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We review and develop a new class of “dark energy” models, in which the relativistic theory
of solids is used to construct material models of dark energy. These are models which include
the effects of a continuous medium with well defined physical properties at the level of linearized
perturbations. The formalism is constructed for a medium with arbitrary symmetry, and then
specialised to isotropic media (which will be the case of interest for the majority of cosmological
applications). We develop the theory of relativistic isotropic viscoelastic media whilst keeping in
mind that we ultimately want to observationally constrain the allowed properties of the material
model. We do this by obtaining the viscoelastic equations of state for perturbations (the entropy
and anisotropic stress), as well as identifying the consistent corner of the theory which has constant
equation of state parameter ẇ = 0. We also connect to the non-relativistic theory of solids, by
identifying the two quadratic invariants that are needed to construct the energy-momentum tensor,
namely the Rayleigh dissipation function and Lagrangian for perturbations. Finally, we develop the
notion that the viscoelastic behavior of the medium can be thought of as a non-minimally coupled
massive gravity theory. This also provides a tool-kit for constructing consistent generalizations of
coupled dark energy theories.
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I. INTRODUCTION

The discovery of apparent cosmic acceleration [1–3] has
spawned huge interest in constructing dark energy [4, 5]
and modified gravity [6, 7] theories capable of describing
these observations. There are many scalar field [8–12]
and generalized scalar field [13–19] models on the market,
as well as a surge in the development of massive gravity
[20–27] theories. The ultimate aim of these models is to
provide some understanding of the underlying physical
mechanisms causing the cosmic acceleration. There has
also been considerable effort going towards constructing
“model independent” frameworks [28–48] which can be
used to confront classes of models or solutions of theories
with observational data from, for example, WMAP [49]
and Planck [50–52], as well as galaxy weak lensing exper-
iments [53–55] and forecasting the potential discrimina-
tory power of experiments planned for the future [56–59].

In this article we review and develop another way to de-
scribe and understand the cause of cosmic acceleration.
Rather than invoke the theory of scalar fields, we will
use the theory of relativistic solids to construct material
models of dark energy. The freedom in the theory of the
solid corresponds to some physical property of the mate-
rial (in contrast to the freedom in a scalar field theory,
which corresponds to the kinetic or potential contribu-
tions to the scalar field dynamics), which can be con-
strained using observations such as in the temperature
and lensing anisotropies of the Cosmic Microwave Back-
ground (CMB) or the power spectrum of galaxy weak
lensing.

The theory of non-relativistic solids [60] is very well
developed and has many diverse applications, whilst the
theory of relativistic solids [61–65] is less developed and
has only a few applications, mainly in the description of
neutron star crusts [66–69]. There is also a considerable
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body of literature pertaining to the construction of the
theory of relativistic fluids, see e.g., [70–88] and viscosity
effects in cosmology [89–93]. The description of a rel-
ativistic perfectly elastic material model of dark energy
has already been presented in the literature, for isotropic
[94–97] and anisotropic [98, 99] elastic solids. In addition,
[100] present a modified gravity model using continuum
mechanics, whilst [101, 102] study perfect elastic solids
with positive pressure. A forthcoming paper will present
the most up to date constraints on the observationally al-
lowed properties of the perfect elastic medium [103]. The
focus of this article is the development, and the applica-
tion to cosmology, of the theory of relativistic viscoelastic
solids.

The material models of dark energy are not best used
as models which predict the value of the equation of state
parameter, w = Pde/ρde. The material models have this
parameter fixed by comparison to observations, which
forces other physical properties of the medium to adjust
their values when computing, for example, the behav-
ior of cosmological perturbations. As an example, con-
sider perfectly elastic isotropic materials. There are two
physical properties which characterise perturbations of
the material: the bulk modulus, and shear (or, rigidity)
modulus. For an elastic material, only the bulk modulus
is needed to construct w, but both the bulk and rigidity
moduli are used to construct the sound speed (which is
the only free parameter for linearized perturbations of
the elastic medium). The perturbations are stable for
a medium with negative pressure, i.e., w < 0, but only
if the rigidity is sufficiently large. By “stable” we mean
that the sound speed is positive, and subliminal. The
idea is that only certain ranges of values of these physi-
cal properties are allowed upon comparison to data.

The “primary” attractive feature of the material mod-
els is that there is a well prescribed rule-book for con-
structing the modified gravitational field equations that
describe a material with a given physical property: the
modified gravity field equations and corresponding free
parameters gain physical interpretation.

One of the “secondary” interesting features of the ma-
terial model is that the evolution equation for the pres-
sure of the solid is prescribed by the theory, after time
diffeomorphism invariance is imposed. This feature will
become apparent in Section II B 1.

There are some advantages and drawbacks to both
scalar field and material models of dark energy. First
of all, a solid is much simpler to obtain a physical intu-
itive picture of than a scalar field. Also, one should recall
that only one scalar field has actually been observed in
our Universe, but solids are common (to put it bluntly).
Saying that, the mathematical description of a scalar field
model is rather simple, compared to that needed to de-
scribe the material model. One of the attractive features
of a material model is that it does not suffer from having
to be carefully constructed to have a constant w (it is ac-
tually quite simple and somewhat natural for a medium
to have constant w), whereas scalar field models require

substantial effort to do so.
The main ingredient of a model of a solid is a consti-

tutive relation between the stress tensor and the strain
tensor. This constitutive relation then prescribes how
the solid responds under deformations. Stating what the
pressure tensor is a function of is sufficient for isolating
all freedom in the theory, and deducing how that freedom
corresponds to physical properties of the material.

To account for non-standard gravitational behavior
(e.g., matter content which accelerates the Universe, or
modified gravity), it is useful to append Einstein’s grav-
itational field equations with a term on the right-hand-
side,

Gµν = 8πG (Tµν + Uµν) , (1.1)

where Uµν is the dark energy-momentum tensor which
contains all contributions to the gravitational field equa-
tions due to whatever the physics is that is causing the
apparent cosmic acceleration. Common examples include

Uµν ∈

 (scalar field)µν
(modified gravity)µν
(material model)µν

, (1.2)

where we have also included the material model concept
in the list of possibilities. The main objective of this
article is to understand what form Uµν takes for material
models.

Whilst the motivation for the current article comes
from constructing a dark energy description, the theory
applies equally well to other relativistic scenarios, and
can be used, for example, in the context of inflation (see
[104–106] and [107], where the latter paper used a for-
malism similar to ours).

In summary, the aim of this article is to describe dark
energy via the theory of solids; the “physics” of the ma-
terial model we develop is

• Visco-elasticity in which stress is a function of
strain and rate-of-strain.

The result of the article will be an understanding of how
to include realistic modifications to a standard matter
content of the Universe. The novelty of these modifica-
tions is to include the effects of elastic and viscoelastic
solids. We remain agnostic throughout as to whether
these solids are supposed to be genuine solids, or a useful
way to categorise the impact of more abstract modified
gravity theories.

In the remainder of this introduction section we will
recap the non-relativistic description of solids, which is
mostly a review of Landau and Lifshitz [60] and is in-
cluded to aid the building of intuition. In Section II we
build our material model of a viscoelastic medium, and in
Section III we present the viscoelastic equations of state
for perturbations. In Section IV we discuss issues related
to the time variation of the physical properties (such as
w, the sound speeds, and dissipation coefficients), and
in Section V we point out a way of thinking about a
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viscoelastic medium in terms of more conventional types
of dark energy/modified gravity theories. Final remarks
and a summary of main results is given in Section VI.
The appendices hold some useful intermediate results and
derivations. We collect some common symbols with their
brief definitions and physical interpretation in Table I.

A. Hooke’s law and Kelvin-Voigt solids

Before we turn to the theory of relativistic solids, we
shall review some important features from the theory of
non-relativistic solids. The idea is to give a relationship
between the stress, σ, and strain, ε, due to deformation
of a body (these are both rank-2 tensors, but for now we
shall just consider the scalar relationship). The simplest
example is a linear relationship between stress and strain,

σ = βε. (1.3)

This is the defining characteristic of a Hookean solid. The
parameter β is a property of the material, and dictates
the strength of the stress from the given strain, and is
related to the elastic modulus. The next simplest rela-
tionship is to include rate-of-strain

σ = βε+ λε̇. (1.4)

This is the defining characteristic of a Kelvin-Voigt solid,
which is a solid with elastic and viscous behavior. The
material properties are the elastic modulus β, and the co-
efficient of viscosity λ (in the simple constitutive relation
written above, these are both “bulk” moduli).

The remainder of this paper is dedicated to rewriting
these constitutive relations in increasing levels of sophis-
tication, with the aim of constructing a material model
which can be used to describe and interpret the possible
influences of viscoelastic dark energy. Before we jump
to that we will carry on reviewing non-relativistic vis-
coelastic systems, paying particular attention to isotropic
viscoelastic solids.

In a non-relativistic system, one should imagine that
the coordinates of a medium in its relaxed state are given
by xi. A deformation alters these coordinates

xi → xi + ξi, (1.5)

where ξi = ξi(xj) is the deformation vector. The strain
tensor, εij , is constructed from symmetric combinations
of the spatial derivatives of the deformation vector ξi via

εij = 1
2

(
∂iξj + ∂jξi

)
= ∂(iξj). (1.6)

This is equivalent to setting the strain tensor to be the
Lie derivative of the metric along the deformation vector,

εij = 1
2Lξgij . (1.7)

The force, F i, on a medium is computed by taking the
divergence of the stress tensor, σij ,

F i = ∂jσ
ij . (1.8)

The equation of motion of the deformations is con-
structed by relating the force due to stress, to the ac-
celeration, F i = ρξ̈i, which yields

ρξ̈i = ∂jσ
ij . (1.9)

The task is to build a model which relates the stress
tensor to the strain tensor: this will dictate the force on
the body, and therefore the equation of motion of the
deformations.

