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Abstract—A power transmission system can be represented by
a network with nodes and links representing buses and electrical
transmission lines, respectively. Each line can be given a weight,
representing some electrical property of the line, such as line
admittance or average power flow at a given time. We use a
hierarchical spectral clustering methodology to reveal the internal
connectivity structure of such a network. Spectral clustering uses
the eigenvalues and eigenvectors of a matrix associated to the
network, it is computationally very efficient, and it works for any
choice of weights. When using line admittances, it reveals the static
internal connectivity structure of the underlying network, while
using power flows highlights islands with minimal power flow
disruption, and thus it naturally relates to controlled islanding.
Our methodology goes beyond the standard -means algorithm
by instead representing the complete network substructure as a
dendrogram. We provide a thorough theoretical justification of
the use of spectral clustering in power systems, and we include
the results of our methodology for several test systems of small,
medium and large size, including a model of the Great Britain
transmission network.

Index Terms—Clustering, power system analysis computing.

I. INTRODUCTION

T HE idea of decomposing (partitioning, tearing, splitting,
clustering) a power network into smaller parts goes back

to the concept of diakoptics introduced by G. Kron in the 1950s
[1], and it was followed by many others, e.g., [2]–[4]. The initial
motivation was the limited memory and computation speed of
early computers. Later on, the advent of parallel computing re-
sulted in a very significant research effort aimed at splitting the
power system model into smaller parts to be solved in parallel.
Decomposing large interconnected networks into loosely-

connected zones that could be more easily managed often uses
the concept of electrical cohesiveness as expressed by electrical
distance between network nodes [5] to define network zones.
Generally, network splitting can enable a flexible, distributed
and adaptable power system control that utilizes the concept of
smart grids [6].

Manuscript received June 21, 2013; revised November 29, 2013; accepted
February 09, 2014. Date of publication March 17, 2014; date of current version
August 15, 2014. This work was supported by the EPSRC grants EP/G059101/1
and EP/G060169/1. Paper no. TPWRS-00806-2013.
R. J. Sánchez-García, M. Fennelly, N. Wright, G. Niblo, and J. Brodzki are

with the School of Mathematics, University of Southampton, Southampton
SO17 1BJ, U.K. (e-mail: R.Sanchez-Garcia@soton.ac.uk).
S. Norris and J. W. Bialek are with the School of Engineering and Com-

puting Sciences, Durham University, Durham DH1 2PE, U.K. (e-mail: Janusz.
Bialek@durham.ac.uk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TPWRS.2014.2306756

Network splitting is also used in controlled islanding that
aims to prevent the spreading of large-area blackouts. The
most popular methodologies proposed include keeping together
slow-coherent generators to avoid the loss of transient stability
[7] and graph-search based approaches, e.g., [8], [9]. Recently
a novel methodology of spectral clustering has been proposed
for controlled islanding that is based on recent advances in
graph theory [10], [11].
The main contribution of this paper is to adapt the spectral

clustering methodology [12], [13] to the context of power trans-
mission networks, and explain how this technique can be used
to provide a real-time, versatile, analytical or visualization tool
for power transmission systems. Our methodology reveals the
internal structure of a given network with respect to any choice
of electrical parameter that can be associated to a transmission
line, such as line admittance, power flow or other. It may also
take a preferred number of clusters as input, or this number can
be obtained directly from the data. The output is a hierarchical
clustering of the network according to the connection strengths
given by the chosenweighting. Thismay be thought of as a func-
tional decomposition of the system into smaller subsystems of
highly connected buses. Our methodology goes beyond bisec-
tion or recursive bisection techniques by providing an all-in-one
decomposition of the network into any number of clusters. In-
deed, we keep all the underlying hierarchical substructure, in-
stead of just a partition of the network, by using a hierarchical
clustering algorithm as our final step. This way we are able to
represent simultaneously the different levels in the clustering,
and reveal the scale-dependence of the resulting data, which
represents the functional hierarchy of the network. This paper
should be thought as a proof-of-concept of the underlying spec-
tral clustering technique in the power engineering context, and
we have taken special care in explaining its mathematical basis.
We illustrate the potential of our methodology in a small test
network in full detail, and in other larger test networks in some
detail.
The paper is the result of a collaboration between power en-

gineers and mathematicians, as we strongly believe that there
is a wealth of knowledge in graph and operator theory that is
not widely known in the power engineering community and
which could be usefully employed to solve practical power en-
gineering problems. This paper is an attempt in that direction.

