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ABSTRACT

Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of galaxies selected from the HI Arecibo
Legacy Fast ALFA Survey (ALFALFA) in the Coma supercluster.
Aims. Taking advantage of Hα3, which provides the complete census of the recent star formation in HI-rich galaxies in the local uni-
verse, we explored the hypothesis that a morphological sequence of galaxies of progressively earlier type and lower gas-content exists
in the neighborhood of a rich cluster of galaxies such as Coma, with a specific star formation activity that decreases with increasing
local galaxy density and velocity dispersion.
Methods. By using the Hα hydrogen recombination line as a tracer of the “instantaneous” star formation, complemented with optical
colors from SDSS, we investigated the relationships between atomic neutral gas and newly formed stars in different local galaxy
density intervals, for many morphological types, and over a wide range of stellar masses (109 to 1011.5 M�).
Results. In the dwarf regime (8.5 < log (M∗/M�) < 9.5) we identify a four-step sequence of galaxies with progressively redder
colors (corrected for dust extinction), i.e., of decreasing specific star formation, from (1) HI-rich late-type galaxies (LTGs) belonging
to the blue cloud that exhibit extended plus nuclear star formation, (2) ∼0.1 mag redder, HI-poor LTGs with nuclear star formation
only, (3) ∼0.35 mag redder, HI-poor galaxies without either extended or nuclear star formation, but with nuclear post-star-burst (PSB)
signature, (4) ∼ 0.5 mag redder early-type galaxies (ETGs) that belong to the red sequence, and show no gas or star formation on all
scales. Along this sequence the quenching of the star formation proceeds radially outside-in. The progression toward redder colors
found along this “morphological” (gas content) sequence is comparable to the one obtained from increasing the local galaxy density,
from cosmic filaments (1 2), to the rich clusters (2 3 4).
Conclusions. In the dwarf regime we find evidence for an evolution of HI-rich LTGs into ETGs through HI-poor LTGs and PSB galax-
ies driven by the environment. We identify ram-pressure as the mechanism most likely responsible for this transformation. We con-
clude that infall of galaxies has proceeded for the last 7.5 Gyr, building up the Coma cluster at a rate of approximately 100 galaxies
with log (M∗/M�) > 9.0 per Gyr.
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� Based on observations taken at the observatory of San Pedro Martir
(Baja California, Mexico), belonging to the Mexican Observatorio
Astronómico Nacional.
�� Appendices are available in electronic form at
http://www.aanda.org
��� Hubble Fellow.

1. Introduction

Since the advent of the Sloan Digital Sky Survey (SDSS, York
et al. 2000), which revolutionized research in astronomy at the
turn of the millennium, surveys carried out at frequencies other
than optical were designed with an extent, depth, and photomet-
ric and astrometric qualities comparable with SDSS.
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One such ambitious survey is ALFALFA (Giovanelli et al.
2005), a blind HI sky survey that just ended at Arecibo (October
2012), aimed at obtaining the census of HI sources within
7000 sq degrees of the sky accessible from Arecibo, with an
rms noise near 2 mJy after Hanning smoothing to 10 km s−1

(see Haynes et al. 2011), corresponding to 107.7 M� of HI at the
distance of Virgo and 109 M� at the distance of Coma. A cata-
log listing 40% of the whole ALFALFA sources available so far
(α.40 catalog) has been published by Haynes et al. (2011).

The less extensive Hα3 is an Hα narrow-band imaging sur-
vey, ongoing at the 2.1 m telescope of the San Pedro Martir
(SPM) Observatory, aimed at following-up all nearby galaxies
that are selected from ALFALFA in the redshift range (−1000 <
cz < 3000 km s−1) of the Local (Gavazzi et al. 2012) and Coma
superclusters (3900 < cz < 9500 km s−1). The sensitivity of
Hα3 is such that galaxies with star formation rate (SFR) in ex-
cess of ∼0.1 M� yr−1 are sampled up to the distance of Coma
(100 Mpc). The three mentioned surveys provide us with the
necessary ingredients for studying one of the most obvious, yet
still unsettled questions of galaxy evolution: the transformation
of primeval atomic gas (HI) into H2, its fragmentation in molec-
ular clouds, and the birth of new stars that contribute to the for-
mation and evolution of galaxies. So far, the census of the SFR
in the local Universe traced by hydrogen recombination lines
has been determined on HI selected surveys, such as SINGG se-
lected from HIPASS (Meurer et al. 2006), or optically selected
ones (Boselli et al. 2001; Gavazzi et al. 2002b, 2006; James et al.
2004; Kennicutt et al. 2008; Lee et al. 2007, 2009; Bothwell et al.
2009), or in optically selected galaxies with stellar mass larger
than 1010 M� (e.g. GASS, the GALEX Arecibo SDSS Survey,
Catinella et al. 2010; Schiminovich et al. 2010; Fabello et al.
2012). The combined sensitivities of SDSS, ALFALFA, and
Hα3 are such that the present analysis can be extended to dwarf
galaxies with stellar masses as small as 108 M�. Combining
the α.40 catalog (Haynes et al. 2011) with the catalog provided
by the legacy program carried out with the Galaxy Evolution
Explorer (GALEX), Huang et al. (2012) carried out the most re-
cent investigation of the scaling relations between HI gas, star
formation1, and stellar mass. They did not touch on the debated
question whether the transformation of gas into stars which has
provided the build-up of the Hubble sequence over the cosmic
time, depends on the environment (nurture) or is a purely “ge-
netic” process (nature), which is the focus of the present work.
We follow the line traced by Boselli et al. (2008) and by Paper II
(Gavazzi et al. 2013), who found evidence that a strong role is
played by the environment in the Virgo cluster for the transfor-
mation of star-forming dwarf galaxies of late type into quiescent
dwarf elliptical galaxies due to the fast ablation of the interstellar
gas caused by the ram-pressure mechanism (Gunn & Gott 1972),
with consequent suppression of the star formation. Moreover,
we continue on this line, following Gavazzi et al. (2010), who
found support for these ideas by studying the population of late-
type galaxies surrounding the Coma cluster using photometry
and spectroscopy from the SDSS to separate the stellar popula-
tions in galaxies as faint as Mi = −17.5 mag. The Coma super-
cluster consists of a main filament of galaxies running perpen-
dicularly to the line of sight across several hundreds of Mpc, with
a distribution of galaxies spanning a significant density contrast.

1 We emphasize that the SFR in normal galaxies can be estimated from
the UV provided that this remained constant over a time scale t < 108 yr.
In contrast if the SFR changed during a time scale 107 < t < 108 yr,
which is most likely the case of cluster and dwarf galaxies, the most
appropriate SFR indicator is Hα (Boselli et al. 2009).

Its very shape, along with the new available data on the HI gas
content from ALFALFA and the measurements of the star for-
mation provided by Hα3, offer a unique opportunity of pursuing
this question in the present Paper III of the Hα3 series.

Paper III is structured as follows. The optical- and radio-
selected samples used in the analysis are defined and discussed
in Sect. 2. Section 3 contains the evidence of the environmental
dependency of the gas content and of the star formation activity
(both in the disk and circumnuclear). Discussion and summary
are given in Sect. 4. A method for correcting the optical colors
for internal extinction is obtained in Appendix A. The scaling
relations between HI mass, stellar mass and the star formation
in Coma compared to the Local Supercluster are discussed in
Appendix B.

The Hα3 observations of the Local Supercluster have been
the subject of Paper I of this series (Gavazzi et al. 2012). Paper II
(Gavazzi et al. 2013) outlined the analysis, including the study
of the scaling relations between HI mass, stellar mass, star for-
mation, and the environmental conditions. Paper IV (Fossati
et al. 2013) will analyze the structural properties of galaxies in
the Local and Coma superclusters, and Paper V (Gavazzi et al.
2013) will contain the Hα3 data (fluxes and images) in the Coma
supercluster.

2. The Sample

The present analysis is focused on galaxies members of the
Coma supercluster, which belongs to three subsamples: sample 1
is composed of 5026 optically selected galaxies brighter than
r ≤ 17.77 (and is complete to this limit), sample 2 consists of
683 HI-selected galaxies (from ALFALFA), sample 3 (a subset
of sample 2) consists of 383 galaxies that were followed-up with
Hα observations as part of Hα3.