As we discussed above, the simplest model of a solid is
embodied by Hooke’s law, which relates the stress tensor
to the strain tensor linearly. The most general way to do
this (for a Hookean solid) is via a constitutive relation

σij = Eijklεkl, (1.10)

where Eijkl is the elasticity tensor (later on we will have
much more to say about this tensor and its interpreta-
tion). To extend Hooke’s law (1.10) we construct the
stress out of more than just the strain, and the easiest
quantity to introduce is the rate-of-strain tensor, ε̇kl (an
overdot denotes derivative with respect to time). Hence,
in the simplest extension, the stress σij is computed from
the strain εij as

σij = Eijklεkl + V ijklε̇kl. (1.11)

In addition to the elasticity tensor, we now have a vis-
cosity tensor, V ijkl. The relationship (1.11) describes a
solid with elasticity and viscosity, known as a Kelvin-
Voigt solid. Using (1.6) to make the deformation vector
explicit, the stress tensor of a viscoelastic solid is given
by

σij = Eijkl∂(kξl) + V ijkl∂(k ξ̇l), (1.12)

and the equation of motion of the deformation vector
(1.9) becomes

ρξ̈i = Eijkl∂j∂(kξl) + V ijkl∂j∂(k ξ̇l), (1.13)

where we took Eijkl and V ijkl to be constant throughout
the medium.

The elasticity and viscosity tensors, Eijkl and V ijkl re-
spectively, are what we call material tensors. The compo-
nents of the material tensors are the physical properties of
the medium, since they dictate how the medium responds
under strain. The number of independent components of
the material tensors are fixed by the symmetries of the
medium. However, there are not as many components
of the material tensors as there appears at first sight:
there are some symmetries in the indices, inherited from
the fact that the stress and strain tensors are symmetric,
and that the elasticity tensor can be derived from the
elastic potential energy (we will have more to say about
this in section I B). These symmetries lead to the set of
conditions

Eijkl = E(ij)(kl) = Eklij , (1.14a)



4

Symbol Meaning

LX Lie derivative operator along the vector Xµ

uµ Time-like unit vector

γµν ≡ gµν + uµuν Spatial metric, quantifying strain

λµν ≡ Luγµν Rate-of-strain tensor

Kµν = ∇µuν Extrinsic curvature tensor

H = 1
3
Kµ

µ Hubble expansion

Tµν Energy-momentum tensor

Pµν Orthogonal pressure tensor

w ≡ Pde/ρde Equation of state parameter

ξµ = (χ, ξi) Deformation vector

δE Eulerian perturbation: perturbation against background geometry

δL ≡ δE + Lξ Lagrangian variation: comoving with material medium

Eµναβ = E(µν)(αβ) = Eαβµν Orthogonal elasticity tensor

V µναβ = V (µν)(αβ) Orthogonal viscosity tensor

wΓ Entropy perturbation

wΠS Scalar anisotropic stress

{β, λ, µ, ν} Material properties

c2s , c
2
v Scalar and vector sound speeds

ds, dv Scalar and vector damping coefficients

TABLE I: Summary of commonly used symbols

V ijkl = V (ij)(kl). (1.14b)

The viscosity tensor gains an extra symmetry, namely
the major symmetry under interchange of indices V ijkl =
V klij , when the viscous theory is derived from a Rayleigh
function (we have more to say about this in the next
section). This extra symmetry is redundent for isotropic
media.

For an isotropic medium, each of the material tensors
have two free components. They are found by decompos-
ing Eijkl and V ijkl into all possible combinations of the
fundamental tensor (the metric, ḡij) compatible with the
symmetries (1.14),

Eijkl = (β − 2
3µ)ḡij ḡkl + 2µḡi(kḡl)j , (1.15a)

V ijkl = (λ− 2
3ν)ḡij ḡkl + 2νḡi(kḡl)j . (1.15b)

Physically, β and µ are the bulk and shear elastic moduli
respectively, and λ and ν are the bulk and shear viscous
moduli respectively: these are what we call the physi-
cal material properties of the solid. Using the isotropic
decompositions of the material tensors (1.15), the stress
tensor (1.12) becomes

σij = (β − 2
3µ)ḡij∂kξ

k + (λ− 2
3ν)ḡij∂k ξ̇

k

+2µ∂(iξj) + 2ν∂(iξ̇j), (1.16)

and the equation of motion for an isotropic viscoelastic
medium (1.13) becomes

ρξ̈i = (β + 1
3µ)∂i∂kξ

k + µ∂k∂
kξi

+(λ+ 1
3ν)∂i∂k ξ̇

k + ν∂k∂
k ξ̇i. (1.17)

Elastic waves have two sound speeds. This is simplest to
see in the perfectly elastic case (by setting λ = ν = 0),
and supposing that the deformations are a function of
only one of the spatial coordinates: we shall take ξi =
ξi(t, x). Inserting this ansatz into (1.17), the equations
of motion governing each of the three components of ξi

are

∂2ξx

∂t2
− c2l

∂2ξx

∂x2
= 0, (1.18a)

∂2ξy

∂t2
− c2t

∂2ξy

∂x2
= 0, (1.18b)

∂2ξz

∂t2
− c2t

∂2ξz

∂x2
= 0, (1.18c)

where

c2l ≡
β + 4

3µ

ρ
, (1.19a)

c2t ≡
µ

ρ
. (1.19b)

We now see that the elastic medium propagates two in-
dependent waves: there is a longitudinal wave travelling
in the direction of the deformation with speed cl, and a
transverse wave travelling in a plane orthogonal to the
deformation with speed ct. The longitudinal wave is al-
ways faster than the transverse wave; infact, c2l ≥ 4

3c
2
t .

These two waves are also known as P and S waves re-
spectively. The S-wave is only present due to the ability
of the medium to support shear stresses.

The elasticity theory we just discussed was for non-
relativistic media. There is a relativistic elasticity theory
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which was mostly constructed by Carter and collabora-
tors. There are subtle complications for the extension to
high-pressure relativistic media, since the “strain” tensor
is now constructed out of an object which includes vari-
ations in the metric which leads to an understanding of
how metric fluctuations sources the deformation vector,
and how the deformation vector sources the gravitational
field equations.

B. Potential and Rayleigh functions

The theory of non-relativistic elastic solids can be de-
rived from a quadratic elastic potential function, which
is a function of the strain. The viscous part of the theory
cannot be derived from any elastic potential. Instead, a
second quadratic function needs to be introduced, and
is called the Rayleigh function. Here we will briefly re-
view how Rayleigh functions are used to construct non-
relativistic system.

As a starting point, consider the equation of motion of
a damped pendulum:

mẍ = −kx− αẋ. (1.20)

The first two terms can be derived from a Lagrangian,
L = 1

2mẋ
2 − 1

2kx
2, but the final term which includes

the effect of dissipation, cannot. The remedy is to in-
troduce a second “master function”, in addition to the
Lagrangian. This is known as the Rayleigh function, R.
The Rayleigh function is introduced to enable the inclu-
sion of velocity dependent contributions to potential-like
forces in the equation of motion.

The dynamical system D is constructed from the pair
of invariants: D = {L,R}, and the equation of motion is

d

dt

∂L

∂q̇i
=
∂L

∂qi
− ∂R

∂q̇i
. (1.21)

Schematically, one imagines that the force contributions
(i.e., the terms on the right-hand-side of the equation of
motion) are respectively position and velocity dependent.
The velocity dependent potentials would not be incorpo-
rated into a traditional Lagrangian theory. One should
imagine that the equation of motion is given by

mẍi = f itot, f itot ≡ f ipot + f idis. (1.22)

We decomposed the total force, f itot, into a term which
comes from a potential, f ipot, and a dissipative-force term,

f idis,which is computed from the Rayleigh function R via

f idis = −∂R
∂q̇i

. (1.23)

It is worth our providing an illustrative example. The
Lagrangian which is quadratic in generalized coordinate
velocities is

L = 1
2c
ij q̇iq̇j − V (qi), (1.24a)

with cij = cji. The quadratic Rayleigh function is given
by

R = 1
2d
ij q̇iq̇j , (1.24b)

with dij = dji. The dissipative contribution to the force,
using (1.23), is f idis = −dij q̇j . Using the pair of invariants
(1.24) to compute the equation of motion (1.21) yields

cij q̈j = −∂V
∂qi
− dij q̇j . (1.25)

The appropriate potential and Rayleigh functions
which give visocoelastic behavior are

U = 1
2E

ijklεijεkl, (1.26a)

R = 1
2V

ijklε̇ij ε̇kl. (1.26b)

The stress tensor is the sum of the derivatives of the
potential with respect to the strain tensor and of the
Rayleigh function with respect to the rate-of-strain ten-
sor,

σij =
∂U

∂εij
+

∂R

∂ε̇ij
(1.27)

and so using (1.26), yields

σij = Eijklεkl + V ijklε̇kl. (1.28)

We now see from (1.26b) that requiring the viscoelastic
theory to come from the pair of functions {U,R} means
that the elasticity and viscosity tensors automatically
come endowed with the set of symmetries

Eijkl = E(ij)(kl) = Eklij , (1.29a)

V ijkl = V (ij)(kl) = V klij . (1.29b)

II. MATERIAL DESCRIPTION

In this section we construct our relativistic viscoelas-
tic theory from the formalism outlined by Carter and
collaborators in [64, 66–69, 108]. The idea is to use a
matter manifold which is orthogonal to flow lines in the
(four dimensional) space-time manifold, and is nicely ex-
plained in [97, 107]. All material quantities live on the
matter space. Prescribing what the material quantities
are a function of is sufficient for constructing a theory for
perturbations with well defined physical interpretation.

