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ABSTRACT  

Multi hydroxyl end functional polyethylenes have been prepared with controlled molecular weight, 

microstructure and functionalization.  These materials, designed as interfacially-active blend additives 

for polar interfaces, are thermally stable up to ~ 250 °C, and to have similar crystallinity and dynamics 

to their unfunctionalised homopolymers analogues.  The polymers segregated strongly to silicon oxide 

interfaces, with adsorbed layers forming spontaneously at annealed polymer interfaces, having surface 

excess concentrations approaching 2 Rg, and a maximum areal density of approximately 0.6 adsorbed 

chains per nm
2
.  This interfacial activity is achieved almost without detriment to the bulk physical 

properties of the polymer as evidenced by thermal analysis, quasi-elastic neutron scattering and small-

angle neutron scattering (SANS).  SANS experiments show little evidence for aggregation of the di-

hydroxyl functionalized polymers in blends with PE homopolymers, which is thought to explain why 

these additives have particularly strong interfacial adsorption, even at relatively high concentrations.  A 

modest level of segregation of the additives to exposed blend surfaces was also seen, particularly when 

the additive molecular weight was significantly lower than that of the matrix.  We attribute this to a 

combination of the relatively low molecular weight of the additives and the marginally lower surface 

energy associated with deuterated polymers.   
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MANUSCRIPT TEXT  

Introduction 

Polyethylene (PE) has an exceptionally diverse portfolio of applications, from large volume 

commodity products like packaging to bespoke engineering plastics such as prosthetic joints.  This 

breadth of applications results from the range of material properties that may be accessed by different 

polymerization routes.  The number, length and hierarchical order of branches in different polyethylenes 

(e.g. LDPE, LLDPE, HDPE etc.) have significant consequences for the melt rheology and solid state 

properties of these materials even though they are chemically very similar.
1
  Despite the wide variety of 

bulk properties, the surface and interfacial properties tend to be relatively constant. For instance, the 

liquid surface tensions of linear (67 kg/mol) and branched (7kg/mol) PE are very similar at 35.7 and 

34.3 mJ m
-2

 respectively.
2
  Polyethylene is chemically quite inert, which for many applications is 

desirable, but does tend to restrict the options for modifying the surface chemistry. The surface can be 

oxidised using relatively aggressive chemistry
3
 or functionalized by plasma or discharge treatments.

4-6
   

These methods can be used to increase hydrophilicity, however it is also known that the surfaces are not 

particularly durable as the high surface energy groups generated by such treatments will tend to migrate 

into the bulk of the polymer, being replaced by relatively low surface energy PE.  A notable limitation 

of these treatments is that, while they can effectively modify external surfaces of polymers, there is no 
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scope to modify interactions between PE and solids at buried interfaces, such as are present in filled 

polymers. 

We have in recent years shown that multiple end functional groups, particularly hydrophobic groups 

on polymer chains, represent a new class of surface modifying additive.
7-16

 A key feature of these 

additives is that the judicious placement of the functional groups on the chain ends can deliver an 

exceptional degree of surface modification with a very small proportion of hydrophobic component in 

the polymer.  This generic structure is very effective in terms of contributing to surface modification 

whilst having a relatively small tendency towards aggregation.  Although the majority of applications 

for a blending approach to surface modification would utilize semi crystalline polymers, the vast 

majority of studies relating to this are focused on amorphous polymers, notably polystyrene.
17-19

  One of 

the few examples of polyethylene surface modification by end functional polymers was reported by 

Walters et al
20

 for fluorocarbon functionalised oligomer additives. Recently, however, we have shown 

that the same approach may also be applied to polyethylene additives above their entanglement 

molecular weight by using PE with multiple hydrophobic functional groups.
21

 The fact that these 

functionalised polymers were above the entanglement molecular weight is very significant, since this 

means that the additives themselves have similar bulk properties to the polymers that they might be used 

to modify. Attempts to reproduce this behavior for hydrophilic polar additives have had limited success.  

Zhu and Hirt
22

 showed that migration to a polypropylene surface is possible for a low molecular weight 

commercial hydrophilic additive (Irgasurf HL 560), but not for PEG in the same matrix.  This is because 

most hydrophilic additives such as PEG have a higher surface energy than the polyolefin matrix, and 

therefore would not spontaneously migrate to this surface. The exception reported by Zhu and Hirt had a 

sufficiently low molecular weight for surface segregation to be entropically favorable,
23

 and had a short 

alkyl chain, which would also favour surface segregation by virtue of having a lower surface energy 

than polypropylene.   

Here, we demonstrate that hydrophilic polar end functional polyethylenes can migrate to and adsorb 

strongly at polar interfaces of blended films, thereby modifying the interaction between polar materials 
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and polyethylene.  Furthermore, we show that this can be achieved with minimal perturbation to the 

bulk properties of the matrix polymer.  The synthesis of functionalized polyethylenes and influence of 

the polar functional groups on the thermal stability, crystallinity, mobility, aggregation and interfacial 

activity of these polymers as additives in blends with homopolymer polyethylene is discussed.  We 

anticipate that additives based on this structure may have considerable utility in the stabilisation of 

composites and nanocomposites.   

 

Experimental 

Synthesis of Multi-hydroxyl end functional PE additives. 

We adopt a similar notation to describe these materials as we used in our earlier work on fluorocarbon 

end functional polyethylenes; namely “xOHPy”, where x is the number of OH hydroxyl groups per 

functionalized chain end, and P denotes the polymer species of nominal mass y kg/mol.  Hence 

2OHdPE22 is a deuterium labeled polyethylene with 2OH groups per chain end and a molecular weight 

of approximately 22 kg/mol, and PE45 is an unfunctionalised hydrogenous PE homopolymer of 45 

kg/mol. 

For convenience, the synthesis of multi-hydroxyl functionalized polyethylenes is broken down into 

two main sections.  Firstly, the synthesis of a protected multifunctional end-capping group is shown in 

scheme 1.  These end-capping groups were reacted via their Br group with the living diphenylethylene 

end of a polybutadiene (PB) chain, and the chain was then saturated with deuterium and deprotected to 

produce a partially deuterated multi-hydroxyl end-functional polyethylene chain (scheme 2).  Using this 

approach the fraction of deuteration [D]/([H]+[D]) in the resulting polyethylene is approximately 

0.4.
21,24

  These partially deuterated polyethylenes therefore have sufficient deuterium to provide contrast 

with hydrogenous polyethylene in nuclear reaction analysis and small-angle neutron scattering 

experiments, yet also have sufficient protons for their dynamics to be characterized by quasi-elastic 

neutron scattering.   Further details and typical yields for each reaction are included as supporting 

information.  (S.I.1.  Synthesis of multi-end functional polyethylenes) 
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Scheme 1.  Synthesis of protected end-capping agents for functionalizing polyethylene. 
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Scheme 2.  Synthesis of hydroxyl functionalised polyethylene additives. 