II. PRELIMINARIES

A. Graphs Representing a Power Transmission Grid

1) Terminology and Notation: A power network can be
naturally represented as a graph: vertices (nodes) represent
buses, and edges (links) represent electrical connections. We
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write for a graph with vertex set and edge set
. In what follows we will only consider simple graphs, where

no loops and no multiple edges are allowed. This assumption
does not restrict the generality of our consideration as multiple
edges can be replaced by equivalent single edges.
Since the graph is finite and simple, we can write

, where is the number of vertices (nodes), and
, where represents an edge (a trans-

mission line or a transformer) from vertex to vertex . Since
spectral clustering ignores edge directions, we will assume that
all graphs are undirected: if and only if .
2) Edge Weights: The topological structure of the graph does

not capture the functional information about the power grid. To
include this information, we use edge weights. An edge weight
is a function such that
1) for all ;
2) if ;
3) .
We use the notation if , and
for the so-called weighted vertex degree. The purely topological
structure of the graph is returned when we select the weight
function for all , recovering the classical
adjacency matrix in this case. Note that the edge weights must
be nonnegative and symmetric to have
a Laplacian (see Section II-B).
3) Weights in Power Grids: To study the functional struc-

ture, in a very restricted sense, of a power grid we may use the
following edge weight functions:
• Topology: for all ; this measures pure
connectivity of the network.

• Admittance: , where and
are the line resistance and reactance respectively; this

measures the strength of connections (electrical distance).
In this paper we will use the DC network model in which
these weights are .

• Average power flow: , where is
the (real) power flow from to (if the network is lossless
this is simply the power flow ); this
weight measures the importance of a line in a given oper-
ating condition—a small flow means that the line is more
likely to be removed when clustering.

Note that the first two weights are static, i.e., they are constant
for a given power system, while the power flow is dynamic, as
it changes according to actual operating conditions.
Edge weights can be interpreted as a penalty for cutting the

corresponding line when clustering, but also as a measure of
the connection strength, as strongly connected vertices are more
likely to be clustered together. Thus the admittance based clus-
tering will reveal the internal structure (electrical distance) of
the network while the power flow based clustering will reveal
islands which, when separated, disrupt as least as possible the
power flow in the network, and thus can be especially useful for
preventive islanding purposes [11].

B. Graph Laplacians

The Laplacian matrix is widely used in graph theory and it
has a clear power engineering interpretation. There are twomain

kinds of Laplacian matrix that can be associated with an undi-
rected weighted simple graph .
1) Unnormalized Laplacian: The Laplacian of is the
matrix defined as

if ;
if and ;
otherwise.

(1)

It is a real symmetric matrix with non-positive entries outside
the diagonal, and the sum of each column (or row) is zero.
If the weights are equal to inverse line reactances (using the

DC network model), then the unnormalized Laplacian is simply
equal to the well-known nodal admittance matrix (neglecting
shunt susceptances). There is no established power engineering
interpretation of the Laplacian when the weights are equal to
power flows.
2) Normalized Laplacian: The normalized Laplacian is the

matrix , where is the diagonal matrix
with nonzero entries . That is,

if ;
if and ;

otherwise.

(2)

The normalized Laplacian is scale-independent, and it is more
advantageous for clustering purposes (see Section IV-A).

C. Eigenvalues of the Laplacian

The eigenvalues of the (normalized or unnormalized)
Laplacian matrix satisfy the following key properties [14]:
1) all the eigenvalues are nonnegative real numbers;
2) 0 is an eigenvalue with multiplicity equal to the number of
connected components (islands) in the graph.

We write the eigenvalues of as ,
and the eigenvalues of as . From
property (2) above, we know that , or , if and only
if is connected. From now on we will assume that our graph
is connected.
The eigenvalues of are scale-dependent and have no

a priori upper bound (multiplying all weights by a scalar
multiplies all the eigenvalues by the same scalar). However, the
eigenvalues of satisfy the inequality for all .

