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Abstract

This paper presents an efficient and automatic scheme for modelling the
growth of multiple cracks through a two-dimensional domain under fatigue
loading based on linear elastic fracture mechanics. The dual boundary ele-
ment method is applied to perform an analysis of the cracked domain and the
J-integral technique is used to compute stress intensity factors. Incremen-
tal crack propagation directions are evaluated using the maximum principal
stress criterion and a combined predictor-corrector algorithm implemented
for propagation angle and increment length. Criteria are presented to control
the mesh used on the slower growing cracks in the domain, improving com-
putational efficiency and accuracy by the use of virtual crack tips to avoid
the need for severe mesh grading. Results are presented for several geome-
tries with multi-site damage, and sensitivity to incremental crack length is
investigated. The scheme demonstrates considerable advantages over the fi-
nite element method for this application due to simplicity of meshing, and
over other boundary element formulations for modelling domains with large
ranges of crack growth rates.
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1. Introduction

Fatigue is a common mode of failure in materials subjected to cyclical
loading. Here, cracks propagating through a structure reach a critical length,
upon which a sudden and often catastrophic fracture failure occurs. The
growth of cracks can be difficult to detect and monitor, necessitating the
requirement for methods to simulate the behaviour of such cracks.
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Modern structures and components can contain many thousands of sub-
critical cracks and therefore an important design consideration is the extent
of crack growth that can be sustained by the structure safely within its
designed life. The damage tolerance approach to the fatigue assessment of a
structure requires engineers to monitor cracks and also be able to calculate
the remaining life. In order to make accurate calculations, detailed crack
growth calculations must be performed. This is often done with the use of
numerical elasticity calculations (e.g. with the finite element method (FEM))
in combination with a crack growth law.

A further consideration is multi-site damage, where a component contains
multiple cracks of different sizes that can propagate at different rates and
the interaction of cracks becomes significant. This phenomenon was brought
into focus in 1988 when Aloha Airlines flight 243 experienced an explosive
decompression following a structural failure of the fuselage in flight. The
National Transportation Safety Board [1] determined in its accident report
that the cause of the damage was failure of a fuselage lap joint from multi-site
fatigue cracking. The consideration of multi-site damage has since become a
critical consideration in aircraft design and maintenance; however, numerical
simulation of multi-site fatigue crack growth remains challenging.

The increasingly complex geometries and crack interactions that are present
in modern engineering structures require the development and use of numer-
ical methods to simulate the propagation of cracks and to compute the resul-
tant effect on stress fields. Linear Elastic Fracture Mechanics (LEFM) has
long been used in damage tolerance assessments for cracked bodies. Here it is
assumed that the crack tip plastic zone is small in comparison with the crack
length. A complication arising in LEFM, and a particularly important one
in performing numerical simulations, is that a stress singularity is present at
the crack tip, so that values of local stress components become of limited use
in assessing the stability of the crack and its propagation properties. Instead,
stress intensity factors, KI and KII, are used to provide a convenient measure
of crack stability, and also describe components, σij, of the stress tensor in
the vicinity of the crack tip. For a pure mode I crack, for example, the stress
field around the crack tip is given, in the usual polar coordinate system (r, θ)
centered on the crack tip, by

σij(r, θ) =
KI√
2πr

fij(θ) + Higher Order Terms . . . (1)

where KI is the mode I stress intensity factor and fij is a dimensionless func-
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tion of θ, the angular coordinate measured from the crack axis (see Fig. 1).
As r → 0, a singularity of order r−1/2 develops and the stress σij → ∞. The
stress intensity factor is thus a scaling factor which indicates the severity of
the singular crack tip stress field.

In numerical simulations using any method based on LEFM, cracks are
modelled in incremental analyses whereby a crack is incremented by a pre-
calculated length and an analysis of the stress field in the structure is con-
ducted and new stress intensity factors found. The crack propagation angle
for each increment can be determined as a function of the stress intensity
factors.

The FEM has been at the forefront of numerical simulation for decades
and has been successfully used in fracture mechanics applications consider-
ing crack propagation [2]. However, when applied to iterative crack growth
schemes, the FEM requires extremely fine meshing around crack tips to re-
solve the high stress gradients, and each increment in the analysis requires
a re-meshing of the domain. These problems were addressed by Moës et
al. [3] who developed the extended finite element method (XFEM), which
adds local enrichment to model the crack independently of the finite element
mesh.