 

Thermal analysis 

The thermal stability for the polymers was measured by thermogravimetric analysis (TGA) using a 

Perkin Elmer Pyris 1 TGA instrument.  Analysis was carried out on carefully dried samples (~10 mg) 

from room temperature up to 350 °C and heating rate of 10 °C per minute.  Typical data, showing the 

extrapolated temperature for the onset of degradation are shown as the supporting information (S.I.2).  

The melting temperature Tm and enthalpy of melting, Hm was characterized by differential scanning 

calorimetry (DSC). Heating scans were carried out at 10 °C per minute using a TA instruments Q1000 

DSC on samples which had first been raised to well above the melting temperature and then cooled at 

40 °C per minute to ensure a consistent thermal history. Samples of approximately 10 mg were weighed 
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with a precision of 10
-3

 mg in a differential balance to enable quantification of the enthalpy of melting 

relative to an indium reference standard (Tm = 156.61 °C, Hm = 3.296 kJ mol
-1

 ) 

 

Quasi elastic neutron scattering (QENS) 

QENS experiments were carried out on the IRIS time-of-flight backscattering spectrometer at ISIS 

Neutron and Muon Facility, Rutherford Appleton Laboratory, UK.  QENS is a unique way of probing 

dynamics of polymer molecules
25-27

 and soft matter
28,29

 in general, local as well as segmental relaxations 

as a function of length scale. Furthermore, the mobility of different parts of a polymer molecule can be 

identified by selective deuteration.  IRIS was run using the 002 reflection of a pyrolytic graphite 

analyser which affords an energy resolution of 17.5 eV, and a standard measurement energy window 

of ± 0.5 meV. This setting allows us to probe motions at timescales ranging from 2 ps to 200 ps, and 

based on the angular coverage of the detectors, length scales ranging from 4 Å to 16 Å. QENS 

measurements were run as a function of temperature on pure samples of the multi-end functionalized 

polyethylenes.  Polymer samples were melt pressed at 120 °C into 65 mm × 30 mm rectangular sheets 

of an average thickness of 0.15 mm in order to minimize multiple scattering effects.  The films were 

rolled into annular aluminium cans to ensure full detector coverage.   

 

Small angle neutron scattering (SANS) 

The extent of aggregation of end functional polyethylenes in blends with polyethylene homopolymers 

was determined by small-angle neutron scattering.  SANS experiments were carried out using the 

SANS2D diffractometer on TS2 at ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, 

UK. Collimation was fixed at 6 m to the sample and the detector was fixed at 6 m from the sample, with 

vertical and horizontal detector offsets of 170 mm and 100 mm respectively.  An 8 mm diameter beam 

of neutrons of wavelength 1.75-16.25 Å were scattered by samples of 30 mm x 10 mm x 1 mm 

polyethylene blends, melted into Quartz cuvettes, and thermostatted to 120 °C to ensure that they were 
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molten during data acquisition.  Data were obtained over a scattering vector range 0.0035 < Q / Å
-1

 < 

0.5 in a single measurement. 

 

Nuclear reaction analysis (NRA) 

NRA experiments were carried out at Durham University using a National Electrostatics Corporation 

5SDH Pelletron accelerator.  Thin film samples of PE blends were prepared by co-dissolving and spin-

coating as described previously.
21

  The films appeared smooth to the naked eye, but AFM topography 

scans (included as supporting information S.I.3) clearly revealed the crystalline structure, and the r.m.s. 

roughness was of the order 5-10 nm, as opposed to <1 nm that would be expected for amorphous spin-

cast films of this thickness.  A 0.7 MeV 
3
He

+
 beam was brought onto the samples of the grazing 

incidence angle of 80° to the sample normal, and backscattered reaction products were analysed at 170° 

to the incident beam in Cornell geometry. Due to the relatively low levels of deuteration in the partially-

labelled blended samples, it was necessary to make 2-5 measurements on separate spots of each sample 

in order to obtain good statistical quality of data without artifacts arising due to beam damage. The total 

beam charge delivered to any one spot was restricted to 3 C. The nuclear reaction analysis technique
30

 

application of ion beam analysis to polymer materials has been reviewed elsewhere.
31,32

 

 

Results  

Synthesis and Characterization of Multi-Hydroxyl End Functional Polyethylenes 

Scheme 2 shows the chemical structure of the multi hydroxyl end functionalised polyethylenes. It 

should be noted that although these polyethylenes were produced by hydrogenation of  polybutadiene, 

the route to making these materials differs significantly from that used for our earlier work on mult-

hydroxyl end functionalized polybutadienes.
15

 The reason for this is that the previously reported 

functionalized  polybutadienes were  end-functionalized by a click reaction and the end groups were not 

stable with respect to catalytic hydrogenation or deuteration. In the present work we therefore  used  an 

approach to end capping  polybutadiene, followed by saturation with hydrogen or deuterium, which we 
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have previously found to be a robust method for the production of analogous fluorocarbon end 

functionalised polyethylenes.
21

   

Table 1. Summary of SEC, NMR and thermal analysis data for polybutadiene precursor polymers and 

their saturated, end-capped PE analogues.
*
   

Polymer  

Sample 

Mn
a 

/ 

kg 

mol
-1

 

Mw
a 

/ kg 

mol
-1

 

% 

1,4
b
 

 % end 

capping 

% 

saturation 

Tm
 

/ °C 

Hm 

J/g
c
 

Td  

/ °C 

2OHdPE6 6,100 6,400 92.7 89 98 103.9 102.7 245 

2OHdPE11 11,300 11,800 92.8 90 97 106.3 116.1 245 

2OHdPE18 18,300 19,200 92.9 83 98 107.3 103.9 245 

2OHdPE22 22,500 23,300 93.1 85 99 106.9 83.9 246 

4OHdPE8 7,500 7,900 93.0 97 98 104.1 98.4 267 

4OHdPE11 10,900 11,703 92.9 92 98 107.8 109.8 262 

4OHdPE18 17,000 17,900 92.6 85 97.5 109.1 112.8 283 

4OHdPE30 30,200 32,500 92.3 87 98 105.1 79.4 258 

hPE  

(high 1,4) 

44,100 45,300 93.5 N/A 99.5 113.4 97.9 246 

hPE20:80 

(low 1,4) 

34,300 33,000 80.0 N/A 99.5 50.0 47.5 250 

a
% 1,4-microstructure obtained from the NMR results (

1
H C6D6)  

b
 Molecular weight determined using triple detection SEC   

 

                                                 

*
 Number average (Mn) and weight average (Mw) molecular weights were determined by SEC in THF of 

the polybutadiene precursor.  The fraction of 1,4 PB enchainment and % end-capping were determined 

by 
1
H NMR in C6D6.  The percentage end-capping was determined by high temperature NMR in d-

xylene.  The melting temperature, Tm, enthalpy of melting, Hm and decomposition temperature Td were 

determined by DSC and TGA. 
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The data summarized in table 1 show that the synthetic methodology is appropriate for the synthesis 

of end functionalized polyethylenes with very high degree of control over molecular weight, dispersity, 

microstructure and a high degree of end-capping. 

