
107	<i>chrysanthemifolius</i> $(2n = 20)$ (Asteraceae), that form a hybrid zone on
108	Mount Etna, Sicily (James and Abbott, 2005; Brennan et al., 2009). These
109	two species are self-incompatible, short-lived, herbaceous perennials, which
110	grow at high and low altitudes, respectively, on Mount Etna. They are
111	connected by a series of hybrid populations, which potentially provides a
112	corridor for high levels of interspecific gene flow to occur. Interestingly,
113	material collected from this hybrid zone and introduced to Britain in the late
114	17th century subsequently gave rise to a highly invasive homoploid hybrid
115	species, S. squalidus, which spread through much of Britain in the 19th and
116	20th centuries (James and Abbott, 2005; Abbott et al., 2009).
117	Previous analyses of the hybrid zone on Mount Etna showed that
118	while extrinsic environmental selection is important in determining the
119	ecological differences and relative distributions of the two Senecio species
120	(Brennan et al., 2009; Ross et al., 2012; Muir et al., 2013; Osborne et al.,
121	2013; Chapman et al., 2013), intrinsic selection against hybrids was
122	predominant in determining changes in allele frequencies and quantitative
123	trait expression in the hybrid zone (Brennan et al., 2009). Indeed, based on
124	indirect measures of assessment, Brennan et al. (2009) showed that the
125	hybrid zone was characterized by strong selection against hybrids, high

126	dispersal rates, and few loci differentiating quantitative traits. The evidence
127	for strong selection against hybrids was somewhat surprising as both
128	Hegarty et al. (2009) and Brennan et al. (2013) have reported that fertile
129	hybrids are easily produced from crosses between the two species, while
130	Chapman et al. (2005) showed that S. aethnensis exhibits no conspecific
131	pollen advantage when pollinated with mixtures of pollen from both
132	species, whereas S. chrysanthemifolius shows only a small conspecific
133	pollen advantage when treated similarly. However, Hegarty et al. (2009)
134	noted that a marked decline in germination rate and survival occurred in the
135	F ₂ generation of crosses they examined, indicating that post-mating
136	incompatibility between the two species becomes apparent after the F_1
137	generation, i.e. as a consequence of hybrid breakdown.
138	Clearly, the two Senecio species and the hybrid zone they form on
139	Mount Etna comprise a very useful system for investigating adaptive
140	divergence and mechanisms of reproductive isolation between hybridizing,
141	diploid species. In the present study we investigate further the nature of
142	intrinsic reproductive isolation between S. aethnensis and S.
143	chrysanthemifolius by examining genetic segregation in an F2 population
144	derived from a reciprocal cross between the two species. This enabled us to
145	(i) construct a genetic linkage map based on segregation in this F_2
146	population, (ii) identify if large-scale linkage group (chromosomal)
147	rearrangements exist between the two species, (iii) determine the occurrence
148	and extent of transmission ratio distortion across the linkage groups
149	identified, and (iv) examine some of the possible causes of transmission
150	ratio distortion at particular loci. Overall, the aim of our study was to obtain

- a better understanding of the occurrence and genetics of intrinsic
- 152 incompatibility between these two species.
- 153

154 MATERIALS AND METHODS

155 F_2 population

- 156 Parent plants were raised from seed collected from wild populations located
- 157 at approximately 2600 m (*S. aethnensis* population VB) and 600 m (*S.*
- 158 *chrysanthemifolius* population C1) altitude, respectively, on Mount Etna,
- 159 Sicily (see James and Abbott, 2005, for further details of populations).
- 160 Reciprocal crosses (after Brennan *et al.*, 2013) were made between one
- 161 representative of each of *S. aethnensis* (A) and *S. chrysanthemifolius* (C) to
- 162 produce 16 F₁ individuals. The F₁s were grown to flowering and inter-
- 163 crossed in a partial diallel design. The most compatible reciprocal cross
- 164 between a pair of F₁s, i.e., producing highest seed-set in both directions, was
- 165 chosen to found an F₂ reciprocal cross family (hereafter referred to as
- 166 F_2AC). The maternal and paternal origin of each F_2 individual and its F_1
- 167 progenitors were recorded to permit testing of cytoplasmic effects. A total
- 168 of 120 F_2AC seed was sown, half coming from each direction of a cross
- 169 between the selected pair of F_1 parents. Following germination, F_2AC
- 170 individuals were grown, one per pot, in a glasshouse. Pots were randomized
- 171 on a bench and re-randomized weekly until commencement of flowering.
- 172 Twenty F₂AC individuals (16.7%) failed to flower because they either failed
- 173 to germinate, experienced early mortality, or exhibited stunted growth and
- 174 remained vegetative during the course of the study. As plants comprising
- 175 this F_2 family were also to be used in another study aimed at examining the

quantitative genetics of morphological and life history differences between *S. aethnensis* and *S. chrysanthemifolius*, non-flowering individuals were
excluded from further analysis. This left 100 F₂ plants for genotyping and
use in the construction of linkage maps.

180

181 **DNA isolation and genotyping**

182 DNA was extracted from young fresh leaves of all plants, i.e. the two

183 parents, 16 F₁ progeny, 100 F₂AC progeny (after Brennan *et al.*, 2009). For

a subsample of 9.4% of randomly chosen plants (41 out of 436 plants from a

- 185 larger genetic study), two independent DNA extracts were made to test for
- 186 genotyping reliability.
- 187

188 AFLP genotyping

189 A protocol modified from that described by Wolf, PG

190 (http://archive.is/LCe6) was used to generate amplified fragment length

191 polymorphisms (AFLPs; supplementary methods). Fluorescently labelled

192 forward primers were multiplexed in the final selective PCR step by adding

193 0.05 µl of each of two labelled primers per sample and adjusting the total 20

194 µl PCR volume accordingly.

195 The AFLP protocol was initially tested on a panel of individuals

196 comprising the two parents and their F_1 progeny. AFLPs were detected by

197 running samples on a Beckman Coulter CEQ 8000 capillary sequencer (see

198 Brennan et al., 2009) and analyzing output with CEQ v9.0 (Beckman

199 Coulter Inc. Fullerton, CA). In total, 28 paired combinations of five

200 selective forward and eight selective reverse AFLP primers with different

201	combinations of three final 5' bases were tested on these individuals.
202	Samples were genotyped first using the automatic AFLP binning options of
203	CEQ v9.0 with a minimum relative fluorescence unit (rfu) cut-off of 100 rfu
204	and bin widths of 1 bp. Manual checks of the AFLP genotypes of parents,
205	repeat extracts, and F_1 plants were then conducted to assess what subset of
206	AFLP bands were suitable for genotyping F_2AC individuals based on
207	reliable amplification and inheritance pattern. Eight of the 28 primer
208	combinations (E1M3, E1M5, E1M7, E4M7, E5M3, E5M6, E8M5, E8M7)
209	were chosen for genotyping F_2AC plants because they produced many
210	reliably scored amplified polymorphic bands showing high levels of
211	repeatability across replicate extracts (>95% across all scored loci) and the
212	expected inheritance pattern from parents to F_1s , and also because they
213	could be used in multiplexed combinations (Table S2a). AFLP bands were
214	scored in F_2AC individuals from the automatic AFLP CEQ v9.0 binning
215	output with reference to parent controls and then checked manually across
216	all samples to correct for genotyping errors.
217	

218 SSR, EST and INDEL genotypes

219 A screen of 340 existing and newly developed single locus molecular

220 genetic markers was initially carried out on the two parent individuals.