The scaled boundary finite element method [4] is an alternative approach
which has benefits arising from (i) a reduced dimensionality of modelling,
and (ii) a semi-analytical approach that can capture the leading order terms
in the expansion (1) and yield stress intensity factors directly. However, the
approach can become cumbersome for all but the simplest geometries.

The boundary element method (BEM) has become popular for modelling
of fractures, and particularly for crack growth. This removes the need for
remeshing, as only the boundary (including crack surfaces) are meshed, al-
lowing subsequent increments to be considered simply by adding incremental
elements to the existing mesh. The method is also well known for provid-
ing accurate boundary solutions to discontinuous fields. Using the classical
form of the BEM, however, it is not possible to achieve a solvable system of
equations in a single region, since collocation at coincident nodes on oppos-
ing crack surfaces causes the number of independent equations in the system
to become insufficient. The Dual Boundary Element Method (DBEM) (see
Hong & Chen [5], Portela et al. [6], and Chen & Hong [7]) addresses this by
defining separate equations on collocated surfaces of the crack, one a func-
tion of displacement and the other of traction, giving a non-singular system
of equations which can be solved. The method has been applied to both
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single and multiple crack problems [6, 8, 9, 10, 11].
This paper presents an algorithm for the application of the DBEM to

the incremental analysis of multi-site damage crack growth problems. In
the evaluation of crack tip stress intensity factors, the J-integral is used,
and for calculating crack paths the predictor-corrector technique proposed
by Portela et al. [6] has been incorporated into a multiple crack algorithm.
Fatigue analysis based on Paris law is adopted for simplicity, although other
crack growth laws could easily be substituted. Further correction for in-
crement length is implemented based on Salgado et al. [9], and new growth
criteria developed to control the extensions of cracks where a range of growth
rates are present. Examples for multi-site damage fatigue problems are pre-
sented including single crack examples for validation and a series of multi-site
damage applications with relevance to modern engineering structures.

The paper is organised in the following fashion. In section 2, we present
the DBEM and its application for fatigue crack growth. In section 3, we ex-
tend the discussion to multi-site damage, presenting a new algorithm which
includes the possibility of virtual crack extensions, and the approach is for-
malised in section 4. In section 5 we present validating examples, and discuss
the performance of the algorithm. We close with some concluding remarks
in section 6.

2. The dual BEM for fatigue crack growth

We start by defining our two-dimensional domain Ω ⊂ R2, having Lip-
schitz boundary Γ := ∂Ω. The static equilibrium state of an elastic body
described by the domain can be expressed in the following way,

σij,j + bi = 0 (2)

where σ is the Cauchy stress tensor and b represents the body forces per unit
volume. The stress tensor is related to components of the strain tensor, ε,
through the constitutive relations

σij = Cijklεkl = λεkkδij + 2µεij (3)

and the strains are displacement derivatives according to the definition

εij =
1

2
(ui,j + uj,i). (4)
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In the above λ is the Lamé constant, given by

λ =
2µν

1− 2ν
, (5)

µ is the shear modulus, given by

µ =
E

2(1 + ν)
, (6)

δ is the Kronecker delta, E is Young’s modulus, ν denotes Poisson’s ratio
and ui are the displacements. In addition, the strains have to satisfy the
compatibility equations

∂εij
∂xj∂xk

− ∂

∂xi

(
−∂εjk

∂xi

+
∂εik
∂xj

+
∂εij
∂xk

)
= 0. (7)

We consider a boundary value problem in which the above differential equa-
tions are solved subject to some Dirichlet and Neumann boundary conditions,
respectively

ui(x) = ū, x ∈ Γu (8)

ti(x) = t̄, x ∈ Γt (9)

where ti is a traction component and the overbars denote prescribed values.
The Dirichlet and Neumann boundaries, Γu and Γt, form the entire boundary,
so Γ = Γu ∪ Γt. Betti’s reciprocal work theorem is applied to form the
Boundary Integral Equation (BIE) for displacements at a point x′ ∈ Ω\Γ, in
terms of tractions and displacements at all points on Γ. Taking for simplicity
bi = 0, i = 1, 2, this yields

ui(x
′) +

∫
Γ

Tij(x
′,x)uj(x) dΓ(x) =

∫
Γ

Uij(x
′,x)tj(x) dΓ(x), (10)