The melting temperature, Tm, and enthalpy of melting values, Hm were found to be ~110 °C and 

~100 J/g, for most PEs, with no strong dependence on molecular weight or functionality.  The largest 

single factor governing these values is the nature of PB enchainment prior to saturation, which dictates 

the final proportion of ethyl pendant groups on each PE chain.  This is exemplified by the hPE20:80 

sample, which was deliberately prepared to contain a greater proportion of 1,2-enchainment than would 

be achieved by carrying out the polymerization in pure hexane.  The modification to the microstructure 

was achieved by the inclusion of a very small amount of THF (0.3 mol THF per mol of sec-BuLi 

initiator) to the reaction mixture.  This relatively small perturbation to the in-chain microstructure was 

sufficient to reduce the melting enthalpy by a factor of 2, and reduce the melting temperature by 

approximately 60 °C.   

 

Dynamics in the solid state 

Quasi elastic neutron scattering probes the dynamics of atoms in the polymer sample by measuring the 

exchange in momentum and energy between atoms and the neutrons.  Due to the strong interaction of 

the neutron with hydrogen atoms (incoherent scattering cross-section ~80 barns for 
1
H, 2 barns for 

2
H 

and zero for C and O), the majority of the signal comes from the mobility of the protons.  An array of 

detectors surrounding the sample records the angle and energy dependent intensity of scattered neutrons 

S(Q,E) defined by the double differential scattering cross section,  E2 .  Figure 1 shows typical 

data for the dependence of the QENS signal on scattering vector Q (defined as 2/lengthscale) and 

functionalisation.  Zero energy transfer indicates elastic scattering events (convolved by the 

instrumental resolution), i.e any motion which is too slow to be captured, whereas the broadening is the 

QENS signal arising from protons moving in the timescale of the spectrometer. The data show a strong 

dependence on Q, indicating that within the accessible time window the motion of protons in the sample 

is clearly distinguishable over different length scales.  It is also notable that for all the values of Q, the 

hPE homopolymer and the 4OHdPE11 multi-end functional polymer have very similar dynamics. This 
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indicates that the dynamics of the multi hydroxyl functionalized polyethylenes are very similar to their 

unfunctionalised counterparts.  

 

Figure 1.  Dynamic incoherent structure factor, S(Q,E) for 4OHdPE11 and hPE at 75 °C. 

 

The data were normalized to incoming beam intensity and detector efficiency corrections applied 

based on a vanadium standard measurement, using the MODES v3 software available at ISIS
33

.  Data 

analysis was performed in the time domain, by Fourier transforming the measured intensity S(Q,) to 

obtain the intermediate scattering function, I(Q,t) using the DAVE analysis package made available by 

NIST Center for Neutron Research, NCNR.
34

  The characteristic relaxation time, , as a function of 

temperature and scattering vector was obtained by fitting a Kohlrausch Williams Watts (KWW) 

stretched exponential function to the intermediate scattering function, 
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 where A and B correspond to the mobile and immobile fractions of protons within the time scale 

of the QENS experiment and  is the stretching exponent, which for most polymers is around 0.4-0.6.   
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Small-angle scattering 

  Figure 2 shows typical small neutron scattering data and fits in which the aggregation of end 

functionalised polyethylenes into micelles can be quantitatively simulated using the random phase 

approximation.
35

  In the simplest case, assuming no aggregation, the effective aggregation number of 

each chain, Nagg, would be exactly 1, and the structure factor for the polymer chain P(Q) is simply the 

Debye scattering function, 

  uu
u

QP 







 1exp

2
)(

2
      (2) 

where u =  2
gQR  and Rg is the radius of gyration of the PE, given by 

2
1

6

0121.0
/ 








 w

g

M
nmR        (3) 

In order to avoid over-parameterization of the fits to the small angle scattering data, the Rg values 

were fixed at the unperturbed dimensions obtained from equation 3.  If the multiple-hydroxyl groups on 

the polymers on the chain ends caused aggregation, then we would expect that these aggregates would 

take the form of an inverse micelle with a small hydroxyl-rich core surrounded by a corona of polymer 

chains.  It is relatively straightforward to modify the structure factor to allow for inverse micelles by 

representing them as star shaped polymers, where the number of arms is equal to Nagg.
7
  For much larger 

aggregates, as would be expected in the event of phase separation, the scattering intensity at low Q 

would be dominated by the interface between aggregates in the additive-rich phase and the surrounding 

matrix-rich phase.  The data in figure 2, which are typical of all of the data obtained for blends 

containing 2OHdPEy, show very little evidence for aggregation; i.e. Nagg is little more than 1.  Here, we 

have presented the data and fits for the highest concentrations additives, which have the highest density 

of functional groups that we were able to study.  The impact of the Nagg on the scattering data is shown 

in some quantitative simulations as supporting information in S.I.4.     

Unfortunately we were unable to melt any of the 4OHdPEy samples into the cuvettes used for these 

experiments before significant degradation became evident through the browning of the polymers.  The 
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fact that these blends did not flow as readily as the 2OHdPEy blends could be consistent with a higher 

viscosity, suggesting that aggregation may in fact occur for the polymers bearing the larger functional 

groups. 

 

Figure 2.  SANS data and fits for 3 blends of 2OHdPEy in hPE.  Data are offset by successive factors of 

10 below 16% 2OHdPE6 for clarity.  The solid curves are the fits obtained with Nagg values of 1.22, 

1.59 and 1.67 for 16% 2OHdPE6, 12% 2OHdPE11 and 8% 2OHdPE18 respectively. 

 

Nuclear Reaction Analysis 

The extent to which the multi-hydroxyl end functional polymers could adsorb to and modify the 

interface of a model polar surface was characterized by nuclear reaction analysis. The silicon wafers had 

a native oxide layer of approximately 3 nm silicon oxide, and are therefore representative of the surface 

of the silica nanoparticles and fibers.
36

  Typical data for these experiments are shown in figures 3 and 4.  

The data detected at lowest energy (in this case ~channel 1309) corresponds to nuclear reactions 

occurring close to the sample surface, and events occurring deeper within the film are detected at higher 

energy of backscattered proton.
30

 The D(
3
He,p) nuclear reaction cross section varies smoothly over the 

energy range for which data were obtained, but is most sensitive to deuterium near the sample surface.  

The peak in the data seen around channels 1320-1330 therefore corresponds to a considerable 

accumulation of the deuterated additive at a buried interface.  Data were analysed using the Surrey 
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University Datafurnace
37

 software, which was used to simulate the NRA spectra for a simple slab like 

concentration profile and fit these spectra to the experimental data by varying the composition and 

thickness of the layers.  A typical concentration versus depth profile is shown in the inset.  The fits to 

the data are the smooth curves shown in figures 3 and 4. In some cases a smaller peak at the low channel 

end of the spectrum was also seen, which can only be due to the small surface excess at the exposed 

surface of the film.   

 

Figure 3. Nuclear reaction analysis data and fit for 16% 2OHdPE18 in hPE.  The solid curve is the fit to 

the experimental data corresponding to the concentration profile in the inset.   