221 These loci comprised 37 simple sequence repeat loci (SSRs) developed

222 previously by repeat motif enrichment of genomic DNA of *S. aethnensis, S.*

- 223 chrysanthemifolius, S. squalidus, and S. vulgaris (Liu et al., 2004), 25 newly
- developed SSRs (A Brennan and G-Q Liu unpublished), 10 SSRs developed
- for *S. madagascariensis* (Le Roux and Wieczorek, 2006), 216 newly

226	developed expressed sequence tag (EST)-SSRs and 45 EST-indels (SSR
227	markers labelled as ES and NES, indels labelled as EC; Hegarty et al., 2008;
228	www.seneciodb.org/), and 7 additional indel markers comprising five
229	derived from non-duplicated Asteraceae genes (Chapman et al., 2007) and
230	two from published polymorphic Senecio gene sequences (SSP, which
231	encodes a stigma-specific peroxidase involved in pollination (McInnis et al.,
232	2005), and Ray2a, which encodes a cycloidea-like transcription factor
233	involved in the control of ray floret development in Senecio (Kim et al.,
234	2008)). A single PCR protocol was used to amplify all markers (see
235	Brennan et al., 2009). This PCR protocol consisted of a three-primer system
236	with universal fluorescently labelled M13 primers. Mulitplexed PCR
237	products of all F_2 plants, wild sampled plants, control repeats, and both
238	parents were run on a Beckman Coulter CEQ 8000 capillary sequencer and
239	genotypes were assessed and scored using CEQ v9.0. Fifty four of these
240	marker loci were appropriate for genetic mapping in the current study based
241	on reliable PCR amplification, fragment length scoring and the presence of
242	fragment length polymorphisms in the F_2AC family (Tables 1 and S1).
243	
244	Genetic mapping

A genetic linkage map was constructed from the segregation of alleles at
marker loci in the F₂AC family using the demonstration version of Joinmap
v4.0 (Van Ooijen, 2001). In the analysis, the F₂AC was treated as an
outcrossed mapping family (CP type) because many AFLP and codominant
marker genotypes were heterozygous in the F₀ parents (*S. aethenensis* and *S. chrysanthemifolius*) and therefore did not exhibit the type of F₂ inheritance

251	that assumes parents are homozygous for alternative alleles at polymorphic
252	loci. The outcross mapping family option (CP type) in Joinmap v4.0 allows
253	mapping of loci with a variety of parental genotypes showing different
254	segregation patterns. The software automatically assigns the most likely
255	linkage phase of heterozygous parental alleles to each of the two parental
256	chromosomes for each group of linked loci, thus enabling more loci to be
257	mapped. A genetic map was assembled using Joinmap's default regression
258	mapping algorithm parameters. Linkage groups were identified at greater
259	than four logarithm of odds (LOD) score with less than 20 Kosambi
260	centiMorgan (cM) map distance units between loci. Map quality was
261	assessed by examining goodness of fit G^2 statistics and markers responsible
262	for incompatible linkage interactions were removed to generate linkage
263	groups with high map support. In some cases, removal of suspect loci led to
264	the splitting of large linkage groups. Diagrams of linkage groups were
265	constructed using MapChart v2.2 (Voorrips, 2002).
266	Summary statistics describing map characteristics were calculated as
267	follows. Genome length was estimated by adding twice the mean marker
268	distance to the length of each linkage group to account for ends beyond the
269	terminal markers (Fishman et al., 2001) and also by multiplying the length
270	of each linkage group by the correction factor (marker number $+1$)/(marker
271	number -1) (Chakravarti et al., 1991). Map coverage in terms of the
272	percentage of the genome that is within 5 or 10 cM of a mapped marker was
273	assessed according to the formula: 1-exponent((-2*distance*marker
274	number)/map length)) (Fishman et al., 2001). The extent of marker
275	clustering was tested using a chi ² dispersion test against a null Poisson

276 distribution of evenly distributed markers separated by mean marker

distance.

278

279 Transmission ratio distortion

280	Genotype frequencies at each mapped marker locus in the entire
281	F ₂ AC mapping family were tested for Mendelian segregation of genotypes
282	using chi ² with Microsoft Excel 2003 (Microsoft corp, 2003). Associations
283	between chi ² statistics for genotype segregation and marker characteristics,
284	including marker type (classified as dominant or codominant) and AFLP
285	fragment length, were tested with linear models after natural log
286	transformation using R v2.13 (R Development Core Team 2011).
287	The distribution of loci showing TRD, suggestive of the number of
288	independent TRDLs, was examined by plotting per locus chi ² values onto
289	their genetic map positions. The number of distinct TRDLs across the
290	genetic map was assessed as the number of clusters of distorted markers at a
291	single-locus 95% confidence level. Clustered distorted markers within each
292	TRDL were located at a map distance of less than 10 cM from each other.
293	The most likely map position of a TRDL was interpreted as the map
294	position of the locus exhibiting the greatest TRD within each cluster of
295	distorted markers. Some markers showing TRD were isolated by more than
296	10 cM from the nearest marker also exhibiting TRD. These markers were
297	considered as possibly representing different TRDLs, albeit with weaker
298	supporting evidence. Clustering of distorted markers across the entire
299	genetic map was tested with a binomial test of the hypothesis that the
300	observed number of neighbouring pairs of distorted loci per chromosome

301 was greater than the expected number of pairs of such loci given their 302 observed frequency. A Poisson test of TRDL clustering was not conducted, 303 since the underlying marker distribution was significantly clustered 304 according to a dispersion test. A possible bias of TRDLs being located at the 305 ends of linkage groups, due possibly to weak linkage to all other mapped 306 markers, was investigated using a binomial test of whether loci at linkage 307 group ends more often exhibited segregation distortion relative to the 308 overall likelihood of loci showing TRD. 309

310 **Causes of transmission ratio distortion**

Post-zygotic mortality or failure to flower. Chi² tests were performed on the 311 312 F₂AC family of segregating offspring to test the extent to which selective 313 post-zygotic mortality or failure to flower (exhibited by 16.7% of F₂ 314 individuals examined) could be responsible for generating the observed 315 TRD. For these tests, expected genotype and allele segregation patterns 316 were based on the minimum frequencies expected assuming that all non-317 genotyped F₂ individuals possessed the under-represented allele or 318 genotype. 319 320 Pre-zygotic events. TRD caused by pre-zygotic events, such as biased 321 gamete production (meiotic drive), gametophyte selection or other maternal 322 effects (Turelli and Moyle, 2007; Fishman et al., 2008), was tested at 36

- 323 codominant loci where the parental origin of alleles could be identified
- 324 unambiguously. These early reproductive events occur at the haploid stage
- 325 of the life cycle and require tests on allelic rather than genotype segregation.

13

326 Because such modes of incompatibility may show unilateral effects and 327 therefore be visible in only one cross direction, allelic segregation tests were 328 also performed on subsets of F2 individuals containing different parental 329 cytoplasms. 330 331 Cytonuclear incompatibility. Because the F₂AC family was generated from 332 a reciprocal cross, it was possible to examine whether TRD of genotypes at 333 particular loci resulted from cytonuclear incompatibility by testing if TRD 334 was dependent on the direction of the cross (Fishman and Willis, 2006; 335 Turelli and Moyle, 2007). Thus, we tested TRD of genotypes in separate 336 subsets of 49 and 51 individuals in the F₂AC mapping family that had 337 inherited either the S. aethnensis or S. chrysanthemifolius cytoplasm, 338 respectively (Figures S2 and S4). 339 340 BDM incompatibilities. Hybrid incompatibilities are often thought to be due 341 to epistatic BDM incompatibilities between parental alleles at two or more 342 interacting genetic loci. To test for this, interactions between all pairs of 343 identified TRDLs were examined using Fisher's exact tests of contingency 344 tables of paired genotype counts using R v2.13 (R Development Core Team 345 2011).

