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Abstract—It is difficult to estimate how much distributed 

generation (DG) capacity will be connected to distribution 

systems in the coming years, however, it is certain that increasing 

penetration levels require robust tools that help assess the 

capabilities and requirements of the networks in order to 

produce the best planning and control strategies. The work of 

this Task Force is focused on the numerous strategies and 

methods that have been developed in recent years to address DG 

integration and planning. This paper contains a critical review of 

the work in this field. Although there have been numerous 

publications in this area, widespread implementation of the 

methods has not taken place. The barriers to implementation of 

the advanced techniques are outlined, highlighting why network 

operators have been slow to pick up on the research to date. 

Furthermore, key challenges ahead which remain to be tackled 

are also described, many of which have come into clear focus 

with the current drive towards smarter distribution networks. 

Index Terms—Distributed generation, active network 

management, linear programming, multi-objective 

programming, ac optimal power flow, wind power generation, 

distribution networks. 

I.  INTRODUCTION 

OR Distribution Network Operators (DNOs) the 

challenges posed by high penetrations of Distributed 

Generation (DG) are numerous. In fully liberalized electricity 

markets (e.g., European Union), planning the siting and sizing 

of DG plants is, in many respects, not possible. Due to 

unbundling rules, DNOs cannot invest in generation facilities 

and are meant to provide DG owners with cost-effective 

connection means, irrespective of the technology or 

geographical location. In this context, uncertainties due to, for 

instance, planning consents or financial support surrounding 

DG investments pose DNOs with major challenges as to what, 

where and when to reinforce the system in order to deliver 

timely connections without the risk of stranded assets. This 

lack of certainty and planning coordination translates into 

distribution network operators often connecting DG plants in a 

‘fit and forget’, case-by-case manner where only traditional 
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reinforcements (e.g., new lines or transformers) are carried 

out. Thus, any sophisticated solution –albeit potentially more 

cost-effective for society in the long term– is potentially left 

behind. 

Although it is an imperative for many countries to 

aggressively promote the connection of low-carbon and 

efficient generation technologies, different government 

policies and regulatory frameworks have resulted in different 

technical and economic drivers for DNOs towards the 

connection of DG. Depending on the incentives in place, 

DNOs not tied to unbundling rules might be able to increase 

network reliability or postpone reinforcements by investing in 

and operating adequately sited and sized DG plants. On the 

other hand, unbundled DNOs capable of determining optimal 

locational connection charges might steer the deployment of 

DG in areas that could potentially reduce their energy losses 

(or at least not worsen them). From a purely operational 

perspective, DG plants could also be encouraged to provide 

reactive power support if that is of concern for the DNO or the 

regional transmission network. This variety of cases where 

DG technologies can play a major role in distribution 

networks has in the last decade encouraged researchers and 

industrialists around the world to investigate the 

corresponding planning and operational aspects. 

Whatever the particular driver for a DNO, e.g., to allow the 

connection of more DG capacity, to reduce energy losses, or 

to increase network reliability, these DG planning tools must 

take into account essential network constraints such as voltage 

and thermal limits. The inherent variability of demand and 

renewable generation (e.g., wind power) is an aspect that 

should also be considered. In addition, characteristics of 

actively managed networks (as opposed to the current ‘fit and 

forget’ approach), where control schemes employing real-time 

control and communication systems allow more effective 

management of different network participants, including DG 

plants, voltage regulation devices, storage and demand, need 

also to be accounted for. 

This paper is structured as follows: First, section II offers a 

comprehensive review of the literature in the field, detailing 

the various methods and state-of-the-art techniques employed 

to date. Section III gives a description of a number of the 

barriers to implementation. Finally, section IV describes the 

key future challenges in this area, with conclusions given in 

section V. 
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II.  STATE-OF-THE-ART TECHNIQUES 

The optimal accommodation of conventional and 

renewable DG plants has been approached in the literature 

from different angles but primarily taking account of technical 

and economic issues. This section presents a critical review of 

the various methods and state-of-the-art techniques employed 

to date. 

A.  Analytical Analysis 

If only a given demand-generation snapshot scenario is 

taken into account, a specific technical aspect (or objective 

function) can be formulated analytically in such a way that it 

is possible to find the most beneficial DG capacity (or power 

injection) through a simplified set of equations and 

procedures. For instance, consider the simplified voltage drop 

formula for a given line section a-b: 

                      (1) 

where a is the distribution transformer or substation, R and X 

the resistance and reactance of the line, and P and Q the active 

and reactive components of the load connected to b. 