1310 1320 1330
0

100

200

300

0 100
0.0

0.5air

surface

substrate

interface

co
u

n
ts

channel


(

2
O

H
d

P
E

1
8

)

 z / nm



 16 

 

Figure 4. Nuclear reaction analysis data and fits for 16% 4OHdPE8 (open circles) and 2OHdPE6 (solid 

squares, offset by 200 counts for clarity).  The curves are the fits to the experimental data. 

 

Discussion 

Materials 

The purpose of our present work is to determine the influences of molecular weight and functionality 

on the bulk and interfacial properties of multi-hydroxyl end functional polyethylenes and blends of these 

materials with unfunctionalized polyethylene. Characterization of the polymers (shown in table 1) 

demonstrates that the methodology is appropriate to prepare gram quantities of very well defined 

polyethylenes with a high degree of precisely controlled functionality.  

It is worth noting that for these polymers, the end functional groups are a very small fraction of the 

total volume of the polymer chains.  We calculate that the contribution of the 2OH and 4OH functional 

groups (including the diphenylethylene groups) to the polymer chain volume is approximately 400 Å
3
 

and 700 Å
3
 respectively, and is dominated by the aromatic moieties present.

38
  By comparison, even the 

lowest molecular weight polymer prepared, 2OHdPE6 has a volume of approximately 11000 Å
3
 per 

polymer chain. 
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The single greatest factor affecting the bulk physical properties is the variation in chain 

microstructure, rather than the functionalization.  Assuming as a first approximation that Tm decreases 

linearly with increasing 1,2 content in the PB precursor, we obtain a value of nearly 5 °C reduction in 

Tm per percent of 1,2 enchainment.  Although this is a crude approximation, it is reassuring to note that 

this figure would suggest a melting temperature of approximately 140 °C for perfectly linear PE in the 

absence of any 1,2 enchainment.  This is consistent with the range of melting temperatures reported for 

linear high density polyethylenes,
39

 and is consistent with the observation in earlier QENS experiments 

that end group effects in unmodified PE are usually only apparent for oligomers.
40

  Although the 

correlation between Tm and microstructure is not clear within the uncertainty of these parameters, it is 

worth noting that when the microstructure is consistent to within 1%, a variation in Tm of approximately 

5 °C might be expected.  Our thermal analysis results are similar to our earlier results for fluorocarbon 

end functionalized polyethylenes,
21

 and Hm of ~100 Jkg
-1

 corresponds to approximately 40% 

crystallinity.  The similarity between Tm values, irrespective of functionalization is a very desirable 

feature of the multi-hydroxyl functionalized polymers, since it indicates that they could be used as 

additives over a wide range of concentration without significant detriment to the bulk material 

properties of their blends. 

All of the polymers synthesised exhibited a very similar degree of thermal stability irrespective of 

microstructure. This is important for future applications of these materials since it clearly shows that 

there is a window of well over 100 °C between the melting point and the point at which the materials 

become unstable in which samples can be processed or allowed to reach equilibrium.  

 

Solid State Dynamics of Pure Polyethylenes and Additives 

Fitting the I(Q,t) data using equation 1 quantified the dynamics of the materials and provided some 

insight into the impact of incorporating end-functional groups into polymer chains that are expected to 

be too bulky be incorporated into crystalline domains.  In most of our measurements,  values were 
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found to be 0.6 ± 0.1, and subsequently this parameter was fixed at 0.6 throughout.  Typical results for 

these fits are shown in figure 5, and a rigorous analysis and interpretation of the QENS data is included 

as supporting information in S.I.5.  For the purposes of the present discussion, the key observations are 

that our results for the multi-hydroxyl end functionalized polymers are consistent with those obtained by 

other groups for unfunctionalised homopolymers, 
40-42

 and are dominated by the localized motion of the 

amorphous domains.   

 

Figure 5. Stretched exponential fits to derived I(Q,t) data for 4OHdPE11  as a function of temperature: 

25 °C (red squares), 50 °C (green triangles), 75 °C (blue circles) and 100 °C (black diamonds).  Results 

are for Q = 0.48 Å
-1

. 

 

Aggregation of multihydroxyl end-functional PEs in blends 

Aggregation (e.g. micellisation) of surface or interface modifying polymers in molten blends is 

normally an undesirable quality, as this phenomenon is likely to hinder the migration of an additive to 

an interface.  Furthermore, aggregation of polar end functional polymers is challenging to predict a-

priori as the polar groups have anisotropic interactions, and have the further complication of being 

attached to a polymer chain, and the ‘solvent’ in this case is also polymeric; a factor generally well 

handled by solubility parameter methods.
38

  The aggregation behavior several 2OHdPEy materials in 

0 40 80 120 160
0.7

0.8

0.9

1.0

I(
Q

,t
)

t / ps



 19 

blends with hPE was therefore followed by small-angle neutron scattering. Deuterium labeling is known 

to give rise to a small positive Flory–Huggins interaction parameter, χhd, which was established by 

Nicholson et al.
43

 for similarly labeled PE homopolymers to be 

 

231014.1 f         (4) 

where f is the fractional deuteration previously established for dPEs made in an identical way to be 

approximately 0.4.  According to Flory Huggins theory,
44

 the criterion for phase separation due to 

incompatibility of the polymer chains is a negative value for the second derivative of the free energy of 

mixing,  

2

2

1 1 2 2

1 1 2
0

(1 )

mix

e

G

N v N v v



  

 
   

 
     (5) 

where Ni and vi are the degree of polymerization and repeat unit volume of the i
th

 component and ve is 

a reference volume, often given as the geometric mean of the repeat unit volumes.  Phase separation 

would be most probable for the highest molecular weight polymer pair (28 kg/mol dPE, 45 kg/mol hPE, 

where N1 and N2 are highest) and the highest volume fraction of additive (0.16).  We estimate that 

spontaneous phase separation would only occur for  > 0.007.  In fact the influence of isotopic 

substitution on  is more than an order of magnitude smaller than this ( ~ 0.0002) and had almost no 

discernible effect on the calculated differential scattering cross section when compared to  = 0 (see  

information S.I.6).  Although one should be wary of using Flory Huggins theory to predict phase 

boundaries, the fact that the interaction parameter is more than an order of magnitude too weak to 

indicate that phase separation would occur for the most incompatible blend demonstrates that isotopic 

substitution is unlikely to have any discernible impact on aggregation measured in these blends. 

The results for Nagg as a function of composition and additive molecular weight presented in figure 6 

demonstrate that aggregation is not very significant for these additives in blends with a homopolymer.  

In fitting the small angle neutron scattering data, the radii of gyration were fixed at the calculated 
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unperturbed dimensions and excellent fits to the data were found with the small aggregation numbers of 

1 to 3.  For such small aggregates, little stretching of the chains away from the inverse micelle core 

would be expected for low values of Nagg.
45

  The observation of aggregation numbers slightly greater 

than one does suggest that there is some attraction between the polar end functional groups when 

dispersed in a non-polar PE matrix, possibly resulting in dimer formation.  Nevertheless, there was no 

evidence for large aggregates as we have seen previously for 4×C8F17-fluorocarbon end functionalised 

polystyrenes.
7
   

 

Figure 6.  Aggregation number of multi-hydroxyl end functional polyethylenes as a function of 

molecular weight and concentration. 