346

347 Deficiency or excess of heterozygotes. Tests of whether TRD was caused by
348 either a deficiency or excess of heterozygous genotypes were conducted at
349 36 codominant loci where the heterozygous state of progeny in terms of
350 parental alleles could be identified. A deficiency of heterozygous genotypes

351	might reflect negative allelic interactions at a locus (underdominance). In
352	contrast, an excess of heterozygous genotypes could reflect inbreeding
353	depression (due to the expression of deleterious recessives) as a
354	consequence of the full-sib cross used to generate the F_2 family (Remington
355	and O'Malley, 2000; Schwarz-Sommer et al., 2003), heterosis exhibited by
356	heterozygous genotypes generated from parents homozygous for different
357	alleles (Latta et al., 2007), or the occurrence of recessive BDM
358	incompatibilities across two or more loci (Fishman et al., 2008).
359	
360	Locally reduced recombination. Genomic regions exhibiting limited local
361	recombination might show enhanced associations with TRD because of the
362	effects of chromosomal rearrangements on chromosomal segregation during
363	meiosis, or because they are more likely by chance to show linkage to
364	nearby loci under selection in hybrids (Fishman et al., 2013). We
365	investigated this by testing for significant associations between local
366	recombination rate and TRD using logistic regression of markers scored for
367	various categories of TRD against marker distance. Different TRD
368	categories were chosen to reflect different stringencies in defining TRDLs
369	and TRDL map locations. These included categories where markers
370	exhibited TRD detected by chi^2 tests at (i) $p = 0.05$ or (ii) $p = 0.001$, (iii)
371	where markers exhibited greatest TRD within each of the nine identified
372	TRDLs, and (iv) where markers showed greatest TRD within each of the
373	four multi-locus TRDLs.
374	

RESULTS

376 Molecular genetic markers

377 Details of the AFLP, and codominant markers selected to genotype *S*.

378 *aethnensis* and *S. chrysanthemifolius* parents, and their F₁ and F₂ offspring

for construction of linkage maps are presented in Tables 1 and S1.

380

381 Genetic linkage map

382 A genetic linkage map constructed from the segregation of markers in the 383 F₂AC mapping family comprised 127 marker loci distributed across 14 384 linkage groups of average 22.4 cM length (st. dev. 15.6 cM) giving a total 385 genetic map length of 313.8 cM (Figure 1, Table 2). Markers showing 386 transmission ratio distortion (TRD) were included in the construction of this 387 map because such distortion has been shown not to bias recombination 388 statistics nor the resulting linkage maps (Xu, 2008). Nine markers were not 389 mapped because they were unlinked at the <4 LOD and >20 cM thresholds 390 for inclusion in linkage groups (Table 1). Another nine markers were 391 excluded from the map because they caused problematic linkage 392 interactions within linkage groups (Table 1) or, in the case of two of these 393 markers, showed linkage to multiple different linkage groups (EC77 linked 394 AC1 and AC5A, and EC1687 linked AC5A, AC5B, and AC6). Weak 395 linkage (<4 LOD or >20 cM distances) between markers located on four 396 pairs of linkage groups was attributed to them belonging to distant ends of 397 the same chromosome. Thus, ten independent linkage groups were inferred, which matches the haploid chromosome number (n = 10) of both species 398 399 (Alexander, 1977). Distance between mapped markers averaged 2.8 cM, but 400 was highly variable (st. dev. = 3.6 cM). The dispersion index for markers

401 was large (4.66) and highly significant (dispersion test, p = 5.85e-46), which 402 indicated a clumped distribution of markers across the map. The total 403 predicted map length was estimated to be 391.6 cM (after Fishman *et al.*, 404 2001) or 407.1 cM (using the method of Chakravarti *et al.*, 1991) and 405 approximately 96% and >99% map coverage of the genome was predicted 406 to be within 5 and 10 cM of a mapped marker, respectively.

407

408 **Transmission ratio distortion**

409 Transmission ratio distortion (TRD) was common for markers included in

410 the F₂AC genetic map with 34.0% of codominant markers and 22.1% of

411 dominant markers showing significant deviations from Mendelian

412 expectations of genotype segregation according to a per-locus 95%

413 confidence level (26.8% overall percentage frequency; Figure 1 and Table

414 S2). Mapped codominant markers exhibited TRD more frequently than

415 mapped dominant markers ($F_{1,125} = 10.41$, p = 0.0016), probably reflecting

416 the fact that AFLPs, but not codominant markers, were included on the basis

417 of inheritance patterns in the F₁ progeny panel. No association was found

418 between AFLP fragment length and TRD ($F_{1,75} = 0.67 \text{ p} = 0.4173$).

419 The map locations of markers were investigated to better understand

420 the genetic architecture of incompatibilities between the two parent species,

421 S. aethnensis and S. chrysanthemifolius. Markers showing genotypic

422 segregation distortion were clustered in the genetic map (one-way binomial 423 tests p = 0.0007 and 3.5e-6, markers showing TRD at individual chi² test 95

- 424 % and 99.9 % confidence levels, respectively) to form four distinct groups
- 425 located in linkage groups AC1, AC3 (distal position), AC7A, and AC10A,

426	and also occurred individually in linkage groups AC3 (proximal and central
427	widely separated positions), AC4, AC6, and AC9 (Figure 1 and Table 3).
428	The widespread distribution of clusters and individual markers showing
429	TRD across several linkage groups indicates that multiple loci contributed
430	to the frequent TRD observed in the F_2 of this cross (Figures 1 and S1,
431	Tables 3 and S2). Within each cluster, all markers showed the same TRD
432	direction favouring either alleles from the same parent or heterozygous or
433	homozygous parental genotypes (Figures S1 to S4). Markers located at the
434	ends of six linkage groups exhibited significant TRD, which raised the
435	possibility that such markers that are weakly linked to other mapped
436	markers might be erroneously interpreted as distinct TRDLs. However, a
437	binomial test for overrepresentation of linkage group ends exhibiting TRD
438	(6 out of 28) relative to the overall frequency of markers showing
439	segregation distortion (26.4%) was not significant ($p = 0.788$). We conclude
440	that at least four TRDLs influencing multiple markers were present in the
441	mapping family or as many as nine TRDLs if additional unlinked markers
442	showing TRD were also included.
443	
444	Possible causes of transmission ratio distortion

- 445 *Post-zygotic mortality or failure to flower.* The observed TRD could have
- 446 been due to selective mortality or selective failure to flower of some
- 447 individuals in the mapping family (16.7% of F_2 progeny). Tests for TRD
- 448 greater than could be accounted for by these causes showed that seven of the
- 449 nine TRDLs (excluding the proximal and distal TRDLs on AC3) required

450 additional mechanisms to explain the observed TRD in these regions451 (Tables 3 and S2, Figure S1).

452

453	Pre-zygotic events. Tests of TRD caused by events at early stages of
454	reproduction, such as meiotic drive and gametophytic selection, were
455	conducted on codominant loci where the parental origin of alleles could be
456	identified. These tests showed that for TRDLs in linkage groups AC1 and
457	AC10A, and also for a new TRDL in AC10B, F_2 progeny lacked S.
458	aethnensis alleles, while for the central TRDL in linkage group AC3, F_2
459	individuals lacked S. chrysanthemifolius alleles (Tables 3 and S2, Figure
460	S3). When cross direction was also tested for, TRDLs in AC5B and
461	AC10A were shown to express TRD in the S. aethnensis maternal
462	background only (Figure S4 and Table S2).
463	
464	Cytonuclear incompatibility. Tests of TRD of genotypes in subsets of F_2
465	individuals that reflected differences in cross direction showed an overall
466	similar genomic distribution of TRD irrespective of parental cytoplasm
467	(Figures S2 and S4). However, the TRD of several TRDLs was cytoplasm
468	dependent. This was the case for TRDLs located in linkage groups AC3
469	(central and distal positions) and AC9 (all dependent on S.
470	chrysanthemifolius cytoplasm), and also the TRDL located in AC10A
471	(dependent on S. aethnensis cytoplasm) (Tables 3 and S2, Figure S2). A
472	further instance of TRD in linkage group AC5B was detected only in
473	progeny possessing S. aethnensis cytoplasm (Table 3, Figure S2). Taken
474	overall, these tests found asymmetric TRD occurring at five TRDLs

475 dependent on individuals possessing either *S. chrysanthemifolius* or *S.*476 *aethnensis* cytoplasm.