where Tij and Uij represent the Kelvin fundamental solutions for tractions
and displacements respectively. Using the usual radial coordinate r :=
|x − x′|, the fundamental solutions become singular as r → 0; a strong
1/r singularity develops in Tij and a weak ln(1/r) singularity in Uij. Taking
the limit of (10) as x′ → Γ, gives

cij(x
′)uj(x

′) +−
∫
Γ

Tij(x
′,x)uj(x) dΓ(x) =

∫
Γ

Uij(x
′,x)tj(x) dΓ(x), (11)
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where −
∫
indicates an integral taken in the Cauchy principal value sense, and

the free coefficient cij(x
′) arises as a result of the limiting procedure; it takes

the value δij/2 for a smooth boundary at x′.
Repeated application of (11), taking x′ at all nodes in turn, allows us

to form a linear system which, upon prescription of a sufficient number of
boundary conditions, can be solved to yield the nodal displacements and
tractions. However in a single region analysis of a domain with cracks there
are problems with the coincidence of the two crack surfaces giving rise to a
singular system as a result of applying (11) at coincident nodes on the upper
and lower crack surfaces, thereby yielding duplicate equations.

Several variations of the BEM have been proposed to address this prob-
lem, e.g., use of a fundamental solution that does not require the crack sur-
faces to be included in the BEM mesh [12] and a domain decomposition
method [13]. These suffer from lack of generality and difficulty of automating
incremental crack growth. These problems were most effectively addressed in
the development of the Dual Boundary Element Method (DBEM) [5, 11, 7], in
which (11) is used when collocating on one crack surface and a hyper-singular
traction integral equation on the opposing surface. This latter equation is
derived through differentiation of (11) and application of Hooke’s law to give
an expression for traction components, ti, as

1

2
tj(x

′) + ni(x
′)=

∫
Γ

Sijk(x
′,x)uk(x) dΓ(x) = ni(x

′)−
∫
Γ

Dijk(x
′,x)tk(x) dΓ(x),

(12)
where Sijk and Dijk contain derivatives of Tij and Uij and exhibit a 1/r2

hyper-singularity and strong 1/r singularity respectively, and =
∫
indicates the

Hadamard principal value integral. For piecewise flat cracks, it is possible
to evaluate analytically the singular integrals required when integrating over
the element containing x′ [11]. The DBEM linear system is then formed
by repeated application of both (11) and (12), at a sufficient number of
collocation points x′, as follows:

cij(x
′)uj(x

′)+−
∫
Γ

Tij(x
′,x)uj(x) dΓ(x) =∫

Γ

Uij(x
′,x)tj(x) dΓ(x), x′ ∈ ΓD (13)
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1

2
tj(x

′) + ni(x
′)=

∫
Γ

Sijk(x
′,x)uk(x) dΓ(x) =

ni(x
′)−
∫
Γ

Dijk(x
′,x)tk(x) dΓ(x), x′ ∈ ΓT (14)

where Γ = ΓT ∪ ΓD and the boundaries ΓT ,ΓD are defined as

ΓT = Γ+
1 ∪ Γ+

2 ∪ ... ∪ Γ+
M , (15)

ΓD = Γext ∪ Γ−
1 ∪ Γ−

2 ∪ ... ∪ Γ−
M , (16)

in which Γext contains all portions of the domain boundary that do not de-
scribe a crack surface, and Γ+

j and Γ−
j are the two opposing surfaces of the

jth crack of a total of M cracks.
A further advantage of the DBEM is that in an incremental analysis, the

new elements added for the crack extensions form new columns and rows in
the system matrix. The majority of the original system matrix can therefore
be reused and techniques such as LU decomposition or Gauss elimination can
be used to reduce this part of the matrix to optimise the re-analysis after
each crack growth increment.

For the work in this paper the J-integral method [14] was used to evaluate
the stress intensity factors. In the absence of body forces this is given by

J =

∫
S

(Wn1 − tjuj,1) dS, (17)

where S is an arbitrary counterclockwise contour surrounding the crack tip,
W is the strain energy density, and the direction i = 1 relates to the direction
of crack propagation, x1, as shown in Fig. 1. A relationship exists between
J and the modal stress intensity factors, given by