Connection of a DG plant at b with active PDG and reactive 

QDG power output alters (2) 

         (      )       (      )       (2) 

Equation (2) can be used to determine an ‘optimal’ nominal 

capacity (MW) and power factor (or Mvar) that either 

minimizes the voltage drop or avoids voltage rise beyond the 

statutory limit. If a similar analytical analysis is extended to a 

network and all possible locations for the potential DG 

development are assessed, then a quick overview of ‘best’ 

locations and sizes can be produced, for the snapshoot 

scenario considered. 

This type of analysis, focusing particularly on power losses, 

was used in [1, 2]. However, while power losses can be 

studied in passive networks considering peak load scenarios – 

as is traditionally done – distribution networks with DG plants 

require the assessment of energy losses. Not only is this the 

actual yardstick used by DNOs but the inherent variable nature 

of demand and (renewable) generation necessitates it. 

Additionally, by neglecting other demand-generation 

scenarios, technical issues that might appear otherwise, such 

as voltage rise or thermal overloads, will not be accounted for 

since the analytical formulation only caters for a single 

technical aspect (although they can be included to an extent in 

the corresponding solution procedure). Another limitation is 

that only a single DG plant can be evaluated at a time, 

requiring a sequential procedure if multiple connections are 

needed. This separate evaluation of multiple DG plants might 

result in the ‘sterilization of capacity’ wherein inappropriately 

located and/or sized plant prevents connection of larger plant 

elsewhere. The incorporation of operational solutions such as 

coordinated voltage control or generation curtailment cannot 

be done either. Consequently, although analytical approaches 

are straightforward alternatives to assess DG siting and sizing, 

care must be taken as the results are only indicative and 

scenario limited. 

B.  Exhaustive Analysis 

A single technical issue, such as voltage rise or power 

losses, can also be approached by exhaustively exploring the 

entire (or most of the) search space corresponding to the 

locations and sizes of DG plants that could be connected to a 

distribution network. Such an approach might be useful if 

discrete values (i.e., specific DG capacities) are preferable. 

However, the actual benefit brought by exhaustive analyses is 

that it is possible to cater for a number of technical issues and 

constraints. Indeed, with this more direct approach the 

objective function can be the combination of parameters or 

indices that represent different technical and non-technical 

aspects, although it will be very time consuming. This 

methodology was adopted in [3, 4] where the siting and sizing 

of DG plants was investigated considering technical impacts 

such as power and energy losses, voltage rise, and short-circuit 

levels, which were combined into a weighted-sum objective 

function. In [5], economic and environmental impact indices 

were also incorporated. Although a relatively straightforward 

technique, tuning the corresponding weighting factors to 

obtain a composite index becomes a non-trivial task that if not 

appropriately performed can significantly bias the results. 

Moreover, while exhaustive analyses applied to a single 

connection is evaluated for a specific demand/generation 

scenario is not necessarily computationally intensive; this is 

not the case when multiple connections and the variability of 

demand and generation are accounted for, increasing 

considerably the computational burden of the exhaustive 

analysis. However, it is important to highlight that the use of 

state-of-the-art distribution analysis software packages such as 

OpenDSS [6] might prove a robust, fast alternative for 

exhaustively exploring extremely large search spaces. 

Moreover, some metaheuristic optimization techniques 

(section II-E) can efficiently explore the search space, 

reducing the computational time to locate solutions. 

C.  Linear Programming 

Linear programming (LP) has also been employed to 

address the capacity allocation and energy optimization issues. 

Fundamentally, the use of linear programming entails a 

linearization of the power flow or the linearization of the 

results from an ac power flow. It has been demonstrated 

through simulation that the resulting approximation inevitably 

introduces an error, but not a significant one in the context of 

discrete turbine sizes [7, 8]. 

In [9], a linear programming formulation of OPF is 

employed to assess the control of multiple DG plants. The 

objective employed is to minimize the annual active 

generation curtailment cost. The results presented illustrate the 

relative merits of tap changer and active and reactive power 

control. In [10] ac power flow is employed to calculate 

linearized sensitivity factors. The sensitivities are employed to 

characterize a range of constraints, such as voltage, thermal 

and short-circuit limits. The method is formulated as a linear 

program and solved with the objective of maximizing the 

capacity of DG, subject to typical network constraints and 

taking account of N-1 configurations. In [11] LP is applied to 
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the question of non-firm DG access to the network. The 

objective employed is to maximize the energy harvested from 

a section of network by optimizing the allocation of DG with 

voltage constraints removed. The operation of DG has also 

been considered in the literature again employing ac load flow 

sensitivities to optimize the allocation of curtailment among 

adjacent wind farms [12]. An advantage of LP is that it offers 

significant potential for development of operational methods 

and is a robust optimization method. However, from a 

planning perspective, ac optimal power flow approaches 

would seem to be a more rigorous means of optimization at 

this stage. 