477

478	Epistatic BDM incompatibilities. Multi-locus BDM incompatibilities were
479	investigated by looking for negative interactions between particular
480	genotype combinations of pairs of markers close to the nine TRDLs
481	identified. Of the 36 paired TRDL combinations tested, five significantly
482	non-independent pairs were found that affected four of the nine TRDLs (all
483	three TRDLs on AC3 and one on AC6, Table 3). However, two of the five
484	interacting TRDLs were present in the same linkage group indicating that
485	physical proximity might contribute to their non-independence. The
486	underrepresented genotype combinations typically included one of the loci
487	homozygous for <i>S. aethnensis</i> alleles and the other locus homozygous for <i>S.</i>
488	chrysanthemifolius alleles.
489	
490	Deficiency or excess of heterozygotes. Tests of a deficiency or excess of
491	heterozygotes in terms of parental alleles at codominant loci where the
492	parental state of alleles could be identified, detected a significant deficiency
493	of heterozygous genotypes at the TRDL of large effect located in linkage

494 group AC1 (Tables 3 and S2, Figure S1). However, this deficiency is more

495 likely caused by selection against *S. aethnensis* alleles, than

496 underdominance (heterozygote disadvantage), because there was an even

- 497 stronger bias against genotypes homozygous for *S. aethnensis* alleles across
- 498 this particular region of AC1 (Figure S3). No TRDLs showing an excess of
- 499 heterozygotes relative to homozygotes were identified, thus discounting

- 500 inbreeding depression, heterosis, or recessive BDM incompatibilities, as 501 important causes of TRD in this F_2 family.
- 502

503	Locally reduced recombination. In no instance was an association detected
504	between locally reduced recombination and TRD for any of the four
505	categories of markers tested. Thus, for markers that showed TRD at 95%
506	and 99.9% confidence levels, the probability of a stronger association with
507	recombination rate than the null hypothesis of no association was $p = 0.300$,
508	and $p = 0.291$, respectively, while the probability was $p = 0.261$ for the most
509	strongly distorted marker within each of the nine identified TRDLs, and $p =$
510	0.178 for the most strongly distorted marker within each of the four multi-
511	locus TRDLs treated separately. Thus, these results do not support the
512	hypothesis that chromosomal regions with reduced recombination are
513	associated with hybrid incompatibility in this system.

514

515 **DISCUSSION**

516 Studies of closely related species that form hybrid zones can reveal much 517 about the genetic basis and maintenance of species divergence in the face of 518 frequent interspecific hybridization and gene flow. Our previous analysis of 519 the hybrid zone between S. aethnensis (occurring at high altitude) and S. 520 chrysanthemifolius (occurring at low altitude) on Mount Etna, Sicily, 521 compared clines for molecular variation with those for phenotypic trait 522 variation, and indicated that both extrinsic and intrinsic selection against 523 hybrids act to maintain the hybrid zone despite high levels of gene flow 524 (Brennan et al., 2009). The study reported here has expanded on these

previous results and provided insights into the genetics of intrinsic
reproductive isolation between *S. aethnensis* and *S. chrysanthemifolius* on
Mount Etna, Sicily. We found intrinsic genomic incompatibility between
these two species caused by a variety of genetic mechanisms at multiple
genetic loci. However, large-scale genomic rearrangements or translocations
between the species did not appear to contribute greatly to this
incompatibility.

532

533 **F**₂ linkage map structure

534 To investigate the genomic architecture of these hybridizing Senecio 535 species, we constructed a genetic linkage map from the segregation of 536 dominant and codominant molecular markers in the F₂ of a reciprocal cross 537 between the two species. The resulting F₂AC linkage map comprised ten 538 distinct linkage groups (taking account of four weakly linked linkage group 539 pairs), which corresponds to the haploid chromosome number of the two 540 species (Alexander, 1979). If the parental species were distinguished by 541 chromosomal translocations, the affected regions would link different 542 linkage groups in genetic maps of hybrids and reduce the number of 543 independent linkage groups to below the haploid chromosome number of 544 the species investigated (Fishman et al., 2013). Therefore, the ability to 545 distinguish ten distinct linkage groups in the F₂AC map and the removal 546 from maps of only two markers with suspect linkage to multiple different 547 linkage groups indicates that large-scale genomic translocations between 548 chromosomes probably do not distinguish the two species in contrast to

549 what has been found in hybridizing annual sunflowers (Lai et al., 2005;

550 Yatabe *et al.*, 2007).

551	Overall, the map showed good coverage with an average locus
552	distance of just 2.8 cM and >99% of the genome predicted to be within 10
553	cM of a mapped marker. However, markers exhibited a highly clumped
554	distribution within the map, for which there are several possible
555	explanations. First, there may be technical reasons for marker clustering,
556	such as marker position uncertainty due to a limited number of
557	recombination events observed in the relatively small F_2 family examined,
558	and/or to genotyping error, which though estimated to be reasonably low
559	(2.2% based on duplicated samples tested) translates to a 2.2 cM uncertainty
560	in the position of loci within maps. Secondly, some marker clusters could be
561	explained by sequence heterogeneity across the genome. For example,
562	clusters of AFLP loci could signal repetitive genomic regions containing
563	many closely spaced repeated restriction enzyme cut sites, while clusters of
564	EST and gene loci could signal highly expressed, gene-rich genomic
565	regions. Thirdly, the occurrence of clusters could reflect variable
566	recombination rates across the genome caused by intrinsic features such as
567	low recombination near centromeres or in regions where local chromosome
568	rearrangements, such as inversions, exist between species.
569	

570 Transmission ratio distortion

571 A notable feature to emerge from the current study was the large number of 572 molecular marker loci that showed transmission ratio distortion (TRD) in 573 the F_2AC mapping population, i.e. 34 (26.8%) of 127 markers tested. These 574 loci were non-randomly distributed across the genetic map and generally 575 formed clusters in which all loci showed the same bias against alleles from 576 one parent or against heterozygous combinations of parental alleles. We 577 found strong multi-locus evidence for the occurrence of four TRDLs and weaker single locus evidence for five additional TRDLs located in seven of 578 579 the ten linkage groups identified. Individual markers showing TRD were 580 sometimes located at the ends of linkage groups raising the possibility that 581 they were technical artifacts; however, such markers were not 582 overrepresented relative to the overall observed numbers of markers exhibiting TRD. 583 584 One TRDL, located at the proximal end of linkage group AC1, 585 showed particularly strong segregation distortion, both in terms of the extent 586 to which allele and genotypes frequencies were distorted away from 587 Mendelian expectations for *S. aethnensis* alleles and genotypes, and the 588 length of the genome affected (all of AC1, i.e. 44.5 cM). The fact that this 589 TRDL, and also other multilocus TRDLs, affected large genomic regions 590 was likely due to both their strong effects on segregation distortion and the 591 limited post-hybridization recombination that had occurred in the F₂AC 592 mapping family. Strong TRD in early-generation hybrids is likely to bias 593 patterns of introgression across large genomic regions in later generation hybrids because hybrid genotypes at linked loci are eliminated before they 594 595 have an opportunity to recombine away from the TRDL (Bierne et al., 596 2011). 597