 

The scatter in the observed values for the aggregation number is largest for the lower concentrations 

of additive, which arises from the fact that these partially labeled polymers are moderately weakly 
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volume present in the beam.  In some samples, after heating to above the melting point, it was noted that 
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true values, but not to the extent that the presence of large aggregates could be justified. Interestingly, 

there was no significant trend in either molecular weight or concentration on the aggregation of these 

materials.  The 2OH end functional PEs have a very similar degree of endcapping (80 to 90%), so the 

number of end functional groups per unit volume will scale inversely with Mn.  It follows that the 16% 

2OHdPE6 sample has approximately 50 times the concentration of functional groups as the 1% 

2OHdPE18 sample. Since both materials have Nagg values of close to one, it can be concluded that the 

2OH groups have little effect on aggregation of end functional polyethylenes, and that our blends exist 

as a single phase in the melt. 

 

Surface and Interfacial Activity of xOHdPEy in blended films 

Having established that the xOHdPEy additives have very similar bulk properties to their 

unfunctionalized counterparts and exhibit, we now turn our attention to their surface and interfacial 

properties.  In all blended films there was a substantial accumulation of the multi-hydroxyl 

functionalized PE additive at the film – silicon interface, indicated by the major peaks in proton yield 

(counts) versus energy (channel) shown in figures 3 and 4.  Surprisingly, there was also in many cases a 

smaller peak in the spectra around channel 1310, corresponding to the film surface.  In other words, the 

nuclear reaction analysis experiments are unambiguously indicating some accumulation of the polar end 

functional additive at the film surface. This unexpected feature suggests the possibility to use these 

additives to deliver polar functionality to film surfaces.  The reason for this effect is not completely 

clear, however we note that surface enrichment is most evident for the lowest molecular weight 

additives, regardless of their functionalization.  This suggests that segregation to the air surface of 

blended films may be driven by the difference in molecular weight, which has previously been 

established by Hariharan et al in isotopic blends.
23

  In the case of the materials in this study, both their 

relatively low molecular weight and their labeling with deuterium could be expected to contribute to the 

modest levels surface activity observed.  Other explanations seem less likely for our blended films: 

oscillating concentration profiles are often generated at intermediate stages surface or interfacially 



 22 

directed spinodal decomposition.
46,47

  However, given the likely variation in diffusion coefficients 

between different additives it would seem improbable that each would so often arrive at the same final 

state after the same period of annealing.  Partial dewetting of the film above a wetting layer of 

xOHdPEy, could also yield such data as the ion beam would detect the exposed interfacial wetting layer 

as being at the sample surface.  This phenomenon was shown by Stamm et al for strongly adsorbing 

end-functional polystyrenes, where annealed films would dewet, but could leave a monolayer of 

adsorbed end functional polymer on the substrate surface.
48

  However, our AFM analysis of the film 

surfaces reveals only a modest variation in film height, with r.m.s. surface roughness of the order of 10 

nm, which is not consistent with dewetting of a film of ~100 nm total thickness.  Furthermore, our AFM 

measurements showed no evidence of gaps or pinholes of sufficient depth for the substrate interface to 

be exposed.  The well resolved peak in the raw data corresponding to the excess of xOHdPEy at a buried 

interface also provides compelling evidence for the integrity of the polymer film over macroscopic 

areas.  If there were significant variations in effective film thickness overlaying the interfacial excess 

layer due to dewetting or other defects, then this major peak would be smeared out and the region of the 

spectrum corresponding to the substrate interface would be much more diffuse than the air surface of the 

film.  The irradiated area of the sample by the ion beam is defined by the 2.4 mm diameter beam spot, 

which is projected as an ellipse at grazing incidence.  After repetition over multiple spots to minimize 

beam damage, the irradiated area is of the order of 1 cm
2
, and it is clear that the apparent depth of the 

substrate interface is well defined. 

The most convenient measure of the extent of interfacial activity is the surface (or interfacial excess), 

defined here as  

 dzzz
bz

b 
0

)(*          (6) 

where (z) is the depth dependent volume fraction and b is the volume fraction of additive in the bulk 

of the film and zb is the depth at which the volume fraction of additive reaches a minimum.  Results for 

the derived values of interfacial excess as a function of bulk additive concentration and additive chain 
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molecular weight, y, are shown in figures 7 and 8 for 2OHdPEy and 4OHdPEy respectively.  There is a 

clear increase in z* as a function of b for every xOHdPEy, which is in keeping with our previous 

observations for other end-functional additives.
7,8,21

  However, in contrast to many of our other studies, 

we observe that z* typically grows almost linearly with increasing b up to a maximum value at b = 

0.16.  In earlier studies where there was also evidence of significant micellisation, z* was seen to 

increase sharply with initial increasing concentration, before reaching a plateau at some value, which 

was consistent with the onset of aggregation.  In our present work there is very little evidence for 

aggregation of 2OHdPEy, so it is not perhaps surprising that the behavior is different.  In fact, when the 

total amount of 2OHdPEy present in the film is taken into account, the observed behavior corresponds 

to a very high proportion of the additive accumulating at the film-substrate interface, leaving a relatively 

small proportion of the additive in the bulk.   

Interestingly, the addition of two further OH groups per additive polymer chain does little to enhance 

interfacial segregation, and may even decrease the maximum values of z* obtained.  Generally these 

data show little increase in z* when increasing b from 0.08 to 0.16, in contrast to the near linear 

increase seen for 2OHdPEy.  We speculate that this is indicative of aggregation of the 4OHdPEy 

additive, which could reduce the rate at which this additive can diffuse to the substrate interface.  By 

analogy to surfactant systems, the point at which aggregation occurs demarks the concentration at which 

further increases to the additive concentration have little effect on the activity, and therefore little 

influence on the equilibrium interfacial concentration of additive.  This hypothesis is also consistent 

with the greater viscosity of the materials that was apparent from our unsuccessful attempts to melt 

these blends into quartz cuvettes for the SANS experiments.   

It is noticeable that for all of the xOHdPEy materials, over a broad range of concentration, there 

appears to be a maximum in the measured surface excess in the middle of the molecular weight range 

that was tested.  At low molecular weights, the increase in z* with increasing Mw is largely due to the 

fact that z* measures the total amount of adsorbed polymer, and not the number of chains per unit area.  
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At higher molecular weights, the trend reverses as adsorption of high molecular weight chains is 

opposed by the conformational entropy loss associated with surface confinement.  Our previous work on 

fluorocarbon end functional polyethylenes demonstrated that crystallization of the blended films below 

Tm had little effect on the measured surface excess, and therefore we were able to make some 

comparison between our experimental data and predictions from SCFT models in which the degree of 

polymerization of the functional polymer and matrix are defined and the affinity of the functional group 

for an interface may be varied.
49

   The observed maximum in surface excess is qualitatively reproduced 

with approximate agreement between surface excess values by SCFT models when the attraction of the 

functional groups for the substrate interface is approximately 6 kBT (see supporting information S.I.6).    