D.  AC Optimal Power Flow 

The well-known ac Optimal Power Flow (OPF) [13] has 

traditionally been used for economic dispatch, and is widely 

acknowledged by the electricity industry as a powerful 

analysis tool. The ac OPF is a non-linear programming (NLP) 

problem, for which many solution methods exist including 

some which are highly specialized to OPF problems. The ac 

OPF formulation can be adapted to have different objectives 

and constraints according to the study being carried out. For 

example, consider the minimization of power losses: 

   ∑(  
    

 )

   

  (3) 

where     
  and     

  are the active power injections at each end 

node (denoted 1 and 2) of branch l. The difference between 

the net injections at each end defines the line power losses. 

This objective would be subject to the standard Kirchhoff 

voltage law expressions, as well as a range of constraints that 

might include, for instance, bus voltage and line thermal 

limits. The Kirchhoff current law (active and reactive nodal 

balance), however, will need to be adapted to cater for the 

injection of potential DG plants. 
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where (   ) 
  are the total power injections into lines at bus b; 

and   
(   )

 are the active and reactive demands at the same bus. 

From the set of generation units, G, the power injections, 

(     ), of those connected to bus   are also included. Thus, 

this relatively simple formulation would lead to ‘optimal’ 

siting and sizing of DG plants in a way that power losses are 

minimized subject to the considered constraints. 

Indeed the ac OPF has been used to tackle many of the 

same problems described in the LP section above. This 

alternative use of an OPF-like method for the (power) loss 

minimization problem was reported in [14]. A similar 

formulation but with the objective of maximizing DG capacity 

across multiple sites has also been adopted in [15, 16]. 

However, in these three OPF-based approaches, only extreme 

cases of peak or minimum demand and passive operation of 

the network were considered. 

The flexibility provided by a tailored ac OPF makes it 

possible to extend the analysis to cater not only for voltage 

and thermal limits but also for a number of complex aspects. It 

can incorporate multiple periods to deal with the variability 

and coincidence of demand and renewable generation. 

Advanced control strategies such as coordinated voltage 

control, adaptive power factor and generation curtailment can 

also be incorporated to evaluate potential benefits. The 

approach proposed in [17] embeds these characteristics to 

determine the maximum DG capacity able to be connected to 

a given network. More complex problems resulting from other 

network constraints commonly overlooked by DG studies, 

such as N-1 security, voltage step change, and fault levels are 

also viable within this approach [8, 18, 19]. As in other 

optimization techniques, the same core framework can also be 

used to investigate different objective functions, such as, for 

instance, the minimization of energy losses [20]. 

A number of solution methods can be adopted to solve the 

ac OPF problem: from special linear programming 

formulations to branch and bound techniques. Commercial 

solvers specialized for NLP problems include CONOPT, that 

uses a generalized reduced gradient, and, KNITRO, that uses 

interior points. Although, no practical method exists which 

can guarantee to find the global optimum of a non-convex 

NLP local optima can be found in most cases. A NLP-

formulated ac OPF will, of course, not cater for integer 

variables such as tap positions or discrete values for DG 

capacities. It is possible to consider a Mixed Integer NLP 

approach, however, but this could potentially restrict the size 

of the problem depending on the capabilities of the solution 

method used with little benefit in the context of planning 

decisions. A notable example of this approach is in [21]. 

The use of multi-periods to mimic the variability of 

generation and demand results in a much larger problem in 

terms of the number of variables and constraints. In general 

this translates into longer processing times, that depending on 

the size of the problem it could be intractable. In such a case, 

the problem has to be scaled down by (mainly) reducing the 

number of periods. Methods for doing this include coincidence 

matching [17], ‘typical periods’ [22] or clustering. 

Finally, it is important to highlight that given the nature of 

this classical optimization technique, the problem has to be 

formulated in a ‘closed’ manner. While it is possible to do so 

with certain technical (and non-technical) aspects, for instance 

with fault level calculation [18], this places a significant 

limitation as to what can be taken account of. 