598 Causes of transmission ratio distortion

24

599	Through further analyses of the patterns of segregation in the F ₂ AC family
600	we obtained some insights into the causes of TRD at different TRDLs.
601	Twenty of the original 120 progeny that comprised the F ₂ AC mapping
602	family failed to flower either because of a failure to germinate, the
603	occurrence of early mortality, or an inability to develop to the flowering
604	stage. These individuals were not genotyped and their absence may have
605	contributed to the TRD observed at marker loci. The low intrinsic fitness of
606	these individuals might stem from several causes (see below), including the
607	disruption of coadapted gene complexes (hybrid breakdown) following
608	recombination. We did not examine survival and flowering in the F_1
609	generation in our study, however a previous study (Hegarty et al., 2009)
610	recorded a marked drop in intrinsic fitness (measured in terms of seed
611	germination and seedling survival under glasshouse conditions) between the
612	F_1 and F_3 generations of a reciprocal cross between the same S. aethnensis
613	and S. chrysanthemifolius parental individuals as this study, indicating the
614	occurrence of hybrid breakdown.
615	Although post-zygotic selective mortality or inability to flower of
616	some F ₂ individuals would contribute to TRD at certain marker loci, we
617	found that the level of TRD exhibited by seven of the nine TRDLs
618	identified could not be entirely explained in this way. However, it remains
619	possible that earlier acting post-zygotic incompatibility in the form of a
620	failure of seed development (e.g. due to negative interactions between
621	zygote and endosperm) could have contributed to the observed TRD.
622	Alternatively, there may be pre-zygotic causes of TRD either in the
623	production of gametes containing particular alleles (meiotic drive) or

624	selection against gametes containing particular alleles (gametophytic
625	selection) (Fishman and Willis, 2005; Fishman et al., 2008). We tested for
626	these possibilities at loci where the parental origin of alleles could be
627	identified unambiguously allowing TRD of alleles rather than genotypes to
628	be examined and found three TRDLs where there was a bias against S.
629	aethnensis alleles and one TRDL where there was a bias against S.
630	chrysanthemifolius alleles. Thus, pre-zygotic factors of the type mentioned
631	above could have contributed to the TRD recorded at these loci.
632	Incompatibility between diverging genomes is often asymmetric
633	when the underlying causes of incompatibility include either pre-zygotic
634	haploid stages of the life-cycle, such as meiotic drive or pollen fitness, or
635	cytonuclear incompatibilities between nuclear and organelle genomes
636	(Levin, 2003; Fishman and Willis, 2006; Turelli and Moyle, 2007). Strong
637	crossing asymmetry or unilateral incompatibility is most likely observed
638	when few asymmetric incompatibilities of large effect are involved (Turelli
639	and Moyle, 2007). The extent to which TRD was asymmetric and dependent
640	on cross direction was tested by comparing TRD across loci in F_2 progeny
641	possessing cytoplasm inherited from either the S. aethnensis or S.
642	chrysanthemifolius parent. These tests revealed five TRDLs exhibiting
643	asymmetric differences in TRD dependent on parental cytoplasmic
644	background. We may conclude that the asymmetric TRD at these loci
645	reflects cytonuclear incompatibility and/or the effects of meiotic drive
646	and/or gametophytic selection.
647	There is growing evidence for the widespread occurrence of BDM
648	incompatibilities between allopatric or parapatric populations and their role

649	in limiting subsequent hybridization and possibly promoting further
650	divergence during speciation (Coyne and Orr, 2004; Corbett-Detig et al.,
651	2013). These BDM incompatibilities are frequently caused by deleterious
652	interactions between different parental alleles occurring at two or more loci.
653	Significantly non-independent, paired-locus genotype frequencies were
654	observed for five pairs of TRDLs affecting four of the nine TRDLs (Table
655	3). However, three of the five interacting TRDL pairs were present in the
656	same linkage group indicating that physical proximity might contribute to
657	their non-independence. The underrepresented genotype combination
658	typically included one of the loci homozygous for S. aethnensis alleles and
659	the other locus homozygous for S. chrysanthemifolius alleles.
660	We also tested if TRD could be due to (i) underdominance (reflected
661	by a deficiency of heterozygotes at certain loci) or (ii) inbreeding
662	depression, heterosis or recessive BDM incompatibilities (reflected by an
663	excess of heterozygotes). Inbreeding depression could be caused by the
664	expression of deleterious recessive alleles as a result of using a full-sib F_2
665	mapping family from two outcrossed self-incompatible parents. Tests of
666	heterozygosity revealed that underdominance could have contributed to a
667	significant deficiency of heterozygous genotypes at only one TRDL, in the
668	AC1 linkage group. However, the heterozygote deficiency at this locus was
669	more likely caused by selection against S. aethnensis alleles, rather than
670	underdominance, because there was an even stronger bias against genotypes
671	homozygous for S. aethnensis alleles across the AC1 TRDL (Figure S1). An
672	excess of heterozygotes was not evident at any TRDL and thus it is
673	concluded that inbreeding depression, heterosis or recessive BDM

674 incompatibilities have not contributed to the TRD recorded in the F₂AC675 mapping family.

676 As mentioned earlier in the discussion, reduced recombination near 677 centromeres or due to local inversions may be causes of marker clustering observed in the genetic map. These causes of reduced recombination may 678 679 also contribute to TRD at marker loci. For example, selfish drive elements 680 are typically found near centromeres where they directly influence 681 chromosome segregation patterns in their favour during meiosis (Henikoff et al., 2001), while chromosomal rearrangements may also influence 682 683 inheritance patterns because recombination within the rearranged region is 684 typically selected against (Ortiz-Barrientos et al., 2002, Kirkpatrick and Barton, 2006; Lowry and Willis, 2010). To examine whether genomic 685 686 regions showing limited recombination could be a cause of TRD in the 687 F₂AC family, we tested for, but did not find associations between, marker 688 clustering and TRDLs. Therefore, genomic regions showing limited 689 recombination do not seem to play a strong role in reinforcing genomic 690 divergence in Senecio. However, our current F₂ genetic map lacks sufficient 691 marker density to adequately test this association since the clumped marker 692 map distribution could be due to a variety of reasons other than variation in 693 recombination rates and the genomic scale of TRDL-low recombination 694 associations could be highly localized (Yatabe et al., 2007; Jones et al., 695 2012; Renaut et al., 2013). Future studies aimed at determining whether 696 differences in chromosomal rearrangement may be a cause of genomic 697 incompatibility between S. aethnensis and S. chrysanthemifolius should

698 involve cytogenetic comparisons of karyotypes and/or detailed comparisons 699 of high marker density genetic maps of the two species. 700 Overall, it is clear from our analyses that a variety of genetic 701 mechanisms at multiple genetic loci across the genome are likely to 702 contribute to the intrinsic incompatibility existing between S. aethnensis and 703 S. chrysanthemifolius. Further fine-scale genetic mapping studies of S. 704 aethnensis and S. chrysanthemifolius involving quantitative trait locus 705 mapping of traits of adaptive relevance, larger families to better estimate 706 recombination, more markers for better genome coverage, and families from 707 intraspecific crosses, will be necessary to further investigate the various 708 mechanisms contributing to hybrid incompatibility and ecological 709 divergence in this species pair. 710 711 Conclusions 712 While a number of studies have indicated that S. aethnensis and S. 713 chrysanthemifolius are highly interfertile (Chapman et al., 2005; Brennan et 714 al., 2013), the present study has revealed evidence of intrinsic 715 incompatibility between these two species in the form of multiple genomic 716 regions showing TRD. Our results, therefore, support the findings of our 717 previous clinal analysis of the natural hybrid zone on Mount Etna, which 718 indicated that intrinsic selection against hybrids was an important factor

719 maintaining species differences in the face of gene flow (Brennan et al.,

720 2009). The present study shows that hybrid incompatibility between these

two diverging plant lineages is more cryptic than previously considered, and

is manifested in the F_2 generation rather than in the F_1 (see also Hegarty *et*

723 *al.*, 2009). Some studies of other diverging plant lineages have yielded

similar findings (e.g. Fishman *et al.*, 2001; Moyle and Graham, 2006;

Fishman and Willis, 2006)

726	It follows that the effects of TRDLs with multiple modes of action at
727	multiple, relatively large, genomic regions in early generation hybrids
728	between S. aethnensis and S. chrysanthemifolius are likely to impact the
729	genetic structure of the natural hybrid zone on Mount Etna by limiting
730	introgression and promoting divergence across the genome (Feder et al.,
731	2012; Abbott et al., 2013). However, large-scale genomic translocations or
732	other rearrangements between the species do not seem to contribute in any
733	major way to this process. It has been estimated that S. aethnensis and S.
734	chrysanthemifolius are of relative recent origin (<1 million years ago,
735	Comes and Abbott, 2001; ~108,000 to 150,000 years ago, Osborne et al.,
736	2013, Chapman et al., 2013), which indicates that the various forms of
737	intrinsic hybrid incompatibility that clearly exist between these two species
738	must have evolved relatively rapidly.