The sky distribution of the Great Wall is displayed in the top
panel of Fig. 1, while a wedge diagram of the HI-selected sample
is shown in the bottom panel. The optically selected sample was
built from the union of two regions: region 1 with 172◦ < RA <
202◦; 18◦ < Dec < 32◦ (11.5h < RA < 13.5h, gray shaded
in Fig. 1), which traditionally describes the Coma supercluster,
and region 2 with 150◦ < RA < 240◦ ; 24◦ < Dec < 28◦ (10h <
RA < 16h, blue-shaded in Fig. 1) covered by ALFALFA. In
both regions we limit our analysis to the redshift interval 3900 <
cz < 9500 km s−1, chosen to comprise the “finger of God” of the
Coma cluster.

2.1. Optically selected sample

Galaxies belonging to the Coma supercluster, which lies at a
mean distance of 100 Mpc, have apparent radii small enough that
their SDSS images are only little affected by the “shredding” of
large galaxies into multiple pieces, which leads to wrong mag-
nitude determinations2 (Blanton et al. 2005). Hence a reliable
optically selected sample can be extracted from the SDSS spec-
troscopic database following the criteria described in Gavazzi
et al. (2010, 2011) which we only briefly summarize here. We
searched the SDSS DR7 spectroscopic database (Abazajian et al.
2009) in regions 1 and 2 (see Fig. 1) for all galaxies with
r ≤ 17.77 mag, which matches the selection criterion of the

2 Shredding of large galaxies is caused by the combined effect of cut-
ting the images of individual galaxies into multiple pieces, due to the
observing strategy of SDSS by discrete “tiles”, and to the inefficiency
of Sextractor (Bertin & Arnouts 1996) in reconstructing the total flux of
very extended objects.
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G. Gavazzi et al.: Hα3: Hα imaging survey of HI selected galaxies from ALFALFA. III.

Fig. 1. Top panel: sky distribution (the RA scale is compressed) of the Coma supercluster area studied in this work, constituted by the union of
the traditional area occupied by the Coma supercluster 172◦ < RA < 202◦; 18◦ < Dec < 32◦ (region 1, gray shaded) with the elongated region
150◦ < RA < 240◦; 24◦ < Dec < 28◦ (region 2, blue shaded) covered by ALFALFA (Haynes et al. 2011). In both regions only galaxies in the
interval 3900 < cz < 9500 km s−1 are considered. Sample 1 includes 5026 galaxies of all morphological types optically selected from SDSS
(small black dots) in the union of regions 1+2. Sample 2 includes 683 galaxies HI selected from ALFALFA (blue symbols). Sample 3 (a subset
of sample 2) is composed of 383 galaxies followed-up with Hα observations as part of Hα3 (red symbols). Region 1 will be fully covered by
ALFALFA in the near future. Currently, only the brightest galaxies have been observed in HI and in Hα with pointed observations (listed in
GOLDmine). Black circles mark the position of the seven groups found in region 2. Bottom panel: recessional velocity versus RA distribution
of 2416 galaxies in the region 2 covered by ALFALFA (black). 683 galaxies detected by ALFALFA are represented in blue. The 383 galaxies
observed in Hα as part of Hα3 are plotted in red. Note the filamentary structure departing from the Coma cluster (identified by the “finger of God”
near RA = 195), with increasing velocity toward the Hercules supercluster (RA = 240).

SDSS spectral catalog (Strauss et al. 2002), in the redshift in-
terval 3900 < cz < 9500 km s−1. We obtained 4790 targets. For
each, we extracted the coordinates, the u, g, r, i, z Petrosian mag-
nitudes (AB system, not corrected for internal extinction), and
the spectroscopic information, including the principal (nuclear)
line intensities and the redshift. The morphological classification
of all galaxies was performed by individual visual inspection of
SDSS color images.

To fill in the incompleteness of SDSS for luminous galax-
ies due to shredding and fiber conflict, we added 133 CGCG

(Zwicky et al. 1961−1968) galaxies with known redshifts from
NED that were not included in the SDSS spectral database. For
these objects, we also took the u, g, r, i, z Petrosian magnitudes
using the SDSS DR7 navigation tool, which provides accurate
magnitudes. Additional galaxies that could not be found in the
SDSS spectroscopic catalog were searched for using NED. For
these targets, we again evaluated the u, g, r, i, z magnitudes us-
ing the SDSS navigator, and of these we selected 76 objects
that meet the condition r ≤ 17.77 mag. We repeated a simi-
lar search in the ALFALFA database (Haynes et al. 2011) in
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region 2, where we found 28 additional HI-selected systems with
r ≤ 17.77 mag, that were not included in the SDSS spectral
database.

In total, our optical sample consists of 5026 galaxies:
4790 from SDSS and 236 from other sources. Of the 5026,
2146 galaxies lie in region 2.

The stellar mass was derived from the i magnitudes and
g−i color using the transformation

log

(
M∗
M�

)
= −1.94 + 0.59(g−i) + 1.15 log

(
Li

L�

)
, (1)

where log Li is the i band luminosity in solar units (log Li =
(I − 4.56)/−2.5). This is a modification of the Bell et al. (2003)
formula that we computed to be consistent with the mass deter-
mination of Brinchmann MPA-JHU3.

Following a procedure identical to the one used in Gavazzi
et al. (2010, 2011), the local number density ρ around each
galaxy was computed within a cylinder of 1 h−1 Mpc radius and
1000 km s−1 half-length. Around each galaxy we computed the
3D density contrast as

δ1,1000 =
ρ − 〈ρ〉
〈ρ〉 ,

where ρ is the local number density and 〈ρ〉 =
0.05 gal (h−1 Mpc)−3 represents the mean number density
measured in the whole region. We divided the sample into
four overdensity bins, chosen to highlight physically different
environments of increasing level of aggregation: the ultra-low
density bin (UL: log (1 + δ1,1000) ≤ 0) that describes the
underdense cosmic structures (sparse filaments and voids); the
low-density bin (L: 0 < log (1 + δ1,1000) ≤ 0.7) that comprises
the filaments in the Great Wall and the loose groups; the high-
density bin (H: 0.7 < log (1 + δ1,1000) ≤ 1.3) that includes the
cluster outskirts and the significant groups; and the ultra-high
density bin (UH: log (1 + δ1,1000) > 1.3) that corresponds to the
cores of rich clusters.

2.2. HI-selected sample

The HI-selected sample analyzed in this work is drawn from
the 360 square degree region 2. This region has been fully
mapped by ALFALFA, providing us with a complete sample of
HI-selected galaxies (Haynes et al. 2011). At present, half of the
Coma cluster lies within the footprint of ALFALFA.

The completeness and sensitivity of ALFALFA are clearly
described and discussed in detail in Saintonge (2007), Martin
et al. (2010), and Haynes et al. (2011). An estimate of the lim-
iting sensitivity of ALFALFA at the distance of Coma can be
obtained using equation 1 in Giovanelli et al. (2007):

S/N =

(
1000 · S 21

W50

)
· w

1/2
smo

σrms
, (2)

where S 21 is the integrated flux under the HI profile in units
of Jy km s−1, wsmo is a smoothing width expressed as the num-
ber of spectral resolution bins of 10 km s−1 that bridges half of
the signal width. W50 is the profile width at 50% of the height
and σrms is the typical noise in the baseline in bins of 10 km s−1.
For W50 < 400 km s−1, wsmo = W50/(2 × 10). The HI mass is
MHI = 2.36 × 105S 21tD2, where D is the distance to the source
in Mpc.

3 http://www.mpa-garching.mpg.de/SDSS/DR7/, see Salim
et al. (2007).

The limiting HI mass of ALFALFA can be computed as

MHI,lim = 2.36 × 105D2(W50 × 20)1/2σrmsS/Nlim, (3)

where W50 = W50,0 sin(incl) (W50,0 is the face-on line width) and
incl is the galaxy inclination in the plane of sky determined from
Eq. (A1).