E.  Metaheuristics 

A metaheuristic method is defined as an iterative 

generation process which guides a subordinate heuristic by 

combining intelligently different concepts for exploring and 

exploiting the search space. Learning strategies are used to 

structure information in order to efficiently find near-optimal 

solutions. Complex and ‘decoupled’ technical and non-

technical issues involved in power systems optimization 

problems can be easily modeled and included in the 

optimization process. Metaheuristics do not require the 

‘closed’ formulation of the different aspects being addressed 
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as is necessary in classical optimization. Metaheuristic 

algorithms can also cater for mixed integer problems that are 

common in power system optimization problems. 

With metaheuristics, the objective function can be of any 

type and take into consideration different objectives. This 

characteristic leads to multi-objective applications that are 

better suited to describe the complexity of the new distribution 

businesses [23-27] (see section II.F). On the other hand, all 

metaheuristic algorithms require a careful tuning of 

optimization parameters that are essential for finding a good 

solution without excessive computation time. The attention is 

then moved from the mathematical formalization of both 

objective function and constraints to the algorithm parameters, 

which should allow a compromise between quality of 

solutions and computing time. The actual challenge when 

using these techniques is then the tuning of the parameters that 

guide the optimization. Indeed, care should be taken to avoid 

premature or slow convergence, particularly in large scale 

applications. 

This leads to probably the most discussed disadvantage of 

metaheuristics: their inability to find the global optimum. 

Indeed, they are very likely to find a reasonable solution, 

though there is no guarantee of exactly how good this is. 

Multiple runs are often used to counter this. Metaheuristic 

algorithms allow the planning engineer to find not only a 

single optimum point, but a family of near-optimum planning 

alternatives. This feature of metaheuristics is particularly 

useful in DG allocation because the DNO generally has little 

or no control on the DG integration and different planning 

alternatives can be necessary to face uncertainties and 

minimize risks.  

    1)  Metaheuristic algorithms 

There are numerous metaheuristic algorithms; Ant Colony 

Optimization (ACO), Artificial Bee Colony optimization 

(ABC), Tabu Search (TS), Particle Swarm Optimization 

(PSO), Simulated Annealing (SA) including Genetic 

Algorithms (GA). All these algorithms have been used to 

solve the problem of optimal allocation of DG. 

GA mimics the process of evolution. The most promising 

individuals have greater chances of transmitting their genes to 

offspring. By so doing, the population, generation by 

generation, improves and, if the premature convergence is 

avoided, for instance, with a random mutation, the algorithm 

converges. GA have been used by the first authors that 

pioneered the problem of the optimal integration of distributed 

energy resources in the distribution system and since then it 

has been preferred to other meta-heuristic algorithms [28-31]. 

The reason of the success is that GA is intrinsically suited to 

solve location problems. The coding of a solution can be very 

simple, a binary vector with as many positions as the number 

of bus candidate to DG connection. The classical GA 

operators (selection, crossover and mutation) can be used 

simply and effectively with few or no changes. As in many 

meta-heuristic algorithms, high values of penalty factors can 

be added to the fitness function of those individuals that do not 

comply with the constraints. It should be recognized that with 

simple rules of thumb the parameters of GA (i.e., population 

size, crossover type, etc.) can be set quite easily to achieve a 

good optimization tool. Fuzzy GA have been proposed using 

fuzzy genetic algorithm approaches in order to capture the 

multi objective nature of problems [32]. Genetic algorithms 

have also been applied to consider optimal investment 

planning for DG in a market structure[33]. 

TS is a metaheuristic that guides a heuristic method to 

expand its search beyond local optimality, with the systematic 

prohibition of some solutions to prevent cycling and to avoid 

the risk of being trapped in local minima. New solutions are 

searched in the set of the points reachable with a suitable 

sequence of local perturbations (neighborhood). One of the 

most important features of TS is that a new configuration may 

be accepted even if the value of the OF is greater than that of 

the current solution. To prevent cycling, some moves are 

marked “tabu” for a number of iterations; the length of tabu 

list, the tabu-tenure, fixed or variable, guides the optimization. 

The SA is an algorithm that combines combinatorial search 

with a very simple metaheuristic that follows the cooling 

process of materials. Following an appropriate cooling 

schedule, the SA has the potential to avoid local minima and 

converges to the global minimum in a reasonable computing 

time. The parameters to tune are the annealing temperature, 

the number of iterations at constant temperature and the 

cooling strategy. SA annealing has been used for 

multiobjective optimization to minimize energy losses, 

polluting emissions and contingencies. In [34] the authors 

proved that SA performed better than GA and TS on the IEEE 

30-bus test system, but the comparison is difficult to be 

accepted because neither the GA nor TS were optimized as the 

SA was. 