739

740 DATA ARCHIVING

741 Mapping family genotype data will be deposited with the DRYAD data

repository. Other results can be found in supplementary information.

Table S1. Summary of codominant molecular markers used for mapping.

Table S2. Frequencies and segregation tests of mapped markers.

745 Figure S1. Genetic map distribution of genotype TRD.

Figure S2. Genetic map distribution of genotype TRD for separate

747 cytotypes.

- Figure S3. Genetic map distribution of allelic TRD.
- Figure S4. Genetic map distribution of allelic TRD for separate cytotypes.

750

751 CONFLICT OF INTEREST

- 752 The authors declare no conflict of interest
- 753

754 ACKNOWLEDGEMENTS

- 755 We thank David Forbes for technical assistance, Daniel Barker, Guo-Qing
- Liu and Ai-Lan Wang for help with the development of molecular markers,
- and Lila Fishman and several anonymous referees for constructive
- comments on earlier drafts of the manuscript. The research was funded by a
- 759 NERC Grant NE/D014166/1 to R.J.A. as Principal Investigator. A.C.B. was
- supported during the writing of this paper by funding from FP7-REGPOT
- 761 2010-1, Grant No. 264125 EcoGenes.
- 762

763 **REFERENCES**

- 764 Abbott RJ, Brennan AC, James JK, Forbes DF, Hegarty MJ, Hiscock SJ
- 765 (2009). Recent hybrid origin and invasion of the British Isles by a
- self-incompatible species, Oxford ragwort (Senecio squalidus L.,

767 Asteraceae). *Biol. Invasions* **11**: 1145–1158.

- Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N et al.
- 769 (2013). Hybridization and speciation. J. Evol. Biol. **26**: 229-246.
- Agrawal AF, Feder JL, Nosil P (2011). Ecological divergence and the origin
- of intrinsic postmating isolation with gene flow. *Int. J. Ecol.* 2011 ID
- 772 435357, doi:10.1155/2011/435357.

773	Alexander JCM (1979). Mediterranean species of Senecio sections Senecio
774	and Delphinifolius. Notes Roy. Bot. Gard. Edin. 37: 387-428.
775	Bierne N, Welch J, Loire E, Bonhomme F, David P (2011). The coupling
776	hypothesis: why genome scans may fail to map local adaptation
777	genes. Mol. Ecol. 20: 2044-2072.
778	Bomblies K (2013). Genes causing postzygotic hybrid incompatibility in
779	plants: a window into co-evolution. In: Chen ZJ, Birchler JA (eds)
780	Polyploid and Hybrid Genomics, John Wiley & Sons, Inc.: Oxford,
781	UK. pp 225-240.
782	Brennan AC, Harris SA, Hiscock SJ (2013). The population genetics of
783	sporophytic self-incompatibility in three hybridizing Senecio
784	(Asteraceae) species with contrasting population histories. Evolution
785	67 : 1347-1367.
786	Brennan AC, Bridle JR, Wang A-L, Hiscock SJ, Abbott RJ (2009).
787	Adaptation and selection in the Senecio (Asteraceae) hybrid zone on
788	Mount Etna, Sicily. New Phytol. 183: 702-717.
789	Chakravarti A, Lasher LK, Reefer JE (1991). A maximum likelihood
790	method for estimating genome length using genetic linkage data.
791	Genetics 128: 175–182.
792	Chapman MA, Forbes DG, Abbott RJ (2005). Pollen competition among two
793	species of Senecio (Asteraceae) that form a hybrid zone on Mt. Etna,
794	Sicily. Amer. J. Bot. 92: 730-735.
795	Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007).
796	Universal markers for comparative mapping and phylogenetic

- analysis in the Asteraceae (Compositae). *Theor. Appl. Genet.* **115**:
- 798 747-755.
- 799 Chapman MA, Hiscock SJ, Filatov DA (2013). Genomic divergence during
- 800 speciation driven by adaptation to altitude. *Mol. Biol. Evol.* **30**:
- 801 2553-2567.
- 802 Comes HP, Abbott RJ (2001). Molecular phylogeography, reticulation and
- 803 lineage sorting in the Mediterranean species complex of *Senecio* sect.
 804 *Senecio* (Asteraceae). *Evolution* 55: 1943-1962.
- 805 Corbett-Detig R, Zhou J, Clark AG, Hartl DL, Ayroles JF (2013) Genetic
- 806 incompatibilities are widespread within species. *Nature* **504**: 135-137.
- 807 Coyne JA, Orr HA (2004). Speciation. Sinauer Associates, Sunderland,
- 808 Mass, USA.
- 809 Cutter AD (2012). The polymorphic prelude to Bateson-Dobzhansky-Muller

810 incompatibilities. *Trends Ecol. Evol.* **27**: 209-218.

- 811 Feder JL, Egan SP, Nosil P (2012). The genomics of speciation with gene
- 812 flow. *Trends Genet.* **28**: 342–350.
- 813 Fishman L, Willis JH (2005). A novel meiotic drive locus almost
- 814 completely distorts segregation in *Mimulus* (monkeyflower) hybrids.
 815 *Genetics* 169: 347–353.
- 816 Fishman L, Willis JH (2006). A cytonuclear incompatibility causes anther
- 817 sterility in *Mimulus* hybrids. *Evolution* **60**: 1372–1381.
- 818 Fishman L, Aagaard J, Tuthill JC (2008). Toward the evolutionary
- 819 genomics of gametophytic divergence: patterns of transmission ratio
- 820 distortion in monkeyflower (*Mimulus*) hybrids reveal a complex
- genetic basis for conspecific pollen precedence. *Evolution* **62**: 2958–

822 2970.

823	Fishman L, Kelly AJ, Morgan E, Willis JH (2001). A genetic map in the
824	Mimulus guttatus species complex reveals transmission ratio
825	distortion due to heterospecific interactions. Genetics 159: 1701-
826	1716.
827	Fishman L, Stathos A, Beardsley PM, Williams CF, Hill JP (2013).
828	Chromosomal rearrangements and the genetics of reproductive
829	barriers in Mimulus (monkeyflowers). Evolution 69: 2547-2560.
830	Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ
831	(2008). Changes to gene expression associated with hybrid
832	speciation in plants: Further insights from transcriptomic studies in
833	Senecio. Phil. Trans. Royal Soc. B. 363: 3055-3069.
834	Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ
835	(2009). Extreme changes to gene expression associated with
836	homoploid hybrid speciation. Mol. Ecol. 18: 877-889.
837	Henikoff S, Ahmad K, Malik HS (2001). Speciation and centromere
838	evolution. Science 294: 2478-2480.
839	James JK, Abbott RJ (2005). Recent, allopatric, homoploid hybrid
840	speciation: the origin of Oxford ragwort, Senecio squalidus
841	(Asteraceae), in the British Isles from a hybrid zone on Mount Etna,
842	Sicily. <i>Evolution</i> 59 : 2533-2547.
843	Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J et al.
844	(2012). The genomic basis of adaptive evolution in threespine
845	sticklebacks. Nature 484: 55–61.