This construction is easiest to work with via a (3+1)
decomposition of space-time, writing the metric as

gµν = γµν − uµuν , (2.1)

where γµν and uµ are subject to the orthogonality and
normality conditions

uµγµν = 0, uµuµ = −1. (2.2)
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An orthogonal tensor is one which has vanishing contrac-
tions on any of its indices with the time-like unit vector
uµ. The space-time covariant derivative of the time-like
unit vector defines the orthogonal extrinsic curvature ten-
sor,

Kµν ≡ ∇µuν , (2.3)

with the following properties:

Kµν = K(µν), uµKµν = 0. (2.4)

It is useful to note that the extrinsic curvature is given
by the Lie derivative of γµν along the time-like vector uµ,

Kµν = 1
2Luγµν . (2.5)

Under deformation, the coordinates of the material ud-
ergo displacements xµ → xµ + ξµ(xν). Under this de-
formation, the perturbation operator δ deforms as δ →
δ+Lξ, where Lξ is the Lie derivative operator in the direc-
tion defined by the material deformation vector ξµ. Two
perturbation operators are now defined; δE is the pertur-
bation with respect to some background space-time ge-
ometry, and δL is the perturbation which comoves with
the deforming medium. These operators are related via

δL = δE + Lξ. (2.6)

Respectively, these are Lagrangian and Eulerian varia-
tions. For example, the metric perturbation which co-
moves with deformations of the medium, δLgµν is given
in terms of the metric perturbation with respect to a
background space-time geometry, δEgµν , via

δLgµν = δEgµν + 2∇(µξν), (2.7)

since Lξgµν = 2∇(µξν).
What remains to be presented is the variation of the

(orthogonal) pressure tensor, and consequently the vari-
ation of the energy-momentum tensor which sources the
gravitational field equations. That requires a statement
to be made about the “physics” of the medium: we will
take the pressure tensor to be a function of strain and
rate-of-strain. This is the defining characteristic of a vis-
coelastic medium. Other choices are possible for the de-
pendancies of the pressure tensor: we have picked this
choice out of systematic simplicity. It is this choice which
can be altered to change the physics of the medium.

The result, which are the sources to the perturbed
gravitational field equations due to an isotropic viscoelas-
tic medium, is given by (2.43). But before that result, we
show how to derive the variation for a general medium.

A. Variation of the pressure and
energy-momentum tensors

The energy-momentum tensor of the medium is given
by

Tµν = ρuµuν + Pµν , (2.8)

where ρ is the energy density of the medium, and Pµν is
the orthogonal pressure tensor. Without ambiguity, (2.8)
can be varied to find

δLT
µν = uµuνδLρ+ δLP

µν + ρuµuνuαuβδLgαβ , (2.9)

where we used the expression (A1a) from the appendix
for δLu

µ. It is clear that we need input: we need to know
expressions for δLρ and δLP

µν . The first is given from
the conservation equation, as we now show. The second
(as one can imagine) is what we shall use the machinery
developed in appendix A 1 for; most of what we collected
and develop in the appendix are useful identities and re-
lationships for orthogonal tensors.

The energy-momentum tensor (2.8) is constrained by
the conservation equation, ∇µTµν = 0; using (2.8) this
yields(

ρ̇+ [ργαβ + Pαβ ]Kαβ

)
uν + γµαγ

ν
β∇µPαβ = 0.

(2.10)

And so, demanding that uν∇µTµν = 0 yields

ρ̇ = −[ργαβ + Pαβ ]Kαβ . (2.11)

This is recognisable as the usual fluid equation, albeit
written in terms of the extrinsic curvature. By direct
calculation one can compute the Lie derivative along the
time-like unit vector uµ of the density ρ and orthogonal
metric γµν ,

Luρ = ρ̇, Luγµν = 2Kµν , (2.12)

so that (2.11) can be rephrased as

Luρ = − 1
2

(
ργαβ + Pαβ

)
Luγαβ . (2.13)

Replacing the Lie derivative with Lagrangian variation
in (2.13) yields

δLρ = − 1
2 (ργαβ + Pαβ)δLgαβ , (2.14)

where we note that the prefactor of Luγαβ in (2.13) is
orthogonal. Therefore, using (2.14), (2.9) becomes

δLT
µν = δLP

µν − 1
2

[
uµuνPαβ + ρuµuνγαβ

−2ρuµuνuαuβ
]
δLgαβ . (2.15)

This is a general expression, and all we need now is
δLP

µν .
The important point we now need to come back to and

utlitise is that the pressure tensor, Pµν , is an orthogo-
nal tensor function of strain and rate-of-strain: here we
will draw together a lot of the machinery which we laid
out in appendix A 1 in order to compute its variation.
From that, we will compute the variation of the energy-
momentum tensor for a viscoelastic solid.

The spatial metric, γµν , quantifies the strain of the
medium. The rate-of-strain tensor, λµν , is the Lie deriva-
tive of the strain tensor in the time-like direction,

λµν ≡ Luγµν . (2.16)
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When the pressure is a function of strain, γµν , and rate-
of-strain, λµν , it follows that its variation is given by

δLPµν =
∂Pµν
∂γαβ

δLγαβ +
∂Pµν
∂λαβ

δLλαβ . (2.17)

We remind that λµν is related to the extrinsic curvature
tensor via (2.5). By (A11), (2.17) can be written as

δLPµν =
∂Pµν
∂gαβ

δLgαβ +
∂Pµν
∂Kαβ

δLKαβ . (2.18)

Carefully raising indices on the left-hand side of (2.18)
by using (A12), yields

δLP
µν = − 1

2

[
Eµναβ + Pµνγαβ − 4Pα(µuν)uβ

]
δLgαβ

−V µναβδLKαβ , (2.19)

where we defined the derivatives of the pressure tensor
with respect to strain and rate-of-strain as

∂P ρσ

∂γαβ
≡ − 1

2 (Eρσαβ + P ρσγαβ), (2.20a)

∂P ρσ

∂Kαβ
≡ −V ρσαβ . (2.20b)

The first three terms in (2.19) are exactly those present
for a perfect elastic solid. The last one is due to the
fact that the system is a function of the rate-of-strain in
addition to the strain. This is the viscous contribution.

Using our derived expression for δLP
µν (2.19) in the

general expression for δLT
µν (2.15) yields

δLT
µν = − 1

2

[
Wµναβ + Tµνgαβ

]
δLgαβ − V µναβδLKαβ ,

(2.21)

in which we defined a non-orthogonal “elasticity tensor”,
for convenience, as

Wµναβ ≡ Eµναβ + Pµνuαuβ + Pαβuµuν

−4u(αP β)(µuν) − ρuµuνuαuβ . (2.22)

Equation (2.21) is the first of our main results. This
expression acts as the source to the perturbed gravita-
tional field equations for a viscoelastic medium, since the
pressure tensor is a function of strain and rate of strain.

Respectively, Eρσµν and V ρσµν are the elasticity and
viscosity tensors: they are the material tensors, and
their components contain all material properties of the
medium which is being described. The material tensors
have the following symmetries in their indicies:

Eρσµν = E(ρσ)(µν) = Eµνρσ, (2.23a)

V ρσµν = V (ρσ)(µν). (2.23b)

The major symmetry of index interchange of the elastic-
ity tensor is due to the fact that the elasticity tensor is

related to the elastic potential energy, which is the co-
efficient of quadratic combinations of the strain tensor.
From (2.20), it is apparent that the material tensors are
orthogonal

uµE
ρσµν = 0, (2.24a)

uµV
ρσµν = uρV

ρσµν = 0. (2.24b)

We now show how to compute the components of
the mixed Eulerian perturbed energy-momentum tensor,
δET

µ
ν : these are the sources to the perturbed gravi-

tational field equations. The contravariant components
of the Eulerian perturbed energy-momentum tensor are
given in terms of the Lagrangian perturbed components
by

δET
µν = δLT

µν − LξT
µν , (2.25)

and so the components of the mixed Eulerian perturbed
energy-momentum tensor are given by

δET
µ
ν = gναδLT

µα − gναLξT
µα + TµαδEgνα, (2.26)

where we remind that

LξT
µν = ξα∇αTµν − 2Tα(µ∇αξν). (2.27)

The Lagrangian variation of the metric is given by (2.7),
and the Lagrangian variation of the extrinsic curvature
tensor is given by

δLKµν = δEKµν + 2u(αγβ)(µ∇ν)∇αξβ
−uαuβu(µ∇ν)∇αξβ − uα∇(µ∇ν)ξα
+2
[
(γα(µ − 1

2u(µu
α)Kβ

ν) + uβKα
(µuν)

]
∇(αξβ)

−uαRα(µν)βξ
β . (2.28)

The derivation of (2.28) is given in appendix A 2. Putting
(2.21) and (2.27) into (2.26), and using (2.7) and (2.28)
to replace the remaining Lagrangian variations, we then
obtain

δET
σ
λ = − 1

2 (Wσ
λ
µν + Tσλg

µν)δEgµν − V σλµνδEKµν

+TσαδEgαλ − V σλµν [2u(αγβ)(µ∇ν)∇αξβ
−uα∇(µ∇ν)ξα]− [Wσ

λ
αβ + 2V σλ

µνγ(α(µK
β)
ν)

+Tσλg
αβ − 2Tα(σgβλ)]∇αξβ

+[V σλ
µνuαR

α
(µν)β −∇βTσλ]ξβ . (2.29)

We used the orthogonality of the viscosity tensor, V µναβ .
A consequence of this orthogonality is that there are no
viscous contributions to the time-time and time-space
projections of δET

σ
λ. We will give explicit expressions

for the components later on.
The energy-momentum tensor satisifies the perturbed

conservation equation,

δE(∇µTµν) = 0. (2.30)
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This also acts like the equation of motion. For any
energy-momentum tensor, (2.30) yields

gνα∇µδETµα + Tµα∇µδEgνα
+TανδEΓµµα − TµαδEΓαµν = 0. (2.31)

Since δET
µν = δLT

µν − LξT
µν , this becomes

2gναT
β(µ∇µ∇βξα) − (∇βTµν)∇µξβ + gνα∇µδLTµα

= 2Tµ[αδEΓαν]µ − T
µα∇µδEgνα. (2.32)

The derived perturbed energy-momentum tensor (2.21)
can then be inserted. The resulting expression is highly
convoluted to write down explicitly, but we will do so for
an isotropic medium in the next section.