PSO makes use of a velocity vector to update the current 

position of each particle in the swarm. The position of each 

particle is updated based on the social behavior that a 

population of individuals, the swarm in the case of PSO, 

adapts to its environment by returning to promising regions 

that were previously discovered. Recently PSO has been used 

for DG allocation [35]. Comparisons have been made between 

GA and other metaheuristic methods, and in some cases PSO 

converged faster than other algorithms finding out good 

quality solutions.  

ACO and ABC are based on the dynamic of the social 

insect population. The interactions are executed via multitude 

of various chemical and/or physical signals (e.g., bee dancing 

during the food procurement, ants' pheromone secretion, and 

performance of specific acts, which signal the other insects to 

start the same actions). The final product of different actions 

and interactions represents the behavior of social insect 

colony. ABC algorithms has been used for determining the 

optimal DG-unit's size, power factor, and location in order to 

minimize the total system real power loss [36, 37]. 

    2)  Multi-objective Programming 

Some DG planning objectives are naturally conflicting; 

consequently in some cases there is no single planning 

solution that will satisfy all stakeholders. A multi-objective 

problem with conflicting objectives has no single solution, but 

a set of solutions, known as the Pareto set. The multi-
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dimensional concept of ‘‘dominance’’ is used to determine if 

one solution is better than other solutions [38]. All of the non-

dominated solutions constitute the Pareto-set. 

Multi-objective optimization problems are solved by two 

fundamentally different groups of techniques. The first set of 

techniques uses preference information and the iterative 

repetition of a single-objective optimization problem, usually 

solved by Genetic Algorithms (GA). The most common 

techniques of this first group are the weighted-sum method 

and the ε-constrained method. In the former, all objectives are 

aggregated to produce a single objective problem (similar to 

[3-5], see section II.B), this method is then iteratively used to 

change the set of weights to find the Pareto set. In the ε-

constrained method, one of the objectives is optimized while 

the rest are kept as constraints to find each one of the solutions 

of the Pareto set [26, 30, 39]. These methods are useful when 

there is strong a priori knowledge of the problem, or when a 

particular region of the search space is explored. However, a 

large number of iterations must be performed to find many 

solutions of the Pareto set, increasing vastly the computational 

requirements, especially when many objectives are being 

analyzed. 

Another group of techniques, known as multi-objective 

genetic algorithms (MOGA), have been proposed in recent 

years to overcome the above mentioned deficiencies, and to 

provide a “true” multi-objective approach [40]. Indeed, 

MOGA are able to find many solutions of the Pareto set at 

once. Two of the most powerful multi-objective evolutionary 

algorithms are the Non-Sorting Genetic Algorithm – II 

(NSGA-II) [41] and the Strength Pareto Evolutionary 

Algorithm 2 (SPEA2) [32]. A key advantage of the use of 

MOGA is the opportunity of using complex objective 

evaluations in the formulation of the problem, which can 

include stochastic simulations, OPF analyses, and probabilistic 

approaches, to provide more realistic models for dispatchable 

and non-dispatchable DG and storage [22, 33, 42-44]. MOGA 

also permit to analyze a variety of technical, economical and 

environmental objectives in a single optimization framework 

[22, 43, 45-47]. Multi-objective methods by their nature find 

compromise solutions rather than a single solution. This is an 

advantage in terms of providing insight but a drawback in that 

it leaves it open to interpretation by different parties and the 

ultimate decision will rest with system planners and operators. 

F.  Probabilistic Analysis 

Uncertainties related to DG are due to two main aspects: 

the variable nature of the primary energy source and the 

possible unavailability of the unit when it is required to 

generate. The combination of these aspects may lead to 

generation deficit, which can heavily compromise the security, 

reliability and quality of power supply. The increase in the 

complexity of distribution systems with DG requires the 

assessment of the random nature of network failures and 

generation availability [48]. 

In order to adequately address the uncertainties introduced 

by DG integration to distribution systems, probabilistic 

methods can be applied for network planning and 

optimization. Besides, stochastic models of renewable 

resources must be developed in order to represent the 

influence of the primary energy source variability on 

generation availability. The impact of DG on the reliability of 

distribution systems depends mainly on the operational mode 

and purpose of connection to the system along with the energy 

source which drives it. For instance, DG could mainly be used 

to supply power to a local load (e.g., industrial site or a 

house), exporting to the distribution network only when there 

is excess capacity. Depending on commercial arrangements, 

such a consumer will only pay (or will be paid) the difference 

between the energy consumed and exported. In this case, there 

is no benefit to system reliability (only to the consumer’s 

reliability). However, if DG operates in parallel with the 

network, then new considerations must be introduced for 

reliability modeling. The simplest alternative is to model DG 

as a negative power injection, which can have a positive 

impact on reliability since it represents a reduction in demand. 