846	Kim M, Cui ML, Cubas P, Gillies A, Lee K, Chapman MA et al. (2008).
847	Regulatory genes control a key morphological and ecological trait
848	transferred between species. Science 322: 1116-1119.
849	Kirkpatrick M, Barton NH (2006). Chromosome inversions, local
850	adaptation and speciation. Genetics 173: 419–434.
851	Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH
852	(2005). Extensive chromosomal repatterning and the evolution of
853	sterility barriers in hybrid sunflower species. Genetics 171: 291–303.
854	Latta RG, Gardner KM, Johansen-Morris AD (2007). Hybridization,
855	recombination, and the genetic basis of fitness variation across
856	environments in Avena barbata. Genetica 129: 167-177.
857	Le Roux JJ, Wieczorek AM (2006). Isolation and characterization of
858	polymorphic microsatellite markers from fireweed, Senecio
859	madagascariensis Poir. (Asteraceae). Mol. Ecol. Notes 7: 327-329.
860	Levin DA (2012). The long wait for hybrid sterility in flowering plants. New
861	<i>Phytol.</i> 196 : 666-670.
862	Levin DA (2003). The cytoplasmic factor in plant speciation. Syst. Bot. 28:
863	5–11.
864	Liu G-Q, Hegarty MJ, Edwards KJ, Hiscock SJ, Abbott RJ (2004). Isolation
865	and characterization of microsatellite loci in Senecio. Mol. Ecol.
866	<i>Notes</i> 4 : 611–614.
867	Lowry DB, Willis JH (2010). A widespread chromosomal inversion
868	polymorphism contributes to a major life-history transition, local
869	adaptation, and reproductive isolation. PLoS Biol. 8: 1-14.

870	Lu H, Romero-Seveson J, Bernardo R (2002). Chromosomal regions
871	associated with segregation distortion in maize. Theor. Appl. Genet.
872	105 : 622–628.
873	Matute DR, Butler IA, Turissini DA, Coyne JA (2010). A test of the
874	snowball theory for the rate of evolution of hybrid incompatibilities.
875	Science 329 :1518-1521.
876	McInnis SM, Costa LM, Gutiérrez-Marcos JF, Henderson CA, Hiscock SJ
877	(2005). Isolation and characterization of a polymorphic stigma-
878	specific class III peroxidase gene from Senecio squalidus L.
879	(Asteraceae). Plant Mol. Biol. 57: 659-677.
880	Moyle LC, Graham EB (2006). Genome-wide associations between hybrid
881	sterility QTL and marker transmission ratio distortion. Mol. Biol.
882	<i>Evol.</i> 23 : 973-980.
883	Moyle LC, Nakazato T (2010). Hybrid incompatibility "snowballs" between
884	Solanum species. Science 329: 1521-1523.
885	Muir G, Osborne OG, Sarasa J, Hiscock SJ, Filatov DA (2013). Recent
886	ecological selection on regulatory divergence is shaping clinal
887	variation in <i>Senecio</i> on Mount Etna. <i>Evolution</i> 67 : 3032-3042.
888	Nosil P (2012). Ecological speciation. Oxford Univ. Press, Oxford.
889	Ortiz-Barrientos D, Reiland J, Hey J, Noor MAF (2002). Recombination
890	and the divergence of hybridizing species. Genetica 116: 167-178.
891	Osborne OG, Batstone TE, Hiscock SJ, Filatov DA (2013). Rapid speciation
892	with gene flow following the formation of Mt. Etna. Genome Biol.
893	<i>Evol.</i> 5 : 1704-1715.

894	Ouyang Y, Zhang Q (2013). Understanding reproductive isolation based on
895	the rice model. Ann. Rev. Plant Biol. 64: 11-35.
896	R Development Core Team (2011). R: A language and environment for
897	statistical computing. R Foundation for Statistical Computing:
898	Vienna.
899	Remington DL, O'Malley DM (2000). Whole genome characterization of
900	embryonic stage inbreeding depression in a selfed Loblolly pine
901	family. <i>Genetics</i> 155 : 337-348.
902	Renaut S, Grassa CJ, Yeaman S, Moyers BT, Lai Z, Kane NC et al. (2013).
903	Genomic islands of divergence are not affected by geography of
904	speciation in sunflowers. Nature Comm. 4: 1827.
905	doi:10.1038/ncomms2833.
906	Rieseberg LH (2001). Chromosomal rearrangements and speciation. Trends
907	<i>Ecol. Evol.</i> 16 : 351–358.
908	Ross RIC, Ågren JA, Pannell JR (2012). Exogenous selection shapes
909	germination behaviour and seedling traits of populations at different
910	altitudes in a Senecio hybrid zone. Ann. Bot. 110: 1439-1447.
911	Rundle HD, Nosil P (2005). Ecological speciation. Ecol. Lett. 8: 336–352.
912	Schwarz-Sommer Z, de Andrade Silva E, Berndtgen R, Lönnig WE, Müller
913	A, Nindl I et al. (2003). A linkage map of an F ₂ hybrid population of
914	Antirrhinum majus and A. molle. Genetics 163: 699-710.
915	Stemshorn KC, Reed FA, Nolte AW, Tautz D (2011). Rapid formation of
916	distinct hybrid lineages after secondary contact of two fish species
917	(Cottus sp.). Mol. Ecol. 20: 1475-1491.

918	Tang S, Okashah RA, Knapp SJ, Arnold ML, Martin NH (2010).
919	Transmission ratio distortion results in asymmetric introgression in
920	Louisiana Iris. BMC Plant Biol. 10: 48
921	Taylor SJ, Rojas LD, Ho SW, Martin NH (2012). Genomic collinearity and
922	the genetic architecture of floral differences between the homoploid
923	hybrid species Iris nelsonii and one of its progenitors, Iris hexagona.
924	<i>Heredity</i> 110 : 63-70.
925	Turelli M, Moyle LC (2007). Asymmetric postmating isolation: Darwin's
926	corollary to Haldane's rule. Genetics 176: 1059–1088.
927	Van Ooijen JW (2001). JoinMap v3.0 Software for the calculation of
928	genetic linkage maps. Plant Res. Int., Wageningen, Netherlands.
929	http://www.joinmap.nl
930	Voorrips RE (2002). MapChart: Software for the graphical presentation of
931	linkage maps and QTLs. J. Hered. 93: 77-78. www.biometris.nl
932	Xu S (2008). Quantitative trait locus mapping can benefit from segregation
933	distortion. Genetics 180: 2201–2208.
934	Yatabe Y, Kane NC, Scotti-Saintaigne C, Reisberg LH (2007). Rampant
935	gene exchange across a strong reproductive barrier between the
936	annual sunflowers, Helianthus annuus and H. petiolaris. Genetics
937	175 : 1883–1893.
938	

Marker type	# screened	# developed	# genotyped	# mapped	unlinked	problematic			
Codominant markers									
EST indel	45	15	10	8		EC77, EC1687			
EST SSR	216	48	33	31	ES91	ES19			
Indel	7	4	3	3					
SSR	72	9	8	8					
Total	340	76	54	50	1	3			
Dominant markers	Dominant markers								
E1M3, CAAC/ACAG	-	-	19	15	179, 219				
E1M5, CAAC/ACTA	-	-	15	10	168, 213	88, 160, 204			
E1M7, CAAC/ACTG	-	-	13	12	275				
E4M7, CACT/ACTG	-	-	9	8	113				
E5M3, CACC/ACAG	-	-	8	7	302				
E5M6, CACC/ACTC	-	-	9	9					
E8M5, CAGG/ACTA	-	-	11	9	114	196			
E8M7, CAGG/ACTG	-	-	7	7					

Table 1. Summary of genetic markers screened and mapped in the *Senecio aethnensis* x S. chrysanthemifolius F₂ genetic mapping family.