III. SPECTRAL CLUSTERING

A. Introduction and Terminology

By clusteringwemean the identification of groups of vertices
in a graph (called clusters) such that the vertices in a cluster
are highly connected among themselves (taking edge weights
into consideration) but weakly connected to vertices in other
clusters. By spectral clustering we mean any clustering proce-
dure that uses the Laplacian eigenvalues and eigenvectors [12].
A theoretical justification for spectral clustering is deferred to
Section III-C below.
The general idea is to use the first eigenvectors of a Lapla-

cian to give geometric coordinates to the vertices in , for
some . Namely, these coordinates are the rows of
the matrix whose columns are the eigenvectors of the
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smallest eigenvalues. The resulting data points are then clus-
tered using some standard clustering algorithm developed for
point clouds in Euclidean space (normally -means). Spectral
clutering will try to create balanced clusters of approximately
equal volume, as explained later.
To measure the quality of a partition, we need to introduce a

quantity called subgraph expansion.

B. Subgraph Expansion

A subgraph is the graph induced by a subset of vertices
: the vertices are , and the edges are such that

. In agreement with the accepted power engineering
terminology, an island will be a subgraph of spanned by a
subset of the vertex set . (Note that a priori islands do not
need to be connected.) We implicitly consider only non-trivial
islands ( and ).
The volume of an island spanned by a subset is by

definition the sum of the degrees of its vertices:

(3)

Note that the volume of is determined by the weights asso-
ciated with the vertices in , and not just their number. The
boundary of is the sum of the weights of the edges between
vertices in and vertices not in (i.e., the sum of weights of
the tie-lines linking with the rest of the network):

(4)

To measure the quality of an island we will use the ratio of the
size of the boundary to the volume of . For this we define
the expansion of as the quotient

(5)

The smaller the expansion of , the better the island is con-
sidered to be in terms of clustering: a “good” island will
contain vertices highly interconnected among themselves
(large ), and weakly connected with the rest of the
network (small ). See Fig. 1 and Table II for examples of
the concepts of boundary, volume and expansion.
Note that minimizing the boundary alone, instead of

a ratio, gives inadequate solutions, as the island with smallest
boundary in a network consists just of the vertex with smallest
degree (see Fig. 1, caption). Hence minimizing the boundary
without additional constraints gives rise to spurious solutions.

C. Cheeger Inequality

The Cheeger inequality is one of the main theoretical justi-
fications of the spectral clustering methodology [12]. Since we
measure the quality of an island by its expansion ,
we will measure the quality of a -partition (i.e., a partition into
clusters) by the maximum expansion

among the islands:

(6)

Fig. 1. Power flow in the IEEE 39-bus test case, and clustering into four is-
lands with our methodology (see Section V-A). The islands are colored and
named Green, Red, Yellow and Blue. See Table II for the boundaries, volumes
and expansion ratios of these islands. Note that, although shown in the figure,
spectral clustering ignores the power flow directions. Observe that the island
with just bus 12 has the smallest boundary but maximal expan-
sion , as its boundary amounts to all its volume.

The best -partition overall (with respect to expansion) is the
minimum over all possible -partitions of the graph:

(7)

This quantity is called the -way expansion constant of the
graph . A brute-force approach to finding an optimal partition
(attaining the minimum above) is not computationally feasible
for large networks, and indeed search problems on graphs like
this one are generally NP-hard [15].
Spectral clustering provides instead an approximate solution,

with a computational complexity depending only on the compu-
tation of the first eigenvalues and eigenvectors of a Laplacian
matrix (at most cubic on for a real, symmetric matrix of size
).
The Cheeger inequality measures how close this approximate

solution is to the optimal solution, and how good overall this op-
timal solution is, that is, howwell the graph admits a -partition.
For , the Cheeger inequality is [14]

(8)

and this classical inequality has been recently generalized to
arbitrary , in the following asymptotic sense [13]:

(9)

In fact, the right-hand sides of (8) and (9) are obtained by using
spectral clustering with respect to the normalized Laplacian. On
the left-hand side, the value represents the minimal value
of the expansion of any -partition of the network. Therefore,
the smaller is, the closer the approximate spectral clustering
solution is to the optimal one, and the better this optimal solu-
tion is overall. If is large, the graph will not admit a good
-partition.
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An important observation is that clustering a network into
several clusters while minimizing the overall expansion (6) is
equivalent to trying to balance the volume of all the clusters.