DG plants based on dispatchable and storable energy 

sources, such as biomass, can be more easily modeled since 

energy can be considered available in reliability studies. The 

only issue usually considered for unavailability of generation 

is the failure of the generating unit. This kind of DG tends to 

be more reliable. On the other hand, the units based on 

variable and non-storable energy sources, such as wind, small 

hydro and solar, require a more complex model in reliability 

studies, where the energy availability also needs to be 

represented. 

Stochastic models for renewable sources have been 

developed for wind generation [49], small hydro power plants 

[50], solar generation [51], and biomass thermal generation 

[52]. In general, generation availability of all these sources is 

obtained by the combination of the availability model of the 

primary energy source and that of the generation unit. 

Models for reliability evaluation of distribution systems 

with distributed renewable generation are based on three 

different approaches: analytical methods [27], Monte Carlo 

simulations [48] and hybrid models [53]. Analytical methods 

are applicable to DG of dispatchable energy sources. The 

Monte Carlo simulation approach is adequate to represent DG 

of variable energy sources and also to aggregate the load 

variation curve. The hybrid model aims to combine the 

advantages of the first two approaches in terms of 

computational efficiency and the representation of energy 

availability uncertainty. 

In a general sense, it can be said that DG enhances the 

reliability of distribution systems especially if islanded 

operation is allowed. However, when the generation is based 

on variable energy sources, the benefit is reduced and can 

even be negligible if not properly planned. The probabilistic 

analysis is able to properly capture this effect and to provide a 

more realistic response of the impact on the distribution 

system than the deterministic techniques. 

However, probabilistic approaches have two most 

discussed disadvantages: the large amount of data required 

and the potential difficulty in interpreting the results and thus 

make decisions based on such results. The probabilistic 
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reliability evaluation or system planning requires the adequacy 

analysis of several system states or expansion alternatives that 

are performed by optimization methods [54]. Therefore, the 

use of efficient optimization methods in probabilistic analysis 

is crucial to have acceptable computation time. An approach 

that is being explored to reduce the computational burden is to 

use optimization techniques (classical or metaheuristics) for 

state space pruning in stochastic simulation [55]. 

G.  Summary 

The division of sections in the previous sections is along 

the lines of the computational methods employed. As is 

evident the problems and objectives of the methods cut across 

many of the computational methods. Table I summarizes the 

cross section of methods and objectives and their relationship 

based on the extant literature. It is evident that the siting and 

sizing of DG has been a focus with objectives ranging from 

minimization of losses to maximization of installed capacity to 

multi-objective approaches taking account of a number of 

objective simultaneously and examining the trade-off between 

them. 

 
TABLE I 

SUMMARY OF TECHNIQUES AND OBJECTIVES 

Techniques Objectives & Papers 

Analytical  Power losses [1,2] 

Exhaustive  Multiple objectives [3,4,5] 

Linear programming Minimisation of curtailment cost [9] 

Maximisation of DG capacity [8,10] 

Maximisation of wind energy [11] 

Optimal curtailment allocation [12] 

Optimal power flow Power Losses [20, 21] 

Maximisation of DG capacity [14-19] 

Minimisation of energy losses [20] 

Metaheuristics Maximisation of DG capacity [22-31] 

Investment Planning [29] 

Multi-Objective [34-45] 

Probabilistic analysis Improved reliability [48-54] 

III.  BARRIERS TO IMPLEMENTATION 

There are numerous implementation challenges in 

integrating DG into power systems and these have been 

explored well at a research level in recent years [56-58]. Many 

of these have been viable solutions and some of those have 

found their way into application in different regions around 

the globe. For example, one of the initial major moves to 

overcome DG connection and integration barriers was 

updating grid connection standards [59, 60]. Along with the 

DG technology and economics issues, the network challenges 

for DG integration are in the ‘planning’ and ‘operational 

control’ areas (or time frames). Two major barriers to 

implementation lie in the fact that DNOs are not used to using 

custom (if any) optimization codes and that some of the 

proposed techniques cannot consider a sufficient range of 

scenarios to tackle real world problems. 