Adopting σrms = 2.1 mJy, typical of ALFALFA spectra, the
mean distance to Coma D = 100 Mpc, S/Nlim = 6.5 and W50,0 =
100 km s−1, we obtain log (MHI,lim/M�) = 8.78, 9.08, 9.15 for
incl = 10, 45, 70 deg4. In conclusion, ALFALFA is sensitive
to galaxies that contain approximately log (MHI/M�) ∼ 9 at the
distance of Coma.

2.3. Hα sample

Hα3 consists of follow-up Hα observations of 383 galaxies
among the HI-selected (detected) ones. These data, resulting
from the joined effort by the Hα3 collaboration in 2010, 2011
and 2012 using the 1.5 m and 2.1 m telescopes at SPM, will be
discussed in full detail (and publicly released) in Paper V of this
series. Starting from 683 ALFALFA targets with high signal-to-
noise (typically S/N > 6.5) and a good match between two inde-
pendent polarizations (code = 1 sources; Giovanelli et al. 2005;
Haynes et al. 2011), in the first two years (2010, 2011) our ob-
servational effort had been focused on radio targets brighter than
1 Jy km s−1 and with 3900 < cz < 9000 km s−1, while fainter
targets were observed in 2012. However, approximately 95 ad-
ditional bright CGCG galaxies (Zwicky et al. 1961−1968) in the
intersection between region 1 and 2 (11.5h < RA < 13.5h; 24◦ <
Dec < 28◦) and 207 additional CGCG galaxies outside region 2
were already observed in Hα by Gavazzi et al. (1998, 2002a,b,
2006), Boselli & Gavazzi (2002), and Iglesias Paramo et al.
(2002). For these targets images and fluxes are publicly available
via the GOLDmine web server (Gavazzi et al. 2003). In total, the
number of galaxies in Sample 3 (Hα3) is 383, but the total num-
ber of galaxies observed in Hα is 95+383+207 = 685. For these
targets the SFR was computed from the luminosity of the Hα line
after correcting for Galactic extinction and after the Hα line was
deblended from the contribution from [NII] emission using the
criteria adopted in Paper I. Based on the mass-metallicity rela-
tion (Tremonti et al. 2004), we calibrated a relation between the
ratio N[II]/Hα and the absolute i band magnitude, excluding ac-
tive galactic nuclei (AGNs). Details on these quantities will be
given in Paper V. No correction for internal dust extinction has
been applied because very few drift-scan-spectra are available
from Gavazzi et al. (2004) and Boselli et al. (2013), which are
necessary to estimate the Balmer decrement and in turn the ex-
tinction coefficient A(Hα) on the full disk scale. The SDSS spec-
tra could not provide for this correction because, at the distance
of Coma, they cover just the nuclear galaxy region and hence are
not representative of the whole galaxy.

Summarizing, ALFALFA provides us with the HI mass of
LTGs complete to approximately 109 M�, whose optical col-
ors (corrected for internal extinction according to the prescrip-
tions of Appendix A) and stellar masses are distributed as shown
in Fig. 2. The figure highlights that only the part of the “blue
cloud” composed of HI-rich LTGs is sampled by ALFALFA
(blue + red symbols), whereas LTGs that have less than 109 M�
of HI, hereafter considered HI-poor LTGs, are not detected by
ALFALFA (green symbols), in this figure we highlight with red

4 At the distance of Virgo (D = 17 Mpc) these limits are 35 times
lower, becoming 7.24, 7.54, 7.60 M�.
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Fig. 2. Corrected color (g−i)o vs. stellar mass diagram of optically se-
lected galaxies limited to LTGs (subsample 2). The colors are corrected
for extinction in the Milky Way and for internal extinction according
to the prescriptions of Appendix A. LTGs undetected by ALFALFA are
represented by green symbols. LTGs detected by ALFALFA are given
in blue. Red symbols denote the subsample of the ALFALFA-selected
galaxies that were followed-up in Hα3.

symbols. We highlight the subsample of ALFALFA targets that
were followed-up in Hα3 with red symbols.

3. Environmental effects
3.1. Pattern of HI-deficiency

It has long been known that the HI-deficiency parameter (De fHI)
is perhaps the most reliable indicator of whether or not an LTG
belongs to the harsh environment of a rich cluster (Giovanelli &
Haynes 1985). De fHI has been defined by Haynes & Giovanelli
(1984) as the logarithmic difference between the HI mass ob-
served in an object and the expected value in isolated and un-
perturbed objects of similar morphological type T and linear
diameter D25: De fHI = 〈log MHI(T,D25)〉 − log Mobs

HI . Here,
〈log MHI(T,D25)〉 = C1 + C2 × 2 log D25, where D25 (in kpc) is
determined in the g band at the 25th mag arcsec−2 isophote. The
coefficients C1 and C2 were determined by Haynes & Giovanelli
(1984) by studying a control sample of isolated objects, and
later, on a larger sample by Solanes et al. (1996). Both sam-
ples are composed almost exclusively of giant spirals however.
The HI deficiency parameter was therefore poorly calibrated
for dwarf objects. This problem was addressed in Paper II,
where the relatively isolated galaxies in the Local Supercluster
were used to determine that C1 = 7.51 and C2 = 0.68 hold
for all LTGs. Here, combining isolated LTGs from the Local
Supercluster with the lowest density objects in the Coma super-
cluster we obtain C1 = 7.50 and C2 = 0.79, consistently with
the Local Supercluster alone (and with the Coma1 cloud, see
Boselli & Gavazzi 2009). These coefficients are consistent with
those adopted by Solanes et al. (1996) up to Sc galaxies, and by
Toribio et al. (2011) up to Scd-Sd galaxies.

Figure 3 shows the relations among MHI and the diameters
found adopting these coefficients. The fit5 obtained for all LTGs

5 Linear regressions are obtained in this work using the bisector
method (mean coefficients of the direct and the inverse relation, Isobe
et al. 1990).

Fig. 3. log MHI(T,D25) relation for isolated galaxies with δ1,1000 < 0 in
the Coma supercluster (blue) and in the Local Supercluster (Paper II;
gray). The fit obtained using all late-type (Sa-BCD) objects is given as
a dashed line in every panel.

Fig. 4. Histogram of the De fHI parameter derived from ALFALFA ob-
servations of the Coma supercluster, separately for isolated objects with
δ1,1000 < 0 (blue) and for galaxies in the densest regimes (δ1,1000 >
10 red).

is depicted with the dashed line. The distribution of the De fHI pa-
rameter of galaxies in the Coma supercluster is plotted in Fig. 4
separately for δ1,1000 < 0 (isolated objects, blue) and δ1,1000 > 10
(rich clusters, red), with the mean De fHI obtained in the two
bins (intermediate-density objects are not plotted, but are con-
sidered in the following analysis). Apparently, isolated objects
have a mean deficiency consistent with 0 ± 0.2. Throughout this
paper we consider as “normal” or “unperturbed” by the cluster
environment, as far as their HI content is concerned, 270 galax-
ies with De fHI ≤ 0.2, i.e., within 1 σ of the mean deficiency
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Fig. 5. Distribution of the De fHI parameter of galaxies in the Coma
supercluster as a function of the local galaxy density δ1,1000. Filled
dots represent HI data from ALFALFA, empty symbols derive from
deeper, pointed HI measurements of optically selected galaxies. Clearly
ALFALFA is not sufficiently deep to detect deficient objects, except
for few massive, face-on galaxies (the only point above De fHI = 1 is
NGC 4921, a face-on giant Sb in the Coma cluster). Deeper, pointed
HI observations reveal the expected increase of the mean HI deficiency
with increasing local galaxy density (red symbols).

of the isolated sample. At the distance of Coma, galaxies with
De fHI > 0.2 are undersampled because they lie below the sensi-
tivity of ALFALFA.

Figure 5 shows the deficiency parameter plotted as a func-
tion of the local density. Filled symbols refer to galaxies in the
HI-selected sample, i.e., detected by ALFALFA. Evidently, as
the galaxy density log (1+ δ1,1000) approaches 1 (the cluster out-
skirts) ALFALFA detects almost no galaxies, because they are
too shallow to reveal the Giovanelli & Haynes (1985) pattern
of HI deficiency near the Coma cluster. However, when pointed
long-integration HI observations deeper than ALFALFA are
considered, such as those available for region 1 from GOLDmine
(open gray symbols with red binned averages), the expected in-
crease of De fHI with local density clearly appears.