IV. SPECTRAL CLUSTERING METHODOLOGY

A. Rationale

The essence of the spectral clustering methodology is to use
the first eigenvectors of a graph Laplacian to give coordi-
nates to the vertices in -dimensional Euclidean space . This
so-called spectral -embedding should reveal a clustering into
islands.
There are a number of variants of this general methodology.

A first choice is whether to use the normalized or the unnormal-
ized Laplacian [12]. There are a number of reasons why it is
generally more advantageous to use the normalized Laplacian
, particularly for arbitrarily weighted networks [13], [16],

and indeed we found in all our simulations that eigenvectors
of the normalized Laplacian performed better in terms of clus-
tering solutions. This justifies Steps 1 and 2 in our algorithm
(see Section IV-B below).
It is known that when using the eigenvalues of , there is an

extra normalization step after the spectral embedding, in which
the vectors must be normalized to have all length 1 [12], [13].
This justifies Step 3 in Section IV-B.
A second choice is that of a clustering algorithm for point

clouds in Euclidean space, in order to identify the clusters re-
vealed by the spectral -embedding when , where visual-
ization is difficult. The standard choice is the -means algorithm
[12]. However, this procedure has a few deficiencies from the
point of view of the overall control of the clustering process.
First, one needs to decide beforehand how many clusters one
wishes to obtain, normally using the spectral embedding in
to obtain clusters. Secondly, this method does not allow one to
encode the complete clustering structure of the original network
but rather output a single partition of the network. Thirdly, the
clustering algorithm in Euclidean space ignores the fact that the
points represent vertices in a graph, that is, it ignores the edge
information.
To overcome these shortcomings, we use hierarchical clus-

tering instead of the more standard -means algorithm [17].
This reveals a fine structure of the grid at various levels of res-
olution simultaneously, which we encode using a dendrogram.
A dendrogram is a tree diagram (such as Fig. 5) that encodes
the hierarchical structure in the spectral embedding. The bottom
“leaves” represent the individual vertices (buses), considered as
initial clusters of size 1. At each step up the tree, the closest clus-
ters are merged together, measuring the distance between clus-
ters as the shortest pairwise distance between points in different
clusters. A dendrogram represents the hierarchical structure of
the network at all levels at once, and indeed a specific -parti-
tion, for some , can be recovered by “cutting” the dendrogram
at level from the root (see Fig. 5 for an example).
To deal with the third shortcoming, we equip the graph with

a metric induced by the spectral embedding that takes into ac-
count the edge information. Assume that is the normal-
ized coordinate associated to the th vertex [see (11)]. Then we
set the edge distance if vertices and

Fig. 2. Eigengaps (left) and relative eigengaps (right) for the power flow based
Laplacian in the IEEE 39-bus test case.

are connected in the graph, and, in general, is the min-
imum distance over paths connecting to in the graph, where
the distance over a path is the sum of the edge distances. The
main advantage is that it only allows merging of islands already
connected by at least one edge. We call this the metric induced
on the graph by the embedding. One final refinement is that we
compute the distances over the sphere instead of the
straight-line distance, since we are clustering a point cloud on
the -dimensional sphere. The last few paragraphs explain
and justify Step 4 in our algorithm.
In this way, we obtain a clustering with a fascinating scale-de-

pendence which will allow us to “zoom into” clusters to re-
veal their finer structure. This new level of control will exhibit
the true functional structure of the grid as a whole at various
levels of resolution. In particular, the output of our algorithm
is not just a partition of the network (although such partitions
can be readily obtained) but rather the spectral embedding hi-
erarchical clustering structure, encoded and visualized using a
dendrogram.
There is still a choice of dimension in which to embed the

network, which is turn relates to the preferred number of clus-
ters we seek to find. This number may be problem dependent,
for instance the preferred volume of the clusters, but otherwise
we would like to know the optimal dimension for the spectral
embedding. A common criterion is to use the eigengaps, that is,
the difference between two consecutive eigenvalues (recall that
a good -partition exists if is small). Since we are interested
in the smallest eigenvalues, we use an eigenvalue difference rel-
ative to their size:

(10)

A high value of (see Fig. 2 for an example) indicates that the
network admits a good decomposition into at least islands,
and that this will be revealed by the spectral embedding in di-
mension . Note that the hierarchical clustering will neverthe-
less keep track of the subcluster structure within each cluster,
beyond simply a -partition. Therefore, in absence of any other
criterion, we will use a high value of to choose the dimension
for the spectral embedding (Step 0).