 

 

Figure 7.  Interfacial excess as a function of 2OHdPEy molecular weight and concentration. 
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Figure 8.  Interfacial excess as a function of 4OHdPEy molecular weight and concentration. 
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interfacial excess can be expressed in terms of adsorbed chains per unit area, .  In this format, (figure 

9) commonly used in surfactant science literature, the influence of molecular volume is seen to 

dominate the behavior and  decreases monotonically with increasing molecular weight.  Finally, it can 

be seen that the maximum areal density achieved is approximately 0.6 chains of 2OHdPE6 per nm
2

.  

This value appears to be limited by the PE chain dimensions rather than the estimated size of the 

functional group, which we estimate could pack at more than twice this density at saturation.  

 

Figure 9.  Comparison of interfacial excess behavior for 2OHdPEy (solid symbols) and 4OHdPEy (open 

symbols) expressed as adsorbed chains per nm
2
. 
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that functionalization had very little impact on the chain dynamics.  By far the largest single factor 

affecting the thermal analysis behavior and the solid state dynamics was variation crystallinity, which is 

governed by fraction of pendant ethyl groups in the chain microstructure. 

SANS in the melt state showed that the dihydroxyl functionalized polyethylenes did not form large 

aggregates or small micelles.  There was some evidence of coupling of functional polymers to form 

dimers, suggesting that the polar functional groups are weakly attracted to each other in the melt.  The 

lack of aggregation is desirable for their utility as blend additives, since aggregation is known to hinder 

the diffusion and equilibration of functional polymers at interfaces.   

In all cases, the functionalized polymers were found to segregate strongly to the silicon-oxide 

interfaces of blended films at room temperature after annealing above the melting temperature.  

Interestingly, there was no increase in interfacial activity when the number of hydroxyl groups per chain 

end on the functional polymer was increased from two to four, and at higher concentrations increasing 

the size of the functional group decreased its interfacial activity.  We speculate that the tetra-hydroxyl 

functionalized polyethylenes do undergo some aggregation, which in turn limits their ability to diffuse 

to or adsorb at polar interfaces.  For both series of functionalized polyethylenes, there was a broad 

maximum in interfacial activity as measured by surface excess at 10-15 kg/mol.  At low molecular 

weights, this trend can be explained by the fact that the contribution to the surface excess is proportional 

to the volume of the adsorbing chain, whereas at high concentrations, the efficiency of adsorption is 

expected to decrease as the molecular weight of the adsorbing chain approaches that of the matrix 

polymer. 

Finally, we observed a small excess of hydroxyl functionalized PE at the film surface in addition to 

the accumulation at the buried interface, particularly for lower molecular weight functional PEs.  

Although the surface excess was insufficient to have a measureable effect on surface hydrophilicity, it 

could be useful for further functionalization of the PE surface.  The reason for the surface excess is not 

entirely certain, but it appears most likely that it is driven by a combination of the relatively low 
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molecular weight of the functionalized polyethylene, coupled to the small reduction in surface energy 

that may be attributable to deuteration. 
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Supporting Information 1.   

Further details of the synthesis of multi-hydroxyl end functional polyethylenes. 

Typical syntheses of protected dihydroxy end capping agent (2OX) and tetrahydroxyl end capping 

agent (4OX) were carried out as follows: 

Synthesis of product 3, c.f. main article, scheme 1. 

OH

O

O

XO

XO
 

Figure S.I.1.  Sketch of product 3. 

3,5-dihydroxybenzyl alcohol (1) (26.6 g, 104.9 mmol), 1-bromo-3-(tert-butyldimethylsilyoxy) 

propane (2) (7 g, 49.9 mmol), K2CO3 (20.7 g, 149.8 mmol) and 18-crown-6 (2.64 g, 10.0 mmol) were 

added to a round bottomed flask.  The solids were then dissolved into dry acetone (300 ml) and the 

solution was stirred vigorously under reflux for 24 h. At the end of the reaction the pink solution was 

concentrated by the removal of acetone under vacuum.  The product was then extracted using ethyl 

acetate and water. The organic layer was  washed twice with water before drying with MgSO4. The 
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MgSO4 was removed by filtration and the solvent removed by distillation to  yield a yellow oil. The 

crude product was further purified by column chromatography using silica as the stationary phase and 

toluene/ethyl acetate (4:1) as the mobile phase.  Yield 90.0%, 
1
H NMR (CDCl3, 400MHz) δ 6.50 (d, 2H, 

J = 2.2 Hz), 6.34 (t, 1H, J = 2.2 Hz), 4.56 (d, 2H, J = 6.0 Hz), 4.03 (t, 4H, J = 6.0 Hz), 3.78 (t, 4H, J = 

6.0 Hz ), 1.95 (quintet, 4H, 6 J = 6.0 Hz), 1.69 (t, 1H, J = 6.0 Hz ), 0.87 (s, 18H), 0.02 (s, 12H).  

Element analysis; Calculated C25H48O5Si2: C, 61.93; H, 9.98. Found: C, 61.90; H, 9.94. 

 

 

Synthesis of 2OX dendron 

Br

O

O

XO

XO
 

Figure S.I.2.  Sketch of product 2OX dendron. 

An initial attempt to synthesise 2OX by the Appel reaction using CBr4/PhP3 as previously described,
1
 

was unsuccessful. During the reaction the tert butyldimethylsilyl group which was protecting the alcohol 

group was cleaved as observed by 
1
H-NMR therefore an alternative method was used.  Into a stirred 

solution of benzyl alcohol 3 (4.10 g, 8.46 mmol) dissolved into a mixture of dry THF and DCM (10:7), 

triethylamine (1.65 ml, 11.84 mmol) was added.  The flask was then immersed into an ice bath at 0°C. 

This was followed by the addition of mesylchloride (0.98 ml, 12.69 mmol) and the mixture was stirred 

for 2 h, after which lithium bromide was added (3.89 g, 44.84 mmol) and mixture allowed to warm to 

room temperature as it stirred overnight. At the end of the reaction the solvents were removed by 

distillation and the residue oil was then redissolved in DCM and purified by solvent extraction 

partioning the oil between water and DCM.  The organic layer was then collected and dried over 

MgSO4.  The product (a yellow oil) was then further purified by column chromatography (silica gel as 

the stationary phase and DCM as the mobile phase) to give a clear oil. Yield 89%, 
1
HMR (CDCl3 400 

MHz) δ 6.48 (d, 2H, J = 2.2 Hz), 6.34 (t, 1H, J = 2.2 Hz), 4.36 (s, 2H), 3.99 (t, 4H, J = 6.0 Hz), 3.74(t, 
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4H, J = 6.0 Hz) 1.92(quintet, 4H, J = 6.0 Hz ), 0.82 (s, 18H), 0.01 (s, 12H). Element analysis: Calculated 

C25H47BrO4Si2: C, 54.82; H, 8.65. Found: C, 54.89; H, 8.64 

 

 

Synthesis of product 4, c.f. main article, scheme 1 
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Figure S.I.3.  Sketch of product product 4. 