Techniques for planning have been the focus of the 

discussion in the sections above and the DG optimal siting and 

sizing problem (and proposed solutions) has been noted. In 

addition, there are challenges in adequately and economically 

planning the sizing of distribution network circuits for DG 

connection. This is problematic since the techniques for 

managing the operation of connected DG have a large role to 

play in assessing the required capability of the distribution 

network. Earlier work in this area simply attempted to sum up 

potential benefits and costs of DG to the network operator to 

establish the case for DG with a simplified approach to 

representing the through year operation [61]. 

The DG planning optimization approaches described above 

have some representations of the operational approach under 

consideration (e.g., in the OPF formulation of DG curtailment 

in [17, 43]) but fully representing each of the new approaches 

and their physical and operational characteristics and 

constraints is a non-trivial task. A further complicating factor 

is the uncertainty associated with these technologies (e.g., 

demand response, electric transportation, electric heating, 

energy storage) and where they will be connected and how 

they will be managed. There are already well established 

outcomes from studies on DG curtailment [17, 62, 63] to 

highlight DG access opportunities (or headroom calculations 

as they are sometimes known) and these prove useful in 

highlighting to power network operators and DG developers 

the opportunities for and level of network access. The 

treatment of uncertainty in DG planning is dealt with in 

section II-G but the uncertainty of the operational 

characteristics of DG is assessed alongside the viability of DG 

constraint management solution using a stochastic 

programming approach in [64]. 

On the demand side, the use of new data sources in 

distribution and DG planning and optimization is both a 

challenge and an opportunity. The wealth of data (and 

hopefully meaningful information) available from smart meter 

roll out programs provides a challenge to network planners 

(e.g., aggregation issues for domestic level data) but also a 

rich insight into the possibilities for DG deployment or 

network access at domestic scales upwards. It is anticipated 

that this will be an area of substantial development in the 

coming years based on early publication of results on this 

topic [65, 66]. The complete area of data capture, processing, 

modeling, estimation, forecasting as it relates to studies of DG 

and DG network integration seems to be of increasing 

importance. 

A further issue for optimal network planning with DG 

using ‘active network management’ approaches is proper 

representation of the secondary communications and control 

infrastructure. On the one hand the cost of this needs to be 

incorporated into the network planning formulation and on the 

other hand the impacts of these secondary systems (e.g., on 

reliability of network connection) need to be evaluated. 

This paper mainly deals with the planning issues of DG 

optimization and planning in the medium or long term, but 

there is a case now being made for operational optimization of 

DG. In part this is due to the maturing of active network 

management approaches and the requirement for DG network 

access to be maximized as far as possible. Some authors have 

proposed optimization approaches for DG control [67-70]. 
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Some of the issues experienced with optimization approaches 

for DG operations are scalability of approaches for many DG 

units, robustness in finding a safe or feasible solution in 

control timescales, and the possibility of hunting for solutions 

in a dynamic environment. 

The DG integration domain has transitioned from one of 

‘learning by research’ to ‘learning by doing’ in the past few 

years. The advent of major stimulus or innovation funded 

smart grid project with DG as an integral ingredient has 

brought opportunities to develop, validate and demonstrate 

new approaches in DG integration. In the US the ARRA [71], 

in the UK the Low Carbon Networks Fund [72] and similar 

schemes elsewhere are at the stage of trialing very new 

approaches to DG integration. In most cases the emphasis on 

removing barriers to DG development is related to the low 

carbon emission characteristics of the DG technologies. The 

approaches being trialed include using energy storage, demand 

response, smart meter data, DG constraint management and 

other more active approaches to managing distribution 

networks [73]. 

One issue that has emerged is the issue of DNO capability 

to adopt the more innovative solutions available. The 

complexity of the planning and design process for networks 

with DG (and other new devices) and the integration of new 

operational approaches has initially resulted in relatively slow 

progress on deployment projects. This highlights a major 

problem for state-of-the-art DG planning and optimization 

approaches: ‘DNO adoption’. DNOs have a substantial 

capability challenge to embrace whether receiving the results 

from more sophisticated planning tools or developing models 

themselves or accepting for internal use some of the tools and 

techniques emerging from research. 