B. Algorithm

Let be an undirected weighted graph with
vertices.
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TABLE I
TOPOLOGY, EIGENBASIS COMPUTATION TIMES

Step 0 (Spectral Dimension) Choose with a
high value of , the relative eigengap in (10).
Step 1 (Normalized Laplacian) If is the ma-
trix of edge weights, define where

, , and .
Step 2 (Spectral embedding) Use the first eigenvectors
of the normalized Laplacian to give coordinates to the
vertices of the graph in . (If is the

matrix whose columns are the first eigenvectors,
then the is the th row of .)
Step 3 (Normalization) Normalize the vectors to have
length 1 in :

(11)

(This amounts to a radial projection onto the -sphere
.)

Step 4 (Hierarchical clustering) Compute the dendro-
gram of the points with re-
spect to themetric induced on the graph by the embedding,
as explained in Section IV-A.

C. Algorithmic Complexity

The largest computational time occurs in Step 2, the compu-
tation of the eigenbasis of a matrix of size , which is at most
cubic in . We used Matlab (see Section V below), which in
turn employs a Cholesky factorization algorithm, to compute the
eigendecomposition of a positive-definite symmetric matrix. In
practice, this computation took at most a fraction of a second in
all our test cases, mostly due to the sparsity of the matrices in-
volved (see Table I for mean times over 100 trials, and Section V
for software and hardware details).

D. Physical Interpretation of the Spectral Distance

The spectral -embedding provides a distance function
between buses and it is interesting to compare it with the
Thévenin’s equivalent impedance, which is a standard measure
of electrical distance. The latter can be calculated by inverting
the admittance matrix (i.e., the Laplacian with weights equal
to admittances) which suggests a connection with the spectral
distance when admittances are used as weights.
In general, the distance obtained by inverting the Laplacian

is often correlated to the unnormalized spectral embedding, but
there is no known direct mathematical relation [12]. In practice,
we found high linear correlation factors between the electrical
and the spectral distance for the unnormalized admittance based
Laplacian: 0.89, 0.82 and 0.87 for the IEEE 39, IEEE 118 and
GB test cases, respectively, for suitable choices of . This is
to be expected, as high connectivity between buses results in

smaller electrical distance. The main difference is that the spec-
tral distance organizes the vertices such that clusters are re-
vealed, hence it is a global distance with respect to an additional
clustering parameter . Mathematically, Thevenin’s impedance
takes into account all eigenvectors of the unnormalized Lapla-
cian (computing all eigenvalues and eigenvectors of a diagonal-
izable matrix is equivalent to computing its inverse), while the
spectral embedding uses only the smallest eigenvalues.
Note also that the spectral distance is associated to a spectral

embedding into Euclidean space, which provides an additional
geometric or spatial insight, while Thevenin’s impedance
is a purely numerical measure with no additional spatial
information.

V. TEST CASE: IEEE 39-BUS TEST SYSTEM

We illustrate ourmethodology on the IEEE 39-bus test system
in full detail. In the next section we will apply the methodology
to other systems and summarize the main findings.We start with
the spectral clustering based on the power flow Laplacian and
later compare the results to the admittance based Laplacian. All
the numerical results were performed on Matlab R2011b (64-
bit) on an iMac 3.06-GHz processor with 4 Gb of RAM.

A. Power Flow Laplacian

We performed the spectral clustering analysis of the IEEE
39-bus test system based on the DC power flows shown in Fig. 1.
We first concentrate on dimensions 2 and 3, where we can visu-
alise the embeddings. More generally, we would use the relative
eigengaps (10) to determine the optimal spectral dimension ,
and, if , as visualization is harder, a dendrogram to repre-
sent the hierarchical internal structure.