B. Isotropic medium

So far we have assumed nothing about the symmetries
of the medium. From now on we shall take the medium
to be spatially isotropic and homogeneous. This assump-
tion about the symmetry of the medium is not nessecary
for previous results to hold, for example (2.29). However,
without the assumption, the resulting equations become
highly unweildy. That said: since we are constucting a
model of a medium with an application in cosmology in
mind, assuming it to be isotropic is quite a sensible re-
striction (that said, the case of a cosmological anisotropic
perfect elastic medium was studied in detail in [99, 109]).

The assumption of isotropy is implemented in the
decomposition of the pressure and material tensors.
These tensors are decomposed into the most fundamental
isotropic tensor, which is also orthogonal. The only such
tensor is the spatial metric, γµν . What this means is that
the pressure tensor for an isotropic medium is given in
terms of the pressure scalar P as

Pµν = Pγµν . (2.33)

The decomposition of the material tensors, Eµναβ and
V µναβ , has a little more freedom. Given the assumption
of isotropy and the symmetries in their indicies (2.23),
the material tensors completely decompose as

Eµναβ = (β − P − 2
3µ)γµνγαβ + 2(µ+ P )γµ(αγβ)ν ,

(2.34a)

V µναβ = a(λ− 2
3ν)γµνγαβ + 2aνγµ(αγβ)ν . (2.34b)

There are four pieces of freedom here: {β, µ, λ, ν}. These
are the material properties, and are dimensionful; later
on we will obtain the dimensionless freedom in the theory.
The calculations we are about to perform will concrete
their physical interpretation, but for now the meaning of
these pieces of freedom are:

β : bulk

µ : shear︸ ︷︷ ︸
elastic moduli

,
λ : bulk

ν : shear︸ ︷︷ ︸
viscous moduli

. (2.35)

1. Components of δET
µ
ν

We will compute the components of the perturbed
energy-momentum tensor which sources gravitational
field perturbations

δEG
µ
ν = 8πGδET

µ
ν (2.36)

for an isotropic viscoelastic medium. Recall that we pre-
sented the covariant form of the components δET

µ
ν in

(2.29).
We compute in the synchronous gauge, on a confor-

mally flat FRW background; this means that we set
δEgµν = a2(τ)hµν with h00 = h0i = 0, and overdots
will denote derivatives with respect to conformal time τ .
In particular, the Hubble expansion is defined via

H = 1
3K

µ
µ = ȧ/a. (2.37)

The components of the deformation field are ξµ = (χ, ξi),
where uµξ

µ = χ. Even though we are working in the
synchronous gauge, our results will turn out to be gauge
invariant.

For the components of the Lagrangian perturbed met-
ric (2.7) we find

δLg00 = −2a2(χ̇+Hχ), (2.38a)

δLg0i = a2(ξi − ∂iχ), (2.38b)

δLgij = a2(hij + 2∂(iξj) + 2Hχδij). (2.38c)

For the components of the perturbed extrinsic curvature
(2.28) we find

δLK00 = 0, (2.39a)

δLK0i = 1
2a
[
ξ̈i +Hξ̇i

]
, (2.39b)

δLKij = 1
2a
[
ḣij + 2∂(iξ̇j) + 2H(hij + 2∂(iξj))

]
+ äχδij .

(2.39c)

Notice the existence of the äχδij-term in (2.39c); this will
have some interesting consequences.

The components of δET
µ
ν are computed from (2.29),

using the isotropic decompositions of the material tensors
given in (2.34) and yield

δET
0
0 = [ρ̇+ 3H(ρ+ P )]χ+ (ρ+ P )

(
1
2h+ ∂iξ

i

)
,

(2.40a)

δET
i
0 = −(ρ+ P )ξ̇i, (2.40b)

δET
i
j = −(β − 2

3µ)

(
1
2h+ ∂kξ

k

)
δij − µ

(
hij + 2∂(iξj)

)
−(λ− 2

3ν)

(
1
2 ḣ+ ∂k ξ̇

k + 2H[ 12h+ ∂kξ
k]

)
δij

−ν
(
ḣij + 2∂(iξ̇j) + 2H[hij + 2∂(iξj)]

)
−
(
Ṗ + 3βH+ 3λ äa

)
χδij . (2.40c)
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The final thing we want to do is to obtain the condi-
tions placed on (2.40) which leave behind components of
the Eulerian perturbed energy-momentum tensor which
are invariant under time diffeomorphisms, but not spa-
tial ones. In some sense, this is a highly desirable con-
cept when designing a model of a solid: intuitively, solids
fluctutate in space, but not time. One does not need to
impose this condition, but doing so enables highly desir-
able physical interpretation and some other very useful
properties which will become apparent.

To get the desired conditions, we imagine that off-
foliation diffeomorphisms are allowed, so that uµξ

µ 6= 0,
but we want them to have no effect on the system. By
inspecting the components (2.40), to decouple χ = uµξ

µ,
we require

ρ̇+ 3H(ρ+ P ) = 0, (2.41a)

Ṗ + 3βH+ 3λ(Ḣ+H2) = 0. (2.41b)

The first condition is just the continuity equation for the
energy density, and the second condition imposes an evo-
lution rule for the pressure. From the condition (2.41b),
one can obtain

(ρ+ P )
dP

dρ
= β + λ

Ḣ+H2

H
. (2.42)

Applying the conditions (2.41) to the components
(2.40) yields

δET
0
0 = (ρ+ P )

(
1
2h+ ∂iξ

i

)
, (2.43a)

δET
i
0 = −(ρ+ P )ξ̇i, (2.43b)

δET
i
j = −(β − 2

3µ)

(
1
2h+ ∂kξ

k

)
δij

−2µ

(
1
2h

i
j + ∂(iξj)

)
−(λ− 2

3ν)

(
1
2 ḣ+ ∂k ξ̇

k + 2H[ 12h+ ∂kξ
k]

)
δij

−2ν

(
1
2 ḣ

i
j + ∂(iξ̇j) + 2H[ 12h

i
j + ∂(iξj)]

)
.

(2.43c)

The terms on the first two lines of δET
i
j are the spatial

parts of the strain tensor: there is a diagonal contribu-
tion, and an off-diagonal contribution. On the third and
fourth lines we observe the spatial parts of the rate of
strain tensor (again, with diagonal and off-diagonal con-
tributions). It is relatively obvious that unless λ = 0,
the perturbed pressure will not be proportional to the
perturbed density – this is a classic hall-mark of a non-
adiabatic system which we will further elucidate later on.

Therefore, (2.43) are the expressions for fluctuations of a
relativistic non-adiabatic viscoelastic medium.

We will be performing a suite of small calculations to
build up intuition of terms in both the energy-momentum
tensor, and the equations of motion. The first thing we
want to point out is the connection between the expres-
sion for the perturbed pressure tensor of the relativis-
tic system (2.43c) and the corresponding expression for
a non-relativistic system, (1.11). By defining “stress”,
“strain” and “rate-of-strain” tensors,

σij ≡ δET ij , (2.44a)

εij ≡ 1
2h

i
j + ∂(iξj), ̂̇εij ≡ ε̇ij + 2Hεij , (2.44b)

the spatial part (2.43c) can be written in a rather sug-
gestive form:

σij = −βεkkδij − 2µ(εij − 1
3ε
k
kδ
i
j)

−λ̂̇εkkδij − 2ν(̂̇εij − 1
3
̂̇εkkδij). (2.45)

It certainly looks like the stress tensor is constructed from
the strain tensor and the rate of strain tensor, which
was the defining characteristic of a viscoelastic medium;
infact, of a Kelvin-Voigt solid.

The deformations of an isotropic medium come in two
types: compression and shear. These are characterized
by a strain tensor which is pure-diagonal and pure-off-
diagonal respectively. For deformations which are purely
of these types, (2.45) becomes

• Compression:

σij = −βεkkδij − λ̂̇εkkδij , (2.46)

• Shear:

σij = −2µ(εij − 1
3ε
k
kδ
i
j)− 2ν(̂̇εij − 1

3
̂̇εkkδij). (2.47)

This enables us to read off the physical interpretation
of the various free coefficients. Firstly, β is the coefficient
of elastic compression, which is also called the bulk mod-
ulus. Second, µ is the coefficient of elastic shear defor-
mations, the shear modulus. Third, λ is the coefficient of
viscous compression (viscous bulk modulus), and finally,
ν is the coefficient of viscous shear deformations (viscous
shear modulus).

2. Equation of motion

The equation of motion of the deformation vector is
given by γναδE(∇µTµν) = 0, where (2.43) is used for the
δET

µ
ν . This yields

(ρ+ P )[ξ̈i +Hξ̇i]− 3[βH+ λ(Ḣ+H2)]ξ̇i

−(λ+ 1
3ν)[∂i∂k ξ̇

k + 2H∂i∂kξk]− ν[∂k∂
k ξ̇i + 2H∂k∂kξi]

−(β + 1
3µ)∂i∂kξ

k − µ∂k∂kξi = Si[h], (2.48a)
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where we defined the source due to the metric perturba-
tions, Si[h], as

Si[h] ≡ (λ− 2
3ν) 1

2 [∂iḣ+ 2H∂ih] + ν
[
∂j ḣij + 2H∂jhij

]
+(β − 2

3µ) 1
2∂

ih+ µ∂jhij . (2.48b)

This should be compared with the non-relativistic equa-
tion of motion for a viscoelastic medium, (1.17).