IV.  CHALLENGES AHEAD 

The move towards higher penetrations of DG is leading to 

DG constituting a high percentage of the overall generation 

plant mix. In systems with a few interconnections, this 

scenario poses many challenges. For instance, in Ireland it is 

now approximately 10% with instantaneous penetrations of 

25% experienced at high wind power output. In the UK, 

DNOs are forecasting the connection of a further 10 GW of 

total DG capacity by 2015 [74], almost a quarter of the total 

new generation capacity expected by the system operator. This 

scenario requires DG to be considered in transmission 

planning and operation. The network planning methods 

developed to date have not addressed this issue and indeed it is 

non-trivial. It will require more integrated transmission and 

distribution models to properly assess the challenges and 

opportunities. In light of this, the focus on more traditional 

objectives such as losses is relevant but may have to be 

adapted to take account of wider system requirements beyond 

the distribution network level. 

Ancillary services such as reserve, reactive power and 

inertial response are becoming the focus of much attention in 

recent times. These services which are not ‘ancillary’ but 

rather vital will in the future have to come from alternative 

sources other than the traditional bulk synchronous generation 

plant. The provision of such services from DG and the impact 

of DG at transmission is the focus of current attention by 

researchers [75-80]. From this work it appears that there is 

significant untapped capability from DG but also that 

additional sources of support may be required at transmission 

level [81]. 

Depending on the particular circumstances of a DG 

development, such as resource availability, planning consents 

or declared net capacity, it might be possible to have more 

than one network integration scheme (i.e., connection point 

and/or operation strategy) that is economically sound for the 

DG developer. The economics of different locations becomes 

even more relevant if not only are infrastructure costs involved 

but also distribution connection charges. Indeed, DNOs could 

tune the latter to steer DG projects towards specific areas 

where the technical and economic impacts on the system are 

less onerous or even beneficial. Alternatively, bilateral 

commercial arrangements between DNOs and DG developers 

could also provide win-win situations. However, for DNOs to 

determine appropriate locational signals or commercial 

arrangements they need to investigate how capable their 

networks are for integrating renewable or conventional DG. 

Such initiatives are particularly relevant where there is private 

ownership of DG. If the DNO does not own the DG and hence 

can only specify if given DG capacities are permissible, it is 

not in a position to specify a preferred overall allocation to 

maximize capacity, without entering into commercial 

arrangements such as those described above. If a global 

benefit is identified by an optimization method, this is often 

distinct from the regulatory and commercial framework in 

place and it may not be a trivial matter to translate a calculated 

potential benefit for the network into a delivered one. 

Low-voltage networks are now also becoming the focus of 

attention of researchers and network operators. The potential 

uptake of micro-generation, electric vehicles and other 

demand side resources, coupled with developments in 

advanced metering have led to new modeling efforts of these 

networks. Challenges are present in the modeling of these 

networks alone, as historically they have not been modeled in 

detail by network operators. Beyond the modeling challenge, 

lies the development of optimization strategies and integration 

techniques for distributed energy resources, for which the 

techniques developed to date for DG will provide a solid 

foundation. For example, the distribution system planning and 

operation issues of electric vehicles are already the subject of 

several research studies [82-84], even though they are at a 

very early stage in their trial deployment in power networks 

and hence there remain many unanswered questions about 

their characteristics. 

V.  CONCLUSION 

The rapid onset of DG in its various forms and scales is 

transforming the traditional planning and operation of 

distribution networks. The range of energy resources is 

matched by the range of computational methods and 

approaches employed in their integration. As outlined in this 

paper, each has their advantages and disadvantages and their 



 

 

8 

appropriate use is dependent on the particular case. 

Many objectives have been pursued in the optimization of 

the planning of DG. Some of the most common include energy 

losses, maximization of DG capacity or energy via sizing and 

siting of DG, minimizing curtailment, or minimizing cost, 

oftentimes the reinforcement cost associated with DG. One of 

the drivers behind the appropriate objective is often the DG 

ownership model assumed. For example, a privately owned 

DG may care little about losses but would have a strong 

preference for the maximization of DG output. Multi-objective 

programming methods have tackled a number of these 

objectives simultaneously, in an attempt to show the range of 

‘compromise’ solutions that may be possible. 

The methods developed through research are in some cases 

now feeding more directly into the methods employed by 

network operators, or at least pointing the way towards the 

potential benefits of such approaches. Numerous 

demonstration and field trial projects led in many cases by 

network operators are underway across the world, in order to 

identify the realizable benefits highlights in the many works 

cited here. The status of DG is itself changing, with micro-

generation, in particular photovoltaic cells and larger scale DG 

becoming more prevalent. As outlined here, this presents 

challenges in terms of network modeling, e.g., low voltage 

networks and wider system operation. Such developments 

point the way for fruitful areas of further research and 

highlight the dynamic situation and challenges all stakeholders 

in power systems are tackling. 
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