Step 0 (Spectral dimension)We choose a spectral dimen-
sion from the peaks in the relative eigengaps (Fig. 2). In
this case the peaks at ,5 suggests using dimensions 3
or 5 to reveal the underlying clustering structure.Wewould
choose , although we will do the analyisis for both
equals 2 and 3, for illustrative purposes.
Steps 1, 2 (Normalized Laplacian, Spectral embedding)
We construct the normalized Laplacian with respect to the
power flows, compute an orthonormal basis of eigenvec-
tors, and use the first eigenvectors to provide coordinates
to the buses in , for and 3. This effectively pro-
vides a representation or visualization of the network in
(Fig. 3, left), respectively (Fig. 4, left). We can already
see a “radial” clustering emerging, that is, points clustering
along half-lines emerging from the origin.
Step 3 (Normalization) We normalize the coordinates so
all the vectors have norm 1, that is, we project onto the unit
circle or the unit sphere . This procedure
projects the points along radial lines from the origin, re-
vealing the radial clustering structure mentioned above. In
Fig. 3, we show the spectral 2-embedding before (left) and
after normalizing (right). By visual inspection, we can al-
ready see a hierarchical clustering structure emerging, with
four clusters and several levels of subclusters of data points
(Fig. 3, right). For we obtain points in the 2-dimen-
sional sphere (not shown), although we performed a stere-
ographic projection onto the plane for better visualization
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Fig. 3. Spectral 2-embeddings for the IEEE 39-bus test case and power flows.
The right-hand side plot shows the normalized embedding (points lie on a unit
circle), with points labelled by bus number, and four discernible clusters are
highlighted (Blue, Green, Red and Yellow from top to bottom).

Fig. 4. Spectral 3-embedding for the IEEE 39-bus test case weighted with
power flows (left) and stereographic projection (right). We can visually iden-
tify four clusters (colored yellow, blue, green and red clockwise from the top
left corner), which are the same as in the spectral 2-embedding (Fig. 3, right).
Labels indicate bus number. The right-hand side plot is obtained by normalizing
the vectors to length 1, and performing a stereographic projection from the point
(1,0,0).

(Fig. 4, right). It is apparent that an even more detailed sub-
clustering structure emerges (see Section V-B). Note that
the normalized eigenvectors give points on a semi-circle
(Fig. 3, right), respectively, on a semi-sphere (not shown),
due to the first eigenvector being , hence
the first coordinate of all points always have the same sign.
Step 4 (Hierarchical clustering) The chosen dimensions
are small enough to allow clustering by simple visual
inspection (Figs. 3, 4, right), although the corresponding
dendrogram reveals the same clustering information (see
Fig. 5).

Going back to the original network, we check that these four
islands make sense (Fig. 1), and indeed they are connected and
have small boundaries relative to their volumes (Table II).
It is interesting to compare the expansion ratios found

with the theoretical lower bounds for ,4 (see
Section III-C): 0.0065 and 0.0226, respectively. That is, the
optimal -partition (which cannot be found in general in
polynomial time) has an expansion of at least 0.65% resp.
2.26% for ,4, in contrast to the ones we found (in a few
miliseconds) of 2.05% and 5.03%, respectively, avoiding an
exponential search.

Fig. 5. Dendrogram of the spectral 3-embedding for the IEEE 39-bus test
system weighted by power flows. The Blue, Green, Yellow and Red islands
(from left to right on the horizontal axis) are recovered at height 1, while
cutting at height 3 suggests merging the Green and Red islands for a good
3-partition (cf. Fig. 1 and Table II). Long vertical lines in a dendrogram reveal
a good clustering at that level.

TABLE II
PARTITION INTO FOUR (THREE) ISLANDS

B. Revealing the Internal Connectivity of the Network

We can exploit the spectral embedding further: by inspection
it shows indeed a rich subclustering structure, see Figs. 3 and 4
(right). For example, the relative position of individual buses
reflects whether they belong to the “core” of an island or to
the “periphery”, in some sense (see bus 9 in Figs. 4-1 for an
example). Also, exploring the dendrogram (Fig. 5) we can see
that merging the Green and Red islands gives a good 3-partition
(cf. Fig. 1 and Table II).
Uncovering this further subclustering structure is the main

motivation behind the choice of hierarchical clustering in our
methodology. The complete hierarchical structure of the net-
work will be encoded in a dendrogram.
Although a dendrogram captures the different scales in the

data, different choices of the spectral embedding dimension will
reveal slightly different partitions, as different spectral embed-
ding dimensions will favor configurations depending on the ex-
pected balanced -partition ( clusters of size approximately

).