3. Scalar-vector-tensor split

We will now perform a scalar-vector-tensor (SVT) split
[110, 111] of the components of the Eulerian perturbed
energy-momentum tensor, δET

µ
ν (2.43), and the equa-

tion of motion of the deformation vector, (2.48). This
will aid interpretation of the various terms.

We use the SVT split as defined in [97]. Schemati-
cally, the components of the metric perturbation, δEgµν ,
perturbed energy-momentum tensor δET

µ
ν , and defor-

mation vector ξµ, are split as

δEgµν −→ {h, η,HV, HT}, (2.49a)

δET
µ
ν −→ {δρ, vS, δP,ΠS, vV,ΠV,ΠT}, (2.49b)

ξµ −→ {ξS, ξV}. (2.49c)

We will frequently use the density contrast, δ ≡ δρ/ρ.
Under the SVT split, the perturbed gravitational field

equations become [97]

Hḣ− 2k2η = κδρ, (2.50a)

2kη̇ = κ(ρ+ P )vS, (2.50b)

kḢV = −2κ(ρ+ P )vV, (2.50c)

ḧ+ 2Hḣ− 2k2η = −3κδP, (2.51a)

ḧ+ 6η̈ + 2H(ḣ+ 6η̇)− 2k2η = −2κPΠS,(2.51b)

ḦV + 2HḢV = κPΠV, (2.51c)

ḦT + 2HḢT + k2HT = κPΠT. (2.51d)

with κ ≡ 8πGa2. The set of equations (2.50) are con-
straint equations, and (2.51) are evolution equations.

Gravity sources: scalar The scalar parts of the
components (2.43) are

δρ = −(ρ+ P )
(
kξS + 1

2h
)
, (2.52a)

vS = ξ̇S, (2.52b)

δP = −β
(
kξS + 1

2h
)
− λ
(
kξ̇S + 1

2 ḣ+ 2H[kξS + 1
2h]
)
,

(2.52c)

PΠS = 2µ
(
kξS + 1

2h+ 3η
)

+2ν
(
kξ̇S + 1

2 ḣ+ 3η̇ + 2H[kξS + 1
2h+ 3η]

)
.

(2.52d)

Gravity sources: vector The vector parts of the
components (2.43) are

vV = ξ̇V, (2.53a)

PΠV = 2µ
(
kξV −HV

)
+ 2ν

(
kξ̇V − ḢV + 2H[kξV −HV]

)
.

(2.53b)

Gravity sources: tensor The tensor part of the
components (2.43) is

PΠT = −2µHT − 2ν
(
ḢT + 2HHT

)
. (2.54)

Equation of motion: scalar The scalar part of the
equation of motion (2.48) is

(ρ+ P )[ξ̈S +Hξ̇S]− 3[βH+ λ(Ḣ+H2)]ξ̇S

+k2(λ+ 4
3ν)(ξ̇S + 2HξS)

+k2(β + 4
3µ)ξS = (ρ+ P )Sscalar

[h] ,(2.55a)

where the source due to scalar metric perturbations is

(ρ+ P )Sscalar

[h] = − 1
2k(β + 4

3µ)h− 4kµη

− 1
2k(λ+ 4

3ν)(ḣ+ 2Hh)− 4kν(η̇ + 2Hη).

(2.55b)

Equation of motion: vector The vector part of the
equation of motion (2.48) is

(ρ+ P )[ξ̈V +Hξ̇V]− 3[βH+ λ(Ḣ+H2)]ξ̇V

+k2ν(ξ̇V + 2HξV) + k2µξV = (ρ+ P )Svector

[h] ,

(2.56a)

where the source due to the vector parts of the metric
perturbations is

(ρ+ P )Svector

[h] = kµHV + kν(ḢV + 2HHV). (2.56b)

The most transparent set of equations we could use to
uncover the underlying physical behavior of the medium
are those for the tensor modes, since they are by far the
simplest. Using (2.54) to replace the tensor source of
(2.51d) yields

ḦT + 2[H+ 8πGa2ν]ḢT

+[k2 + 16πGa2(µ+ 2Hν)]HT = 0. (2.57)

It should now be clear that (2.57) is the equation of mo-
tion of a massive field, HT, with damping. The damping
has two contributions, each with a different physical ori-
gin. First, there is the usual Hubble damping, but there
is also a term controlled by the coefficient of shear vis-
cosity, ν. The mass-term also has two contributions: the
first is a Hubble-independent contribution from the coef-
ficient of shear elasiticity, µ. Secondly, the coefficient of
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shear viscosity comes in, but multiplied by the Hubble
expansion. In a flat background, (2.57) becomes

ḦT + 16πGνḢT + [k2 + 16πGµ]HT = 0, (2.58)

further elucidating the physical mechanisms at play.
The second thing we want to illustrate is the non-

adiabatic nature of the medium. A medium is adiabatic
if the pressure perturbation is specified entirely by the
density perturbation. Using (2.52a) to rewrite (2.52c),
we find

δP =

[
β

ρ+ P
− λ

ρ+ P
H(1 + 3dP

dρ )

]
δρ+

λ

ρ+ P
δ̇ρ.

(2.59)

It is clear that the pressure perturbation is determined by
the density perturbation, and the rate-of-change of the
density perturbation. The non-adiabaticity is controlled
by the coefficient of bulk viscosity, λ.

We can perform some simple manipulations to provide
evolution equations for the vector sources. First, insert-
ing (2.53a) into (2.53b) yields

PΠV = 2kξV(µ+ 2Hν)− 2µHV

+2ν(kvV − ḢV − 2HHV). (2.60)

Furthermore, inserting (2.53a) into (2.56a) yields

kξV(µ+ 2Hν) = 1
k (ρ+ P )Svector

[h] − νkvV + 3βH 1
kv

V

− 1
k (ρ+ P )(v̇V +HvV). (2.61)

Combining (2.60) and (2.61) yields

v̇V = −H
(

1− 3
dP

dρ

)
vV − 1

2

wk

1 + w
ΠV, (2.62)

which is the equation of motion for the vector part of
the velocity field, sourced by the vector part of the
anisotropic stress. We can obtain an evolution equation
for the vector anisotropic stress by differentiating (2.60),
which yields

P Π̇V + ṖΠV = 2µ(kvV − ḢV) + 2ν(kv̇V − ḦV

+2Ḣ[kξV −HV] + 2H[kvV − ḢV]).

(2.63)

Using the equation of motion (2.62) to replace v̇V, and
the gravitional equations (2.50c) and (2.51c) to replace

ḢV and ḦV respectively, the equation (2.63) becomes

P Π̇V +

[
Ṗ

P
− 2νḢ
µ+ 2νH

+
νk

ρ(1 + w)

]
PΠV

= 2

(
µk + νH+ 3νHdP

dρ
− 2ν2Ḣk
µ+ 2Hν

)
vV + 4νḢHV

+2κ

{
2

[
µ+

2ν2Ḣ
µ+ 2Hν

]∑
i

(ρi + Pi)v
V

i /k − ν
∑
i

PiΠ
V

i

}
.

(2.64)

The term on the last line, proportional to 2κ = 16πGa2,
contains sums over all matter species, including the vis-
coelastic medium. These terms arose after using the
gravitational equations (2.50c) and (2.51c) to replace ḢV

and ḦV respectively.

C. Propagation speeds and damping coefficients

The propagation speeds of the scalar and vector modes
of the deformation vector can be read off from (2.55a) and
(2.56a) as the coefficients of k2ξS and k2ξV respectively.
The damping coefficients can also be isolated, as the co-
efficients of kξ̇S and kξ̇V respectively. This process yields
the (dimensionless) scalar and vector sound speeds,

c2s ≡
β + 4

3µ

ρ+ P
+ 2Hds/k, (2.65a)

c2v ≡
µ

ρ+ P
+ 2Hdv/k, (2.65b)

and the (dimensionless) scalar and vector damping coef-
ficients,

ds ≡
λ+ 4

3ν

ρ+ P
k, (2.66a)

dv ≡
ν

ρ+ P
k. (2.66b)

The sound speeds (2.65) should be compared with those
we derived in the non-relativistic case, (1.19). Note that
the scalar and vector propagation speeds are related via

c2s =
4

3
c2v +

β + 2Hλ
ρ+ P

, (2.67)

and the scalar and vector damping coefficients are related
via

ds =
4

3
dv +

λk

ρ+ P
. (2.68)

The material properties of the medium can be found in
terms of the sound speeds and damping coefficients via

β = (ρ+ P )
[
c2s − 4

3c
2
v − 2H(ds − 4

3dv)/k
]
,(2.69a)

µ = (ρ+ P )
[
c2v − 2Hdv/k

]
, (2.69b)

λ = (ρ+ P )
[
ds − 4

3dv

]
/k, (2.69c)

ν = (ρ+ P )dv/k. (2.69d)

Using these definitions and the condition (2.42) one can
also obtain

dP

dρ
= (c2s − 4

3c
2
v) + (ds − 4

3dv)
Ḣ − H2

kH
. (2.70)

The relationship (2.70) will be very useful, especially
when obtaining the conditions under which material
properties are constant.
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III. EQUATIONS OF STATE FOR
PERTURBATIONS

The viscoelastic model of dark energy we have con-
structed can be written in the form of equations of state
for perturbations [46, 112]. These equations of state are
two functions (the entropy and anisotropic stress) which
enter into the perturbed fluid equations, and parameter-
ize all freedom in any dark energy or modified gravity
model. These two functions are equations of state when
they can be written in terms of fluid and metric variables
alone. Once these expressions are identified, the task of
computing observational signatures becomes simple.