J =
K2

I +K2
II

E ′ , (18)

where E ′ is the elasticity modulus equal to E in plane stress and to E/(1−ν2)
in plane strain. In a mixed-mode two-dimensional problem, it is necessary
to decouple the combination of modes in the J-integral, in order to compute
KI and KII separately. The integral, J , in (17) can be given as the sum
of two integrals using the method of Aliabadi [15], which involves taking
a distribution of integration points on S that is symmetric about x2 = 0,
e.g. the points P and P ′, shown in Fig. 1. This allows the displacements
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and stresses to be separated into their symmetric and antisymmetric parts,
and the J-integral then to be decoupled, expressed in terms of the modal
components J I, J II, giving

JM =

∫
S

(WMn1 − tMj uM
j,1) dS. M = I, II (19)

The modal components of the J-integral can then be related to the modal
stress intensity factors, giving

J I =
K2

I

E ′ , J II =
K2

II

E ′ , (20)

Within the present analysis, discontinuous boundary elements are used
throughout, satisfying the Hölder continuity requirement embedded in the
hypersingular integral term in (12), and (as suggested by numerical tests)
the J-integral path is taken as the circular contour defined by the radius of
the fourth node from the crack tip. Both of these features are evident in
Fig. 1.

Several methods of determining crack propagation directions in mixed-
mode problems have been presented, commonly those based on the orienta-
tion of the maximum principal stress (MPS) and also on maximum strain
energy density [16]. The latter finds more use in three-dimensional applica-
tions [17]; in the present work the MPS criterion is applied as proposed by
Erdogan and Sih [18]. Near the crack tip the maximum principal stress is
taken as the tangential stress σθθ, the singular part of which is given by

σθθ =
1√
2πr

{
KI cos

3

(
θ

2

)
− 3KII sin

(
θ

2

)
cos2

(
θ

2

)}
. (21)

The angle θ = θt at which the crack will propagate is that maximising σθθ,
giving an expression

KI sin θt +KII(3 cos θt − 1) = 0, (22)

which can be solved for the crack propagation angle, θt,

θt = sin−1

(
KIKII ± 3KII

√
8K2

II +K2
I

9K2
II +K2

I

)
, (23)

where only the negative result of the ± expression is of practical use in this
application.

8



The MPS criterion is a continuous criterion; the crack propagation angle
found using (23) is evaluated locally at the crack tip. In a discretised numer-
ical scheme such as that proposed in the present work, this criterion does not
take into account the variation in the stress field as the crack propagates; the
incremental extension direction will always be defined in the same direction
regardless of the crack extension length used. As a result the crack path
calculated using (23) cannot be guaranteed to be unique.

A form of correction is required to consider the stress conditions at the
extended crack tip, and to re-evaluate the crack propagation angle until the
true crack path is achieved. Portela et al. [6] proposed an iterative, predictor-
corrector scheme that achieves this by introducing a correction angle β. This
approach is repeated here for completeness. Considering a crack increment,
γ, the propagation direction θt(γ) is computed from (23). After extending the
crack by da along this angle, the actual crack path has deviated, therefore the
crack propagation angle for the next increment is θt(γ+1). Fig. 2 shows that a
correction angle β can be expressed as a geometric relationship, β = θt(γ+1)/2.
In an incremental analysis the following procedure is implemented at each
crack tip in the domain:

1. For the first iteration of the predictor corrector algorithm, the crack
propagation angle, θt, is evaluated using the MPS criterion (23),

2. The crack is extended by da to the new crack tip, pi,

3. A full DBEM analysis of the domain is conducted and new crack tip
stress intensity factors calculated,

4. A new crack propagation angle, θit(γ+1), is computed from (23) with the
new SIFs found in step 3,

5. The correction angle, βi, is calculated as βi = θit(γ+1)/2,

6. The crack increment is corrected as θi+1
t(γ) = θit(γ) + βi, the previous

extension in step 2, is replaced with an extension in the direction of
the corrected angle,

7. The algorithm is repeated from step 2 until |βi+1| < |βi|.

Notice that β → 0 as the crack increment da → 0; therefore in the limit the
crack path tends to the direction of the tangent of the continuous crack path.

Cracks subjected to fatigue loading, characterised by a load with varying
amplitude with time, will grow under certain conditions. Simulating the
growth of cracks under fatigue loading allows fatigue life and residual strength
to be determined, which can be used in damage tolerance assessments. In
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a multiply cracked domain, fatigue analysis must be conducted as part of
an iterative algorithm; for each increment, all cracks in the domain will be
subjected to a given number of load cycles resulting in different increment
lengths for each crack.