C. Admittance Laplacian

We do the same analysis for the admittance based Laplacian.
The input is the same network with different weights, now the
line admittances shown in Fig. 6. Due to lack of space we show
only a network partition using the spectral 3-embedding. The
three islands obtained are similar to the ones in Fig. 1 for the
power flow Laplacian, as line admittances and power flows are
obviously correlated (0.66 linear correlation factor), and indeed
constrained by the network topology (the admittance and the
power flow between two buses is zero if they are not physically
connected). On the other hand, the expansion ratios are higher
than the power flow based ones (9.34%, Red; 8.00%, Yellow;
3.28%, Blue), as the power flow weights are more sparse (stan-
dard deviation of 212.5 as opposed to 68.6 for the admittance
weights). This can be also seen on the Laplacian eigenvalues
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Fig. 6. Line admittances in the IEEE 39-bus test system, and three clusters
(colored and named Red, Yellow and Blue) identified by our methodology (see
main text).

Fig. 7. Eigenvalues for the power flow based (PL) and admittance based (AL)
normalized Laplacians of the IEEE 39-bus test systems (left), and IEEE 118-bus
test system (right). The characteristic S-shape comes from the properties of the
eigenvalues: , , and the multiplicity of
(high multiplicity eigenvalues often come from the underlying network sym-
metry [18]). The more pronounced this S-shape is, the better -partitions for
small are expected in the network. Hence the plots predict better power flow
based partitions than admittance based ones in the 39-bus test system, and the
opposite in the 118-bus test system.

(Fig. 7, left). Indeed, the theoretical lower bound is higher
for the admittance based Laplacian: 1.34%, 1.68% and 2.50%
for , 3, 4.

D. Alternative Power Flow Laplacian

The power flow weighting is dynamic in the sense that it
varies depending on the network operation conditions. As the
power flows change, so does the spectral embedding, and the
corresponding hierarchical structure. As an illustration, we
change the generator outputs in the IEEE 39-bus test system
to create a different pattern of flows (Fig. 8). In this case, di-
mension 5 reveals a good clustering structure into at least four
islands. The hierarchical clustering information is represented
in a dendrogram (not shown), and the specific 4-partition
associated to it is given in Fig. 8. All the islands are connected,
and they have small boundaries compared to their sizes: the

Fig. 8. Alternative power flow in the IEEE 39-bus test system and clustering
into four islands (colored and named Red, Green, Yellow and Blue) found with
our methodology (see main text). The power flow directions are shown for
convenience.

TABLE III
RESULTS FOR LARGER SYSTEMS

expansion ratios are 5.20% (Yellow), 3.77% (Red), 3.73%
(Green) and 1.11% (Blue).
A more detailed analysis of the dendrogram allows to explore

the subcluster structure; for example the largest (Blue) island
can be further subdivided into two: 1–3, 9, 18, 30, 39 and 4–8,
10–14, 31–32.

VI. OTHER TEST SYSTEMS

We have applied our methodology to a larger IEEE test
system (118 buses), and one large-scale power transmission
network of Great Britain (GB); see Table I for their basic
topology.
For the IEEE 118-bus test system, we use spectral dimension

8 to produce a hierarchical picture of the network connectivity.
As an illustration, we compute the associated partition into 6
islands for both the admittance based and the power flow based
analysis (not shown due to lack of space), andwe list on Table III
the maximal expansion among the islands, as a measure of the
partition quality. The better partition for the admittance based
weighting cannot be explained by the dispersion of the weights
(very similar variation) but it can be seen on the eigenvalue plot
(Fig. 7, right).
For the GB system, we use dimensions 16 and 32 for the

power flows, respectively the line admittances.We compute two
examples in each case of partitions obtained at these dimensions
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TABLE IV
COMPARISON EA AND SC ALGORITHMS

(not shown), and we list their maximal expansion on Table III.
The admittance based partitions are much better (in terms of ex-
pansion ratios) than the power flow based ones, probably due to
the exceptionally large variation in weights (standard deviation
of 7117 for line admittances, versus 321 for power flows).
We also show on Table III the total computing time, which

includes: the computation of the Laplacian, its eigenvectors, the
spectral embedding, the normalization, the induced distances,
and the dendrogram (Steps 1 to 4 of ourmethodology).We stress
that the computer code we use has not been fully optimised,
leaving substantial space for improvement, as we only wanted to
demonstrate that our methodology should be considered “real-
time”.