Into a round bottomed flask, 3,5-dihydroxybenzyl alcohol (1) (0.97 g, 6.96 mmol), 2OX-dendron (8 g, 

15.52 mmol), K2CO3 (2.9 g, 22.17 mmol) and 18-crown-6 (0.4 g, 1.48 mmol) were added.  The solids 

were then dissolved into dry acetone (100 ml) and the solution was stirred vigorously under reflux for 

24 h. At the end of the reaction the solution was concentrated by removing acetone under reduced 

pressure and the product extracted using ethyl acetate and water. The organic layer was washed with 

water before drying with MgSO4. The drying agent was removed by filtration and the filtrate 

concentrated to yield a yellow oil. The product was further purified by column chromatography using 

silica as the stationary phase and toluene/ethyl acetate (4:1) as the mobile phase to give product 4.  

Yield 92.0%, 
1
H NMR (CDCl3) δ6.56 (d, 2H, J = 2.1 Hz ), 6.51 (d, 4H, J = 2.1 Hz), 6.37 (t, 2H, J = 2.1 

Hz), 4.91 (s, 4H), 4.59 (d, 2H, J = 6.0 Hz), 4.00 (t, 8H, J = 6.0 Hz), 3.75 (t, 8H, J = 6.0 Hz), 1.93 

(quintet, 8H, J = 6.0 Hz), 1.62 (s, 1H), 0.84 (s, 36H), 0.00 (s, 24H).  Element analysis: Calculated 

C57H100O11Si4: C, 63.76; H, 9.39. Found: C, 63.70; H, 9.36. 

 

Synthesis of 4OX dendron 
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Figure S.I.4.  Sketch of product 4OX dendron. 

 

The dendritic benzyl alcohol 4 (8.1 g, 7.55 mmol) was dissolved into a mixture of dry THF and DCM 

(200ml, 1:1).  Into the stirred solution, triethylamine (1.60 ml, 11.17mmol) was added and the flask 

immersed into an ice bath at 0 °C. This was followed by the addition of mesyl chloride (0.90 ml, 11.32 

mmol) and then the mixture was stirred for 2 h, after which lithium bromide was added (3.50 g, 40.02 

mmol) and the solution allowed to warm to room temperature as it stirred overnight.  At the end of the 

reaction the solvents were removed under reduced pressure and the residue oil was then redissolved in 

DCM.  The product (a yellow oil) was then further purified by column chromatography (silica gel as the 

stationary phase and DCM as the mobile phase) to give a clear oil. Yield 85%, 
1
HMR (CDCl3) δ 6.58 (d, 

2H, J = 2.0 Hz ), 6.51 (d, 4H, J = 2.0 Hz), 6.37 (t, 2H, J = 2.0 Hz), 4.92 (s, 4H), 4.37 (s, 2H), 4.00 (t, 8H, 

J = 6.0 Hz), 3.77 (t, 8H, J = 6.0 Hz), 1.93 (quintet, 8H, J = 6.0 Hz), 0.85 (s, 36H), 0.00 (s, 24H). 

Element analysis: Calculated C25H99BrO10Si4: C, 60.23; H, 8.78. Found: C, 60.30; H, 8.75 

 

A typical synthesis of polyethylene additives, end capped with difunctionalised hydroxyl end capping 

agent (PE2OH) was carried out as follows: Polyethylene was prepared from polybutadiene using living 

anionic polymerisation from which the double bonds were saturated, (c.f. main text, scheme 2).  The 

same approach was used to synthesise tetrahydroxyl end capped polyethylene (PE4OH).  In both cases, 

a range of additives with different molecular weights were prepared (Table 1).   
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Living anionic polymerization was carried out using standard high vacuum techniques.  For a target 

molecular weight of 10,000 gmol
-1

, 6.70 g 1,3-butadiene was used, with sec-butyllithium (0.48 ml, 1.4 

M solution in cyclohexane) as the initiator. The reaction was carried out in hexane (70 ml) at room 

temperature for 24 h.  At the end of the reaction period, hexane and any traces of unreacted monomer 

were distilled out of the reaction flask and replenished with fresh dry hexane.   Into a separate flask that 

contained dry hexane (5 ml), diphenylethylene, DPE, (0.24 ml, 1.34 mmol) and 

tetramethylethylenediamine, TMEDA, (0.50 ml, 3.34 mmol) were added through a rubber septum and 

the contents further purified by titrating sec-BuLi into the solution until a permanent reddish colour of 

diphenylhexyllithium was observed.  The purified DPE/TMEDA solution was then injected into the 

flask that contained living polymer solution and left stirring for 48 hrs at 50 
0
C.  After this time a sample 

was taken and quenched with degassed MeOH for analysis.  Meanwhile, in a separate flask, a sample of 

protected hydroxyl end-capping agent (2OX) (2a), (0.52 g, 1.00 mmol) was azeotropically dried with 

benzene three times before dissolving in about 10 ml of dry THF.  Into the polymer solution, dry THF 

(15 ml) was distilled and the solution cooled to -78 °C prior to the addition of a cold solution of the end-

capping agent. The reaction was then stirred overnight at -78 °C, during which the red colour of the 

living polymer dissipated.  After this time any unreacted polymer was terminated by addition of 

nitrogen purged MeOH and the polymer was recovered by precipitation into excess methanol that 

contained small amount of antioxidant (BHT), dried in vacuo to constant mass and stored in the freezer.  

End-capping with 2OX (2a); Molecular weight (gmol
-1

) Mn = 11300, Mw = 11800 (Mw/Mn = 1.04, 

Figure 1). 
1
H NMR (700 MHz, CD2Cl2, δ, ppm) 5.6 (=CH), 5.4 (=CH), 5.0 (=CH2 vinyl), 2.2-1.8 (CH2, 

polymer backbone), 3.70 (8H, OCH2CH2, ArOCH2) OR [C6D6 δ, 3.80 (4H, ArOCH2), 3.70 (4H, 

OTBDMS)], 3.35 (CH2DPE), 5.7 (2H, ArH), 6.2 (1H, ArH), 7.35-7.15 (Ar-DPE).  End-capping with 

4OX (2b);  
 1

H NMR (700 MHz, CD2Cl2, δ, ppm): 5.6 (=CH), 5.4 (=CH), 5.0 (=CH2, vinyl), , 2.2-1.8 

(CH2, polymer backbone), 0.88 (36H, TBDMS), 0.04 (24H, TBDMS), 3.3 (CH2DPE), 3.79 (8H, 