The growth rate of a crack under fatigue loading, da/dN , is usually given
as a function of the range of effective stress intensity factors, ∆Keff. Many
formulae for this relationship exist but Paris Law [19] is used here as it is the
most simple formulation, given by

da

dN
= C(∆Keff)

m, (24)

where a is the crack length, N the number of load cycles, and C and m are
material constants. Tanaka [20] showed experimentally that for mixed-mode
problems ∆Keff may be given by

∆Keff = 4

√
∆K4

I + 4∆K2
II , (25)

where ∆K = Kmax −Kmin and Kmin and Kmax are the minimum and max-
imum values of the stress intensity factor within a load cycle. In order to
consider problems with non-zero stress ratio, R, ∆K can be expressed as
follows:

∆K = Kmax(1−R), (26)

where, R = Kmin/Kmax.

3. Algorithm for simulation of multi-site damage

In a domain with multiple cracks it can be assumed that there will gen-
erally be a range of stress intensity factors at the different crack tips in the
domain, and as a result a range of growth rates and associated crack incre-
ment lengths. In the present work the following procedure was adopted to
determine initial growth conditions for all cracks in the domain. The number
of load cycles required to increment the fastest growing crack tip by a given
length is calculated by rearranging (24) in terms of dN and integrating,

dN =
1

C

∫ ai+da

ai

1

max∆Km
eff

da, (27)

where da is a reference increment length, taken to be two times the length
of the crack tip element on the fastest growing crack (i.e. that with the
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maximum value of ∆Keff in the domain), and ai is the current crack length.
This choice of da is motivated by the desire to start and end the J-integral
contour at x2 = 0 (Fig. 1) at the fourth node from the crack tip. The
integration assumes that the stress intensity factors are constant along the
crack as it extends from ai to ai + da.

The crack growth increments for all remaining crack tips can then be
calculated by integrating the inverse of (27),

da = C

∫ Ni+dN

Ni

∆Km
eff dN, (28)

where Ni is the current number of load cycles that have been simulated in
the analysis, and dN is the number of load cycles calculated in (27); again
the integration is performed assuming constant stress intensity factors. The
stress intensity factors at the extended crack tip are not known prior to the
extension. Once the crack has been extended and a re-analysis performed to
correct the propagation angle, the increment length can be corrected as well
to take into account the variation in crack tip stress intensity factors. The
predictor-corrector scheme of Salgado and Aliabadi [9] has been implemented
in the present work.

The procedure is adapted in the present work so that corrections for
propagation angle and increment length are conducted in the same algorithm.
The following steps are computed alongside the corresponding points in the
propagation angle correction algorithm:

1. For the first iteration the number of load cycles for the increment and
initial increment length, da, are calculated for each crack tip using (27)
and (28) respectively,

2. All cracks are extended by da to the new crack tip along the propagation
angle θt calculated in the predictor corrector algorithm using (23),

3. A full DBEM analysis of the domain is conducted and new crack tip
stress intensity factors calculated,

4. The number of load cycles for the increment are re-calculated consider-
ing variation in stress intensity factors by applying the trapezium rule
to (27),

5. Crack increment lengths are re-calculated considering variation in stress
intensity factors by applying the trapezium rule to (28),

6. The algorithm is repeated from step 2 until |dai − dai+1| < εa, where
εa is a pre-defined tolerance.
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The scheme presented is simple and the combined algorithm for correction
of propagation angle and increment length is computationally efficient.

3.1. Mesh grading and virtual crack extensions

In a multiple crack analysis the size of the crack increment damay become
problematic for the more slowly growing cracks, i.e. those for which ∆Keff

is considerably smaller than max∆Keff, since the new elements used to mesh
the crack increment will become small. This is undesirable, not only because
it is computationally inefficient to simulate crack growth using very small
increments, but more importantly it may prevent a suitably accurate DBEM
solution being achieved. Most implementations of the boundary element
method require adjacent elements to be of similar length in order to compute
accurately the near-singular integrals in (11) and (12). This is especially
pertinent when using discontinuous elements. It is therefore necessary to
ensure that the ratio between adjacent element lengths can be controlled.

A set of criteria are therefore proposed to enforce minimum adjacent
element lengths when extending cracks to maintain suitable ratios of adjacent
element lengths and ensure accuracy of the DBEM solution:

• A given ratio between the lengths of adjacent elements must not be
exceeded; numerical tests suggest that a target ratio of 1.5 is suitable.

• A crack extension must exceed a minimum increment length determined
by the original geometry of the crack and the desired mesh density.