The scalar perturbed fluid equations, for a general fluid
(which may have ẇ 6= 0, entropy, and anisotropic stress)
are given by [28](

δ

1 + w

)·
= −

(
kvS + 1

2 ḣ

)
− 3H

1 + w
wΓ, (3.1a)

v̇S = −H
(

1− 3
dP

dρ

)
vS +

k

1 + w

[
dP

dρ
δ + wΓ− 2

3wΠS

]
,

(3.1b)

where

wΓ ≡
(
δP

δρ
− dP

dρ

)
δ (3.2)

is the entropy perturbation. The equations of state
for perturbations prescribes the entropy and anisotropic
stress in terms of variables which are already evolved.
Put another way, we want to eliminate ξS from the en-
tropy and anisotropic stress. We note that the scalar
fluid equations (3.1) are gauge invariant.

From the scalar perturbed fluid variables (2.52a) and
(2.52b) we have

kξS = − δρ

ρ+ P
− 1

2
h, ξ̇S = vS. (3.3)

The expressions (3.3) can be used in the pressure per-
turbation (2.52c), which can then be used to compute
the entropy (3.2), as well as the scalar anisotropic stress
(2.52d) whilst making use of (2.42) and (2.70). This pro-
cess yields

wΓ = (ds − 4
3dv)k

−1
[
H2−Ḣ
H δ − (1 + w)(kvS + 1

2 ḣ)

]
,

(3.4a)

wΠS = 3
2

(
dP
dρ − c

2
s + [ds − 4

3dv]
H2−Ḣ
kH

)
×
[
δ − 3(1 + w)η − dv

kc2v
(1 + w)( 1

2 ḣ+ kvS + 3η̇)

]
.

(3.4b)

The expressions (3.4) are equations of state for pertur-
bations; specifically, the entropy and scalar anisotropic

stress perturbation for a viscoelastic medium. The pref-
actors may look cumbersome, but they allow for an in-
tuitive understanding of the freedom in the equations of
state for perturbations. For example, if the vector damp-
ing coefficient switches off, dv = 0, the relevant equations
of state which describes a medium with this given phys-
ical property can be obtained quickly. This allows us
to place physical restrictions on the medium with ease.
The measurement of the sound speeds and damping coef-
ficients {c2s , c2v , ds, dv} will allow measurement of the ma-
terial properties {β, µ, λ, ν} via (2.69).

In terms of the material properties {β, µ, λ, ν}, the
equations of state for perturbations are

wΓ =
λ

ρ+ P

[
H2−Ḣ
H δ − (1 + w)(kvS + 1

2 ḣ)

]
, (3.5a)

wΠS = −2
µ+ 2Hν
ρ+ P

[
δ − 3(1 + w)η

]
+

2ν

ρ

[
kvS + 1

2 ḣ+ 3η̇

]
. (3.5b)

The expressions for the entropy (3.4a) and anisotropic
stress (3.4b) are gauge invariant. To show this we must
perform a gauge transformation and show that all gauge
artifacts cancel out. We first recall the following trans-
formation rules for the fluid and metric perturbations
from the synchronous gauge to the conformal Newtonian
gauge:

δρ = δ̂ρ− ρ̇ζ, (3.6a)

vS = v̂ − ζk, (3.6b)

ḣ = −6(Φ̇ + ΨH) + 2
[
k2 − 3(Ḣ − H2)

]
ζ, (3.6c)

η = Φ +Hζ, (3.6d)

η̇ = Φ̇ +HΨ + (Ḣ − H2)ζ, (3.6e)

where the hatted variables are those in the conformal
Newtonian gauge, and ζ is the gauge artifact. The build-
ing blocks of fields in the entropy and anisotropic stress
are gauge invariant; performing a gauge transformation
from the synchronous to conformal Newtonian gauge re-
veals that

H2−Ḣ
H δ − (1 + w)(kvS + 1

2 ḣ)

= H2−Ḣ
H δ̂ − (1 + w)

(
kv̂ − 3(Φ̇ + ΨH)

)
,

(3.7a)

δ − 3(1 + w)η = δ̂ − 3(1 + w)Φ, (3.7b)
1
2 ḣ+ kvS + 3η̇ = kv̂. (3.7c)

All gauge artifacts have dropped out automatically. In-
terestingly, notice that (3.7c) is just the velocity field in
the conformal Newtonian gauge. Therefore, we conclude
that the equations of state for perturbations (3.4) are
gauge invariant.
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In a non-expanding background, H = 0, and the scalar
fluid equations (3.1) can be combined to yield a second
order evolution equation for density perturbations,

δ̈ + k2[wδ + wΓ− 2
3wΠS] = − 1

2 (1 + w)ḧ. (3.8)

On a flat background, the viscoelastic equations of state
for perturbations (3.4) become

wΓ = (ds − 4
3dv)δ̇/k, (3.9a)

wΠS = 3
2

(
w − c2s

)
×
[
δ − 3(1 + w)η +

dv

kc2v
(δ̇ − 3(1 + w)η̇)

]
.

(3.9b)

So, putting the flat-space viscoelastic equations of state
for perturbations (3.9) into (3.8) yields

δ̈ + kdsδ̇ + k2c2s δ

= − 1
2 (1 + w)ḧ+ 3k2(1 + w)(c2s − w)

[
η + dv

c2v
η̇
]
.

(3.10)

This shows us that density waves are damped, with
damping magnitude ds, and propagate with speed c2s .
This vindicates c2s as being a sound speed. A simple ob-
servation to make from (3.10) is that viscosity plays no
role in the sound speed of the viscoelastic medium: it is
coefficients of elasticity which generate the sound speed,
whilst the coefficients of viscosity only modify the damp-
ing of density waves. This should be compared with,
e.g., the “viscosity parameter”, c2vis, introduced in [90] to
parameterize somewhat adhoc modifications to the per-
turbed fluid equations.

The important point to take away from the equations
of state for perturbations (3.4) is that the theory has
prescribed which gauge invariant combinations are used
to construct wΓ and wΠS.

IV. TIME VARIATION OF THE PHYSICAL
PROPERTIES

Constraining free functions of time with cosmological
data is very hard to do, and so it is useful to have a con-
sistent parameterization in which all of the freedom is
contained within constants. A priori, all material prop-
erties, sound speeds, and damping coefficients are func-
tions of time. If any of these lose their time variation, or
if it is prescribed in some way, the theory tells us what
that means for the time variation of the other parameters.
This is seen most easily by the relationships (2.42) and
(2.69). We shall see that our material model can consis-
tently have all its freedom parameterized by constants,
but that comes with important consistency conditions
which we can derive.

Clearly, a few choices are possible; we will elucidate
two cases which seem rather natural. In our first case
we will take the sound speeds and damping coefficients
{c2s , c2v , ds, dv} to be constant, and let the material prop-
erties {β, λ, µ, ν} vary in time. The second case is exactly
the opposite: the material properties are constant, and
the sound speeds and damping coefficients are time vary-
ing.

As for the cosmological background, the equation of
state parameter, w = P/ρ, is of paramount importance
in dark energy cosmology, as is its possible time varia-
tion; parameterizations have been devised which aim to
capture this possible variation for various models. Our
model of a viscoelastic medium gives us the allowed time
variation “for free” as we will show. However, our focus is
to show under what circumstances w becomes constant,
and what subsequent conditions get placed on the rela-
tionship between the material properties.

Since P = wρ and Ṗ /ρ̇ = dP/dρ, without loss of gen-
erality one can obtain

ẇ =
ρ̇

ρ

(
dP

dρ
− w

)
. (4.1)

Using our expression for Ṗ which came from requiring
time diffeomorphism invariance, (2.41b), we find

ẇ = −3

ρ

[
βH+ λ(Ḣ+H2)−H(1 + w)wρ

]
. (4.2)

This is an evolution equation for the equation of state pa-
rameter, w. The particular combination of the material
parameters, β and λ, that give ẇ = 0 is

βH+ λ(Ḣ+H2) = H(1 + w)wρ. (4.3)

When ẇ = 0, the relationship (2.70) becomes the con-
straint

(Ḣ − H2)(ds − 4
3dv) = (w − c2s + 4

3c
2
v)kH. (4.4)

In what follows we will keep w as constant, and then
take the sound speeds and damping coefficients to be con-
stant, and then the material properties to be constant,
and derive the susequent consistency conditions. The
physical implications of this are summarised in Figure 1.

A. Constant sound speeds and damping coefficients

We now proceed with the first of our special cases:
when all of the sound speeds and damping coefficients
are constant,

ḋs = ḋv = ċ2s = ċ2v = 0, (4.5)

the only way to satisfy the constraint (4.4) for arbitrary
Hubble expansions H is to set

ds − 4
3dv = 0, (4.6a)

w − c2s + 4
3c

2
v = 0. (4.6b)
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Figure 1: Schematic illustration of what happens to the
physics of the material when either the sound speeds and
damping coefficients are constant, or the material properties
are constant in the viscoelasic material model. In both cases
there is anistropic stress, but forcing the sound speeds and
damping coefficients to be constant means that the medium
is adiabatic. These points are discussed in detail in Section
IV.

After imposing the constancy conditions (4.6) and ẇ = 0,
the viscoelastic equations of state for perturbations (3.4)
become

wΓ = 0, (4.7a)

wΠS = 3
2

(
w − c2s

)[
δ − 3(1 + w)η

]
+ 3

2dsk
−1(1 + w)

[
kvS + 3η̇ + 1

2 ḣ

]
. (4.7b)

We now see that the medium is adiabatic, and there are
three constants which parameterize the scalar perturba-
tions of the viscoelastic medium: {w, c2s , ds}. We stress
again that it is consistent to have these parameters be-
ing constant. It is interesting to note that the viscoelastic
anisotropic stress (4.7b) can be written in terms of the
anisotropic stress for a perfectly elastic medium via

wΠS

vis = wΠS

ela +
ds

c2s − w
k−1wΠ̇S

ela, (4.8)

where

wΠS

ela = 3
2

(
w − c2s

)[
δ − 3(1 + w)η

]
. (4.9)

B. Constant material properties

Our second special case is where we allow the sound
speeds and damping coefficients to be time dependent,
but constrain the material properties {β, µ, λ, ν} to be
constant. From the condition (4.4) we see that this is

respected by the equations of state we presented in (3.5),
and repeat here for completeness:

wΓ =
λ

ρ+ P

[
H2−Ḣ
H δ − (1 + w)(kvS + 1

2 ḣ)

]
, (4.10a)

wΠS = −2
µ+ 2Hν
ρ+ P

[
δ − 3(1 + w)η

]
+

2ν

ρ

[
kvS + 1

2 ḣ+ 3η̇

]
. (4.10b)

There are now four constants which parameterize the evo-
lution of the medium, {w, λ, µ, ν}. The medium has re-
tained its non-adiabaticity, and it is controlled by the
coefficient of bulk viscosity.