3.2. What do the LTGs undetected by ALFALFA represent?

In contrast to the Local Supercluster (Paper II of this series),
the sensitivity of ALFALFA at Coma is insufficient for detecting
galaxies with significant HI deficiency (see previous section)6.
The known trend of increasing HI deficiency with increasing
galaxy density (see Fig. 4) could be revealed only using the
long-integration pointed radio detections available in region 1.
Therefore a discussion similar to Paper II, where some galaxy
properties were analyzed in bins of increasing De fHI, cannot be
undertaken. Moreover, because Hα3 suffers from the same se-
lection bias as ALFALFA, no trends between the SFR and the
HI deficiency can be directly investigated.

This problem can be addressed, however, by separating
LTGs that were detected/undetected by ALFALFA. As already

6 We recall that ALFALFA is a two-passes survey of approximately
7000 sq degrees visible from Arecibo. To make it sensitive to 108 M�
of HI at the distance of Coma, it would require some 500 000 h of tele-
scope time!

Fig. 6. The fraction of LTGs (in region 2) detected by ALFALFA (blue
histogram); undetected by ALFALFA (green histogram); PSB (black
histogram), in four bins of increasing local density (representing the
sparse cosmic web, the filaments, the groups and the cluster’s cores).

stressed in Paper I, the radio selection biases Hα3 toward HI-rich
LTGs (see also Gavazzi et al. 2008). ALFALFA detects almost
exclusively LTGs in the blue sequence, not all LTGs are detected
(see green symbols in Fig. 2). As we showed in Paper II and in
Gavazzi et al. (2008), where we focused on galaxies in the Local
Supercluster, the very existence of a limiting HI mass combined
with the relation log MHI = 0.52×log M∗+4.54 (see Appendix B)
that holds for normal galaxies induces an optical limit for the
detection of HI-rich systems. At the distance of Coma, galaxies
fainter than log (M∗/M�) ∼ 8.5 or Mi ∼ −17 mag are not de-
tected by ALFALFA. Furthermore, even some late-type galax-
ies brighter than this limit are not detected in ALFALFA or in
Hα3. LTGs that are not detected by ALFALFA are truly HI-poor
systems7.

Figure 6 sheds more light on the nature of HI-poor LTGs
by plotting their frequency distribution as a function of the
local galaxy density: the fraction of HI-rich LTGs detected
by ALFALFA (blue histogram), representing about 50% of all
LTGs in the field, decreases gradually with increasing density
and drops to zero in the core of Coma; the fraction of HI-poor
LTGs undetected by ALFALFA (green histogram), representing
the remaining 50% of all LTGs in the field, increases with in-
creasing density to nearly 100%. Incidentally, the fraction of
post-star burst systems is null in the field, in filaments, and
in groups but it becomes significant in the core of Coma (see
also Gavazzi et al. 2010). Summarizing, when galaxies approach
denser environments, their gas content is progressively reduced,
which mimics the pattern of morphology segregation.
7 Before assuming that all galaxies undetected by ALFALFA are in-
trinsically HI-poor, i.e., have log (MHI/M�) < 9, one must exclude the
optical targets undetected by ALFALFA due to confusion in the Arecibo
beam by other detected galaxies at similar velocity. Using a 3.5 arcmin
FWHM beam and ΔV = 200 km s−1 at the position of each detected tar-
get, we found only 28 optically selected candidates that were confused
(roughly 1% of all galaxies in region 2 and 4% of all undetected LTGs).
We thus conclude that most undetected LTGs with log (M∗/M�) > 9
are truly HI-poor systems. Indeed, using pointed observations avail-
able from Arecibo for LTGs in the intersection between region 1 and
region 2, we determined that 〈De fHI〉 = 0.13 for LTGs detected by
ALFALFA, while 〈De fHI〉 = 0.73 for LTGs undetected by ALFALFA.
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Fig. 7. Four-step sequence of galaxies of increasing (g−i)o color is identified in the color-mass diagram of panel a) when four groups of different
morphological types/gas-content/nuclear properties are considered. Panel a) corrected color (g−i)o vs. stellar mass diagram of optically selected
galaxies of all morphological types. Red symbols represent ETGs. Green symbols represent HI-poor LTGs not detected by ALFALFA, while
HI-rich LTGs detected by ALFALFA are given in blue. Large black symbols represent PSB (also named k+a, i.e., with Balmer lines in absorption)
galaxies identified by Gavazzi et al. (2010). They all lie at log (M∗/M�) < 10. Panel b) a similar gradual trend in the color-mass diagram is found
when galaxies are grouped in bins of increasing local density. This panel shows the corrected color (g − i)o vs. stellar mass diagram of optically
selected galaxies of all morphological types, in three bins of decreasing local density: red = log (1+δ1,1000) > 1.35, green = 0.7 < log (1+δ1,1000) <
1.04; blue = log (1 + δ1,1000) < 0. Panel c) the specific star formation rate (SSFR) vs. stellar mass diagram of galaxies covered by ALFALFA
and followed-up by Hα3. Galaxies are color-coded according to the following criterion: red = ETGs; green = LTGs undetected by ALFALFA
(HI-poor); blue = LTGs detected by ALFALFA (HI-rich). Unsurprisingly, the statistics are very poor among ETGs and for HI-poor LTGs.

3.3. Color, HI content, and local density

We now show that HI-poor LTGs are statistically less star-
forming than their HI-rich counterparts of similar stellar mass.
Figure 7a shows the color-mass relation of galaxies, divided into
four groups of different morphological type/gas-content: HI-rich
(detected by ALFALFA) LTGs are plotted with blue symbols;
HI-poor (undetected by ALFALFA) LTGs are marked with green
symbols, PSB galaxies identified by Gavazzi et al. (2010) are
shown with large black symbols8, and red symbols represent
early-type galaxies that belong to the red sequence.

Late-type galaxies that are not detected by ALFALFA (green
symbols), dubbed HI-poor LTGs, lie nearer to the “green valley”
than ALFALFA detected galaxies (blue symbols) even though
they belong to the sequence of LTGs. For all types of galaxies,

8 A confirmation that PSB galaxies are low-mass objects that fill the
“green valley” between star-forming and passive galaxies was derived
for the galaxy Zoo by Wong et al. (2012).

Fig. 7a reports the linear fit of the color-stellar mass relation. The
four galaxy groups, selected by their optical morphology/gas
content and nuclear spectral properties, have increasingly redder
colors, i.e., decreasing SSFR. Despite the paucity of Hα mea-
surements (particularly of HI-poor and ETGs), Fig. 7c supports
the idea that the color-mass sequence is indeed a star formation-
mass sequence. Here we plot the specific star formation rate
(SSFR), i.e., the star formation rate per unit stellar mass, as de-
rived from our Hα data for ALFALFA-detected (blue symbols)
and for the few HI-poor (green symbols) and ETGs (red sym-
bols) that are included in Hα3, with their linear fits9.

9 By selection we have very few Hα images of HI-poor galaxies (ei-
ther ETGs or LTGs) because, as they are not in the ALFALFA sam-
ple, they are excluded also from Hα3. However, a few dozen of them
were serendipitously observed, some on purpose, during the 2012 run.
In particular the 80 measurements for ETGs belong for the most part
to S0 (19) and S0a (38). Their SFR is derived from the intensity of the
Hα line.
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Fig. 8. Cumulative distributions of the (g−i)o color in the interval 8.5 < log (M∗/M�) < 9.5, in the bins of morphological type/HI content (left
panel) defined in Sect. 3.3 and in bins of local galaxy density (right panel). In parenthesis the median (g−i)o color with uncertainty is given. Notice
the similarity between the distributions in the two panels.

There is a qualitative correspondence (albeit with a large
scatter) between the classification given in Fig. 7a, based on
morphology, and the one given in in Fig. 7b, based on local
galaxy density: HI-rich LTGs detected by ALFALFA have mean
δ1,1000 = 1.7 ± 4.3, typical of the sparse galaxy population;
HI-poor LTGs undetected by ALFALFA have mean δ1,1000 =
4.8 ± 11, typical of the outskirts of rich clusters and of the dens-
est groups; galaxies with nuclear post-star-burst spectra (PSB)
and passive ETGs have mean δ1,1000 = 23 ± 20, implying that
they are found primarily in the cores of rich clusters.