If either of these criteria is not met, then the crack is not extended for that
increment of the crack growth scheme. That is, the boundary mesh will
not be updated to include the new crack tip; the updated position of this
crack tip is only recorded as a virtual crack tip. On subsequent iterations the
analysis is performed at the meshed crack tip, incurring some approximation,
however new crack tip positions are calculated by incrementing by da from
the virtual crack tip with propagation angle θt also calculated using stress
intensity factors from the meshed crack tip. The distance from this tip to
the meshed crack tip is then checked against the criteria again. The process
of virtual increments is repeated until both criteria are met, the crack is then
extended to the virtual crack tip and the mesh updated (i.e. the full crack
is meshed and the tip is no longer virtual). The crack increment is then
corrected for propagation angle and increment length.
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This procedure enables cracks with slower growth rates (da/dN) to be
efficiently and accurately analysed using the DBEM. This is a significant
advantage in terms of computational efficiency.

4. Incremental Crack Growth Scheme

The full structure of the incremental crack growth algorithm presented
in this paper can be formalised in 13 steps as follows:

1. A DBEM analysis of the cracked domain is conducted and stress inten-
sity factors are evaluated at each crack tip using the J-integral tech-
nique,

2. Effective stress intensity factors are calculated for all crack tips in the
domain using (25),

3. The crack tip with the maximum range of effective stress intensity
factor is identified,

4. The number of load cycles, dN , to increment this crack tip by an
increment equal to two times the previous element is calculated using
(27),

5. The extension length da is then calculated for all other crack tips in
the domain using the number of load cycles, dN , evaluated in step 4
and (28),

6. The crack propagation direction, θt is calculated for each crack tip using
the MPS criterion (23),

7. The position of new crack tips is calculated using da and θt, increment-
ing from the previous crack tip (or virtual crack tip as appropriate),

8. For each crack tip the distance, aext, is evaluated from the meshed crack
tip to the new crack tip (or virtual crack tip as appropriate):

(a) If aext does not satisfy either of the crack extension extension
criteria, the crack increment is virtual. No further action for this
crack tip on this increment is required and the crack tip is recorded
as virtual

(b) If aext satisfies both extension criteria, the increment is applied to
the crack to be meshed

9. The boundary element mesh is updated for all new crack increments

10. A new DBEM analysis is performed, and stress intensity factors are
calculated at crack tips using the J-integral technique,
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11. New effective stress intensity factors are calculated at all crack tips
using (25),

12. The crack propagation angle, θt, and crack increment length, da, are
corrected considering the new stress intensity factors at each crack tip
using the predictor corrector algorithms,

13. The new propagation direction and length for each crack tip are checked
for convergence. For any unconverged crack tips, the algorithm is re-
peated from step 9, until all crack tips in the domain are converged.

The scheme presented is computationally efficient, and is especially appro-
priate for domains with multi-site damage and large ranges of crack growth
rates. The criteria proposed to control the meshing and extension of cracks
allow the simulation to be optimised for a desired level of solution accuracy.

5. Multi-Site Damage Crack Extension Applications

Three applications of the incremental crack-extension scheme are dis-
cussed. The first considers a singly cracked plate with three holes which is
based on an experiment conducted by Bittencourt et al. [2] and is compared
to a numerical BEM result by Leonel & Venturini [8], the second considers
the case of offset cracks approaching across a plate under a uniaxial fatigue
load, and the final example considers the effect of multiple cracks emanating
from perforations in a panel. In all examples, the given Paris law constants,
C and m are suitable when crack growth rates are considered in mm/cycle
and SIFs in GPa

√
m.

5.1. Cracked panel with three holes

To validate the crack growth scheme presented in this paper, an exam-
ple presented by Leonel & Venturini [8] is demonstrated; a rectangular plate
with three holes and a single edge crack with geometry as shown in Fig. 3
was tested with the incremental crack growth scheme presented in this pa-
per. A cyclic point load of 4.448 kN was applied to the centre of the top
edge of the plate. Young’s modulus of E = 2.068 GPa and a Poisson’s ratio
of ν = 0.3 were used with Paris’ law constants of C = 7.69 × 10−12 and m
= 3.0. The crack was modelled using 16 discontinuous, quadratic elements,
and a further 36 elements (of the same type) were added over the nine in-
crements considered. Fig. 4 shows the result of the nine increment analysis
with the discussed DBEM model compared to the numerical result presented
by Leonel & Venturini [8].
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The DBEM result closely matches the alternative numerical result al-
though with slightly different deviation around the lower hole; this result
appears closer to the experimental result presented by Bittencourt et al. [2],
though we note the likelihood of different discretistations used compared
to [8]. The method used by Leonel & Venturini uses the displacement cor-
relation technique to calculate stress intensity factors; more investigation
would be required to determine which method gives the best result in dif-
ficult geometries such as around the lower hole in this example. However,
the comparison demonstrates, sufficiently to progress to the other examples
including multi-site damage, that the proposed algorithm gives a satisfactory
simulation of a single crack path under a cyclic fatigue load.