OTBDMS), 4.03 (ArOCH2), 4.60 (ArOCH2Ar), 5.7 (2H, ArH), 6.4 (4H, ArH), 6.51 (1H, ArH), 6.6 (2H, 

ArH), 7.00-7.20 (Ar-DPE). 
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Deprotection of the alcohol functionality on the product was achieved by acid hydrolysis.  This was 

accomplished using 10 M HCl (10:1 molar ratio with respect to the polymer) under vacuum at 80 °C for 

24 h in presence of BHT (1% w/w).  The polymer was recovered by precipitation into methanol and 

dried in a vacuum oven to a constant mass.  The hydroxyl functionalised polybutadiene was then 

saturated to yield linear low density polyethylene, in a 600 ml autoclave at 500 p.s.i. of either hydrogen 

or deuterium and at 100°C in cyclohexane (1% w/v polymer) using palladium on calcium carbonate (5% 

by weight Pd; 5-10 m
2
 g

-1
 active surface area, catalyst loading was about 2 times the weight of the 

polymer) for 48 h (deuteration) and 24 h (hydrogenation).  The solution was hot filled and the product 

recovered by precipitation in methanol followed by vacuum drying to a constant mass.  In all cases the 

yields were greater than 90%.   
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Supporting Information 2. 

Thermal Gravimetric Analysis of Polymers 

 

 

Figure S.I.5.  TGA data for 4OHdPE18 
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Supporting Information 3. 

AFM height map of film surface 

5m × 5 m AFM height map showing crystalline nature of PE blend film.  Image obtained using a 

Bruker MM8 Multimode AFM in ScanAsyst Mode. The vertical range is 30 nm 

. 

 

Figure S.I.6.  Height map of 12% 2OHdPE22 in hPE blend.   
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Supporting Information 4 

Influence of Nagg on calculated d/d values 

 

 

Figure S.I.7.  Double log plot of absolute differential scattering cross section data for 16% 2OHdPE6 in 

hPE.  The dotted curves correspond to RPA simulations for unimers, dimers and tetramers of the end 

functional polymer.  The solid curve corresponds to the best fit to the data with an average aggregation 

number of 1.22.  The inset shows the same data and simulations on linear axes. 
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Supporting Information 5.   

Detailed analysis of QENS data for PE materials. 

Attempts to fit all of the data with  (from equation 1) fixed at 0.5 would have yielded a 

dimensionally correct value for a single diffusion coefficient.  However, this was not generally 

successful, and this observation is in accordance with earlier QENS studies on polyethylenes.  Arrighi et 

al
2
 studied oligomeric PE at significantly higher temperatures (177 °C) than in our work, and found that 

I(Q,t) was only well fit with = 0.5 at Q < 1 Å
-1

, where the diffusive processes would be dominant.  

Since we found no clear dependence of on temperature or functionalitity, and the variation was quite 

small, this parameter was fixed at 0.6 and it was found that all of the data could be well fit (as 

exemplified in the Main Article, figure 5) using equation 1 by adjusting just A, B (=1-A) and .  As 

would be expected, the greater mobility of the protons at higher temperatures results in a more rapid 

decay in I(Q,t) as a function of time.  The Q dependence of the characteristic relaxation time, , is 

compared in figure S.I.6a for several different PEs at 100 °C.  The similarity of the values for 

polymers of similar microstructure, is consistent with the observed similarity in the raw S(Q,E) data in 

figure 1, but remarkably similar values for  were also found for the hPE20:80 sample.  This indicates 

that the motions probed by QENS are similar, even for molten hPE20:80 and the other PEs, which are 

semicrystalline at this temperature.  Only at the highest Q values, i.e. shortest length scales, does the 

relaxation of the molten sample appear to be marginally faster than that of the other polyethylenes.  We 

attribute this to the greater proportion fully hydrogenated of ethyl branches in this sample, which may 

have enhanced motion over short length scales when compared to protons on the polymer backbone.  

(The other materials have a smaller proportion of ethyl branches and in the case of the two xOHdPE11 

materials, the ethyl branches are partially deuterated, so contribute less to the incoherent scattering cross 

section.)   
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Figure S.I.8.  (a) Characteristic relaxation time for several multi-end functional polymers at 100 °C and 

(b) temperature dependence of relaxation time for 4OHdPE11.  The dotted and solid lines indicate a Q
-2

 

and Q
-2/

 dependence of  respectively.  

 

Our results are consistent with the behavior reported by Arbe et al for polyisoprenes
3,4

 wherein a Q
-2

 

dependence of , shown as a dashed line in figure S.I.8 (a and b), is indicative of non-Gaussian (jump 

diffusion) behavior, as opposed to Q
-2/

 dependence expected for Gaussian behavior.  At temperatures 
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below 100 °C, still larger deviations from Gaussian behavior are observed.  The loss of Q-dependence 

in  at 25 °C and 50 °C indicates that at the lower temperatures, only localized motion (e.g. rotation, 

torsion) is probed, whereas at 75 °C and 100 °C, a jump-diffusion mode is triggered.   

The unexpected similarity in  values seen for hPE20:80, which is molten at 100 °C and the other 

materials which are semi-crystalline solids at this temperature can be explained when we consider the 

proportion of material that is effectively immobile within the QENS window, B.  Figure S.I.9 clearly 

shows that B is much greater for the higher melting polyethylenes than it is for hPE20:80. The 

differences between the values for B found in the higher melting PEs, combined with the similar values 

for , suggests that the QENS experiments are sensitive to a difference in the fractional crystallinity of 

the melt pressed samples that was not observed in the DSC experiment (table 1) where the thermal 

history was more precisely controlled.  The Q-dependence of B for the two partially deuterated 

xOHdPE11 samples is extremely consistent, which further confirms that when the only distintion 

between the polymers is the size of the end-functional group, the dynamics are virtually unaffected.  

Despite having the same chain microstructure as the partially deuterated xOHdPE11 materials, the hPE 

sample has a slightly slower Q dependence and less pronounced the Bragg peak at Q ~ 1.55 Å
–1

.  These 

differences are likely to arise from fully hydrogenated, and relatively mobile, ethyl branches in the chain 

structure that are unique to the hPE sample; giving this polymer a relatively high incoherent cross 

section and somewhat lower coherent cross section. 
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Figure S.I.9.  Fitted values for B as a function of scattering vector at 100 °C.  Note that the small peak in 

some data near Q = 1.55 Å
-1

 is an artifact due to the Bragg peak in the elastic scattering, which is seen 

for all of the semi-crystalline samples.  
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Supporting Information 6. 

Simulated effect of HD on  d/d;   

RPA simulation of influence of Flory Huggins Interaction parameter on absolute differential scattering 

cross section for the highest molecular weight combination of polymers studied. 

 

Figure S.I.10.  Variation in absolute differential scattering cross section for 2OHdPE22/hPE with 

interaction parameter, , set to 0 (black) and 0.002 (red). 
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Supporting Information 7. 

Simulated molecular weight dependence of surface excess by SCFT 

 

Figure S.I.11.  SCFT simulated variation in interfacial excess as a function of adsorbing polymer 

molecular weight. The volume fraction of adsorbing polymer was fixed at 0.16. 
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