Total	-	-	91	77	8	6	
Marker types are divided into	codominant or don	ninant markers. Code	ominant markers a	re further divided into	markers derived from	om expressed sequence tag	<u></u> gs
(EST), simple sequence repea	ts (SSR) or insertio	n-deletions (indel). I	Dominant markers	are amplified fragmen	nt length polymorph	iisms (AFLPs). Each AFLI	Р
primer combination is shown	as the primer name	s used in this study f	followed by the th	ree selective bases for	the EcoRI and Msel	I primers, respectively (see	e
supplementary methods). # sc	reened in number o	f codominant marke	r primer pairs test	ed. # developed is nun	nber of codominant	markers that could be scor	ed
in Senecio. # genotyped is nur	mber of markers sho	owing polymorphism	n in the F2AC map	oping family. # mappe	d is number of mark	ters that were included in t	the
final genetic map. Unlinked n	ames markers that	were unlinked at a >-	4 LOD or > 20 cM	I linkage threshold lim	iits for mapping. Pro	oblematic refers to markers	s that
caused problems with linkage	group marker orde	r or were present in 1	multiple linkage g	roups. Dominant mark	ter names are approx	ximate fragment base pair	
lengths used to label AFLP lo	ci.						

Linkage	Longth	Total marker	Dominant	Codminant	Add2s longth	Method4
group	Length	no.	marker no.	marker no.	Add25 leligui	length
1	44.5	18	4	14	50.05	49.74
2	29.1	7	4	3	34.65	38.80
3	42.6	10	6	4	48.15	52.07
4	41.3	10	6	4	46.85	50.48
5A	25.8	9	5	4	31.35	32.25
5B	9.5	4	0	4	15.05	15.83
6	41.7	9	7	2	47.25	52.13
7A	14.2	15	14	1	19.75	16.57
7B	3.2	2	1	1	8.75	9.60
8A	27.5	22	16	6	33.05	30.12
8B	5.2	2	1	1	10.75	15.60
9	15	8	7	1	20.55	19.29
10A	10	11	8	3	15.55	12.00
10B	4.2	2	0	2	9.75	12.60
Total	313.8	127	77	50	391.56	407.06
Mean	22.41	9.07	5.50	3.57	27.97	29.08
St. dev.	15.56	5.88	4.55	3.37	15.56	16.65

Table 2. Summary genetic linkage map statistics for the *S. aethnensis* x *S. chrysanthemifolius* F₂ genetic map

Notes. Map distance measures are in Kosambi centiMorgan units. Add2s length is an estimate of chromosome length calculated as linkage group length plus twice mean linkage group distance. Method4 length is another estimate of chromosome length calculated as linkage group length times (marker number + 1)/(marker number - 1).

Linkage group	Reference marker	Map position	Late-acting sufficient	Asymmetric	Pre-zygotic	Heterozygote	Epistasis (minority genotype)
AC1 cluster	EC296	0.0 cM	no	no	aeth	yes	no
AC3 singleton (proximal)	E1M3_147	0.0 cM	yes	no	-	-	AC3 central (CA), AC6 (CD)
AC3 singleton (central)	S20	24.3 cM	no	chrys	chrys	no	AC3 proximal (AC), AC3 distal (AC), AC6 (AC)
AC3 cluster (distal)	E5M3_405	36.5 cM	yes	chrys	-	-	AC3 central (CA), AC6 (DC)
AC4 singleton	E1M5_215	0.0 cM	no	no	-	-	no
AC6 singleton	E1M5_131	41.7 cM	no	no	-	-	AC3 proximal (DC), AC3 central (CA), AC3 distal (CD)
AC7 cluster (central)	E1M5_269	12.5 cM	no	no	-	-	no

Table 3. Summary of transmission ratio distortion loci and tests of different transmission ratio distortion mechanisms for the *S. aethnensis* x *S. chrysanthemifolius* F₂ genetic mapping family.

E1M5_132	15 cM	no	chrys	-	-	no
EC290	3.4 cM	no	aeth	aeth	no	no
E\$25	$0.0 \mathrm{cM}$	_	aeth	_	_	_
L025	0.0 CIVI		deth			
S26	$0.0 \mathrm{eM}$		no	ooth	no	
520	0.0 CIVI	-	IIO	atul	ПО	-
	E1M5_132 EC290 ES25 S26	E1M5_132 15 cM EC290 3.4 cM ES25 0.0 cM S26 0.0 cM	E1M5_132 15 cM no EC290 3.4 cM no ES25 0.0 cM - S26 0.0 cM -	E1M5_132 15 cM no chrys EC290 3.4 cM no aeth ES25 0.0 cM - aeth S26 0.0 cM - no	E1M5_132 15 cM no chrys - EC290 3.4 cM no aeth aeth ES25 0.0 cM - aeth - S26 0.0 cM - no aeth	E1M5_132 15 cM no chrys - - EC290 3.4 cM no aeth aeth no ES25 0.0 cM - aeth - - S26 0.0 cM - no aeth no

Notes. Linkage group names correspond to Figure 1. Cluster or singleton refers to whether a cluster or a single marker within 10 cM was observed to have genotypic TRD. ¹ indicates that the last two TRDLs were only observed when specific mechanisms were investigated so are not presented in Figure 1 or counted as primary TRLDs in the text. The 'reference marker' is the marker with strongest TRD where a cluster of distorted markers was observed. 'Late acting sufficient' tests if selective removal of the minority genotype according to observed post-mortality and reproductive failure would be sufficient to explain observed TRDLs. 'Asymmetric' tests if subsets of the mapping family divided according to parental cytotype showed asymmetric TRD in one cross direction only with "aeth" and "chrys" indicates if asymmetric TRD was observed in an *S. aethensis* or *S. chrysanthemifolius* cytoplasmic background, respectively. 'Pre-zygotic' tests for allelic TRD with "aeth" and "chrys" indicating the parental alleles showing significant deficiencies and "-" indicating that no suitable codominant markers were available for testing at this TRDL. 'Heterozygote' tests for significant excesses or deficiencies in heterozygosity of genotypes scored according to parental allelic state with "-" indicating that no suitable codominant markers were available for testing at this TRDL. 'Epistasis' tests for non-independence of

paired TRDL reference marker genotypes, with significantly interacting TRDLs listed. Letter codes in parentheses indicate minority genotype for the reference TRDL followed by the interacting TRDL. Genotype codes are: A = homozygous S. *aethnensis* alleles, C = not homozygous for S. *aethnensis* alleles, D = not homozygous for S. *chrysanthemifolius* alleles.

Figure 1. Genetic map of a reciprocal F₂ *S. aethnensis* and *S. chrysanthemifolius* mapping family showing mapped marker positions and associated transmission ratio distortion.

Map distances in Kosambi centiMorgans are shown in the scale to the left of linkage groups. Linkage groups are represented by vertical bars with mapped locus positions indicated with horizontal lines. Weakly linked linkage groups (< 4 LOD or > 20 cM) that are thought to belong to the same chromosome are aligned vertically. Locus names are listed to the left of linkage groups. Asterisks to the left of locus names indicate significant transmission ratio distortion of genotype frequencies at a single locus χ^2 test 5 % confidence limit. Underlined locus names indicate

most strongly distorted locus within a particular cluster of distorted loci. Plots to the right of each linkage group show -log1000 p values for single locus χ^2 tests for transmission ratio distortion of genotype frequencies. Plot symbols indicate the number of degrees of freedom for the χ^2 tests; circles = 1 df, squares = 2 df, and triangles = 3 df. The dotted lines indicate the moving average of three neighbouring loci while dashed lines indicate the 5 % significance level, to the right of which, loci show significant transmission ratio distortion. The plot scale for linkage group AC1 is larger than the other linkage groups.