5.2. Panel with multiple approaching edge cracks

Consider a rectangular plate with two cracks of length 10 mm on opposing
sides of the plate with a vertical offset of 5 mm, subjected to cyclic tension
of 100 MPa to the top edge of the plate and fixed at the bottom edge. The
geometry is shown in Fig. 5(a); a stress ratio of R = 0, Young’s modulus
of E = 30 GPa, and a Poisson’s ratio of ν = 0.3 were used with Paris law
constants of C = 10−12 and m = 3.0. The cracks were modelled using a total
of 52 discontinuous, quadratic elements, and a further 44 elements (of the
same type) were added over the eleven increments considered.

Fig. 5(b) shows the crack paths after eleven increments of the DBEM
crack growth algorithm. Notice that the problem is asymmetric, and this
results in somewhat greater stress intensity factors for crack 2, thus the
growth is faster for this crack. As the fractures develop the rate of growth
of crack 2 increases over that of crack 1. As a result, the increment length
required to model the incremental extension of the slower crack 1 decreases.
This analysis demonstrates the effectiveness of the present scheme in this
situation; three virtual increments were made on crack 1, allowing the full
path of crack growth to be modelled without the use of small elements that
would have introduced numerical difficulties.

The cracks initially propagate without significant deviation, but as the
mode II stress intensity factor increases the cracks begin to deviate away from
each other before deviating back towards the opposing crack as is characteris-
tic of this type of geometry. This example also demonstrates the requirement
for the consideration of crack coalescence; further incrementation would re-
sult in crack 2 coalescing with crack 1. This has not been considered in the
present work.
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The predictor-corrector algorithms are next validated for path indepen-
dence from increment length. Two values of the reference increment length,
da = 1.71 and 2.64 mm, were tested to compare the effect of different incre-
ment lengths on the predicted crack propagation. In Fig. 6 we plot the crack
paths for the two values of da. For the same geometry the crack paths corre-
late well for the different increment lengths, though small differences present
around the middle of the plate, as a result of the coarseness in the meshing
with the larger increment length, demonstrate the discretisation errors that
can accrue.

A comparison of the structural life prediction is shown in Fig. 7 for the
different increment lengths da = 1.71 and 2.64 mm; the structural life is
estimated at 18000 cycles. The comparison shows that there is little difference
in the number of cycles subjected to the structure, especially before the final
acceleration to failure, a stage during which it is unlikely that the Paris law
would remain valid.

Fig. 8 shows the stress intensity factors plotted against crack length for
modes I and II for each crack. KII remains small for the first 10 mm of
crack growth, resulting in the relatively straight crack paths for the initial
growth shown in Fig. 5(b). As the cracks approach each other there is a
rapid increase in KI at both crack tips, however the rate of growth of crack
2 does become visibly larger than that for crack 1 from 25 mm total crack
length.

5.3. Multiply perforated panel with multiple cracks

Consider a perforated panel fixed at the left hand edge and subjected to a
cyclic load to the right hand edge. The panel has three circular perforations of
diameter 10 mm along the centreline, with cracks of length 3 mm emanating
from the top and bottom of each perforation; the geometry and definitions
of the crack numbering are shown in Fig. 9. Young’s modulus of E = 30
GPa, a stress ratio of R = 0, and a Poisson’s ratio of ν = 0.3 were used, with
Paris law constants of C = 10−13 and m = 2.6. Cyclic loads were applied
to the right edge of the panel of 9 MPa in the x direction, and of 1 MPa in
the y direction. The cracks were modelled using a total of 48 discontinuous,
quadratic elements, and a further 188 elements (of the same type) were added
over the incremental crack growth analysis.