A quantitative assessment of the median (g−i)o color in dif-
ferent classes of morphology/HI content and its correspondence
with the median (g−i)o color in different classes of local galaxy
density is given in Fig. 8, referring only to the low-mass interval
8.5 < log (M∗/M�) < 9.5. The left panel shows the cumulative
(g−i)o distribution of galaxies (in region 2), selected according
to a criterion of decreasing “lateness”10:

– HI-rich LTGs (8.5 < log (M∗/M�) < 9.5) (blue)
– HI-poor LTGs (8.5 < log (M∗/M�) < 9.5) (green)
– PSB galaxies (8.5 < log (M∗/M�) < 9.5) (black)
– ETG galaxies (8.5 < log (M∗/M�) < 9.5) (red).

The median (g−i)o color increases step by step from 0.50, 0.59,
0.84, to 1.00 mag along this sequence, which thus represents a
sequence of decreasing specific star formation. The right panel
shows the cumulative (g−i)o distribution of galaxies of any mor-
phological type, selected in bins of increasing (not necessarily
contiguous) local galaxy density: from log (1 + δ1,1000) < −0.5
(blue), 0 < log (1+δ1,1000) < 0.4 (green), 0.5 < log (1+δ1,1000) <
1.35 (cyan), 1 < log (1+δ1,1000) < 1.5 (black) to log (1+δ1,1000) >
1.5 (red). In this case the median (g − i)o color increases step by
step from 0.53, 0.57, 0.75, 0.94, to 1.00 mag, which agrees well
with the previous series, so the shape of the distributions is re-
markably similar, despite the completely independent criteria in
choosing the morphological intervals and the density intervals. It
should be remarked that this result holds for galaxies in the low-
mass interval 8.5 < log (M∗/M�) < 9.5 only. We have checked
that for log (M∗/M�) > 9.5 the data do not support a similar pat-
tern with increasing ambient galaxy density. Consistently with

10 Along with these four categories, Fig. 8 also reports with cyan sym-
bols the intermediate interval that contains HI-poor galaxies of any mor-
phological type for completeness. The median color in this interval is
0.81 mag.

Gavazzi et al. (2010) we conclude that nurture works in the low
mass regime, while other genetic processes, namely downsizing,
have shaped the high-mass part of the red sequence earlier in
the cosmic history. In the high-mass regime Mendel et al. (2012)
have suggested that the quenching of the star formation, leading
to the transition from star-forming to passive galaxies, is driven
by the formation of stellar bulges.

Figure 9 is useful for discussing the dependence of the
(g−i)o color on the local galaxy density, separately for galax-
ies less and more massive than log (M∗/M�) = 9.5. First, the
massive galaxies have a well-developed red sequence even at
galactic densities as low as log (1 + δ1,1000) = −0.5, while for
the less massive objects the red sequence exists only above
log (1 + δ1,1000) > 0.5, in agreement with Gavazzi et al. (2010).
Second, galaxies in the red sequence dominate in number the
distribution of the massive galaxies, while the reverse is true
for low-mass galaxies. Third, blue-sequence galaxies are more
abundant at low density, where the red sequence is coarser and
the number of PSB galaxies is relevant only at low mass, in
agreement with Gavazzi et al. (2010) and Wong et al. (2012).
Fourth, the color of the ETG sequence is constant over the full
density range (see red linear fit), while the color of the LTG se-
quence increases only very little by 0.1 mag in the low-mass
regime (see blue linear fit). The apparent slope of the color as a
function of density considering all galaxies (see black linear fit)
is entirely due to a population effect: at high density the ETGs
dominate in number. It is not clear if the color distribution is
truly bimodal or, if we had not subdivided LTGs from ETGs by
morphology, the red and the blue sequence would result in a sin-
gle sequence that would progressively redden with increasing
density.

3.4. Activity on nuclear scale

It is interesting to verify if the Hα morphology of HI-poor LTGs
differs statistically from the HI-rich ones. To pursue this, we
measured the total extended flux and the flux in the central
3 arcsec (mimicking the SDSS spectral fibers) of HI-poor LTGs
in the Hα images. The cumulative distribution of the ratio of the
two fluxes is given in Fig. 10 (green histogram). This distribution
is significantly different from the one of HI-rich galaxies (blue
histogram), because the Hα distribution of HI-poor galaxies is
much more centrally concentrated. The HI-poor LTG galax-
ies appear to have some Hα emission that is for the most part
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Fig. 9. Blue and red sequence traced by the (g− i)o color as a function of
the local galaxy density in two bins of stellar mass, below (bottom) and
above (top) log (M∗) = 9.5. Blue symbols mark LTGs, while ETGs are
given with red symbols. The two populations are fitted separately (col-
ored lines) and together (black line). The black points represent PSBs.

Fig. 10. Cumulative distribution of the ratio of total Hα flux to Hα flux
measured in a central 3-arcsec aperture in the imaging material. The
blue histogram refers to LTGs detected in ALFALFA (HI-rich) and the
green one depicts LTGs not detected in ALFALFA (HI-poor).

confined to a central or even nuclear source11. A Kolmogorov-
Smirnov test indicates that the probability that the two samples
are drawn from the same parent population is 2 × 10−9%, i.e.,
they differ significantly. This is consistent with an Hα disk trun-
cated by ram-pressure (Fumagalli & Gavazzi 2008), such as in
the prototype NGC 4569 in Virgo (Boselli et al. 2006) or in
NGC 4848 in Coma (Fossati et al. 2012). These cases are dif-
ferent from the HI-rich systems, which tend to host Hα emission
extended across the entire disk (as discussed in Paper IV).

Figure 11 shows that HI-poor and HI-rich LTGs have an
identical intensity of the nuclear Hα however. The figure shows
the distribution of the Hα equivalent width (EW, a proxy for nu-
clear SSFR) as derived from the nuclear SDSS spectra versus the
stellar mass separately for HI-rich (blue symbols) and HI-poor
(green symbols) LTGs. Both subsamples show an identical mild
decrease of the nuclear Hα EW with increasing mass (similar
to the decrease of the diffuse SSFR with mass in Fig. B.1d),
but apart from that they have an identical specific star formation
activity in the nuclear region. A Kolmogorov-Smirnov test indi-
cates that the probability that the two samples are drawn from
the same parent population is 4.1%, i.e., they do not differ by
more than 2 sigma.

11 In order to protect against size effects, we have recomputed the flux
ratio in Fig. 10 using a variable inner aperture of 3, 6 and 9 arcsec, each
chosen according to the overall size of the galaxies. Our conclusions
remain unchanged.

Fig. 11. E.W. of the Hα line as derived from nuclear SDSS spectra ver-
sus stellar Mass of LTG galaxies (in subsamples 2). Galaxies are color-
coded as follows: green = LTG-not in ALFALFA (HI-poor); blue =
LTG-in ALFALFA (HI-rich).

In conclusion, HI normal, low-mass LTGs have extended
star-forming disks. The star formation shrinks to the nucleus
when LTGs are affected by gas ablation, but on this scale the
star formation occurs with the same intensity as in gas rich sys-
tems. Only ETGs become completely passive even in their nu-
clei (at stellar masses as low as 109.5 M� AGNs of high and
low activity (LINER) are practically absent even among ETGs,
see Gavazzi et al. 2011). This provides solid evidence that the
mechanism that produces the quenching of the star formation
proceeds outside-in, as in the ram-pressure scenario. Other pro-
cesses such as tidal interactions would truncate the star forma-
tion in the outer disks, but would increase it as well on the nu-
clear scale (Kennicutt et al. 1987; see however Bretherton et al.
2010, who claimed some role of tidal mechanisms in cluster
galaxies). In contrast, milder ablation processes such as starva-
tion could produce a cut-off of the cold gas supply and in turn a
significant quenching of the star formation even in galaxy groups
(as supported by numerical simulations by Kawata & Mulchaey
2008). However, this mechanism is not expected to reproduce
the truncated HI disks (Cayatte et al. 1994; Chung et al. 2009)
and the truncated Hα profiles (Koopmann & Kenney 1998, 2004;
Boselli et al. 2006) observed in cluster galaxies.