V. VISCOSITY AND COUPLED DARK
ENERGY THEORIES

We have constructed the gravitational field equations
that describe a viscoelastic medium. An interesting ques-
tion is to ask what types of gravitational theories, of a
more conventional type, yield field equations which have
a similar structure to those for a viscoelastic medium. In
previous work, we uncovered a correspondance between
the perfect elasticity theory and time diff. invariant mas-
sive gravity theories [113].

To uncover what type of gravity theory could yield
something which looks like our viscoelastic theory, we
will begin by understanding precisely how the viscous
terms modify the perfect elastic theory (which we already
know corresponds to a Lorentz violating massive gravity
theory). One of the obvious differences is that the perfect
elastic theory could be constructed from a Lagrangian,
but the viscous term cannot. This is a well known issue
– dissipative systems do not come from a Lagrangian.

In this section, we will consider a theory which contains
conventional matter, contributing an energy-momentum
tensor Tµν to the gravitational field equations, and a
viscoelastic medium which is the sole contributor towards
the dark energy-momentum tensor Uµν .

As seen in the short review we gave in Section I B,
the equations of motion for dissipative systems can be
constructed from a pair of invariants: the potential and
Raleigh functions. Here we will write down specific forms
of these invariants for the relativistic viscoelastic solid
we have been discussing. The energy-momentum tensor
can be constructed from a pair of quadratic invariants,
namely the Lagrangian for perturbations, L{2}, and the
generalized Rayleigh function, R{2} via

δLU
µν = −1

2

[
4
δ̂L{2}

δ̂δLgµν
+ 4

δ̂R{2}

δ̂δLKµν

+ UµνgαβδLgαβ

]
.

(5.1)



15

The appropriate invariants that describe the relativistic
viscoelastic medium are

L{2} = 1
8W

µναβδLgµνδLgαβ , (5.2a)

R{2} = 1
8V

µναβδLKµνδLKαβ . (5.2b)

Using (5.2) to compute (5.1) gives precisely the energy-
momentum tensor we presented in (2.21). The tensor
Wµναβ is exactly that which we defined in (2.22). If
we are using this formalism in which the Rayleigh func-
tion R{2} is used to compute the viscous contributions to
δLU

µν , then the viscosity tensor V µναβ gains some more
symmetries in its indices:

V µναβ = V (µν)(αβ) = V αβµν . (5.3)

This additional symmetry is only important for
anisotropic media.

It is not possible to redefine L{2} to incorporate the
viscous contributions that are encoded in R{2}, in order
to be able to compute δLU

µν from the single quadratic
invariant L{2} in the conventional manner, namely via

δLU
µν = −1

2

[
4
δ̂L{2}

δ̂δLgµν
+ UµνgαβδLgαβ

]
. (5.4)

That said, we can “reverse engineer” the action for per-
turbations that gives the required field equations after
using the variational principle. To see this, suppose that
we have an action for perturbations given by

S{2} =

∫
d4x
√
−g

[
( 1
8πGδEG

µν − δETµν − δEUµν)δEgµν

+2ξ(µ(δE∇ν)Uµν − δEFµ)

]
, (5.5)

up to the addition of total derivatives. The variational
derivatives of the action S{2} with respect to the fields
δEgµν and ξµ yields

δ̂

δ̂δEgµν
S{2} = δEG

µν − 8πG[δET
µν + δEU

µν ],(5.6a)

δ̂

δ̂ξν
S{2} = δE(∇µUµν)− δEF ν . (5.6b)

Demanding the vanishing of the variational derivatives
(5.6) in accord with the principle of least action yields
the field equations

δEG
µν = 8πG[δET

µν + δEU
µν ], (5.7a)

δE(∇µUµν) = δEF
ν . (5.7b)

These are perturbed gravitational field equations, where
the dark energy-momentum tensor satisifies a perturbed
sourced conservation equation. These sources (or, one
can think of them as being forces) are due to a coupling
in the action between the fields that constructed δEF

ν ,
and the ξµ-field: it was the ξµδEF

µ-term.

We can now use this way of thinking to isolate the
term in the action which gives rise to the viscoelastic
behavior. We will start from the Lagrangian for pertur-
bations that gives the elasticity theory, (5.2a). The dark
energy-momentum tensor is constructed from the single
quadratic invariant L{2} given by (5.2a) using the con-
ventional expression (5.4) and yields

δLU
µν = − 1

2

[
Wµναβ + Uµνgαβ

]
δLgαβ . (5.8)

In the case of perfect elasticity the energy-momentum
tensor satisfies the conservation equation, δE(∇µUµν) =
0. In anticipation, we modify the conservation equation
to include the influence of a force,

δE(∇µUµν) = δEF
ν . (5.9)

If we want the field equation (5.9) to be identical to that
for the viscoelastic medium, namely (2.30) with (2.29)
for δET

µ
ν , then we require the force term to be given by

δEF
ν = 1

2∇µ(V µναβδLKαβ). (5.10)

Putting (5.10) for δEF
µ into the last term of the action

(5.5) and integrating by parts, yields

S{2} ⊃ S[visc]
{2} =

∫
d4x
√
−g
[
V ρσµνδLKµν∇ρξσ

]
,

(5.11)

and using (2.7), this can be written as

S
[visc]
{2} =

1

2

∫
d4x
√
−g
[
V ρσµνδLKµν(δLgρσ − δEgρσ)

]
.

(5.12)

The second manipulation highlights the fact that the “ex-
tra term” is related to the difference between two metric
perturbations. We could use (A21) to replace δLKµν with
δEKµν and the appropriate derivatives of ξµ. Putting
these peices together, the action for perturbations that
yields the viscoelastic theory is

S{2} =

∫
d4x
√
−g
[
♦2R+ 16πG♦2Lm

− 1
4W

µναβδLgµνδLgαβ + V ρσµνδLKµν∇ρξσ
]
,

(5.13)

where ♦nX ≡ 1√
−g δ

n(
√
−g X) is the measure-weighted

variation operator.
The outcome of this is that we can think of the vis-

coelastic theory in two ways:

1. The first is as a prescription of an energy-
momentum tensor, which requires the pair of
quadratic invariants: the Lagrangian for perturba-
tions L{2} and the Rayleigh function R{2}.



16

2. The second, is to think of the theory as a coupled
massive gravity theory: the viscous term acts like a
dissipative force on the right-hand-side of the con-
servation equation.

This line of reasoning is useful as a tool-box for con-
structing consistent generalizations and modifications of
the viscous field equations; although, it must be said that
one would lose the neat physical interpretation of the
theory describing a material. Only using the metric, the
most general force will be constructable from an expres-
sion of the form

δEF
µ = Cµαβ(0) δLgαβ + Cµλαβ(1) ∇λδLgαβ

+Cµλσαβ(2) ∇λ∇σδLgαβ + · · · . (5.14)

The tensors Cµαβ···(n) contain all freedom in the theory:
the number of components of these tensors prescribes
the number of free parameter or functions needed to
characterise the theory. Truncating to the first three
terms above, the term in the Lagrangian for perturba-
tions which will yield the source to the perturbed conser-
vation equation is

ξµδEF
µ = Cµαβ(0) ξµδLgαβ + Cµλαβ(1) ξµ∇λδLgαβ

+Cµλσαβ(2) ξµ∇λ∇σδLgαβ
= (Cµαβ(0) −∇λCµλαβ(1) )ξµδLgαβ

−Cµλαβ(1) ∇λξµδLgαβ
−(∇λCµλσαβ(2) )ξµ∇σδLgαβ
−Cµλσαβ(2) ∇λξµ∇σδLgαβ . (5.15)

To go between the equalities we integrated by parts.

VI. DISCUSSION

In this article we reviewed, developed, and advocated
material models of dark energy. As should be clear from
our presentation, these are rather different in nature from
the conventional scalar field theories or modified gravity
theories – the material models are built in order to in-
clude the effects of a physical medium.

In the development of the material models, our main
results are

• (2.21), the variation of the energy-momentum ten-
sor,

• (3.4), the viscoelastic equations of state for pertur-
bations.

We have seen that it is natural for the medium to
have constant equation of state parameter, w. This
makes comparison against observational data much sim-
pler than if w were to be time varying. We also saw
that the medium can have constant sound speeds and
damping coefficients, but that enforces adiabaticity of

the medium (anisotropic stress is retained). On the
other hand, if the material properties are constant in-
stead of the sound speeds and damping coefficients, then
the medium remains non-adiabatic, where the size of the
entropy perturbation is controlled by the coefficient of
bulk viscosity alone. These two cases are summarised in
Figure 1.

The use of a Rayleigh function may aid the systematic
construction of coupled dark energy models: it will cer-
tainly allow all of the freedom to be identified from all
theories with given field content.