Fig. 10 shows an enlarged view of the crack paths after nine increments
of the DBEM algorithm presented in this paper. It is clear that the bending
stresses induced by the applied vertical load have resulted in larger crack
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growth rates for the cracks towards the bottom of the plate, particularly
cracks 1 and 2. Growth of cracks 5 and 6 remains small and this shows the
effectiveness of the crack extension criteria and use of virtual crack tips; over
the nine increments of the algorithm made in the analysis only one new ex-
tension was made on crack 6, the remaining increments being accommodated
through virtual extensions.

Fig. 11 shows the variation in stress intensity factors with crack length
for each iteration of the DBEM algorithm, including those that resulted in
a virtual increment (KI only shown for clarity). Some care should be taken
in interpreting the figure, since the cracks all reach any prescribed length
at different times. However, plotting the results in this form is a useful
way of describing both the relationship KI vs. a for each crack and also the
relationship between the different crack lengths in each iteration. The figure
shows that, after an initial phase in which crack 1 exhibits the highest KI,
cracks 2 and 3 become the most significant after approximately 2 mm of
crack growth as the situation becomes more severe here (with two cracks
approaching each other) than for crack 1 (which does not have another crack
growing towards it). Cracks 2 and 3 also experience rapid changes in KII

for the last increment as the cracks approach each other; a similar behaviour
can be seen in the second example (Fig. 8).

This example demonstrates the ability of the algorithm to calculate in-
crement lengths in cases in which the fastest growing crack changes during
the analysis. The figure also shows how the virtual crack extension results in
larger crack increments being used to model slower growing cracks; cracks 4,
5 and 6 all show some virtual increments. The result of the proposed exten-
sion criteria is that small increments are eliminated with no adverse effect
on the results obtained.

6. Conclusions

This paper presents a computational scheme based on the Dual Boundary
Element Method to perform incremental crack growth analyses of cracked do-
mains with multi-site damage. The J-integral technique was used to compute
stress intensity factors from which crack propagation angles were determined
using the maximum principal stress criterion. A Paris law crack growth
model was used to compute crack increment lengths based on a the num-
ber of fatigue load cycles required to propagate the fastest growing crack.
More sophisticated crack growth laws could easily be substituted. Predictor-
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corrector algorithms for propagation angle and increment length were imple-
mented in a combined fashion to ensure accurate modelling of crack paths.
Criteria have been proposed to control the incrementation of slower growing
cracks allowing multiply fractured domains to be simulated whilst maintain-
ing the intrinsic benefits of the BEM in terms of mesh simplicity, numerical
accuracy and computational efficiency. An essential feature of the new ap-
proach is the use of virtual crack tips to overcome difficulties associated with
meshing slowly growing cracks.

Three examples were tested, demonstrating the performance of the model
in simulating interacting mixed-mode crack growth, including cases in which
a range of crack growth rates were present. The sensitivity of the results to
the increment length, which is based on the initial mesh, was investigated.
The two incremental lengths tested produced well correlated crack paths,
with some small differences due to discretisation error in the coarser model.
These differences made little difference to the fatigue life prediction.

Not included in the present work is consideration of crack coalescence,
though since techniques have been developed for multiply cracked models
(e.g. [8]) the extension to merging cracks is quite possible. This will form a
natural extension to the present work, which focusses on the accommodation
of different crack growth rates within the same model.
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Figure 1: Circular J-integral contour path and coordinate reference system relative to
crack tip.

Figure 2: Geometric relationship of crack path correction angle to crack propagation angles
calculated using the MPS criterion [6].

Figure 3: Geometry of perforated panel with single edge crack [8] (dimensions in mm).
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Figure 4: DBEM crack path. Comparison with Leonel & Venturini BEM result [8].

(a) Geometry and ini-
tial offset crack po-
sitions (dimensions in
mm).

(b) DBEM crack
paths.

Figure 5: Panel with offset approaching edge cracks.
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Figure 6: Crack paths for offset cracks for different increment length.

Figure 7: Structural life prediction for cracked plate shown in fig. 5(b). Comparion of
different increment lengths on total load cycles.
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Figure 8: Plot of mode I and mode II stress intensity factors against crack length for
cracked plate shown in fig. 5(b).

Figure 9: Multi-perforated panel geometry and initial crack positions (dimensions in mm).
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Figure 10: Enlarged view of the crack paths after nine increments of DBEM algorithm.
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Figure 11: Plot of mode I and mode II stress intensity factors against crack length for
the perforated panel shown in fig. 10.
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