3.5. Local density or velocity dispersion?

It is also interesting to check if the transformation just found, i.e.,
the progressive reduction of the star formation with increasing
density, occurs only in the environment of rich galaxy clusters or
also in galaxy groups. For this we studied a possible dependence
of the fraction of HI-rich LTGs on the velocity dispersion σ of
the groups/cluster that host them. This is becauseσ traces the po-
tential well of the hosting galaxy systems and, as a consequence,
is directly and physically linked to the strength of the ram-
pressure process (Gunn & Gott 1972; Domainko et al. 2006).
We developed a two-step automatic procedure that identifies and
characterizes the galaxy groups in region 2. The first step identi-
fies galaxies that can be considered tracers of galactic groups. A
tracer must lie in an overdensity with at least 20 members within
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Fig. 12. The number ratio of HI-rich LTGs over all LTGs as a function of the velocity dispersion (panel a)) and of the local density (panel b))
of 7 groups (small dots) and their average (triangle), the Coma cluster (square) and the field (large dot). The last point has been plotted at
100σ = km s−1 to represent that, even in the field, galaxies are subject to random motions.

Table 1. Properties of the seven groups found in region 2.

Group Name RA Dec N 〈V〉 σ
gr1 NGC 3651 170.7608 24.210 35 7745 455
gr2 NGC 4104 181.6839 28.172 27 8316 672
gr3 UGC 7115 182.0195 25.260 54 6627 427
gr4 NGC 4213 183.8709 23.916 12 6884 287
gr5 NGC 4555 188.8925 26.573 43 6615 309
gr6 UGC 8763 207.7632 25.039 37 8779 230
gr7 IC 4345 208.8824 25.126 23 8994 260

a circle of 0.3 degree (530 kpc) radius. σ and the mean reces-
sional velocity 〈Vel〉 were estimated for each tracer by averag-
ing over its neighbors up to a maximum number of 30 galaxies.
This allows for a more detailed description of the “local” sigma
value in the highest density regions like, e.g., the Coma clus-
ter. Once the tracers were identified, the code proceeded with
step II, in which the membership of each individual LTG to a
group/cluster was checked. To be hosted by a group, a galaxy (i)
must lie within a projected separation of 0.5 deg (900 kpc) and
(ii) its velocity along the line of sight must not differ by more
than 3σ from 〈Vel〉. The code defines as “field” galaxy every
object located more than 3 deg (5.3 Mpc) away from each over-
density. This conservative constraint slightly reduces the number
statistics, but prevents any contamination from galaxies in the
outskirts of the overdensities themselves.

The procedures identified seven groups and the Coma clus-
ter, as listed in Table 1. The test discussed in Dressler &
Shectman (1988) confirmed the substructures we found. This is
to be expected because of the velocity criterion that we enforced
to define the group elements. This criterion selects dynamically
well-defined groups with a velocity dispersion quite a bit lower
than the Coma cluster itself, as shown in Fig. 12.

For each group we computed the fraction of HI-rich LTGs
with the associated Poissonian uncertainty. The fraction of
HI-rich LTGs for the entire late-type population is plotted in
Fig. 12a as a function of the velocity dispersion and in Fig. 12b
as a function of the local galaxy density in three different en-
vironments: the large dot corresponds to the average fraction in
the lowest density environment (field), the square is the fraction

Table 2. Build-up of the Coma cluster from various estimators.

All PSB HI-poor HI-rich
N (log (M∗/M�) > 9) 750 32 70 26
t (Gyr) 7.5 ± 1 0.5 ± 0.2 0.7 ± 0.4 0.3 ± 0.1
Infall rate (Gyr−1) 100 ± 14 64 ± 28 100 ± 58 86 ± 33

in the highest density environment (the Coma cluster) and the
small dots correspond to seven individual groups, with the tri-
angle showing their average value. Apparently, the fraction of
HI-rich LTGs decreases with increasing local density (Fig. 12b)
(approximately 1σ from isolated to groups and more than 4σ
from groups to clusters). However, considering the large statis-
tical uncertainty on the gas-rich fraction, groups are truly inter-
mediate between isolated and Coma galaxies, i.e., there is not
definitive evidence that the entire decrease occurs in the densest
environment.

Conversely, when the fraction HI-rich LTGs is plotted as a
function of σ (Fig. 12a), it becomes more clear that their frac-
tion drops at σ 
 100 km s−1, at the typical dispersion of Coma-
like clusters (we caution, however, that the analysis presented in
Fig. 12 should be extended to comprise more Coma-like clusters
before any strong conclusion can be drawn). Recent simulations
by Bahe et al. (2013) have shown that the pressure exerted on the
cold gas by the IGM is at least one order of magnitude higher in
clusters than in groups. In addition, the efficiency of cold gas
stripping is relevant only within the virial radius even for a mas-
sive cluster like Coma (see however Merluzzi et al. 2013), which
renders a strong ram-pressure efficiency in groups unlikely be-
cause it would require the infalling galaxy to pass very near the
group center.

4. Discussion and conclusion

The environmental conditions occurring in the vicinity of an
evolved cluster of galaxies such as the Coma cluster have well-
known (Giovanelli & Haynes 1985) catastrophic consequences
on the HI content of their member galaxies. However, HI obser-
vations deeper than ALFALFA are required to detect the pattern
of HI deficiency (see Sects. 3.1 and 3.2). At the distance of Coma
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ALFALFA is just sensitive enough (log (MHI/M�) ≥ 9) to sepa-
rate optically selected LTGs into HI-poor and HI-rich galaxies.

The SSFR (see Fig. 7c) of galaxies scales down with
the galaxy stellar mass, but for the dwarf regime (8.5 <
log (M∗/M�) < 9.5) there is a clear tendency for the median
(g−i)o color to increase systematically (see Fig. 8a) along the
“morphological” sequence constituted by

1) HI-rich LTGs, the bluest objects with median (g−i)o =
0.50 mag;

2) HI-poor LTGs, with median (g−i)o = 0.60 mag;
3) PSBs, with median (g−i)o = 0.84 mag;
4) ETGs, with median (g−i)o = 1.00 mag.

The specific star formation rate decreases accordingly. Along
this sequence there is a parallel sequence that refers to their nu-
clear properties: HI-rich LTGs have identical nuclear star forma-
tion activity as HI-poor LTGs (Fig. 11), but their star formation
extends over the whole disks, while HI-poor LTGs harbor some
star formation exclusively on a circumnuclear scale (Fig. 10).
The star formation becomes entirely suppressed, even on nuclear
scale in PSBs and ETGs. Whatever mechanism quenches the star
formation, it proceeds outside-in, as in the ram-pressure scenario
(see also Boselli et al. 2006, 2009).

A similar (g − i)o – stellar mass sequence is obtained by di-
viding galaxies into bins of increasing local density (Figs. 7b
and 8b). It appears indisputable that the local density has a
main impact on the gas content and SF of galaxies, contribut-
ing to their morphological migration, i.e., HI-rich LTGs repre-
sent about 60% of the entire LTG population at low and inter-
mediate galaxy density (comprising the cosmic filaments up to
the groups) and drop to zero in the core of the Coma cluster.
Conversely, HI-poor LTGs (representing the other 40% of the
LTGs in isolation) increase in frequency with increasing den-
sity, becoming the majority of all LTGs in the core of Coma.
This agrees with the analysis of Fabello et al. (2012) based on a
log (M∗/M�) ≥ 10.0 sample.