VII. COMPARISON WITH OTHER METHODOLOGIES

Recent work on clustering in the context of power grids [7],
[10], [19]–[24] aims at providing a partition solution and it is
often application-specific. In contrast, our methodology reveals
the hierarchical connectivity structure beyond clustering (in
particular, it provides a distance function; see Section IV-D)
without any further constraints. Therefore, our technique is
closest in philosophy to that of [5], although note that we
can use any electrical parameter beyond electrical distances,
including dynamic criteria such as power flows.
Here we carry out an explicit comparison of our method (used

as a partitioning tool) to that of [25], since that article builds on
[5], and it provides a testable partitioning algorithm. We con-
sider the two test cases treated in [25]: the IEEE 118-bus test
system and 3 clusters, and a Polish network of 2383 buses (1733
buses after removing leaf-nodes) and 5 clusters.
We carried out our spectral algorithm (SC) with weights equal

to line admittances, and compared the solutions to those of the
evolutionary algorithm (EA) in [25], with respect to both quality
measures: the fitness score in [25], and our measure of expan-
sion, (5), which represents the connectivity of an island relative
to its volume. The results are explained below, and summarized
on Table IV.
For the 118-bus test system, our solution in dimension

has slightly (1%) worse fitness, and better (smaller) expansion
ratios. Indeed, both solutions are identical up to four buses. For
the Polish system, our solution in dimension has a slightly
(3.6%) worse fitness, and better expansion ratios.
The results are not surprising, as the fitness score in [25]

resembles what the spectral algorithm tries to achieve: high
intra-cluster connectivity, low inter-cluster connectivity, bal-
anced cluster size, and the ideal number of clusters is controlled
by the parameter (spectral dimension). The main difference
is that the fitness score is defined with respect to electrical
distances, and the expansion ratios with respect to the spectral

distances resulting from line admittances. Nevertheless, as
pointed out in Section IV-D, these two are highly correlated.
It is noteworthy that our spectral algorithm performs well with
respect to an extrinsic (although correlated) quality measure
while outperforming with respect to expansion ratio, which is
precisely the measure it aims to optimise.
In terms of computation times, for the Polish network our al-

gorithm needed about 15 s in our desktop computer to calculate
all spectral embeddings up to dimension (in a non-opti-
mized code), and then less than 3 s to find a clustering solution
in each dimension. For the 118-bus case the complete compu-
tation was done in a fraction of a second. On the other hand,
the complexity of genetic algorithms typically depends on the
size of the initial population, the number of iterations, and the
number of crossovers at each iteration [26].

VIII. CONCLUSION

We have presented an efficient algorithm that uses spectral
and hierarchical clustering to reveal the internal connectivity
structure of a network representing a power grid, with respect to
any choice of electrical parameter associated to the transmission
lines. We have used power flows and line admittances to illus-
trate our methodology, in three test systems of small, medium
and large size. In addition, we have benchmarked our algo-
rithm, used as a partitioning tool, with respect to a competing
technique.
Using the power flows as weights is more useful in applica-

tions that are dynamic, in the sense that they depend on actual
operating conditions. One application is preventive islanding
[11], as the clustering tries to minimize the disruption of power
flows caused by cutting through tie-lines linking the clusters, but
a fascinating possibility could be to use it in a control room as
a method of visualizing actual operating conditions. Different
nodes in the system would come closer together, or disperse,
depending on their loading, hence revealing the power flow
loading pattern and structure.
Hierarchical spectral clustering can also be done using line

admittances when the grid connectivity, as expressed by the
electrical distance, is of more interest. This clustering therefore
reveals a static internal structure of the network.
We used dendrograms to organize and visually represent the

hierarchical structure of a network, particularly in dimensions
greater than 3. This goes beyond the more standard -means al-
gorithm, and our methodology reveals a complete functional hi-
erarchical substructure of the network beyond a simple partition.
In particular, the dendrogram retains information about further
subdivisions (or amalgamations) into smaller (larger) islands.
We believe that the spectral embedding and associated den-

drogram are the correct way of representing a network in terms
of internal connectivity with respect to a specific set of edge
weights. This may serve as a starting point of further analysis,
by reducing the search space, and provide a geometric insight on
the functional hierarchy of the network. In particular, exploring
the dendrogram and the original network we can fine-tune the
details depending on the specific application we are considering.
We explained the underlying mathematical theory in detail

with the aim to convey the enormous potential of the spectral
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clustering methodology, when applied carefully, in the power
engineering context.
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