An interesting (and, depending on ones point of view,
important) issue we have thus far shyed away from is the
question of the nature of the material we are supposedly
describing. That is: do we expect there to be some gen-
uine viscoelastic solid pervading the Universe which is
the direct cause of cosmic acceleration? If the answer
is “yes”, then one can begin to ask questions about the
micro-physical origin of the material. The idea of “frus-
tated domain wall networks” was pursued for some time
[94, 95, 97, 114–116], but only as a single example of a
possible realization of the medium (the idea somewhat
relied on an observationally incompatible value of the
dark energy equation of state parameter, w); of course,
there may be some other set of structures in the Universe
whose coarse grained dynamics are similar to a viscoelas-
tic solid. If the answer is “no”, then the formalism de-
veloped here should be thought of as a useful gate-way
for importing relevant, consistent, and useful mathemat-
ical descriptions from solid-state physics into cosmology,
in our example. This, rather useful, agnostisism is rife
in the implementation and useage of generalized descrip-
tions of cosmological perturbations, in, for example, the
“PPF” [36, 39], “EFT” [38, 43, 44], and equations of
state for perturbations [40, 41] approaches. Each of these
approaches may be employed in two “modes”: (1) to
describe the dynamics of perturbations for an explicitly
given theory, and (2) as a prototype for the evolution of
some unknown theory whose dynamics can be described
by the particular flavour of the formalism which is writ-
ten down. These two “modes of use” are something of an
asset to these generalized descriptions, and are the ana-
logue of the agnostisism outlined above. We do not offer
a definitive opinion, and prefer to keep an open mind as
to the possible “reality” of the material.

The theoretical basis for material models of dark en-
ergy outlined here is only the beginning of a programme
of research centering around these models. In addition
to delving deeper into uncovering issues of a more theo-
retical nature, such as the behavior of the medium in the
strong-field regime, we will need to ascertain the observa-
tional compatibility of the material models. For instance,
one should note that the theory naturally prescribes new
evolution rules for vector (2.64) and tensor (2.57) modes,
which should result in priors on the allowed values of
the material properties. The way of writing all results
as equations of state for perturbations (see Section III)
makes this rather simple for implementation into numer-
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ical codes (such as CAMB [117]). As pointed out in the
Introduction, we are preparing a paper which will con-
tain the observational constraints on the sound speed for
a perfectly elastic solid [103].

The nature of the dark energy, and the possibility of
non-GR gravitational physics is one of the major open
problems in modern cosmology. The material models de-
veloped in this article are a novel alternative to the ubiq-
uitous scalar field models, and provide an almost unique
way in which consistent modifications to gravity can be
written down which (a) are parameterized by a small
number of constants, and (b) have direct physical inter-
pretation.
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Appendix A: Variations

1. Variations and orthogonal tensors

A covariant tensor is one with only lower indices, and
an orthogonal tensor is one which has vanishing contrac-
tions with the time-like unit vector uµ on any of its in-
dices. After decomposing the metric gµν = γµν − uµuν ,
one can obtain the following useful identities for varia-
tions:

δLu
µ = 1

2u
µuαuβδLgαβ , (A1a)

δLuµ = (γαµ − 1
2uµu

α)uβδLgαβ , (A1b)

δLγµν = δLgµν + 2u(µ(γαν) − 1
2uν)u

α)uβδLgαβ ,

(A1c)

δLg
µν = −gµαgβνδLgαβ , (A1d)

δLΓαµν = gαβ(∇(µδLgν)β − 1
2∇βδLgµν). (A1e)

Another useful identity is

∂γµν
∂γαβ

= γ(αµγ
β)
ν . (A1f)

One should be careful when raising and lowering in-
dices; for any symmetric 2-tensor Aµν , the perturbed

contravariant components are related to the perturbed
covariant components via

δLA
µν = gµαgβνδLAαβ − 2Aα(µgν)βδLgαβ . (A2)

For any quantity constructed as

δLBµν =
∂Bµν
∂γαβ

δLγαβ , (A3)

the identity (A1c) can be used to replace the variation of
the strain δLγαβ , giving

δLBµν =

[
∂Bµν
∂γαβ

+ 2
∂Bµν
∂γρσ

u(ρ(γ
α
σ) − 1

2uσ)u
α)uβ

]
δLgαβ .

(A4)

Note that in the case where ∂Bµν/∂γρσ is orthogonal on
all indices, the “complicated” term above vanishes. For
a symmetric orthogonal tensor Cµν ,

∂Cµν
∂γαβ

=
∂(γµργνσC

ρσ)

∂γαβ
= γµργνσ

∂Cρσ

∂γαβ
+ 2C(α

(µγ
β)
ν).

(A5)

This will be useful in computing the contravariant com-
ponents of orthogonal tensors from the covariant ones.

If Xµν is a covariant orthogonal tensor function of
strain, then

δLXµν =
∂Xµν

∂γαβ
δLγαβ =

∂Xµν

∂γαβ
δLgαβ , (A6)

where the fact that term ∂Xµν/∂γαβ is orthogonal on
all indices has been used after (A1c) was inserted. Using
(A5) and (A6), we see that the contravariant components
of the variation of an orthogonal tensor function of strain
are given by

δLX
µν =

[
∂Xµν

∂γαβ
+ 2Xα(µuν)uβ

]
δLgαβ . (A7)

If Yµν is an orthogonal covariant tensor function of strain
and rate of strain, then

δLYµν =
∂Yµν
∂γαβ

δLγαβ +
∂Yµν
∂λαβ

δLλαβ . (A8)

In what follows we will be concentrating on computing
δLY

µν , and learning how to replace the variation of the
rate of strain with space-time fields.

The variation of the rate of strain tensor is given by

δLλµν = 2δLKµν = 2∇µδLuν − 2uαδLΓαµν . (A9)

And so it follows that

∂Yµν
∂λαβ

δLλαβ =
∂Yµν
∂Kαβ

δLKαβ , (A10)
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meaning that (A8) becomes

δLYµν =
∂Yµν
∂γρσ

δLgρσ +
∂Yµν
∂Kαβ

δLKαβ . (A11)

Since Yµν is an orthogonal tensor, using the identity (A1f)
we obtain

∂Yµν
∂γαβ

= γµργνσ
∂Y ρσ

∂γαβ
+ 2γ(α(µY

β)
ν), (A12a)

∂Yµν
∂λαβ

= γµργνσ
∂Y ρσ

∂λαβ
. (A12b)

The expression (A11) will prove very useful.

2. Variation of the extrinsic curvature tensor

We will now show how to compute δLKαβ in terms of
its Eulerian perturbation, δEKαβ , and the corresponding
contributions due to the deformation vector ξµ. Since
by definition Kµν = ∇µuν , the components of the La-
grangian perturbed extrinsic curvature tensor are given
by

δLKµν = ∇(µδLuν) − uαδLΓαµν . (A13)

Using (A1b) and (A1e) for the components of the per-
turbed time-like vector and Christoffel symbols in (A13)
yields

δLKµν = 1
2 [Kµνu

αuβ + 2γαµK
β
ν ]δLgαβ

+ 1
2 [uαuβu(µγ

σ
ν) + γαµγ

β
νu

σ

−2γ(αµu
β)uνu

σ]∇σδLgαβ . (A14)

The projections of (A14) are

2γµλγ
ν
πδLKµν = γαλγ

β
πu

σ∇σδLgαβ
+
[
Kλπu

αuβ + 2γαλK
β
π

]
δLgαβ

= γαλγ
β
πLuδLgαβ +Kλπu

αuβδLgαβ ,

(A15a)

− 2uνδLKµν =
[
1
2u

αuβγσµ − 2γ(αµu
β)uσ

]
∇σδLgαβ

= 1
2γ

σ
µ∇σ(uαuβδLgαβ)−K(α

µu
β)δLgαβ

−2uλγ(αµ∇λ(uβ)δLgαβ), (A15b)

uµuνδLKµν = 0. (A15c)

Replacing the Lagrangian variation of the metric with the
Eulerian variation and corresponding Lie derivative, (2.7)
elucidates all contributions in the Lagrangian perturbed
extrinsic curvature tensor (A14) due to the deformation
field:

δLKµν = 1
2 (Kµνu

αuβ + 2γαµK
β
ν)[δEgαβ + 2∇(αξβ)]

+ 1
2 k
σαβ

µν [∇σδEgαβ + 2∇σ∇(αξβ)], (A16)
where we defined, for convience, the tensor

kσαβµν ≡ (uαuβu(µγ
σ
ν) + γαµγ

β
νu

σ − 2γ(αµu
β)uνu

σ).

(A17)

It is also enlightening to write the Lagrangian pertur-
bations δLuµ and δLΓαµν in terms of their Eulerian per-
turbations and the contribution due to the deformation
field. After using (2.7) in (A1b) and (A1e) we find

δLuµ = δEuµ

+2(γαµ − 1
2uµu

α)uβ∇(αξβ), (A18a)

δLΓαµν = δEΓαµν

+∇(µ∇ν)ξα +Rα(µν)βξ
β , (A18b)

where the Eulerian perturbations are given by the usual
expressions,

δEuµ = (γαµ − 1
2uµu

α)uβδEgαβ , (A19a)

δEΓαµν = gαβ(∇(µδEgν)β − 1
2∇βδEgµν), (A19b)

and the background Riemann tensor is defined as

(∇ν∇β −∇β∇ν)ξµ = Rβµναξ
α. (A20)

Hence, using (A18) in (A13) gives the desired expression,
namely

δLKµν = δEKµν + 2u(αγβ)(µ∇ν)∇αξβ
−uαuβu(µ∇ν)∇αξβ − uα∇(µ∇ν)ξα
+2
[
(γα(µ − 1

2u(µu
α)Kβ

ν) + uβKα
(µuν)

]
∇(αξβ)

−uαRα(µν)βξ
β . (A21)

Note that the third and fourth line drops out on a flat
background (since there, Kµν = 0 and the Riemann ten-
sor vanishes). We gave explicit expressions for the com-
ponents of (2.28) in (2.39).
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