It is very tempting to interpret all these features as the results
of a fast environmentally driven process that superposes to the
standard and long-term evolutionary track that acts on field and
group galaxies. Galaxies infalling toward a cluster are evolved
by a process that causes some gas ablation, proceeding outside-
in in two steps: 1) first a significant quenching of the global star
formation is produced in the disk, resulting in redder colors,
but without affecting the circumnuclear star formation; 2) the
quenching of SF activity proceeds to the nuclear scale (trans-
forming star-forming nuclei into passive ones, passing through
the PSB phase). On a similar time scale, dwarf galaxies are
transformed from LTGs to ETGs. The time scale for gas de-
pletion is short enough (∼100−300 Myr) to quickly transform
HI-rich LTGs into anemic LTGs, which end up as gas-free, pas-
sive dEs. This is precisely the mechanism invoked by Boselli
et al. (2008) and by Gavazzi et al. (2010) to migrate dwarf star-
forming systems into dEs in the neighborhood of rich galaxy
clusters (see also Cortese & Hughes 2009; and Cortese et al.
2011). Meanwhile the ram pressure mechanism, owing to its
short time scale, is also capable of producing a k + a signature
in their spectra, thus enhancing the number of galaxies present-
ing some PSB phase toward rich clusters (Gavazzi et al. 2010;
Wong et al. 2012) and making the number of active nuclei (both
star forming and AGNs of various forms) decrease near the cen-
ter of rich clusters (Gavazzi et al. 2011).

The dependence of this quenching process on the galaxy
density and in particular on the galaxy velocity dispersion (it acts

selectively on galaxies hosted in galaxy clusters, see Fig. 12), to-
gether with the evidence that it proceeds from outside-in, make
the ram-pressure mechanism (Gunn & Gott 1972) our favorite
interpretation over strangulation (Larson et al. 1980) This con-
clusion should be taken with the grain of salt because it is based
on one cluster (Coma) and should be confirmed with similar
analysis of more clusters. In support of our conclusion, Merluzzi
et al. (2013) found evidence for ram-pressure stripping well be-
yond 1 Mpc from the center of Abell 3558. In contrast the nu-
merical simulations of Kawata & Mulchaey (2008) support the
starvation mechanism as capable of cutting off the gas supply,
hence of quenching the star formation even in galaxy groups.

We finally note that this fast evolutionary scenario could be
used to constrain the build-up of the Coma cluster with cosmic
time at the expenses of infalling galaxies, following the argu-
ment of Adami et al. (2005) for Coma and of Boselli et al. (2008)
for Virgo. Assuming naively that the infall rate was constant over
the past few Gyrs, this quantity can be estimated from the num-
ber of galaxies in each specific morphological stage divided by
the typical time scale of each stage (to be precise, since this esti-
mate is very sensitive to the sample completeness, the argument
provides lower limits to the infall rate). Restricting this to galax-
ies with log (M∗/M�) > 9, to be consistent with a similar calcu-
lation carried out in Paper II for Virgo, we classified 26 HI-rich
LTGs within the cluster. Assuming a characteristic time scale
for the complete stripping of gas due to ram pressure of 300 Myr
for massive galaxies such as NGC 4569 (Boselli et al. 2008)12,
we obtain a flux of infalling LTGs of Fgal = 86 Gyr−1. We can
cross-check this result with the independent constraint derived
from the number of galaxies in the HI-poor phase (70) (that still
show some circumnuclear star formation probably sustained by
residual nuclear HI and H2 anchored to the deep central potential
well), divided by the time-scale of H2 ablation. Assuming that a
complete HI and H2 removal will occur due to ram pressure dur-
ing the second passage through the cluster center on a time-scale
of 0.7± 0.4 Gyr (see Paper II), the infall rate is Fgal = 100 Gyr−1.
In passing we note that the time scale estimate we used is con-
siderably shorter than that for complete consumption of the H2
due to star formation of ∼2 ± 1 Gyr (Bigiel et al. 2008).

A similar argument holds for the 32 PSB galaxies observed
in Coma. The PSB phase is expected to last up to 1.5 Gyr
(Poggianti et al. 2009), but around 500 Myr in a blue contin-
uum regime (see Fig. 20 in Boselli et al. 2008), such as in the
32 PSB galaxies analyzed here. Again, the galaxy flux toward
Coma would be Fgal = 64 Gyr−1, consistent with the previ-
ous estimates. Assuming that the age of the Coma cluster is
about 7.5 Gyr (its formation took place approximately at z = 1,
Wechsler et al. 2002), and that it is composed of about 750 galax-
ies, the infall rate would become Fgal = 130 Gyr−1. All “order
of magnitude” estimates are consistent with one another within
30 percent from Fgal = 100 Gyr−1, i.e., a constant galaxy flow
building the cluster over a large portion of the cosmic time, as
was concluded by Adami et al. (2005). Consistent infall rate,
sustained for 2 Gyr, has been claimed to feed the younger Virgo
cluster (Paper II).

The infall rate estimate can be checked for consistency with
semi-analytic models of halo formation, e.g., Wechsler et al.
(2002). From their Fig. 3 we derive that cluster-like halos ac-
creted 70% of their final mass in the last 7.5 Gyr (the as-
sumed age of the Coma cluster). If one takes for Coma a current

12 This estimate is reduced to 100 Myr for dwarf objects such as
VCC 1217 (Fumagalli et al. 2011) or VCC 1249 in the M 49 group
(Arrigoni Battaia et al. 2012).
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halo mass of approximately 1014 M�, the average growth is
1013 M� Gyr−1. Considering (very crudely) that this accretion
is contributed by galaxy halos of 1011 M� each, the derived ac-
cretion rate is 100 galaxies per Gyr on average, in agreement
with our previous estimate.
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Fig. A.1. Top: observed color (g−i)-stellar mass diagram of all 5026 op-
tically selected galaxies from SDSS (subsamples 1+2) divided by mor-
phological types: ETGs (dE-S0a, red), LTG (Sa-Im-BCD, blue). Many
high-mass LTGs overlap with, or are even redder than, ETGs of similar
mass. Bottom: same as above but (g−i)o is corrected for inclination as
described in this appendix. The correction is visible at high mass where
LTGs have now bluer colors than ETGs. The blue and red sequence
become more parallel and a significant green valley opens up between
them.

Appendix A: empirical correction for internal
extinction

An exhaustive treatment of the internal extinction correction to
the u, g, r, i, z magnitudes is beyond the scope of this work and
will be addressed in a forthcoming paper. We concentrate on a
less ambitious task, i.e., on the empirical method for correcting
the color magnitude relation for the effects of internal extinction.
The color (g−i) versus stellar mass diagram (see Fig. A.1, color-
coded according to the Hubble type) composed of all optically
selected galaxies (regions 1 and 2) contains a well-developed
red-sequence (e.g. Hogg et al. 2004) mostly composed of ETGs
along with the so-called blue cloud, mostly composed of LTGs.
When magnitudes are not corrected for internal extinction the
two color sequences, that are well separated at low mass by the
green valley, overlap one another at the high-mass end. This is
an obvious consequence of the increasing internal extinction suf-
fered by disk galaxies of increasing mass. Given the abundant
number statistics offered by SDSS, it is possible to investigate
this effect as a function of galaxy inclination in the plane of the

Fig. A.2. (Top panel) Observed color (g−i) – stellar mass diagram (sub-
samples 1+2) of edge-on LTGs (incl > 80, red) and of face-on LTGs
(incl < 30, black), each with the linear best fit (dashed line). (Bottom
panel) The slope of the fit to the color (g−i) – stellar Mass rela-
tion of disk galaxies (Sa-Sdm) (see Fig. A.2) as a function of galaxy
inclination.

sky. For disk galaxies (Sa through Sdm) the inclination incl with
respect to the line of sight was computed following Solanes et al.
(1996) assuming that spirals are oblate spheroids of intrinsic ax-
ial ratio q:

cos2(incl) =
(b/a)2 − q2

1 − q2
, (A.1)

where a and b are the major and minor axes. Intrinsic axial ratios
were assumed to be equal to the modal values of the distribution
of true ellipticities of galaxies of different Hubble types in the
Second Reference Catalog of Bright Galaxies (de Vaucouleurs
& Corwin 1976). For the giant spirals these are q = 0.32 for Sa,
q = 0.23 for Sab, and q = 0.18 for Sb-Sc. Whenever b/a < q,
incl is set to 90◦. Irregulars+BCD (mostly low-mass objects) do
not have this parameter defined, because their axial ratio does
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not give a measure of the inclination of the disk, but of their
intrinsic triaxiality.

Figure A.2 (top panel) shows the g−i color versus stellar
mass diagram for LTGs in regions 1+2 considering only nearly
edge-on (incl > 80) and nearly face-on (incl < 30) galaxies,
with the best linear fit. It is evident that the fits cross each other
near log M∗ = 8.0, i.e., the extinction correction is null near
log M∗ = 8.0, and it increases with increasing stellar mass as
a function of the inclination. The slope of the relation as a func-
tion of the cosine of the inclination is given in Fig. A.2 (bottom
panel). This relation can be used to extrapolate g−i to the face-
on value, or to obtain the color correction for internal extinction:

(g − i)o = (g − i) −
{
+0.17[1− cos(incl)]

[
log

(
M∗
M�

)
− 8.19

]}
,

(A.2)

where incl is the galaxy inclination. After applying the empiri-
cal internal extinction correction the resulting slope of the LTG
sequence becomes similar to the one of ETGs, and the green-
valley opens up over the full interval of masses (Fig. A.1 bottom
panel). Note the difference between the correction method pro-
posed here (which depends on a combination of M∗ and incl)
and the one proposed by Yip et al. (2011), which purely depends
on incl.

Appendix B: Scaling relations

Hα3, which is based on an ALFALFA-selected sample in the
Coma supercluster provides us with insufficient coverage of
HI mass, stellar mass, and SFR because of the shallowness of
ALFALFA at the distance of Coma. Therefore the analysis of the
scaling relation among the HI gas content and the stellar mass of
galaxies cannot be undertaken with a sufficient dynamical range
of HI mass, stellar mass, and SFR. However by adding the re-
sults of the present survey with similar ones obtained in Paper II
for the Local Supercluster (where the ALFALFA sensitivity is
35 times better), we broaden the dynamic range to four decades
in stellar mass, obtaining the relations shown in Fig. B.1, whose
linear regression parameters are listed in Table B.1. The data ob-
tained in this paper for the Coma supercluster for galaxies with
De fHI ≤ 0.2 are plotted separately (blue symbols) from those
in the Local Supercluster with De fHI ≤ 0.3 taken from Paper II
(light gray). AGNs of various levels of activity are identified in
Fig. B.1 (with asterisks) according to the criteria of Gavazzi et al.
(2011).

We begin by studying the relation between MHI and M∗, as
shown in Fig. B.1a. The diagonal lines represent the sensitivity
limit of ALFALFA, computed for galaxies with an inclination
of 45 deg (see Sect. 2.2). The dotted line is computed for the
distance of the Virgo cluster (17 Mpc), while the dashed one is
for the distance of Coma (100 Mpc). Clearly the observed distri-
bution for Coma lies very close to the line of limiting sensitivity,
making the observed slope (0.34) spuriously shallow because
galaxies near log (M∗/M�) ∼ 8 and log (MHI/M�) ∼ 8, which
are present locally, would not be detected at the distance of
Coma. However, at the high-mass end of the stellar mass func-
tion, where the sampling is more abundant in Coma than locally
because of the larger volume, no selection effects would prevent
us from detecting galaxies if they had the same steep slope as ex-
trapolated from the Local Supercluster. Therefore we conclude
that the change of slope seen in Fig. B.1a near log (M∗/M�) ∼ 9
is real. A relation similar to the one in Fig. B.1a and b, i.e.,

Table B.1. Linear regression coefficients of the relations in Figs. B.1a
through d (only for De fHI < 0.2) obtained using the bisector method
(mean coefficients of the direct and the inverse relation). C = Coma,
V = Virgo (Paper II).

Linear regression r Sample Fig. B.1
log MHI = 0.34 × log M∗ + 6.25 0.76 C a
log MHI = 0.47 × log M∗ + 4.71 0.85 V a
log MHI = 0.52 × log M∗ + 4.54 0.84 V+C a
log MHI/M∗ = −0.68 × log M∗ + 6.50 –0.92 C b
log MHI/M∗ = −0.69 × log M∗ + 6.12 –0.90 V b
log MHI/M∗ = −0.71 × log M∗ + 6.58 –0.86 V+C b
log SFR = 0.33 × log M∗ − 3.71 0.52 C c
log SFR = 0.80 × log M∗ − 8.04 0.88 V c
log SFR = 0.64 × log M∗ − 6.75 0.85 V+C c
log SSFR = −0.70 × log M∗ − 3.43 –0.79 C d
log SSFR = −0.26 × log M∗ − 7.53 –0.53 V d
log SSFR = −0.41 × log M∗ − 6.23 –0.72 V+C d

significant flattening above log (M∗/M�) ∼ 8, has been obtained
by Huang et al. (2012) using the whole α.40 sample. They in-
terpreted the flattening as a possible evidence of increasing gas
loss due to AGN feedback with increasing mass.

We note that the observed relation, both in the steep part
(0.47) and in the shallow (0.32), is nonetheless significantly
shallower than the direct proportionality, as already discussed
in Gavazzi et al. (2008) and in Paper II, reflecting a gen-
uine non-proportionality between the two quantities. When the
HI gas fraction MHI/M∗ is plotted as a function of the stel-
lar mass (Fig. B.1b), the fraction of gas decreases by approx-
imately 2 orders of magnitude with increasing galaxy mass,
from log (M∗/M�) ∼ 7.5 to ∼11.5. In other words, 107.5 M�
galaxies contain ten times more gas than stars. This ratio is re-
duced to less than 10% in 1011.5 M� systems. This basic re-
sult agrees perfectly with what was found in the (optically se-
lected) GASS survey by Catinella et al. (2010) in the stellar
mass range 1010 < M∗ < 1011.5 M� and by Cortese et al. (2011)
for HI-normal galaxies in the Herschel Reference Survey (HRS;
Boselli et al. 2010). It is also consistent with the downsizing sce-
nario (Gavazzi 1993; Gavazzi et al. 1996; Cowie et al. 1996;
Gavazzi & Scodeggio 1996; Boselli et al. 2001; Fontanot et al.
2009), where progressively more massive galaxies have less gas-
to-star ratio at z = 0 because they have transformed most of their
gas into stars at higher z, while dwarf LTGs retain large quanti-
ties of hydrogen capable of sustaining the star formation at some
significant rate at the present cosmological epoch.

Similarly, we find that the relation between the SFR and
the stellar mass (Fig. B.1c) and that of the specific SFR with
stellar mass (d) are consistent with a change of slope around
log (M∗/M�) ∼ 9. Below that threshold a steeper dependence
(0.8, i.e., almost of direct proportionality) is traced by the lo-
cal galaxies. Above this limit the relation is much shallower
(0.33) and is followed by the more distant Coma galaxies.
Consequently, in the range of stellar mass covered by the Coma
supercluster the specific star formation rate decreases signifi-
cantly with increasing mass, as found by Boselli et al. (2001),
Bothwell et al. (2009) and by Schiminovich et al. (2010). This is
again consistent with the “downsizing” scenario. At lower mass
the relation flattens out and the scatter increases by 2 orders of
magnitude, as noted by other authors (Lee at al. 2007; Bothwell
et al. 2009). The curvature in Fig. B.1 resulting from the super-
position of the local and Coma superclusters is consistent with
the change of slope found by Huang et al. (2012) in α.40.
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Fig. B.1. Principal scaling relations between MHI, M∗, and SFR in the Coma supercluster covered by ALFALFA. Blue: De fHI ≤ 0.2; red: De fHI ≥
0.2 compared to the De fHI ≤ 0.3 in the Local Supercluster (grey, Paper II). Symbols are assigned according to the morphology: spirals (Sa-Sdm):
squares; Irr-BCD: triangles; AGN: asterisks. Top-left panel: the MHI versus M∗ relation The diagonal lines represent the limiting sensitivity of
ALFALFA (computed for a mean incl = 45◦) at the distance of Virgo (gray dotted) and of Coma (black dashed). The shallow sensitivity of
ALFALFA limits significantly the detection of galaxies at the distance of Coma, in particular with decreasing stellar mass. Top-right panel: the
HI gas fraction (MHI/M∗) versus M∗. Bottom-left panel: the relation between the SFR and the stellar mass. Bottom-right panel: the specific star
formation rate versus stellar mass.
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